JP2010027364A - Electrode catalyst for fuel cell and its manufacturing method - Google Patents

Electrode catalyst for fuel cell and its manufacturing method Download PDF

Info

Publication number
JP2010027364A
JP2010027364A JP2008186915A JP2008186915A JP2010027364A JP 2010027364 A JP2010027364 A JP 2010027364A JP 2008186915 A JP2008186915 A JP 2008186915A JP 2008186915 A JP2008186915 A JP 2008186915A JP 2010027364 A JP2010027364 A JP 2010027364A
Authority
JP
Japan
Prior art keywords
carbon material
platinum
electrode catalyst
fuel cell
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008186915A
Other languages
Japanese (ja)
Inventor
Ikuma Takahashi
伊久磨 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008186915A priority Critical patent/JP2010027364A/en
Publication of JP2010027364A publication Critical patent/JP2010027364A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode catalyst which is superior in activity and can be applied widely such as for an automobile, domestic use, and electronic equipment when used for a fuel cell. <P>SOLUTION: This invention relates to an electrode catalyst for fuel cell in which platinum alloy particles containing platinum and a transition metal are carried on a carbon material, and the peak originating from Pt(111) in an X-ray diffraction analysis using CuKα beam belongs to a lattice plane of 40.3-40.8° in 2θ. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃料電池用電極触媒およびその製造方法に関する。   The present invention relates to a fuel cell electrode catalyst and a method for producing the same.

近年、エネルギー・環境問題を背景とした社会的要求や動向と呼応して、常温でも作動し高出力密度が得られる固体高分子形燃料電池が電気自動車用電源、定置型電源として注目されている。固体高分子形燃料電池は、フィルム状の固体高分子膜からなる電解質層を用い、一般的には、膜−電極接合体(以下、「MEA」とも称する)をセパレータを介して積層した構造を内蔵している。   In recent years, in response to social demands and trends against the background of energy and environmental problems, polymer electrolyte fuel cells that can operate at room temperature and obtain high output density have attracted attention as power sources for electric vehicles and stationary power sources. . A polymer electrolyte fuel cell uses an electrolyte layer made of a film-like solid polymer membrane, and generally has a structure in which a membrane-electrode assembly (hereinafter also referred to as “MEA”) is laminated via a separator. Built-in.

MEAは、電解質層がカソードとアノードとにより挟持されてなり、従って、電極触媒層は少なくとも片面が電解質層に接する構造となっている。   In the MEA, the electrolyte layer is sandwiched between the cathode and the anode, and therefore, the electrode catalyst layer has a structure in which at least one surface is in contact with the electrolyte layer.

従来、カソードおよびアノードには、ともに白金または白金合金等の触媒金属を微細化して、カーボンブラック等の比表面積の大きい炭素担体に高分散担持させた電極触媒が用いられている。かような電極触媒は、触媒金属表面の電極反応面積が大きいため、触媒活性を高くすることができる。   Conventionally, an electrode catalyst in which a catalytic metal such as platinum or a platinum alloy is refined and supported on a carbon carrier having a large specific surface area such as carbon black in a highly dispersed manner is used for both the cathode and the anode. Since such an electrode catalyst has a large electrode reaction area on the surface of the catalyst metal, the catalytic activity can be increased.

例えば、特許文献1には、白金ルテニウム合金のナノ粒子をカーボン微粒子に担持させた白金ルテニウム合金触媒の製造方法が開示され、ルテニウムを合金化することで白金原子間距離が短縮されることが記載されている。白金原子間距離を短縮させることによって電子密度が増加するため、酸化還元能力が向上し、発電性能の向上に寄与しうる。
特開2007−27096号公報
For example, Patent Document 1 discloses a method for producing a platinum ruthenium alloy catalyst in which platinum ruthenium alloy nanoparticles are supported on carbon fine particles, and describes that the distance between platinum atoms is shortened by alloying ruthenium. Has been. By reducing the distance between platinum atoms, the electron density is increased, so that the redox ability is improved, which can contribute to the improvement of power generation performance.
JP 2007-27096 A

しかしながら、特許文献1では、触媒活性を最大にするための白金原子間距離に関しては開示されていない。そのため、高活性な白金合金触媒を開発する際には、合金化する金属の種類や原子比を変えながら試行錯誤を重ねる必要があり、十分な触媒活性を有する電極触媒を得ることは困難であった。   However, Patent Document 1 does not disclose the distance between platinum atoms for maximizing the catalytic activity. Therefore, when developing a highly active platinum alloy catalyst, it is necessary to repeat trial and error while changing the type and atomic ratio of the metal to be alloyed, and it is difficult to obtain an electrode catalyst having sufficient catalytic activity. It was.

そこで本発明は、触媒活性に優れた電極触媒を提供することを目的とする。   Accordingly, an object of the present invention is to provide an electrode catalyst having excellent catalytic activity.

本発明者らは、上記課題を解決するため、鋭意検討を行った。その結果、CuKα線を用いたX線回折分析によるPt(111)面に由来するピークが2θにして40.3〜40.8°の格子面に帰属される白金合金触媒を用いた場合に触媒活性が最大になることを見出し、本発明を完成させた。   In order to solve the above-mentioned problems, the present inventors have conducted intensive studies. As a result, when using a platinum alloy catalyst in which the peak derived from the Pt (111) plane by X-ray diffraction analysis using CuKα rays is 2θ and belonging to a lattice plane of 40.3 to 40.8 ° is used. The inventors found that the activity is maximized and completed the present invention.

本発明の電極触媒は、触媒活性に優れた電極触媒であるため、燃料電池に適用した場合に自動車用、家庭用、電子機器用などに幅広く応用可能である。   Since the electrode catalyst of the present invention is an electrode catalyst excellent in catalytic activity, when applied to a fuel cell, it can be widely applied to automobiles, households, electronic devices and the like.

以下、本発明を適用した最良の実施形態を説明する。   The best mode to which the present invention is applied will be described below.

本発明の電極触媒は、白金(Pt)と遷移金属との固溶体合金を炭素材料に担持して構成される。合金の粒子が炭素材料に担持されていることは、X線回折分析で確認することができる。炭素材料の粉末上の個々の金属粒子を構成するPtと遷移金属との組成比は、触媒全体のPtと遷移金属との原子比に略一致している。本発明の電極触媒においては、CuKα線による粉末X線回折(XRD)で測定したとき、2θ=40.3〜40.8°にPt(111)に由来する回折ピークを示す。上記ピークの角度は、結晶格子定数d111が、0.221≦d111≦0.224nmに相当する。 The electrode catalyst of the present invention is configured by supporting a solid solution alloy of platinum (Pt) and a transition metal on a carbon material. It can be confirmed by X-ray diffraction analysis that the particles of the alloy are supported on the carbon material. The composition ratio of Pt and transition metal constituting individual metal particles on the carbon material powder is substantially equal to the atomic ratio of Pt and transition metal in the entire catalyst. The electrode catalyst of the present invention shows a diffraction peak derived from Pt (111) at 2θ = 40.3 to 40.8 ° when measured by powder X-ray diffraction (XRD) using CuKα rays. Regarding the angle of the peak, the crystal lattice constant d 111 corresponds to 0.221 ≦ d 111 ≦ 0.224 nm.

炭素材料にPtを単独で担持した場合、Ptの面心立方晶の(111)回折ピーク位置は2θ=39.2°にあるので、Ptは遷移金属と合金を形成することによって結晶格子定数が縮小する。   When Pt is supported alone on a carbon material, the (111) diffraction peak position of the face-centered cubic crystal of Pt is 2θ = 39.2 °, so that Pt has a crystal lattice constant by forming an alloy with a transition metal. to shrink.

しかしながら、2元系の白金合金触媒において、Pt−Pt原子間距離を制御して触媒を作製することは困難であり、Pt−Pt原子間距離と触媒活性との関係は報告されていない。本願発明者は、触媒活性に及ぼすPt−Pt原子間距離と触媒活性との関係を検討し、従来の方法では調製が困難であった、Pt(111)に由来する回折ピークが2θ=40.3〜40.8°の範囲の触媒を調製した。その結果、Pt(111)に由来する回折ピークが2θ=40.3〜40.8°の範囲内の場合に触媒活性が最大となることを見出した。2θが40.3°以上であれば、Pt−Pt原子間距離が十分に短縮され、酸素分子吸着に適したPt−Pt原子間距離になり、酸素還元反応の活性の上昇に寄与しうる。一方、2θが40.8°以上となると、Pt−Pt原子間距離が短くなりすぎ酸素分子吸着力が強くなり、酸素が還元した水分子の脱着に大きなエネルギーが必要となり、酸素還元反応の活性は低下する。   However, in a binary platinum alloy catalyst, it is difficult to produce a catalyst by controlling the distance between Pt and Pt atoms, and the relationship between the distance between Pt and Pt atoms and the catalytic activity has not been reported. The inventor of the present application examined the relationship between the catalytic activity and the Pt-Pt interatomic distance on the catalytic activity, and the diffraction peak derived from Pt (111), which was difficult to prepare by the conventional method, was 2θ = 40. Catalysts in the range of 3-40.8 ° were prepared. As a result, it was found that the catalytic activity is maximized when the diffraction peak derived from Pt (111) is in the range of 2θ = 40.3 to 40.8 °. If 2θ is 40.3 ° or more, the distance between Pt and Pt atoms is sufficiently shortened to be a distance between Pt and Pt atoms suitable for oxygen molecule adsorption, which can contribute to an increase in the activity of the oxygen reduction reaction. On the other hand, when 2θ is 40.8 ° or more, the Pt-Pt interatomic distance becomes too short and the oxygen molecule adsorption force becomes strong, and a large amount of energy is required for desorption of water molecules reduced by oxygen. Will decline.

炭素材料としては、例えば、アセチレンブラック、チャンネルブラック、ランプブラック、オイルファーネスブラック、サーマルブラックなどのカーボンブラック;カーボンナノチューブ;カーボンナノファイバー;カーボンナノホーン;カーボンフィブリルなどの導電性炭素材料が挙げられる。カーボンブラックは、黒鉛化処理が施されていてもよい。中でも、低コストで大量生産に向いていることから、カーボンブラックを原材料となる炭素材料として用いることが好ましい。また、上記炭素材料は単独で用いてもよいし、2種以上を併用してもよい。上記炭素材料は自ら調製してもよいし、市販品を用いてもよい。市販品としては、バルカン、ケッチェンブラック(登録商標)、BlackPearl(登録商標)などが挙げられる。   Examples of the carbon material include carbon blacks such as acetylene black, channel black, lamp black, oil furnace black, and thermal black; carbon nanotubes; carbon nanofibers; carbon nanohorns; and conductive carbon materials such as carbon fibrils. Carbon black may be subjected to graphitization. Among these, carbon black is preferably used as a raw material carbon material because it is suitable for mass production at low cost. Moreover, the said carbon material may be used independently and may use 2 or more types together. The carbon material may be prepared by itself or a commercially available product may be used. Commercial products include Vulcan, Ketjen Black (registered trademark), Black Pearl (registered trademark), and the like.

炭素材料のBET比表面積は、特に限定されないが、触媒粒子の分散性、触媒利用率などの点から、好ましくは100〜2000m/gであり、より好ましくは200〜1000m/gである。 The BET specific surface area of the carbon material is not particularly limited, but is preferably 100 to 2000 m 2 / g, more preferably 200 to 1000 m 2 / g, from the viewpoint of dispersibility of catalyst particles, catalyst utilization rate, and the like.

また、前記炭素材料の平均粒子径は、特に限定されないが、担持の容易さ、触媒利用率の観点から、平均粒子径は、好ましくは10〜500nmであり、より好ましくは10〜100nmである。なお、炭素材料の平均粒子径は、走査型電子顕微鏡によって観察される一次粒子径によって規定される。   Moreover, the average particle diameter of the carbon material is not particularly limited, but the average particle diameter is preferably 10 to 500 nm, more preferably 10 to 100 nm, from the viewpoint of ease of loading and catalyst utilization. Note that the average particle size of the carbon material is defined by the primary particle size observed with a scanning electron microscope.

本発明の電極触媒の触媒成分は、触媒活性、一酸化炭素などに対する耐被毒性、耐熱性の観点から、触媒成分100原子%に対して、白金が30〜90原子%、合金化する遷移金属が10〜70原子%とするのが好ましい。なお、合金とは、一般に金属元素に1種以上の金属元素または非金属元素を加えたものであって、金属的性質をもっているものの総称である。   The catalyst component of the electrode catalyst of the present invention is a transition metal in which 30 to 90 atomic percent of platinum is alloyed with respect to 100 atomic percent of the catalytic component from the viewpoint of catalytic activity, poisoning resistance to carbon monoxide and the like, and heat resistance. Is preferably 10 to 70 atomic%. In general, an alloy is a generic term for a metal element having one or more metal elements or non-metal elements added and having metallic properties.

