JP2010198885A - Platinum ordered lattice catalyst for fuel cell, and its manufacturing method - Google Patents

Platinum ordered lattice catalyst for fuel cell, and its manufacturing method Download PDF

Info

Publication number
JP2010198885A
JP2010198885A JP2009041570A JP2009041570A JP2010198885A JP 2010198885 A JP2010198885 A JP 2010198885A JP 2009041570 A JP2009041570 A JP 2009041570A JP 2009041570 A JP2009041570 A JP 2009041570A JP 2010198885 A JP2010198885 A JP 2010198885A
Authority
JP
Japan
Prior art keywords
platinum
cobalt
catalyst
ordered lattice
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009041570A
Other languages
Japanese (ja)
Other versions
JP5506075B2 (en
Inventor
Hideo Inoue
秀男 井上
Masayuki Oguri
雅之 小栗
Yoichi Kamegaya
洋一 亀ケ谷
Tomomi Asaki
知美 朝木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishifuku Metal Industry Co Ltd
Original Assignee
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co Ltd filed Critical Ishifuku Metal Industry Co Ltd
Priority to JP2009041570A priority Critical patent/JP5506075B2/en
Publication of JP2010198885A publication Critical patent/JP2010198885A/en
Application granted granted Critical
Publication of JP5506075B2 publication Critical patent/JP5506075B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a platinum catalyst of high performance for a fuel cell, and its manufacturing method. <P>SOLUTION: This is a platinum ordered lattice catalyst in which a platinum-cobalt ordered lattice alloy of L1<SB>0</SB>structure is made as a nucleus, and the platinum of the L1<SB>2</SB>structure is made as an outer layer. This is the manufacturing method of the platinum ordered lattice catalyst for the fuel cell including a process of carrying platinum-cobalt alloy particles consisting of A1 structure on a catalyst carrier, a process of changing this platinum-cobalt particles into a platinum-cobalt ordered lattice alloy particles of L1<SB>0</SB>structure, and a process of eluting cobalt from this platinum-cobalt ordered lattice alloy particles, and forming the outer layer composed of platinum of L1<SB>2</SB>structure. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は燃料電池のカソード電極用触媒として適した白金触媒とその製造方法に関し、さらに詳しくは、白金規則格子粒子を微細で高分散に担持し、酸性雰囲気下で高い耐久性を有する白金規則格子触媒の製造方法に関する。   The present invention relates to a platinum catalyst suitable as a catalyst for a cathode electrode of a fuel cell and a method for producing the same. More specifically, the present invention relates to a platinum ordered lattice having fine and highly dispersed platinum ordered lattice particles and high durability in an acidic atmosphere. The present invention relates to a method for producing a catalyst.

固体高分子形燃料電池は小型で高い電流密度を取り出せることから、自動車、家庭用分散型電源、携帯用電源としての利用が考えられている。   Since the polymer electrolyte fuel cell is small and can take out a high current density, it is considered to be used as an automobile, a distributed power source for home use, and a portable power source.

この固体高分子形燃料電池には白金を主とした金属粒子をカーボン上に担持した触媒が用いられているが、白金は高価であるため、担持した白金を有効活用し、電極触媒の活性を高める必要がある。そこで、触媒の活性を高めるため白金粒子の微細化、高分散担持できる製造方法が提案されてきた。   In this polymer electrolyte fuel cell, a catalyst in which metal particles mainly composed of platinum are supported on carbon is used. However, since platinum is expensive, the supported platinum is effectively used to increase the activity of the electrode catalyst. Need to increase. Thus, in order to increase the activity of the catalyst, a production method capable of carrying a finer and highly dispersed platinum particle has been proposed.

また、上記白金微細化、高分散化を改善する方法以外に、触媒の活性を向上させるために白金合金触媒が提案されてきた。しかし、白金合金触媒は燃料電池内の酸性雰囲気下で酸素が供給される条件では不安定であるため、白金合金触媒を安定化させるために各種改良がなされてきた。   In addition to the above-described methods for improving the fineness and high dispersion of platinum, a platinum alloy catalyst has been proposed in order to improve the activity of the catalyst. However, since the platinum alloy catalyst is unstable under the condition that oxygen is supplied in an acidic atmosphere in the fuel cell, various improvements have been made to stabilize the platinum alloy catalyst.

例えば特許文献1では置換固溶体合金から結晶形を保持したまま卑金属元素を除去し、空格子点型欠陥構造を有する白金スケルトン合金触媒を作製する事で耐久性と高活性が得られるとの記載がある。   For example, Patent Document 1 describes that durability and high activity can be obtained by removing a base metal element while maintaining a crystal form from a substituted solid solution alloy and producing a platinum skeleton alloy catalyst having a vacancy type defect structure. is there.

また特許文献2では酸性条件で白金より酸化されにくい金属粒子を白金で覆う事で高い耐久性が実現できる燃料電池触媒として提案されている。   Patent Document 2 proposes a fuel cell catalyst that can achieve high durability by covering metal particles that are less oxidized than platinum under acidic conditions with platinum.

特許文献3では貴金属含有合金層をコア部とし、コア部と組成が異なる貴金属含有層をシェル部とするコアシェル構造によって添加元素の溶出を抑制し、寿命特性に優れる燃料電池触媒について提案されている。   Patent Document 3 proposes a fuel cell catalyst that suppresses elution of additional elements by a core-shell structure having a noble metal-containing alloy layer as a core portion and a noble metal-containing layer having a composition different from the core portion as a shell portion, and has excellent life characteristics. .

特開平10−69914号公報Japanese Patent Laid-Open No. 10-69914 特開2002−289208号公報Japanese Patent Laid-Open No. 2002-289208 特開2005−135900号公報JP-A-2005-135900

しかし上記の特許文献1の方法では、触媒の長期安定性に期待ができるものの触媒活性を高める面では十分とは言えず、また、微細な白金合金粒子を高分散にカーボン上に形成することができないため、合金化によって個々の粒子の活性を向上させても、粒子径が大きくなることによる活性低下と打ち消しあってしまう問題もあった。   However, although the method of Patent Document 1 described above can be expected for the long-term stability of the catalyst, it cannot be said to be sufficient in terms of enhancing the catalytic activity, and fine platinum alloy particles can be formed on carbon in a highly dispersed manner. Therefore, even if the activity of individual particles is improved by alloying, there is also a problem that the decrease in activity due to the increase in particle diameter cancels out.

また特許文献2の方法では金属粒子を形成後に白金による被覆を行っているが、白金が金属粒子を完全に被覆できず白金粒子がカーボン上に担持されることがあり、白金を有効に生かすことができないことによる長期安定性の問題及び触媒活性の面でも十分とは言えない。   Further, in the method of Patent Document 2, the metal particles are formed and then covered with platinum. However, platinum may not be completely covered with the metal particles, and the platinum particles may be supported on carbon. This is not sufficient in terms of long-term stability problems and catalyst activity due to the inability to perform the process.

更に、特許文献3の方法では触媒の長期安定性に期待ができるものの触媒活性を高める面では十分とは言えず、また、コアシェル構造形成後に熱処理を行う技術では、貴金属含有率が高いシェル部の結晶構造が白金と同じFCC構造へと変化し、活性の低下が起きてしまう問題もあった。   Furthermore, although the method of Patent Document 3 can be expected for the long-term stability of the catalyst, it cannot be said to be sufficient in terms of enhancing the catalytic activity, and the technique of performing heat treatment after the formation of the core-shell structure has a high noble metal content. There was also a problem that the crystal structure changed to the same FCC structure as platinum, resulting in a decrease in activity.

上述した従来技術の問題点に鑑み、本発明の目的は、微細で高分散に白金規則格子粒子が担持され、高活性で、酸性雰囲気下で溶出による劣化が抑制できる耐久性に優れた燃料電池触媒及びその製造方法を提供することにある。   In view of the above-described problems of the prior art, an object of the present invention is to provide a fuel cell excellent in durability in which platinum regular lattice particles are supported in a fine and highly dispersed state, highly active and capable of suppressing deterioration due to elution in an acidic atmosphere. The object is to provide a catalyst and a method for producing the same.

本発明者らは種々の検討の結果、上記目的を達成するために白金規則格子触媒及びその製造方法を見出し、本発明を完成するに至った。   As a result of various studies, the present inventors have found a platinum ordered lattice catalyst and a method for producing the same in order to achieve the above object, and have completed the present invention.

すなわち上記目的は、活性及び耐久性が高いL10構造の白金-コバルト規則格子合金を核とし、L12構造の白金を外層とする白金規則格子触媒によって達成される。 That is, the object is active and of high durability L1 0 structure platinum - cobalt superlattice alloy as a core, a platinum L1 2 structure is achieved by a platinum ordered lattice catalysts outer layer.