合金化する遷移金属としては、触媒作用を有するものであれば特に制限はなく、例えば、タングステン、鉛、鉄、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム、銅、亜鉛などが挙げられる。好ましくは、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛などの第4周期遷移金属である。上記遷移金属は、白金との親和性が高く、白金原子より原子サイズが小さいため、Pt−Pt原子間距離を短縮させるために有効である。   The transition metal to be alloyed is not particularly limited as long as it has a catalytic action, and examples thereof include tungsten, lead, iron, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, copper, and zinc. Can be mentioned. Preferably, it is a fourth period transition metal such as titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and zinc. The transition metal has a high affinity with platinum and an atomic size smaller than that of the platinum atom. Therefore, the transition metal is effective for shortening the distance between Pt and Pt atoms.

Pt合金粒子の形状は、特に制限されず公知の触媒成分と同様の形状が使用できるが、粒状であることが好ましい。   The shape of the Pt alloy particles is not particularly limited, and the same shape as a known catalyst component can be used, but is preferably granular.

炭素材料に担持されるPt合金粒子の担持量は、特に限定されず、触媒の種類、燃料電池の性能、炭素材料の種類などに応じて、所望の発電特性が得られるように決定すればよい。好ましくは、炭素材料100質量%に対して、30〜70質量%である。触媒金属の担持量が上記範囲であれば、質量活性、比活性に優れた電極触媒が作製されうる。   The amount of Pt alloy particles supported on the carbon material is not particularly limited, and may be determined so as to obtain desired power generation characteristics according to the type of catalyst, the performance of the fuel cell, the type of carbon material, and the like. . Preferably, it is 30-70 mass% with respect to 100 mass% of carbon materials. When the supported amount of the catalyst metal is in the above range, an electrode catalyst excellent in mass activity and specific activity can be produced.

Pt合金粒子は、平均結晶子径が、好ましくは1〜8nmであり、より好ましくは2〜7nmであり、さらに好ましくは3〜6nmである。平均結晶子径が8nm以下であれば、十分な有効電極面積が得られ、高い触媒活性が得られる。また、平均結晶子径が1nm以上であれば、白金面積あたりの活性が高い触媒が得られうる。本発明において、平均結晶子径は、X線回折法(XRD)によって測定される回折ピークの半値幅により求められるものを採用する。具体的には、実施例中で採用された方法によって求められる。   The average crystallite diameter of the Pt alloy particles is preferably 1 to 8 nm, more preferably 2 to 7 nm, and further preferably 3 to 6 nm. When the average crystallite diameter is 8 nm or less, a sufficient effective electrode area can be obtained and high catalytic activity can be obtained. Moreover, if the average crystallite diameter is 1 nm or more, a catalyst having high activity per platinum area can be obtained. In the present invention, the average crystallite diameter is determined from the half width of the diffraction peak measured by X-ray diffraction (XRD). Specifically, it is calculated | required by the method employ | adopted in the Example.

かような2θ値を持つ触媒の製造方法は、特に制限されるものではない。炭素材料に触媒金属を担持させる方法としては、例えば、含浸法、液相還元法、蒸発乾固法、コロイド吸着法、噴霧熱分解法、逆ミセル法等を利用することができる。好ましくは、触媒成分を低コストで高分散担持可能な、液相還元法が用いられる。   The method for producing the catalyst having such a 2θ value is not particularly limited. As a method for supporting the catalytic metal on the carbon material, for example, an impregnation method, a liquid phase reduction method, an evaporation to dryness method, a colloid adsorption method, a spray pyrolysis method, a reverse micelle method, or the like can be used. Preferably, a liquid phase reduction method capable of carrying the catalyst component at a low cost and in a highly dispersed manner is used.

白金の合金触媒においては、Pt(111)の2θの値を上述の値に制御するためには、例えば遷移金属元素を2種類含む3元系の合金触媒を作製する方法が考えられる。しかしながら、3元系の合金触媒を作製するためには調製の複雑さが増し、コストも上昇しうる。そこで、2元系の合金触媒でPt(111)の2θの値を上述の値に制御するためには、液相還元法によって触媒金属を炭素材料に担持させた後、熱処理、酸処理を順次行う方法が適する。   In the platinum alloy catalyst, in order to control the 2θ value of Pt (111) to the above-mentioned value, for example, a method of producing a ternary alloy catalyst containing two kinds of transition metal elements is conceivable. However, in order to produce a ternary alloy catalyst, the preparation complexity increases and the cost can also increase. Therefore, in order to control the 2θ value of Pt (111) to the above value with a binary alloy catalyst, after carrying the catalyst metal on the carbon material by the liquid phase reduction method, heat treatment and acid treatment are sequentially performed. The method to do is suitable.

以下、本発明の電極触媒の製造方法を、担持方法に液相還元法を用いた場合を例にして、工程順に説明する。   Hereinafter, the method for producing an electrode catalyst of the present invention will be described in the order of steps, taking as an example the case where a liquid phase reduction method is used as a supporting method.

(担持工程)
担持工程では、液相還元法によって、炭素材料に白金前駆体または遷移金属前駆体を溶媒中で含浸させた後、還元剤を溶媒に添加して白金または遷移金属を析出させる。白金および遷移金属の担持は、順次行ってもよく、溶媒中に白金前駆体および遷移金属前駆体を共に溶解、分散させ、同一の還元剤を用いて同時に還元を行ってもよい。特に液相同時還元法を用いると、白金と遷移金属とができるだけ隣り合った状態が得られるため好ましい。
(Supporting process)
In the supporting step, a carbon material is impregnated with a platinum precursor or a transition metal precursor in a solvent by a liquid phase reduction method, and then a reducing agent is added to the solvent to precipitate platinum or a transition metal. The support of platinum and transition metal may be carried out sequentially, or both the platinum precursor and the transition metal precursor may be dissolved and dispersed in a solvent, and reduction may be performed simultaneously using the same reducing agent. In particular, it is preferable to use the simultaneous liquid phase reduction method because a state in which platinum and the transition metal are adjacent to each other as much as possible is obtained.

白金前駆体としては、白金の塩化物、硝酸塩、硫酸塩、アンモニウム塩、アミン、炭酸塩、重炭酸塩、ハロゲン塩、亜硝酸塩、シュウ酸塩などの無機塩類、ギ酸塩などのカルボン酸塩および水酸化物、アルコキサイド、酸化物などが例示でき、これらを溶解する溶媒の種類やpHなどによって適宜選択することができる。好ましくは塩化物、硝酸塩、アンモニウム塩、アミン、炭酸塩である。具体的には、ジニトロジアンミン白金硝酸、塩化白金酸(ヘキサクロロ白金酸)、硝酸白金などが挙げられる。これらの原料は、担持される触媒金属の粒子径を制御しやすく、また触媒金属の分散性を向上させやすい。   Platinum precursors include platinum chlorides, nitrates, sulfates, ammonium salts, amines, carbonates, bicarbonates, halogen salts, nitrites, oxalates and other inorganic salts, formates and other carboxylates and Examples thereof include hydroxides, alkoxides, oxides, and the like, which can be appropriately selected depending on the type and pH of the solvent in which these are dissolved. Preferred are chloride, nitrate, ammonium salt, amine and carbonate. Specific examples include dinitrodiammine platinum nitric acid, chloroplatinic acid (hexachloroplatinic acid), and platinum nitrate. These raw materials are easy to control the particle diameter of the catalyst metal to be supported and to improve the dispersibility of the catalyst metal.

上記の白金前駆体は、溶媒に溶解または分散される。白金前駆体を添加する溶媒としては、特に限定されず、水、アルコール、または水とアルコールとの混合溶媒などが用いられるが、アルコールを用いることが好ましい。溶媒にアルコールを用いることで、炭素材料のエッジ面部分で核生成が起こりやすくなり、白金が高分散に担持されうる。これは、カーボンが黒鉛化するにつれ撥水性が上がるため、溶媒としてアルコールを用いることで、溶媒とカーボンとの親和性が向上し、触媒が均一に担持されるためと考えられる。アルコールとしては、メタノール、エタノール、n−プロパノール、イソプロパノールなどが好適に用いられる。   The platinum precursor is dissolved or dispersed in a solvent. The solvent to which the platinum precursor is added is not particularly limited, and water, alcohol, a mixed solvent of water and alcohol, or the like is used, but alcohol is preferably used. By using alcohol as the solvent, nucleation is likely to occur at the edge surface portion of the carbon material, and platinum can be supported in a highly dispersed state. This is presumably because the water repellency increases as the carbon graphitizes, so that the use of alcohol as the solvent improves the affinity between the solvent and the carbon, and the catalyst is uniformly supported. As the alcohol, methanol, ethanol, n-propanol, isopropanol and the like are preferably used.

白金の還元剤としては、例えば、水素、ヒドラジン、水素化ホウ素ナトリウム、チオ硫酸ナトリウム、クエン酸、クエン酸ナトリウム、L−アスコルビン酸、ホルムアルデヒド、エチレン、一酸化炭素などが挙げられる。ヒドラジンなどの水溶液として調製しうるものは、濃度0.1〜30質量%の水溶液として直接白金前駆体を含む溶液に添加してもよい。なお、水素化ホウ素ナトリウムなどの粉末状の物質は、そのまま白金前駆体を含む溶液に供給することができる。水素などの常温でガス状の物質は、バブリングで供給することもできる。還元剤を溶媒に溶解させて用いる場合は、白金前駆体を溶解させた溶媒と同じ溶媒を用いることが好ましい。還元剤の添加量は、用いる還元剤により適宜調節すればよい。   Examples of the platinum reducing agent include hydrogen, hydrazine, sodium borohydride, sodium thiosulfate, citric acid, sodium citrate, L-ascorbic acid, formaldehyde, ethylene, carbon monoxide and the like. What can be prepared as an aqueous solution such as hydrazine may be added directly to a solution containing a platinum precursor as an aqueous solution having a concentration of 0.1 to 30% by mass. Note that a powdery substance such as sodium borohydride can be supplied as it is to a solution containing a platinum precursor. A gaseous substance at room temperature such as hydrogen can be supplied by bubbling. When the reducing agent is dissolved in a solvent, it is preferable to use the same solvent as the solvent in which the platinum precursor is dissolved. What is necessary is just to adjust the addition amount of a reducing agent suitably with the reducing agent to be used.

還元剤を添加混合する際の温度は、好ましくは15〜40℃、より好ましくは20〜30℃であり、混合時間は、好ましくは30分間〜6時間、より好ましくは1〜3時間である。この際、還元剤の添加混合処理は、窒素、アルゴンなどの不活性雰囲気下で行うことが好ましい。   The temperature at which the reducing agent is added and mixed is preferably 15 to 40 ° C., more preferably 20 to 30 ° C., and the mixing time is preferably 30 minutes to 6 hours, more preferably 1 to 3 hours. At this time, the reducing agent addition and mixing treatment is preferably performed in an inert atmosphere such as nitrogen or argon.

用いられうる遷移金属の種類に関しては上記と同様である。遷移金属の供給源としては、これらの塩化物、硝酸塩、硫酸塩、アンモニウム塩、アミン、炭酸塩、重炭酸塩、ハロゲン塩、亜硝酸塩、シュウ酸塩などの無機塩類、ギ酸塩などのカルボン酸塩および水酸化物、アルコキサイド、酸化物などが例示でき、これらを溶解する溶媒の種類やpHなどによって適宜選択することができる。具体的には、塩化コバルト、硝酸コバルト、塩化鉄などが用いられうる。   The types of transition metals that can be used are the same as described above. Transition metal sources include these chlorides, nitrates, sulfates, ammonium salts, amines, carbonates, bicarbonates, halogen salts, nitrites, oxalates and other inorganic salts, formates and other carboxylic acids Examples thereof include salts and hydroxides, alkoxides, oxides, and the like, which can be appropriately selected depending on the type of solvent in which these are dissolved, pH, and the like. Specifically, cobalt chloride, cobalt nitrate, iron chloride and the like can be used.

遷移金属の還元剤、還元剤を混合する際の条件は上記と同様である。   The conditions for mixing the transition metal reducing agent and the reducing agent are the same as described above.

(熱処理工程)
熱処理工程では、白金および遷移金属が担持された炭素材料を熱処理して、白金および遷移金属を固溶化させる。
(Heat treatment process)
In the heat treatment step, the carbon material carrying platinum and the transition metal is heat-treated to solidify the platinum and the transition metal.

熱処理の温度は、好ましくは1000〜1200℃であり、より好ましくは1000〜1100℃である。熱処理温度が1000℃以上であれば、Ptおよび遷移金属の固溶化が促進されうる。また、熱処理温度が1200℃以下であれば、触媒粒子の凝集、担持体であるカーボンと水素のメタン化反応を抑制できる。また、上記熱処理温度まで昇温する際の昇温速度は、好ましくは5〜20℃/分であり、より好ましくは10〜15℃/分である。昇温速度が上記範囲であれば、触媒金属粒子の凝集を防ぐことができる。また、熱処理時間は、好ましくは10分間〜1時間であり、より好ましくは10〜30分であり、さらに好ましくは10〜20分である。かような範囲の熱処理時間であれば、固溶体化が促進されて触媒活性が向上し、さらに触媒成分の粒子径も適切な範囲となる。ここで、熱処理時間は、温度が上記範囲の熱処理温度に保たれている時間を意味する。   The temperature of heat processing becomes like this. Preferably it is 1000-1200 degreeC, More preferably, it is 1000-1100 degreeC. When the heat treatment temperature is 1000 ° C. or higher, solid solution of Pt and transition metal can be promoted. Further, if the heat treatment temperature is 1200 ° C. or lower, the aggregation of catalyst particles and the methanation reaction between carbon and hydrogen as a support can be suppressed. Moreover, the rate of temperature increase when raising the temperature to the heat treatment temperature is preferably 5 to 20 ° C./min, more preferably 10 to 15 ° C./min. When the rate of temperature rise is in the above range, aggregation of the catalyst metal particles can be prevented. The heat treatment time is preferably 10 minutes to 1 hour, more preferably 10 to 30 minutes, and further preferably 10 to 20 minutes. When the heat treatment time is in such a range, solid solution formation is promoted to improve the catalytic activity, and the particle diameter of the catalyst component is also in an appropriate range. Here, the heat treatment time means a time during which the temperature is maintained at the heat treatment temperature in the above range.

降温速度は、少なくとも10℃/分以上が望ましく、それより低いと高温状態に長時間曝すこととなり、触媒粒子の凝集、担持体であるカーボンのメタン化反応などを起こすことになる場合がある。   The temperature lowering rate is preferably at least 10 ° C./minute or more, and if it is lower than that, it is exposed to a high temperature state for a long time, which may cause aggregation of catalyst particles, methanation reaction of carbon as a support, and the like.

また、熱処理時は、窒素ガス雰囲気下、または窒素ガスと水素ガスとの混合雰囲気下で行うことが好ましい。熱処理時の窒素ガスと水素ガスとの混合雰囲気下は、窒素ガスおよび水素ガスの流量が全混合ガス流量100体積%中、好ましくは100体積%である。水素ガスおよび窒素ガス以外に、アルゴン、ヘリウムなどの不活性ガスが含まれうる。さらに、水素ガスの流量は、水素ガスおよび窒素ガスの全流量(N+H)に対して、流量比でH/(N+H)=0〜20体積%であることが好ましく、5〜10体積%であることがさらに好ましい。かような範囲であれば、粒子径が適切な範囲となり、高い活性が得られうる。 The heat treatment is preferably performed in a nitrogen gas atmosphere or a mixed atmosphere of nitrogen gas and hydrogen gas. Under the mixed atmosphere of nitrogen gas and hydrogen gas at the time of heat treatment, the flow rates of nitrogen gas and hydrogen gas are preferably 100% by volume in the total mixed gas flow rate of 100% by volume. In addition to hydrogen gas and nitrogen gas, an inert gas such as argon or helium may be included. Further, the flow rate of the hydrogen gas, the total flow rate of hydrogen gas and nitrogen gas (N 2 + H 2), preferably H 2 / (N 2 + H 2) = 0 to 20% by volume at a flow rate ratio, More preferably, it is 5 to 10% by volume. Within such a range, the particle diameter is in an appropriate range, and high activity can be obtained.

(酸処理)
酸処理工程では、熱処理後の触媒前駆体を酸に接触させる。酸処理によって触媒金属の表面の遷移金属を溶解させ、表面近傍の白金の存在比を高めることでXRD測定で得られるPt(111)に由来するピークの角度を制御できる。さらにこの方法によれば、上記ピークの角度の分布も狭くすることができる。
(Acid treatment)
In the acid treatment step, the catalyst precursor after the heat treatment is brought into contact with an acid. The angle of the peak derived from Pt (111) obtained by XRD measurement can be controlled by dissolving the transition metal on the surface of the catalyst metal by acid treatment and increasing the abundance ratio of platinum near the surface. Further, according to this method, the distribution of the peak angles can be narrowed.

酸処理の条件は、特に限定されない。酸としては、特に制限されないが、好ましくは硫酸、硝酸などの強酸が用いられる。酸の濃度は特に制限がなく、好ましくは0.1〜3.0M、より好ましくは0.5〜2.0M、特に好ましくは0.5〜1.0Mの水溶液として使用される。   The conditions for the acid treatment are not particularly limited. The acid is not particularly limited, but a strong acid such as sulfuric acid or nitric acid is preferably used. There is no restriction | limiting in particular in the density | concentration of an acid, Preferably it is 0.1-3.0M, More preferably, it is 0.5-2.0M, Most preferably, it is used as 0.5-1.0M aqueous solution.

酸処理は、例えば、熱処理後の触媒前駆体を、好ましくは20〜100℃、より好ましくは50〜100℃、特に好ましくは70〜100℃に加熱した酸の水溶液中に懸濁させることで行うことができる。酸処理時間は、好ましくは10〜20時間であり、より好ましくは10〜15時間であり、特に好ましくは10〜12時間である。酸処理の温度および時間が上記範囲であれば、Pt(111)に由来する2θのピークの角度を所定の範囲にし、ピークの角度の分布を狭くすることができる。その後、沈殿物をろ過し、得られた固形物を好ましくは減圧下で、50〜80℃で2〜5時間乾燥させることによって、電極触媒が完成される。上記酸処理は、1回であっても、同一または異なった条件で複数回行ってもよい。   The acid treatment is performed, for example, by suspending the catalyst precursor after the heat treatment in an aqueous solution of an acid heated to preferably 20 to 100 ° C., more preferably 50 to 100 ° C., and particularly preferably 70 to 100 ° C. be able to. The acid treatment time is preferably 10 to 20 hours, more preferably 10 to 15 hours, and particularly preferably 10 to 12 hours. If the temperature and time of the acid treatment are within the above ranges, the angle of the 2θ peak derived from Pt (111) can be set within a predetermined range, and the distribution of the peak angle can be narrowed. Thereafter, the precipitate is filtered, and the obtained solid is dried at 50 to 80 ° C. for 2 to 5 hours, preferably under reduced pressure, to complete the electrode catalyst. The acid treatment may be performed once or a plurality of times under the same or different conditions.

本発明はまた、本発明の燃料電池用電極触媒を用いた燃料電池を提供する。本発明の電極触媒は、アノードおよびカソードの双方の電極触媒として好適に用いられる。しかしながら、アノードにおける水素の酸化反応に対してカソードでの還元反応が遅く、過電圧が大きい。したがって、前記電極触媒は少なくともカソードに使用される形態が効果が大きく好ましい。   The present invention also provides a fuel cell using the fuel cell electrode catalyst of the present invention. The electrode catalyst of the present invention is suitably used as both an anode and a cathode electrode catalyst. However, the reduction reaction at the cathode is slower than the oxidation reaction of hydrogen at the anode, and the overvoltage is large. Therefore, it is preferable that the electrode catalyst be used at least for the cathode because of its great effect.

本発明による電極触媒をMEAに用いることにより、発電性能に優れるMEAとすることが可能となる。   By using the electrode catalyst according to the present invention for MEA, MEA having excellent power generation performance can be obtained.

MEAの基本的な構成としては、特に限定されず、従来一般的なものであればよい。すなわち、カソード側電極触媒層およびアノード側電極触媒層が固体電解質膜の両面に対向して配置され、さらにこれをガス拡散層で挟持した構成である。   The basic configuration of the MEA is not particularly limited, and any conventional configuration may be used. That is, the cathode-side electrode catalyst layer and the anode-side electrode catalyst layer are disposed so as to face both surfaces of the solid electrolyte membrane, and are further sandwiched between the gas diffusion layers.

MEAに用いられる固体高分子電解質膜としては、特に限定されず、電極触媒層に用いたものと同様の固体高分子電解質からなる膜が挙げられる。また、デュポン社製の各種のNafion(登録商標)やフレミオン(登録商標)に代表されるパーフルオロスルホン酸膜、ダウケミカル社製のイオン交換樹脂、エチレン−四フッ化エチレン共重合体樹脂膜、トリフルオロスチレンをベースポリマーとする樹脂膜などのフッ素系高分子電解質や、スルホン酸基を有する炭化水素系樹脂系膜など、一般的に市販されている固体高分子型電解質膜、高分子微多孔膜に液体電解質を含浸させた膜、多孔質体に高分子電解質を充填させた膜などを用いてもよい。前記固体高分子電解質膜に用いられる固体高分子電解質と、電極触媒層に用いられる固体高分子電解質とは、同じであっても異なっていてもよい。電極触媒層と固体高分子電解質膜との密着性を向上させる観点から、同じものを用いるのが好ましい。   The solid polymer electrolyte membrane used for MEA is not particularly limited, and examples thereof include a membrane made of the same solid polymer electrolyte as that used for the electrode catalyst layer. In addition, perfluorosulfonic acid membranes represented by various Nafion (registered trademark) and Flemion (registered trademark) manufactured by DuPont, ion exchange resins, ethylene-tetrafluoroethylene copolymer resin membranes manufactured by Dow Chemical Company, Fluoropolymer electrolytes such as resin membranes based on trifluorostyrene, and hydrocarbon polymer resin membranes with sulfonic acid groups, such as solid polymer electrolyte membranes that are generally commercially available, polymer microporous A membrane in which a membrane is impregnated with a liquid electrolyte, a membrane in which a porous body is filled with a polymer electrolyte, or the like may be used. The solid polymer electrolyte used for the solid polymer electrolyte membrane and the solid polymer electrolyte used for the electrode catalyst layer may be the same or different. From the viewpoint of improving the adhesion between the electrode catalyst layer and the solid polymer electrolyte membrane, the same one is preferably used.

前記固体高分子電解質膜の厚さとしては、得られるMEAの特性を考慮して適宜決定すればよいが、好ましくは5〜300μm、より好ましくは10〜200μm、特に好ましくは15〜150μmである。製膜時の強度やMEA作動時の耐久性の観点から5μm以上であることが好ましく、MEA作動時の出力特性の観点から300μm以下であることが好ましい。   The thickness of the solid polymer electrolyte membrane may be appropriately determined in consideration of the properties of the obtained MEA, but is preferably 5 to 300 μm, more preferably 10 to 200 μm, and particularly preferably 15 to 150 μm. From the viewpoint of strength during film formation and durability during MEA operation, it is preferably 5 μm or more, and from the viewpoint of output characteristics during MEA operation, it is preferably 300 μm or less.

MEAに用いられるガス拡散層としては、特に限定されず、炭素製の織物、紙状抄紙体、フェルト、不織布といった導電性及び多孔質性を有するシート状材料を基材とするものなどが挙げられる。   The gas diffusion layer used in the MEA is not particularly limited, and examples thereof include those based on a sheet-like material having conductivity and porosity such as a carbon woven fabric, a paper-like paper body, a felt, and a nonwoven fabric. .

前記ガス拡散層の厚さは、得られるガス拡散層の特性を考慮して適宜決定すればよいが、30〜500μm程度とすればよい。厚さが、30μm未満であると十分な機械的強度などが得られない恐れがあり、500μmを超えるとガスや水などが透過する距離が長くなり望ましくない。   The thickness of the gas diffusion layer may be appropriately determined in consideration of the characteristics of the obtained gas diffusion layer, but may be about 30 to 500 μm. If the thickness is less than 30 μm, sufficient mechanical strength or the like may not be obtained, and if it exceeds 500 μm, the distance through which gas or water permeates is undesirably increased.

前記ガス拡散層は、撥水性をより高めてフラッディング現象などを防ぐために、前記基材に撥水剤が含まれているのが好ましい。前記撥水剤としては、特に限定されないが、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリヘキサフルオロプロピレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系の高分子材料、ポリプロピレン、ポリエチレンなどが挙げられる。   The gas diffusion layer preferably contains a water repellent in the base material in order to further improve water repellency and prevent a flooding phenomenon. Although it does not specifically limit as said water repellent, It is fluorine-type, such as a polytetrafluoroethylene (PTFE), a polyvinylidene fluoride (PVDF), a polyhexafluoropropylene, a tetrafluoroethylene-hexafluoropropylene copolymer (FEP). Examples thereof include polymer materials, polypropylene, and polyethylene.

また、撥水性をより向上させるために、前記ガス拡散層は、前記基材上に撥水剤を含むカーボン粒子の集合体からなるカーボン粒子層を有するものであってもよい。   Moreover, in order to improve water repellency more, the said gas diffusion layer may have a carbon particle layer which consists of an aggregate | assembly of the carbon particle containing a water repellent on the said base material.

前記カーボン粒子としては、特に限定されず、カーボンブラック、黒鉛、膨張黒鉛などの従来一般的なものであればよい。なかでも、電子伝導性に優れ、比表面積が大きいことから、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなどのカーボンブラックが好ましく挙げられる。   The carbon particles are not particularly limited, and may be conventional ones such as carbon black, graphite, and expanded graphite. Of these, carbon blacks such as oil furnace black, channel black, lamp black, thermal black, and acetylene black are preferred because of their excellent electron conductivity and large specific surface area.

前記カーボン粒子の粒径は、10〜100nm程度とするのがよい。これにより、毛細管力による高い排水性が得られるとともに、電極触媒層との接触性も向上させることが可能となる。   The particle size of the carbon particles is preferably about 10 to 100 nm. Thereby, while being able to obtain the high drainage property by capillary force, it becomes possible to improve contact property with an electrode catalyst layer.

前記カーボン粒子層に用いられる撥水剤としては、前記基材に用いられる上述した撥水剤と同様のものが挙げられる。なかでも、撥水性、電極反応時の耐食性などに優れることから、フッ素系の高分子材料が好ましく用いられる。   Examples of the water repellent used for the carbon particle layer include the same water repellents as those described above used for the substrate. Of these, fluorine-based polymer materials are preferably used because of their excellent water repellency and corrosion resistance during electrode reaction.

前記カーボン粒子層における、カーボン粒子と撥水剤との混合比は、カーボン粒子が多過ぎると期待するほど撥水性が得られない恐れがあり、撥水剤が多過ぎると十分な電子伝導性が得られない恐れがある。これらを考慮して、カーボン粒子層におけるカーボン粒子と撥水剤との混合比は、質量比で、90:10〜40:60程度とするのがよい。   In the carbon particle layer, the mixing ratio of the carbon particles to the water repellent may be insufficient to obtain water repellency as expected when there are too many carbon particles. If there are too many water repellents, sufficient electron conductivity may be obtained. There is a risk that it will not be obtained. Considering these, the mixing ratio of the carbon particles and the water repellent in the carbon particle layer is preferably about 90:10 to 40:60 in terms of mass ratio.

前記カーボン粒子層の厚さは、得られるガス拡散層の撥水性を考慮して適宜決定すればよい。   The thickness of the carbon particle layer may be appropriately determined in consideration of the water repellency of the obtained gas diffusion layer.

前記燃料電池の種類としては、特に限定されず、上記した説明中では固体高分子型燃料電池を例に挙げて説明したが、この他にも、リン酸型燃料電池、直接メタノール型燃料電池などが挙げられる。   The type of the fuel cell is not particularly limited. In the above description, the polymer electrolyte fuel cell has been described as an example. However, in addition to the above, a phosphoric acid fuel cell, a direct methanol fuel cell, etc. Is mentioned.

前記燃料電池の構成としては、特に限定されず、従来公知の技術を適宜利用すればよいが、一般的にはMEAをセパレータで挟持した構造を有する。   The configuration of the fuel cell is not particularly limited, and a conventionally known technique may be used as appropriate. Generally, the fuel cell has a structure in which an MEA is sandwiched between separators.

ここで、本発明の好ましい一実施形態である燃料電池を図1を用いて説明する。固体高分子型燃料電池260は、固体高分子電解質膜210の両側にMEA200を有する。MEA200は、アノード側電極触媒層220aおよびアノード側ガス拡散層230aと、カソード側電極触媒層220bおよびカソード側ガス拡散層230bとが、それぞれ対向して配置されてなる。さらにMEA200を、アノード側セパレータ250aおよびカソード側セパレータ250bで挟持することで構成されている。また、MEAに供給される燃料ガスおよび酸化剤ガスは、アノード側セパレータ250aおよびカソード側セパレータ250bに、それぞれ複数箇所設けられたガス供給溝251a、251bなどを介して供給される。   Here, a fuel cell which is a preferred embodiment of the present invention will be described with reference to FIG. The polymer electrolyte fuel cell 260 has MEAs 200 on both sides of the polymer electrolyte membrane 210. The MEA 200 includes an anode-side electrode catalyst layer 220a and an anode-side gas diffusion layer 230a, and a cathode-side electrode catalyst layer 220b and a cathode-side gas diffusion layer 230b that face each other. Further, the MEA 200 is configured to be sandwiched between an anode side separator 250a and a cathode side separator 250b. The fuel gas and the oxidant gas supplied to the MEA are supplied to the anode side separator 250a and the cathode side separator 250b through gas supply grooves 251a and 251b provided at a plurality of locations, respectively.

MEAを挟持するセパレータとしては、緻密カーボングラファイト、炭素板等のカーボン製や、ステンレス等の金属製のものなど、従来公知のものであれば制限なく用いることができる。セパレータは、空気と燃料ガスとを分離する機能を有するものであり、それらの流路を確保するための流路溝が形成されてもよい。セパレータなどの厚さや大きさ、流路溝の形状などについては、特に限定されず、得られる燃料電池の出力特性などを考慮して適宜決定すればよい。   As the separator for sandwiching the MEA, any conventionally known separator such as a carbon made of dense carbon graphite, a carbon plate, or a metal such as stainless steel can be used without limitation. The separator has a function of separating air and fuel gas, and a channel groove for securing the channel may be formed. The thickness and size of the separator and the like, the shape of the channel groove, and the like are not particularly limited, and may be appropriately determined in consideration of the output characteristics of the obtained fuel cell.

さらに、燃料電池が所望する電圧等を得られるように、セパレータを介してMEAを複数積層して直列に繋いだスタックを形成してもよい。燃料電池の形状などは、特に限定されず、所望する電圧などの電池特性が得られるように適宜決定すればよい。   Furthermore, a stack in which a plurality of MEAs are stacked via a separator and connected in series may be formed so that the fuel cell can obtain a desired voltage or the like. The shape of the fuel cell is not particularly limited, and may be determined as appropriate so that desired battery characteristics such as voltage can be obtained.

上述の燃料電池は、自動車用燃料電池、家庭用燃料電池、電子機器用燃料電池など幅広く適用可能である。   The above-described fuel cell can be widely applied to automobile fuel cells, household fuel cells, electronic device fuel cells, and the like.

本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本願の技術的範囲が以下の実施例に示す形態のみに制限されるわけではない。   The effects of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present application is not limited to only the forms shown in the following examples.

<実施例1>
(触媒金属担持)
炭素材料としてケッチェンブラック(一次粒子径40nm、比表面積800m/g)(ライオン社製、ケッチェンブラックEC)を用いた。ジニトロジアンミン白金硝酸水溶液(Pt濃度2質量%)を準備した。白金担持量が炭素材料100質量%に対して30質量%となるように炭素材料を秤量し、この溶液100mLと混合し、25℃にて8時間撹拌し、分散させた。その後、このPt/C溶液を撹拌しながらArガスを流した。
<Example 1>
(Catalyst metal loading)
Ketjen black (primary particle diameter 40 nm, specific surface area 800 m 2 / g) (manufactured by Lion Corporation, Ketjen Black EC) was used as the carbon material. A dinitrodiammine platinum nitrate aqueous solution (Pt concentration 2 mass%) was prepared. The carbon material was weighed so that the amount of platinum supported was 30% by mass with respect to 100% by mass of the carbon material, mixed with 100 mL of this solution, and stirred and dispersed at 25 ° C. for 8 hours. Thereafter, Ar gas was allowed to flow while stirring the Pt / C solution.

還元剤として、10mLの無水エタノールに水素化ホウ素ナトリウムを飽和量混合した。次に、この水素化ホウ素ナトリウム溶液をゆっくりとPt/C溶液に入れ、そのままArガスを流しながら約1時間撹拌した。その後、そのままの状態で超純水を約2倍量入れ、ろ過し、超純水で洗浄し、80℃で3時間乾燥させ、白金が担持された炭素材料を得た。   As a reducing agent, a saturated amount of sodium borohydride was mixed with 10 mL of absolute ethanol. Next, this sodium borohydride solution was slowly put into a Pt / C solution and stirred for about 1 hour while flowing Ar gas as it was. Thereafter, about twice as much ultrapure water was added as it was, filtered, washed with ultrapure water, and dried at 80 ° C. for 3 hours to obtain a carbon material carrying platinum.

次いで、コバルト溶液として、Co濃度1質量%の塩化コバルト水溶液を準備した。この塩化コバルト水溶液10mLに、上記の白金が担持された炭素材料100mgを浸漬させて25℃にて3時間撹拌し、分散させた。コバルト担持量は、炭素材料100質量%に対して3質量%となるようにした。この溶液に、Arガス雰囲気中で上記と同様の水素化ホウ素ナトリウム溶液5mLを添加して、約1時間撹拌した。1時間後、そのままの状態で超純水を約2倍量入れ、ろ過し、超純水で洗浄し、80℃で3時間乾燥させ、白金およびコバルトが担持された炭素材料を得た。   Next, an aqueous cobalt chloride solution having a Co concentration of 1% by mass was prepared as a cobalt solution. In 10 mL of this cobalt chloride aqueous solution, 100 mg of the above carbon material carrying platinum was immersed and stirred at 25 ° C. for 3 hours to be dispersed. The amount of cobalt supported was 3% by mass with respect to 100% by mass of the carbon material. To this solution, 5 mL of the same sodium borohydride solution as described above was added in an Ar gas atmosphere and stirred for about 1 hour. After 1 hour, about twice as much ultrapure water was added as it was, filtered, washed with ultrapure water, and dried at 80 ° C. for 3 hours to obtain a carbon material carrying platinum and cobalt.

(熱処理)
以上の工程により白金およびコバルトを担持させた炭素につき、熱処理を行って合金化させた。この熱処理は、100%Nガス中で、10℃/分の昇温速度で1200℃まで昇温し、10分間保持することにより行った。
(Heat treatment)
The carbon carrying platinum and cobalt was subjected to heat treatment and alloyed by the above steps. This heat treatment was performed by raising the temperature to 1200 ° C. at a rate of temperature rise of 10 ° C./min and holding for 10 minutes in 100% N 2 gas.

(酸処理)
上述のような熱処理を行った後、Pt−Co合金が担持された炭素材料を0.5Mの硫酸水溶液に浸漬させ、90℃で20時間保持した。その後、沈殿物をろ過し、得られた固形物を超純水で洗浄し、80℃で3時間乾燥させ、Pt−Co合金触媒を得た。
(Acid treatment)
After the heat treatment as described above, the carbon material carrying the Pt—Co alloy was immersed in a 0.5 M sulfuric acid aqueous solution and held at 90 ° C. for 20 hours. Thereafter, the precipitate was filtered, and the obtained solid was washed with ultrapure water and dried at 80 ° C. for 3 hours to obtain a Pt—Co alloy catalyst.

<実施例2>
上記(熱処理)の工程を、HとNの混合雰囲気下(10体積%H、90体積%N)で、10℃/分の昇温速度で1000℃まで昇温し、10分間保持することにより行った。また、上記(酸処理)の工程の酸処理時間を10時間とした。その他の条件は上記実施例1と同様の手法で電極触媒を作製した。
<Example 2>
In the above (heat treatment) step, the temperature was raised to 1000 ° C. at a heating rate of 10 ° C./min in a mixed atmosphere of H 2 and N 2 (10 vol% H 2 , 90 vol% N 2 ) for 10 minutes. This was done by holding. The acid treatment time in the above (acid treatment) step was 10 hours. Other conditions were the same as in Example 1 to prepare an electrode catalyst.

<実施例3>
(触媒金属担持)
炭素材料としてケッチェンブラック(一次粒子径40nm、比表面積800m/g)(ライオン社製、ケッチェンブラックEC)を用いた。塩化白金酸を無水エタノールに溶解させて塩化白金酸無水エタノール溶液(Pt濃度2質量%)を準備した。白金担持量が炭素材料100質量%に対して30質量%となるように炭素材料を秤量し、この溶液100mLと混合し、25℃にて8時間撹拌し、分散させた。その後、このPt/C溶液を撹拌しながらArガスを流した。
<Example 3>
(Catalyst metal loading)
Ketjen black (primary particle diameter 40 nm, specific surface area 800 m 2 / g) (manufactured by Lion Corporation, Ketjen Black EC) was used as the carbon material. Chloroplatinic acid was dissolved in absolute ethanol to prepare a chloroplatinic acid absolute ethanol solution (Pt concentration 2 mass%). The carbon material was weighed so that the amount of platinum supported was 30% by mass with respect to 100% by mass of the carbon material, mixed with 100 mL of this solution, and stirred and dispersed at 25 ° C. for 8 hours. Thereafter, Ar gas was allowed to flow while stirring the Pt / C solution.

還元剤として、10mLの無水エタノールに水素化ホウ素ナトリウムを飽和量混合した。次に、この水素化ホウ素ナトリウム溶液をゆっくりとPt/C溶液に入れ、そのままArガスを流しながら約1時間撹拌した。その後、そのままの状態で超純水を約2倍量入れ、ろ過し、超純水で洗浄し、80℃で3時間乾燥させ、白金が担持された炭素材料を得た。   As a reducing agent, a saturated amount of sodium borohydride was mixed with 10 mL of absolute ethanol. Next, this sodium borohydride solution was slowly put into a Pt / C solution and stirred for about 1 hour while flowing Ar gas as it was. Thereafter, about twice as much ultrapure water was added as it was, filtered, washed with ultrapure water, and dried at 80 ° C. for 3 hours to obtain a carbon material carrying platinum.

次いで、コバルト溶液として、Co濃度1質量%の塩化コバルト水溶液を準備した。この塩化コバルト水溶液10mLに、上記の白金が担持された炭素材料100mgを浸漬させて25℃にて3時間撹拌し、分散させた。コバルト担持量は、炭素材料100質量%に対して3質量%となるようにした。この溶液に、Arガス雰囲気中で上記と同様の水素化ホウ素ナトリウム溶液5mLを添加して、約1時間撹拌した。1時間後、そのままの状態で超純水を約2倍量入れ、ろ過し、超純水で洗浄し、80℃で3時間乾燥させ、白金およびコバルトが担持された炭素材料を得た。   Next, an aqueous cobalt chloride solution having a Co concentration of 1% by mass was prepared as a cobalt solution. In 10 mL of this cobalt chloride aqueous solution, 100 mg of the above carbon material carrying platinum was immersed and stirred at 25 ° C. for 3 hours to be dispersed. The amount of cobalt supported was 3% by mass with respect to 100% by mass of the carbon material. To this solution, 5 mL of the same sodium borohydride solution as described above was added in an Ar gas atmosphere and stirred for about 1 hour. After 1 hour, about twice as much ultrapure water was added as it was, filtered, washed with ultrapure water, and dried at 80 ° C. for 3 hours to obtain a carbon material carrying platinum and cobalt.

(熱処理)
とNの混合雰囲気下(20体積%H、80%体積N)で、10℃/分の昇温速度で1000℃まで昇温し、10分間保持したこと以外は、上記実施例1と同様の手法で行った。
(Heat treatment)
The above implementation except that the temperature was increased to 1000 ° C. at a temperature increase rate of 10 ° C./min and held for 10 minutes in a mixed atmosphere of H 2 and N 2 (20 vol% H 2 , 80% volume N 2 ). The same procedure as in Example 1 was performed.

(酸処理)
上記実施例1と同様の手法で行った。
(Acid treatment)
The same method as in Example 1 was used.

<実施例4>
(触媒金属担持)
炭素材料としてケッチェンブラックEC(一次粒子径40nm、比表面積800m/g)(ライオン社製、ケッチェンブラックEC)を用いた。塩化白金酸を無水エタノールに溶解させて塩化白金酸無水エタノール溶液(Pt濃度2質量%)を準備した。白金担持量が炭素材料100質量%に対して30質量%となるように炭素材料を秤量し、この溶液100mLと混合し、25℃にて8時間撹拌し、分散させた。その後、このPt/C溶液を撹拌しながらArガスを流した。
<Example 4>
(Catalyst metal loading)
Ketjen Black EC (primary particle diameter 40 nm, specific surface area 800 m 2 / g) (manufactured by Lion Corporation, Ketjen Black EC) was used as the carbon material. Chloroplatinic acid was dissolved in absolute ethanol to prepare a chloroplatinic acid absolute ethanol solution (Pt concentration 2 mass%). The carbon material was weighed so that the amount of platinum supported was 30% by mass with respect to 100% by mass of the carbon material, mixed with 100 mL of this solution, and stirred and dispersed at 25 ° C. for 8 hours. Thereafter, Ar gas was allowed to flow while stirring the Pt / C solution.

還元剤として、10mLの無水エタノールに水素化ホウ素ナトリウムを飽和量混合した。次に、この水素化ホウ素ナトリウム溶液をゆっくりとPt/C溶液に入れ、そのままArガスを流しながら約1時間撹拌した。1時間後、そのままの状態で超純水を約2倍量入れ、ろ過し、超純水で洗浄し、80℃で3時間乾燥させ、白金が担持された炭素材料を得た。   As a reducing agent, a saturated amount of sodium borohydride was mixed with 10 mL of absolute ethanol. Next, this sodium borohydride solution was slowly put into a Pt / C solution and stirred for about 1 hour while flowing Ar gas as it was. After 1 hour, about twice as much ultrapure water was added as it was, filtered, washed with ultrapure water, and dried at 80 ° C. for 3 hours to obtain a carbon material carrying platinum.

次いで、Fe濃度1質量%の塩化鉄水溶液を準備した。この塩化鉄水溶液10mLに、上記の白金が担持された炭素材料100mgを25℃にて3時間含浸させた。鉄担持量は、炭素材料100質量%に対して3質量%となるようにした。この溶液に、Arガス雰囲気中で上記と同様の水素化ホウ素ナトリウム溶液5mLを添加して、約1時間撹拌した。1時間後、そのままの状態で超純水を約2倍量入れ、ろ過し、超純水で洗浄し、80℃で3時間乾燥させ、白金および鉄が担持された炭素材料を得た。   Next, an iron chloride aqueous solution having an Fe concentration of 1% by mass was prepared. 10 mg of the iron chloride aqueous solution was impregnated with 100 mg of the above carbon material carrying platinum at 25 ° C. for 3 hours. The amount of iron supported was 3% by mass with respect to 100% by mass of the carbon material. To this solution, 5 mL of the same sodium borohydride solution as described above was added in an Ar gas atmosphere and stirred for about 1 hour. After 1 hour, about twice as much ultrapure water was added as it was, filtered, washed with ultrapure water, and dried at 80 ° C. for 3 hours to obtain a carbon material carrying platinum and iron.

(熱処理)
とNの混合雰囲気下(10体積%H、90%体積%N)で、10℃/分の昇温速度で800℃まで昇温し、10分間保持したこと以外は、上記実施例1と同様の手法で行った。
(Heat treatment)
Except that the temperature was raised to 800 ° C. at a heating rate of 10 ° C./min under a mixed atmosphere of H 2 and N 2 (10 vol% H 2 , 90% vol% N 2 ) and held for 10 minutes. The same method as in Example 1 was used.

(酸処理)
酸処理時間を10時間としたことを除いては上記実施例1と同様の手法で行った。
(Acid treatment)
The procedure was the same as in Example 1 except that the acid treatment time was 10 hours.

<比較例1>
(熱処理)の工程を20%水素ガス中で、800℃で30分行い、(酸処理)の工程を行わなかったことを除いては、上記実施例1と同様の手法を用いて電極触媒を作製した。
<Comparative Example 1>
The electrode catalyst was prepared using the same method as in Example 1 except that the (heat treatment) step was performed in 20% hydrogen gas at 800 ° C. for 30 minutes and the (acid treatment) step was not performed. Produced.

<比較例2>
(触媒金属担持)
炭素材料としてケッチェンブラック(一次粒子径40nm、比表面積800m/g)(ライオン社製、ケッチェンブラックEC)を用いた。ジニトロジアンミン白金硝酸溶液(Pt濃度2質量%)を準備した。白金担持量が炭素材料100質量%に対して30質量%となるように炭素材料を秤量し、この溶液と混合し、25℃にて8時間撹拌し、分散させた。その後、このPt/C溶液を撹拌しながらArガスを流した。
<Comparative example 2>
(Catalyst metal loading)
Ketjen black (primary particle diameter 40 nm, specific surface area 800 m 2 / g) (manufactured by Lion Corporation, Ketjen Black EC) was used as the carbon material. A dinitrodiammine platinum nitrate solution (Pt concentration 2 mass%) was prepared. The carbon material was weighed so that the amount of platinum supported was 30% by mass relative to 100% by mass of the carbon material, mixed with this solution, stirred at 25 ° C. for 8 hours, and dispersed. Thereafter, Ar gas was allowed to flow while stirring the Pt / C solution.

還元剤として、10mLの無水エタノールに水素化ホウ素ナトリウムを飽和量混合した。次に、この水素化ホウ素ナトリウム溶液をゆっくりとPt/C溶液に入れ、そのままArガスを流しながら約1時間撹拌した。1時間後、そのままの状態で超純水を約2倍量入れ、ろ過し、超純水で洗浄し、80℃で3時間乾燥させ、白金が担持された炭素材料を得た。   As a reducing agent, a saturated amount of sodium borohydride was mixed with 10 mL of absolute ethanol. Next, this sodium borohydride solution was slowly put into a Pt / C solution and stirred for about 1 hour while flowing Ar gas as it was. After 1 hour, about twice as much ultrapure water was added as it was, filtered, washed with ultrapure water, and dried at 80 ° C. for 3 hours to obtain a carbon material carrying platinum.

なお、(熱処理)(酸処理)の工程は行わなかった。   The (heat treatment) (acid treatment) step was not performed.

<比較例3>
(触媒金属担持)
炭素材料としてケッチェンブラック(一次粒子径40nm、比表面積800m/g)(ライオン社製、ケッチェンブラックEC)を用いた。塩化白金酸を無水エタノールに溶解させて塩化白金酸無水エタノール溶液(Pt濃度2質量%)を準備した。白金担持量が炭素材料100質量%に対して30質量%となるように炭素材料を秤量し、この溶液100mLと混合し、25℃にて8時間撹拌し、分散させた。その後、このPt/C溶液を撹拌しながらArガスを流した。
<Comparative Example 3>
(Catalyst metal loading)
Ketjen black (primary particle diameter 40 nm, specific surface area 800 m 2 / g) (manufactured by Lion Corporation, Ketjen Black EC) was used as the carbon material. Chloroplatinic acid was dissolved in absolute ethanol to prepare a chloroplatinic acid absolute ethanol solution (Pt concentration 2 mass%). The carbon material was weighed so that the amount of platinum supported was 30% by mass with respect to 100% by mass of the carbon material, mixed with 100 mL of this solution, and stirred and dispersed at 25 ° C. for 8 hours. Thereafter, Ar gas was allowed to flow while stirring the Pt / C solution.

還元剤として、10mLの無水エタノールに水素化ホウ素ナトリウムを飽和量混合した。次に、この水素化ホウ素ナトリウム溶液をゆっくりとPt/C溶液に入れ、そのままArガスを流しながら約1時間撹拌した。1時間後、そのままの状態で超純水を約2倍量入れ、ろ過し、超純水で洗浄し、80℃で3時間乾燥させ、白金が担持された炭素材料を得た。   As a reducing agent, a saturated amount of sodium borohydride was mixed with 10 mL of absolute ethanol. Next, this sodium borohydride solution was slowly put into a Pt / C solution and stirred for about 1 hour while flowing Ar gas as it was. After 1 hour, about twice as much ultrapure water was added as it was, filtered, washed with ultrapure water, and dried at 80 ° C. for 3 hours to obtain a carbon material carrying platinum.

次いで、Ti濃度1質量%の硫酸チタン水溶液を準備した。この硫酸チタン水溶液10mLに、上記の白金が担持された炭素材料100mgを25℃にて3時間含浸させた。チタン担持量は、炭素材料100質量%に対して3質量%となるようにした。この溶液に、Arガス雰囲気中で上記と同様の水素化ホウ素ナトリウム溶液5mLを添加して、約1時間撹拌した。1時間後、そのままの状態で超純水を約2倍量入れ、ろ過し、超純水で洗浄し、80℃で3時間乾燥させ、白金およびチタンが担持された炭素材料を得た。   Next, an aqueous titanium sulfate solution having a Ti concentration of 1% by mass was prepared. 10 mg of this titanium sulfate aqueous solution was impregnated with 100 mg of the above carbon material carrying platinum at 25 ° C. for 3 hours. The amount of titanium supported was 3% by mass with respect to 100% by mass of the carbon material. To this solution, 5 mL of the same sodium borohydride solution as described above was added in an Ar gas atmosphere and stirred for about 1 hour. After 1 hour, about twice as much ultrapure water was added as it was, filtered, washed with ultrapure water, and dried at 80 ° C. for 3 hours to obtain a carbon material carrying platinum and titanium.

(酸処理)
上述のような熱処理を行った後、Pt−Ti合金が担持された炭素材料を0.5Mの硫酸水溶液に浸漬させ、90℃で20時間保持した。その後、沈殿物をろ過し、得られた固形物を超純水で洗浄し、80℃で3時間乾燥させ、Pt−Ti合金触媒を得た。なお、(熱処理)の工程は行わなかった。
(Acid treatment)
After performing the heat treatment as described above, the carbon material carrying the Pt—Ti alloy was immersed in a 0.5 M sulfuric acid aqueous solution and held at 90 ° C. for 20 hours. Thereafter, the precipitate was filtered, and the obtained solid was washed with ultrapure water and dried at 80 ° C. for 3 hours to obtain a Pt—Ti alloy catalyst. Note that the (heat treatment) step was not performed.

<比較例4>
炭素材料としてケッチェンブラック(一次粒子径40nm、比表面積800m/g)(ライオン社製、ケッチェンブラックEC)を用いた。塩化白金酸を無水エタノールに溶解させて塩化白金酸無水エタノール溶液(Pt濃度2質量%)を準備した。白金担持量が炭素材料100質量%に対して30質量%となるように炭素材料を秤量し、この溶液100mLと混合し、25℃にて8時間撹拌し、分散させた。その後、このPt/C溶液を撹拌しながらArガスを流した。
<Comparative example 4>
Ketjen black (primary particle diameter 40 nm, specific surface area 800 m 2 / g) (manufactured by Lion Corporation, Ketjen Black EC) was used as the carbon material. Chloroplatinic acid was dissolved in absolute ethanol to prepare a chloroplatinic acid absolute ethanol solution (Pt concentration 2 mass%). The carbon material was weighed so that the amount of platinum supported was 30% by mass with respect to 100% by mass of the carbon material, mixed with 100 mL of this solution, and stirred and dispersed at 25 ° C. for 8 hours. Thereafter, Ar gas was allowed to flow while stirring the Pt / C solution.

還元剤として、10mLの無水エタノールに水素化ホウ素ナトリウムを飽和量混合した。次に、この水素化ホウ素ナトリウム溶液をゆっくりとPt/C溶液に入れ、そのままArガスを流しながら約1時間撹拌した。1時間後、そのままの状態で超純水を約2倍量入れ、ろ過し、超純水で洗浄し、80℃で3時間乾燥させ、白金が担持された炭素材料を得た。   As a reducing agent, a saturated amount of sodium borohydride was mixed with 10 mL of absolute ethanol. Next, this sodium borohydride solution was slowly put into a Pt / C solution and stirred for about 1 hour while flowing Ar gas as it was. After 1 hour, about twice as much ultrapure water was added as it was, filtered, washed with ultrapure water, and dried at 80 ° C. for 3 hours to obtain a carbon material carrying platinum.

次いで、Mn濃度1質量%の硝酸マンガン水溶液を準備した。この硝酸マンガン水溶液10mLに、上記の白金が担持された炭素材料100mgを25℃にて3時間含浸させた。マンガン担持量は、炭素材料100質量%に対して3質量%となるようにした。この溶液に、Arガス雰囲気中で上記と同様の水素化ホウ素ナトリウム溶液5mLを添加して、約1時間撹拌した。1時間後、そのままの状態で超純水を約2倍量入れ、ろ過し、超純水で洗浄し、80℃で3時間乾燥させ、白金およびマンガンが担持された炭素材料を得た。   Next, an aqueous manganese nitrate solution having a Mn concentration of 1% by mass was prepared. 10 mg of this manganese nitrate aqueous solution was impregnated with 100 mg of the above carbon material carrying platinum at 25 ° C. for 3 hours. The amount of manganese supported was 3% by mass with respect to 100% by mass of the carbon material. To this solution, 5 mL of the same sodium borohydride solution as described above was added in an Ar gas atmosphere and stirred for about 1 hour. After 1 hour, about twice as much ultrapure water was added as it was, filtered, washed with ultrapure water, and dried at 80 ° C. for 3 hours to obtain a carbon material carrying platinum and manganese.

(酸処理)
上述のような熱処理を行った後、Pt−Mn合金が担持された炭素材料を0.5Mの硫酸水溶液に浸漬させ、90℃で20時間保持した。その後、沈殿物をろ過し、得られた固形物を超純水で洗浄し、80℃で3時間乾燥させ、Pt−Mn合金触媒を得た。なお、(熱処理)の工程は行わなかった。
(Acid treatment)
After the heat treatment as described above, the carbon material carrying the Pt—Mn alloy was immersed in a 0.5 M sulfuric acid aqueous solution and held at 90 ° C. for 20 hours. Thereafter, the precipitate was filtered, and the obtained solid was washed with ultrapure water and dried at 80 ° C. for 3 hours to obtain a Pt—Mn alloy catalyst. Note that the (heat treatment) step was not performed.

<比較例5>
炭素材料としてケッチェンブラック(一次粒子径40nm、比表面積800m/g)(ライオン社製、ケッチェンブラックEC)を用いた。塩化白金酸を無水エタノールに溶解させて塩化白金酸無水エタノール溶液(Pt濃度2質量%)を準備した。白金担持量が炭素材料100質量%に対して30質量%となるように炭素材料を秤量し、この溶液100mLと混合し、25℃にて8時間撹拌し、分散させた。その後、このPt/C溶液を撹拌しながらArガスを流した。
<Comparative Example 5>
Ketjen black (primary particle diameter 40 nm, specific surface area 800 m 2 / g) (manufactured by Lion Corporation, Ketjen Black EC) was used as the carbon material. Chloroplatinic acid was dissolved in absolute ethanol to prepare a chloroplatinic acid absolute ethanol solution (Pt concentration 2 mass%). The carbon material was weighed so that the amount of platinum supported was 30% by mass with respect to 100% by mass of the carbon material, mixed with 100 mL of this solution, and stirred and dispersed at 25 ° C. for 8 hours. Thereafter, Ar gas was allowed to flow while stirring the Pt / C solution.

還元剤として、10mLの無水エタノールに水素化ホウ素ナトリウムを飽和量混合した。次に、この水素化ホウ素ナトリウム溶液をゆっくりとPt/C溶液に入れ、そのままArガスを流しながら約1時間撹拌した。1時間後、そのままの状態で超純水を約2倍量入れ、ろ過し、超純水で洗浄し、80℃で3時間乾燥させ、白金が担持された炭素材料を得た。   As a reducing agent, a saturated amount of sodium borohydride was mixed with 10 mL of absolute ethanol. Next, this sodium borohydride solution was slowly put into a Pt / C solution and stirred for about 1 hour while flowing Ar gas as it was. After 1 hour, about twice as much ultrapure water was added as it was, filtered, washed with ultrapure water, and dried at 80 ° C. for 3 hours to obtain a carbon material carrying platinum.

次いで、Cr濃度1質量%の硝酸クロム水溶液を準備した。この硝酸クロム水溶液10mLに、上記の白金が担持された炭素材料100mgを25℃にて3時間含浸させた。クロム担持量は、炭素材料100質量%に対して3質量%となるようにした。この溶液に、Arガス雰囲気中で上記と同様の水素化ホウ素ナトリウム溶液5mLを添加して、約1時間撹拌した。1時間後、そのままの状態で超純水を約2倍量入れ、ろ過し、超純水で洗浄し、80℃で3時間乾燥させ、白金およびクロムが担持された炭素材料を得た。   Next, an aqueous chromium nitrate solution having a Cr concentration of 1% by mass was prepared. 10 mg of this chromium nitrate aqueous solution was impregnated with 100 mg of the above carbon material carrying platinum at 25 ° C. for 3 hours. The amount of chromium supported was 3% by mass with respect to 100% by mass of the carbon material. To this solution, 5 mL of the same sodium borohydride solution as described above was added in an Ar gas atmosphere and stirred for about 1 hour. After 1 hour, about twice as much ultrapure water was added as it was, filtered, washed with ultrapure water, and dried at 80 ° C. for 3 hours to obtain a carbon material carrying platinum and chromium.

(酸処理)
上述のような熱処理を行った後、Pt−Cr合金が担持された炭素材料を0.5Mの硫酸水溶液に浸漬させ、90℃で20時間保持した。その後、沈殿物をろ過し、得られた固形物を超純水で洗浄し、80℃で3時間乾燥させ、Pt−Cr合金触媒を得た。なお、(熱処理)の工程は行わなかった。
(Acid treatment)
After the heat treatment as described above, the carbon material carrying the Pt—Cr alloy was immersed in a 0.5 M sulfuric acid aqueous solution and held at 90 ° C. for 20 hours. Thereafter, the precipitate was filtered, and the obtained solid was washed with ultrapure water and dried at 80 ° C. for 3 hours to obtain a Pt—Cr alloy catalyst. Note that the (heat treatment) step was not performed.

<比較例6>
炭素材料としてケッチェンブラック(一次粒子径40nm、比表面積800m/g)(ライオン社製、ケッチェンブラックEC)を用いた。塩化白金酸を無水エタノールに溶解させて塩化白金酸無水エタノール溶液(Pt濃度2質量%)を準備した。白金担持量が炭素材料100質量%に対して30質量%となるように炭素材料を秤量し、この溶液100mLと混合し、25℃にて8時間撹拌し、分散させた。その後、このPt/C溶液を撹拌しながらArガスを流した。
<Comparative Example 6>
Ketjen black (primary particle diameter 40 nm, specific surface area 800 m 2 / g) (manufactured by Lion Corporation, Ketjen Black EC) was used as the carbon material. Chloroplatinic acid was dissolved in absolute ethanol to prepare a chloroplatinic acid absolute ethanol solution (Pt concentration 2 mass%). The carbon material was weighed so that the amount of platinum supported was 30% by mass with respect to 100% by mass of the carbon material, mixed with 100 mL of this solution, and stirred and dispersed at 25 ° C. for 8 hours. Thereafter, Ar gas was allowed to flow while stirring the Pt / C solution.

還元剤として、10mLの無水エタノールに水素化ホウ素ナトリウムを飽和量混合した。次に、この水素化ホウ素ナトリウム溶液をゆっくりとPt/C溶液に入れ、そのままArガスを流しながら約1時間撹拌した。1時間後、そのままの状態で超純水を約2倍量入れ、ろ過し、超純水で洗浄し、80℃で3時間乾燥させ、白金が担持された炭素材料を得た。   As a reducing agent, a saturated amount of sodium borohydride was mixed with 10 mL of absolute ethanol. Next, this sodium borohydride solution was slowly put into a Pt / C solution and stirred for about 1 hour while flowing Ar gas as it was. After 1 hour, about twice as much ultrapure water was added as it was, filtered, washed with ultrapure water, and dried at 80 ° C. for 3 hours to obtain a carbon material carrying platinum.

次いで、Ni濃度1質量%の硝酸ニッケル水溶液を準備した。この硝酸ニッケル水溶液10mLに、上記の白金が担持された炭素材料100mgを25℃にて3時間含浸させた。ニッケル担持量は、炭素材料100質量%に対して3質量%となるようにした。この溶液に、Arガス雰囲気中で上記と同様の水素化ホウ素ナトリウム溶液5mLを添加して、約1時間撹拌した。1時間後、そのままの状態で超純水を約2倍量入れ、ろ過し、超純水で洗浄し、80℃で3時間乾燥させ、白金およびニッケルが担持された炭素材料を得た。   Next, an aqueous nickel nitrate solution having a Ni concentration of 1% by mass was prepared. 10 mg of this nickel nitrate aqueous solution was impregnated with 100 mg of the above carbon material carrying platinum at 25 ° C. for 3 hours. The amount of nickel supported was 3% by mass with respect to 100% by mass of the carbon material. To this solution, 5 mL of the same sodium borohydride solution as described above was added in an Ar gas atmosphere and stirred for about 1 hour. After 1 hour, about twice as much ultrapure water was added as it was, filtered, washed with ultrapure water, and dried at 80 ° C. for 3 hours to obtain a carbon material carrying platinum and nickel.

(酸処理)
上述のような熱処理を行った後、Pt−Ni合金が担持された炭素材料を0.5Mの硫酸水溶液に浸漬させ、90℃で20時間保持した。その後、沈殿物をろ過し、得られた固形物を超純水で洗浄し、80℃で3時間乾燥させ、Pt−Ni合金触媒を得た。なお、(熱処理)の工程は行わなかった。
(Acid treatment)
After the heat treatment as described above, the carbon material carrying the Pt—Ni alloy was immersed in a 0.5 M sulfuric acid aqueous solution and held at 90 ° C. for 20 hours. Thereafter, the precipitate was filtered, and the obtained solid was washed with ultrapure water and dried at 80 ° C. for 3 hours to obtain a Pt—Ni alloy catalyst. Note that the (heat treatment) step was not performed.

<比較例7>
(熱処理)の工程を10%水素ガス中で、800℃で30分行い、(酸処理)の工程を行わなかったことを除いては、上記実施例4と同様の手法を用いて電極触媒を作製した。
<Comparative Example 7>
The electrode catalyst was prepared using the same method as in Example 4 except that the (heat treatment) step was performed in 10% hydrogen gas at 800 ° C. for 30 minutes and the (acid treatment) step was not performed. Produced.

(触媒金属の結晶格子定数、結晶子径の測定)
上記各実施例1〜6および比較例1〜7で作製した電極触媒について、触媒金属の結晶格子定数、結晶子径をXRD法によって測定した。40°近傍のPt(111)に帰属される2θのピークの角度から面間隔を求め、シェラー式を用いて結晶子径を算出した。
(Measurement of crystal lattice constant and crystallite diameter of catalyst metal)
For the electrode catalysts prepared in Examples 1 to 6 and Comparative Examples 1 to 7, the crystal lattice constant and crystallite diameter of the catalyst metal were measured by the XRD method. The face spacing was obtained from the angle of the 2θ peak attributed to Pt (111) in the vicinity of 40 °, and the crystallite diameter was calculated using the Scherrer equation.

XRDの測定条件は、以下の通りである;
測定機器:マックサイエンス製 広角X線回折装置(MXP18VAHF型)
X線源:CuKα
出力設定:印加電圧40kV、印加電流300mA、発散スリット1.00°、散乱スリット1.00°、受光スリット:0.30mm、走査範囲5〜90°。
The measurement conditions for XRD are as follows:
Measuring equipment: Wide-angle X-ray diffractometer (MXP18VAHF type) manufactured by Mac Science
X-ray source: CuKα
Output setting: applied voltage 40 kV, applied current 300 mA, divergence slit 1.00 °, scattering slit 1.00 °, light receiving slit: 0.30 mm, scanning range 5 to 90 °.

図2に、実施例1および比較例1で作製した電極触媒のXRDの測定結果を示す。実施例1の電極触媒は、比較例1の電極触媒に比べ、2θのピーク値が低角度側にシフトし(図中の矢印)、ピーク幅も狭くなっている。このように、実施例1の方法によればピーク角を制御でき、触媒金属の結晶度も高くなることがわかった。   In FIG. 2, the measurement result of XRD of the electrode catalyst produced in Example 1 and Comparative Example 1 is shown. In the electrode catalyst of Example 1, the peak value of 2θ is shifted to the low angle side (arrow in the figure) and the peak width is narrower than that of the electrode catalyst of Comparative Example 1. Thus, according to the method of Example 1, it was found that the peak angle can be controlled and the crystallinity of the catalyst metal is increased.

さらに、図3に、(a)実施例1および(b)比較例1で作製した電極触媒の透過電子顕微鏡(TEM)像を示す。実施例1で作製した電極触媒では、粒子径もより均一になっていることがわかる。   Furthermore, the transmission electron microscope (TEM) image of the electrode catalyst produced in (a) Example 1 and (b) Comparative Example 1 is shown in FIG. It can be seen that the electrode catalyst produced in Example 1 has a more uniform particle size.

(触媒担持量の測定)
触媒担持量は、熱天秤を用いて測定した。
(Measurement of catalyst loading)
The amount of catalyst supported was measured using a thermobalance.

(電極触媒層の作製)
上記実施例にて得られた電極触媒30mgを純水15mLに混合し、5質量%Nafion溶液(Aldrich社製)1mlと、イソプロピルアルコール10mLをさらに添加した後、超音波撹拌を20分間行った。得られた溶液80μLを金板電極1.6cmに塗布して一晩乾燥させ、電極触媒層を得た。乾燥後、塗布した触媒重量を測定した。
(Production of electrode catalyst layer)
30 mg of the electrode catalyst obtained in the above Example was mixed with 15 mL of pure water, 1 mL of 5% by mass Nafion solution (manufactured by Aldrich) and 10 mL of isopropyl alcohol were further added, and ultrasonic stirring was performed for 20 minutes. 80 μL of the obtained solution was applied to 1.6 cm 2 of a metal plate electrode and dried overnight to obtain an electrode catalyst layer. After drying, the applied catalyst weight was measured.

上記各実施例1〜4および比較例1〜7で作製した電極触媒層を評価用作用極として、下記に示す手順で電気化学的活性表面積(ECA:Electrochemical Area)、質量活性を算出した。   Using the electrode catalyst layers prepared in Examples 1 to 4 and Comparative Examples 1 to 7 as working electrodes for evaluation, the electrochemical active surface area (ECA) and mass activity were calculated according to the following procedure.

(評価方法)
3極式セルを用い、電解質溶液として0.5M硫酸水溶液、対極にカーボン電極、参照極にはRHE(Reversible Hydrogen Electrode)を用い25℃で測定した。
(Evaluation methods)
Using a three-electrode cell, measurement was performed at 25 ° C. using a 0.5 M sulfuric acid aqueous solution as an electrolyte solution, a carbon electrode as a counter electrode, and RHE (Reversible Hydrogen Electrode) as a reference electrode.

<電気化学的活性表面積(ECA)の測定>
電解質水溶液を窒素パージし、CV(サイクリックボルタンメトリー)を0〜1.2V(vs.RHE)の範囲で15サイクルした波形の水素吸着電流からPt比表面積を求め、上記で測定した触媒担持質量を用いてECA値を算出した。なお、ECA値は、電気化学的に測定したPt比表面積(cm/g−Pt)を表す。
<Measurement of electrochemically active surface area (ECA)>
The aqueous electrolyte solution was purged with nitrogen, the Pt specific surface area was determined from the hydrogen adsorption current of the waveform obtained by 15 cycles of CV (cyclic voltammetry) in the range of 0 to 1.2 V (vs. RHE), and the catalyst loading mass measured above was calculated. ECA values were calculated using this. The ECA value represents an electrochemically measured Pt specific surface area (cm 2 / g-Pt).

<質量活性(MA)>
電解質水溶液を酸素パージし、0.9V(vs.RHE)のときの酸素還元電流値を触媒担持質量で割ることにより、質量活性を算出した。
<Mass activity (MA)>
The mass activity was calculated by purging the aqueous electrolyte solution with oxygen and dividing the oxygen reduction current value at 0.9 V (vs. RHE) by the catalyst loading mass.

以上の結果を表1および図4に示す。   The above results are shown in Table 1 and FIG.

各実施例と比較例とを比較すると、2θのピーク値が40.3〜40.8°の範囲である実施例1〜4の触媒は、比較例1〜7の触媒に比べて質量活性が高い値であることが明らかになった。   When comparing each example with a comparative example, the mass activity of the catalysts of Examples 1 to 4 having a 2θ peak value in the range of 40.3 to 40.8 ° is higher than that of the catalysts of Comparative Examples 1 to 7. It became clear that it was a high value.

本発明の一実施形態である固体高分子電解質型燃料電池の断面模式図である。1 is a schematic cross-sectional view of a solid polymer electrolyte fuel cell according to an embodiment of the present invention. 実施例1および比較例1で製造された電極触媒のXRD測定結果を示す図である。It is a figure which shows the XRD measurement result of the electrode catalyst manufactured in Example 1 and Comparative Example 1. (a)実施例1および(b)比較例1で製造された電極触媒のTEM像を示す図である。It is a figure which shows the TEM image of the electrode catalyst manufactured by (a) Example 1 and (b) comparative example 1. FIG. 実施例1〜4および比較例1〜7で製造された電極触媒のXRDによる2θのピークの角度と触媒活性の関係を示す図である。It is a figure which shows the relationship of the angle of 2 (theta) peak by XRD and the catalyst activity of the electrode catalyst manufactured in Examples 1-4 and Comparative Examples 1-7.

符号の説明Explanation of symbols

200 MEA、
210 固体高分子電解質膜、
220a アノード側電極触媒層、
120b、220b カソード側電極触媒層、
230a、230b ガス拡散層、
260 固体高分子電解質型燃料電池、
250a、250b セパレータ、
251a、251b ガス供給溝。
200 MEA,
210 solid polymer electrolyte membrane,
220a anode side electrode catalyst layer,
120b, 220b cathode side electrode catalyst layer,
230a, 230b gas diffusion layer,
260 solid polymer electrolyte fuel cell,
250a, 250b separator,
251a, 251b Gas supply groove.

Claims (9)

白金と遷移金属とを含む白金合金粒子が炭素材料に担持されてなる燃料電池用電極触媒であって、
CuKα線を用いたX線回折分析によるPt(111)に由来するピークが2θにして40.3〜40.8°の格子面に帰属される、燃料電池用電極触媒。
An electrode catalyst for a fuel cell in which platinum alloy particles containing platinum and a transition metal are supported on a carbon material,
An electrode catalyst for a fuel cell, wherein a peak derived from Pt (111) by X-ray diffraction analysis using CuKα rays is assigned to a lattice plane of 40.3 to 40.8 ° in 2θ.
前記遷移金属が、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、および亜鉛からなる群から選択される1以上である、請求項1に記載の燃料電池用電極触媒。 2. The fuel cell electrode catalyst according to claim 1, wherein the transition metal is one or more selected from the group consisting of titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and zinc. 前記白金合金粒子の平均結晶子径が1〜8nmである、請求項1または2に記載の燃料電池用電極触媒。   The electrode catalyst for fuel cells according to claim 1 or 2, wherein the platinum alloy particles have an average crystallite diameter of 1 to 8 nm. 白金および遷移金属を炭素材料に担持させる担持工程と、
白金および遷移金属が担持された炭素材料を熱処理する熱処理工程と、
熱処理後の触媒前駆体を酸に接触させる酸処理工程と、
を含む、燃料電池用電極触媒の製造方法。
A supporting step of supporting platinum and a transition metal on a carbon material;
A heat treatment step of heat treating a carbon material carrying platinum and a transition metal;
An acid treatment step of bringing the catalyst precursor after the heat treatment into contact with an acid;
The manufacturing method of the electrode catalyst for fuel cells containing this.
前記担持工程は、液相還元法によって行われる、請求項4に記載の製造方法。   The manufacturing method according to claim 4, wherein the supporting step is performed by a liquid phase reduction method. 前記熱処理は、N雰囲気下、または20体積%以下のHを含むHおよびNの混合雰囲気下で、1000〜1200℃で10分間〜1時間行われる、請求項4または5に記載の製造方法。 The heat treatment, N 2 atmosphere, or in a mixed atmosphere of H 2 and N 2 containing 20% by volume or less of H 2, is performed 1 hour 10 minutes at 1000 to 1200 ° C., according to claim 4 or 5 Manufacturing method. 前記酸処理は、0.5〜2.0Mの硫酸水溶液を用いて、50〜100℃で10〜20時間行われる、請求項4〜6のいずれか1項に記載の製造方法。   The said acid treatment is a manufacturing method of any one of Claims 4-6 performed for 10 to 20 hours at 50-100 degreeC using 0.5-2.0M sulfuric acid aqueous solution. 請求項1〜3のいずれか1項に記載の燃料電池用電極触媒を用いた燃料電池。   The fuel cell using the electrode catalyst for fuel cells of any one of Claims 1-3. 請求項8の燃料電池を搭載した車両。   A vehicle equipped with the fuel cell according to claim 8.
JP2008186915A 2008-07-18 2008-07-18 Electrode catalyst for fuel cell and its manufacturing method Pending JP2010027364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008186915A JP2010027364A (en) 2008-07-18 2008-07-18 Electrode catalyst for fuel cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008186915A JP2010027364A (en) 2008-07-18 2008-07-18 Electrode catalyst for fuel cell and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2010027364A true JP2010027364A (en) 2010-02-04

Family

ID=41733004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008186915A Pending JP2010027364A (en) 2008-07-18 2008-07-18 Electrode catalyst for fuel cell and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2010027364A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010198885A (en) * 2009-02-24 2010-09-09 Ishifuku Metal Ind Co Ltd Platinum ordered lattice catalyst for fuel cell, and its manufacturing method
JP4880064B1 (en) * 2010-12-08 2012-02-22 田中貴金属工業株式会社 Catalyst for polymer electrolyte fuel cell and method for producing the same
WO2012039071A1 (en) * 2010-09-24 2012-03-29 株式会社 キャタラー Supported catalyst for fuel cell and process for production thereof, and fuel cell
CN103003995A (en) * 2010-07-15 2013-03-27 昭和电工株式会社 Method for producing fuel cell catalyst, fuel cell catalyst, and use thereof
JP2014100659A (en) * 2012-11-20 2014-06-05 Toyota Motor Corp Method for synthesizing a platinum-iron alloy
WO2014119707A1 (en) 2013-02-04 2014-08-07 田中貴金属工業株式会社 Solid polymer fuel cell catalyst and method for manufacturing same
JP2014522085A (en) * 2011-08-01 2014-08-28 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Nanostructured PtxMy catalyst for PEMFC battery with high activity and mild H2O2 production
WO2014175099A1 (en) * 2013-04-25 2014-10-30 日産自動車株式会社 Catalyst, electrode catalyst layer using same, membrane electrode assembly and fuel cell
WO2015020079A1 (en) * 2013-08-09 2015-02-12 日産自動車株式会社 Catalyst particles, and electrocatalyst, electrolyte membrane-electrode assembly, and fuel cell using such catalyst particles
JP2015111597A (en) * 2015-03-02 2015-06-18 株式会社キャタラー Method for manufacturing supported catalyst for fuel cell
JP2016148078A (en) * 2015-02-12 2016-08-18 国立大学法人東京工業大学 Platinum alloy powder and method for producing the same
JPWO2014175105A1 (en) * 2013-04-25 2017-02-23 日産自動車株式会社 Catalyst, electrode catalyst layer using the catalyst, membrane electrode assembly, and fuel cell
JPWO2016063968A1 (en) * 2014-10-24 2017-06-15 株式会社キャタラー Fuel cell electrode catalyst and method for producing the same
KR20170083486A (en) * 2016-01-08 2017-07-18 도요타 지도샤(주) Electrode catalyst for fuel cell and method of producing electrode catalyst for fuel cell
JP2018006107A (en) * 2016-06-30 2018-01-11 トヨタ自動車株式会社 Electrode catalyst for fuel cell and method of manufacturing the same, and fuel cell
WO2018194008A1 (en) 2017-04-18 2018-10-25 田中貴金属工業株式会社 Catalyst for solid polymer electrolyte fuel cells and method for producing same
JP2018181674A (en) * 2017-04-17 2018-11-15 日産自動車株式会社 Catalyst for fuel cell
WO2020040040A1 (en) 2018-08-22 2020-02-27 田中貴金属工業株式会社 Catalyst for solid polymer fuel cell and method for selecting catalyst for solid polymer fuel cell
JP2021093270A (en) * 2019-12-09 2021-06-17 日本製鉄株式会社 Alloy catalyst for solid polymer type fuel cell and manufacturing method thereof
CN113518707A (en) * 2019-03-19 2021-10-19 普利司通欧洲有限公司 Cold retreading method for tyre
US11217796B2 (en) 2017-04-28 2022-01-04 Cataler Corporation Electrode catalyst for fuel cell and method of production of same
CN114223076A (en) * 2019-08-02 2022-03-22 日清纺控股株式会社 Metal-supported catalyst, battery electrode, and battery
JP2022525615A (en) * 2019-03-19 2022-05-18 ブリヂストン ヨーロッパ エヌブイ/エスエイ Tire cold tread method

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010198885A (en) * 2009-02-24 2010-09-09 Ishifuku Metal Ind Co Ltd Platinum ordered lattice catalyst for fuel cell, and its manufacturing method
EP2595225A1 (en) * 2010-07-15 2013-05-22 Showa Denko K.K. Method for producing fuel cell catalyst, fuel cell catalyst, and use thereof
EP2595225A4 (en) * 2010-07-15 2015-08-26 Showa Denko Kk Method for producing fuel cell catalyst, fuel cell catalyst, and use thereof
US20130115542A1 (en) * 2010-07-15 2013-05-09 Showa Denko K.K. Method for producing fuel cell catalyst, fuel cell catalyst, and uses thereof
CN103003995A (en) * 2010-07-15 2013-03-27 昭和电工株式会社 Method for producing fuel cell catalyst, fuel cell catalyst, and use thereof
WO2012039071A1 (en) * 2010-09-24 2012-03-29 株式会社 キャタラー Supported catalyst for fuel cell and process for production thereof, and fuel cell
WO2012077598A1 (en) * 2010-12-08 2012-06-14 田中貴金属工業株式会社 Catalyst for solid polymer fuel cells and method for producing same
EP2650956A4 (en) * 2010-12-08 2016-06-01 Tanaka Precious Metal Ind Catalyst for solid polymer fuel cells and method for producing same
KR101842310B1 (en) * 2010-12-08 2018-03-26 다나카 기킨조쿠 고교 가부시키가이샤 Catalyst for polymer electrolyte fuel cell and method for producing the same
US9368805B2 (en) 2010-12-08 2016-06-14 Tanaka Kikinzoku Kogyo K.K Catalyst for polymer electrolyte fuel cell and method for producing the same
JP4880064B1 (en) * 2010-12-08 2012-02-22 田中貴金属工業株式会社 Catalyst for polymer electrolyte fuel cell and method for producing the same
KR101934170B1 (en) * 2010-12-08 2018-12-31 다나카 기킨조쿠 고교 가부시키가이샤 Catalyst for polymer electrolyte fuel cell and method for producing the same
JP2014522085A (en) * 2011-08-01 2014-08-28 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Nanostructured PtxMy catalyst for PEMFC battery with high activity and mild H2O2 production
JP2014100659A (en) * 2012-11-20 2014-06-05 Toyota Motor Corp Method for synthesizing a platinum-iron alloy
WO2014119707A1 (en) 2013-02-04 2014-08-07 田中貴金属工業株式会社 Solid polymer fuel cell catalyst and method for manufacturing same
US9905859B2 (en) 2013-02-04 2018-02-27 Tanaka Kikinzoku Kogyo K.K. Catalyst for solid polymer fuel cell and method for manufacturing the same
CN104969391A (en) * 2013-02-04 2015-10-07 田中贵金属工业株式会社 Solid polymer fuel cell catalyst and method for manufacturing same
WO2014175099A1 (en) * 2013-04-25 2014-10-30 日産自動車株式会社 Catalyst, electrode catalyst layer using same, membrane electrode assembly and fuel cell
JPWO2014175099A1 (en) * 2013-04-25 2017-02-23 日産自動車株式会社 Catalyst, electrode catalyst layer using the catalyst, membrane electrode assembly, and fuel cell
JPWO2014175105A1 (en) * 2013-04-25 2017-02-23 日産自動車株式会社 Catalyst, electrode catalyst layer using the catalyst, membrane electrode assembly, and fuel cell
WO2015020079A1 (en) * 2013-08-09 2015-02-12 日産自動車株式会社 Catalyst particles, and electrocatalyst, electrolyte membrane-electrode assembly, and fuel cell using such catalyst particles
JPWO2015020079A1 (en) * 2013-08-09 2017-03-02 日産自動車株式会社 Catalyst particles and electrode catalyst, electrolyte membrane-electrode assembly and fuel cell using the same
US10847811B2 (en) 2013-08-09 2020-11-24 Nissan Motor Co., Ltd. Catalyst particle, and electrode catalyst, electrolyte membrane-electrode assembly, and fuel cell using the same
US10014532B2 (en) 2013-08-09 2018-07-03 Nissan Motor Co., Ltd. Catalyst particle, and electrode catalyst, electrolyte membrane-electrode assembly, and fuel cell using the same
JPWO2016063968A1 (en) * 2014-10-24 2017-06-15 株式会社キャタラー Fuel cell electrode catalyst and method for producing the same
US10950869B2 (en) 2014-10-24 2021-03-16 Cataler Corporation Fuel cell electrode catalyst and method for producing the same
JP2016148078A (en) * 2015-02-12 2016-08-18 国立大学法人東京工業大学 Platinum alloy powder and method for producing the same
JP2015111597A (en) * 2015-03-02 2015-06-18 株式会社キャタラー Method for manufacturing supported catalyst for fuel cell
KR101864967B1 (en) * 2016-01-08 2018-06-05 도요타 지도샤(주) Electrode catalyst for fuel cell and method of producing electrode catalyst for fuel cell
KR20170083486A (en) * 2016-01-08 2017-07-18 도요타 지도샤(주) Electrode catalyst for fuel cell and method of producing electrode catalyst for fuel cell
JP2018006107A (en) * 2016-06-30 2018-01-11 トヨタ自動車株式会社 Electrode catalyst for fuel cell and method of manufacturing the same, and fuel cell
JP2018181674A (en) * 2017-04-17 2018-11-15 日産自動車株式会社 Catalyst for fuel cell
KR20190121847A (en) 2017-04-18 2019-10-28 다나카 기킨조쿠 고교 가부시키가이샤 Catalyst for solid polymer fuel cell and manufacturing method thereof
US11145874B2 (en) 2017-04-18 2021-10-12 Tanaka Kikinzoku Kogyo K.K. Catalyst for solid polymer fuel cells and method for producing same
WO2018194008A1 (en) 2017-04-18 2018-10-25 田中貴金属工業株式会社 Catalyst for solid polymer electrolyte fuel cells and method for producing same
US11217796B2 (en) 2017-04-28 2022-01-04 Cataler Corporation Electrode catalyst for fuel cell and method of production of same
WO2020040040A1 (en) 2018-08-22 2020-02-27 田中貴金属工業株式会社 Catalyst for solid polymer fuel cell and method for selecting catalyst for solid polymer fuel cell
KR20210032500A (en) 2018-08-22 2021-03-24 다나카 기킨조쿠 고교 가부시키가이샤 Method for selecting a catalyst for a polymer electrolyte fuel cell and a catalyst for a polymer electrolyte fuel cell
KR20230147760A (en) 2018-08-22 2023-10-23 다나카 기킨조쿠 고교 가부시키가이샤 Catalyst for solid polymer fuel cell and method for selecting catalyst for solid polymer fuel cell
CN113518707A (en) * 2019-03-19 2021-10-19 普利司通欧洲有限公司 Cold retreading method for tyre
JP2022524879A (en) * 2019-03-19 2022-05-10 ブリヂストン ヨーロッパ エヌブイ/エスエイ Tire cold tread method
JP2022525615A (en) * 2019-03-19 2022-05-18 ブリヂストン ヨーロッパ エヌブイ/エスエイ Tire cold tread method
JP7266114B2 (en) 2019-03-19 2023-04-27 ブリヂストン ヨーロッパ エヌブイ/エスエイ Tire cold retread method
JP7266115B2 (en) 2019-03-19 2023-04-27 ブリヂストン ヨーロッパ エヌブイ/エスエイ Tire cold retread method
CN114223076A (en) * 2019-08-02 2022-03-22 日清纺控股株式会社 Metal-supported catalyst, battery electrode, and battery
CN114223076B (en) * 2019-08-02 2023-11-28 日清纺控股株式会社 Metal-supported catalyst, battery electrode, and battery
JP7303443B2 (en) 2019-12-09 2023-07-05 日本製鉄株式会社 Alloy catalyst for polymer electrolyte fuel cell and method for producing the same
JP2021093270A (en) * 2019-12-09 2021-06-17 日本製鉄株式会社 Alloy catalyst for solid polymer type fuel cell and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2010027364A (en) Electrode catalyst for fuel cell and its manufacturing method
CN111527633B (en) Catalyst, method for preparing the same, electrode, membrane-electrode assembly and fuel cell comprising the catalyst
JP5055788B2 (en) Electrocatalyst
KR100786869B1 (en) Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell comprising same and fuel cell system comprising same
CA3021498C (en) High activity alloy-based electrode catalyst, and membrane electrode assembly and fuel cell using high activity alloy-based electrode catalyst
US9731276B2 (en) Composite, catalyst including the same, fuel cell and lithium air battery including the same
CN105073254A (en) Catalyst particles for fuel cells and method for producing same
TWI728612B (en) Catalyst, method for manufacturing the same, electrode comprising the same, membrane-electrode assembly comprising the same, and fuel cell comprising the same
EP3903935B1 (en) Catalyst, method for producing same, electrode comprising same, membrane-electrode assembly comprising same, and fuel cell comprising same
KR100823502B1 (en) Catalyst for fuel cell, method of preparing same membrane-electrode assembly for fuel cell and fuel cell system comprising same
CN107921419B (en) Catalyst particles, and electrode catalyst, electrolyte membrane-electrode assembly, and fuel cell each comprising same
US20200392632A1 (en) Basic electrocatalyst for carbon dioxide reduction and ethylene production, electrode and apparatus each including the same, and method of manufacturing the electrode
WO2020059503A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
KR100823505B1 (en) Catalyst for fuel cell, method of preparing same membrane-electrode assembly for fuel cell and fuel cell system femprising same
JP4789179B2 (en) Electrode catalyst and method for producing the same
WO2020059502A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
WO2016152506A1 (en) Carbon powder for fuel cell, catalyst using said carbon powder for fuel cell, electrode catalyst layer, membrane electrode assembly, and fuel cell
JP2008047472A (en) Electrode catalyst
JP6191326B2 (en) ELECTRODE CATALYST PARTICLE FOR FUEL CELL, ELECTRODE CATALYST FOR FUEL CELL USING THE SAME, ELECTROLYTE-ELECTRODE ASSEMBLY, FUEL CELL, AND METHOD FOR PRODUCING CATALYTIC PARTICLE AND CATALYST
JP2017170404A (en) Method for producing catalyst particle and method for producing electrode catalyst
JP6862792B2 (en) Method of manufacturing electrode catalyst
JP2005190726A (en) Catalyst carrying electrode, mea for fuel cell, and fuel cell
WO2022158395A1 (en) Fuel cell electrode catalyst
JP6846210B2 (en) Electrode catalyst and membrane electrode assembly and fuel cell using the electrode catalyst
JP2017174561A (en) Method of producing electrode catalyst