また上記目的は、微細で高分散にA1構造白金-コバルト合金粒子を担持し、この白金-コバルト合金粒子をL10構造の白金-コバルト規則格子合金粒子に変化させ、コバルトを溶出させることによりL12構造の白金で白金-コバルト規則格子合金粒子を覆うことを特徴とする白金規則格子触媒の製造方法によって達成される。
本発明による高活性且つ高い耐久性を有する触媒を得るためには、A1構造白金-コバルト合金粒子は、400℃以下の低い温度での形成が求められる。
The above object, A1 structure platinum in a highly dispersed fine - cobalt alloy particles supported, platinum - platinum cobalt alloy particles L1 0 structure - is changed to cobalt ordered lattice alloy particles, by eluting the cobalt L1 This is achieved by a method for producing a platinum ordered lattice catalyst characterized by covering platinum-cobalt ordered lattice alloy particles with two- structure platinum.
In order to obtain a catalyst having high activity and high durability according to the present invention, the A1 structure platinum-cobalt alloy particles are required to be formed at a low temperature of 400 ° C. or lower.

なお、本願で記載されているA1構造はFCC構造、L10構造はFCT構造のなかでAuCu構造、L12構造はFCT構造のなかでAu3Cu構造といわれているものである。L10構造の白金-コバルト規則格子合金上に外層のL12構造白金規則格子が酸素の4電子還元反応に適していると考えられる。 Incidentally, A1 structures described in this application FCC structure, L1 0 structure AuCu structure among FCT structure, L1 2 structure are what are referred to as Au 3 Cu structure among FCT structure. It is considered that the outer layer L1 2 structure platinum ordered lattice on the platinum-cobalt ordered lattice alloy of L1 0 structure is suitable for the four-electron reduction reaction of oxygen.

本発明による触媒は、外層のL12構造の白金及び核のL10構造の白金-コバルト規則格子合金の効果により、触媒活性を著しく向上させ、更に微細な白金規則格子粒子が担体上に均一に高分散に担持された触媒を製造することによる相乗化効果により触媒活性を更に向上することができる。
また、本発明の白金規則格子触媒が、従来の白金-コバルト合金触媒よりも優れた性能が得られるのは、外層のL12構造の白金によって、高い触媒性能を維持して著しい耐久性の向上がなされるためである。
The catalyst according to the present invention significantly improves the catalytic activity due to the effect of the outer layer L1 2 structure platinum and the core L1 0 structure platinum-cobalt ordered lattice alloy, and the fine platinum ordered lattice particles are uniformly distributed on the support. The catalytic activity can be further improved by the synergistic effect by producing the catalyst supported in high dispersion.
Also, platinum superlattice catalyst of the present invention, conventional platinum - the superior cobalt alloy catalyst performance is obtained by platinum L1 2 structure of the outer layer, remarkable improvement in durability while maintaining high catalytic performance Because it is made.

燃料電池内の反応においてカソード極で起きている酸素還元反応は全体の触媒反応の中で最も遅いため、律速となっている。このカソード極で使用されている触媒の酸素還元活性を向上させるため貴金属合金触媒が提案されており、白金-コバルト合金触媒等がよく知られているが、触媒活性が十分でなく、耐久性も不十分である。
また、電極触媒が使用される環境は、強酸性の電解質膜近傍である。かかる環境下では、合金化した金属が溶出する問題もある。
そこで、本発明では、L12構造からなる白金規則格子によってL10構造の白金-コバルト規則格子合金粒子を覆う構造を採用する。L12構造白金及びL10構造白金-コバルト合金による活性及び耐久性の向上を図ることができる。そして、このような粒子構造によれば、金属の溶出が抑制されるので溶出の問題も解決できる。
以下、本発明の実施形態について具体的に説明する。
The oxygen reduction reaction occurring at the cathode electrode in the reaction in the fuel cell is rate-determining because it is the slowest of all the catalytic reactions. In order to improve the oxygen reduction activity of the catalyst used in the cathode electrode, a noble metal alloy catalyst has been proposed, and a platinum-cobalt alloy catalyst or the like is well known, but the catalyst activity is not sufficient and durability is also high. It is insufficient.
The environment in which the electrode catalyst is used is in the vicinity of a strongly acidic electrolyte membrane. Under such circumstances, there is also a problem that the alloyed metal is eluted.
Therefore, in the present invention, platinum L1 0 structure of platinum superlattice consisting of L1 2 structure - adopts a structure that covers the cobalt superlattice alloy particles. L1 2 structure platinum and L1 0 structure platinum - it is possible to improve the activity and durability due to cobalt alloy. And according to such a particle structure, since elution of a metal is suppressed, the problem of elution can also be solved.
Hereinafter, embodiments of the present invention will be specifically described.

本発明は、白金規則格子粒子を触媒担体に担持した燃料電池用触媒である。
本願において「白金規則格子粒子」とは、L10構造の白金-コバルト規則格子合金を核とし、L12構造の白金を外層とする、ことを特徴とする金属粒子をいう。「L10構造の白金-コバルト規則格子合金からなる核」とは、L10構造からなる白金-コバルトを核とする態様と、L10構造及びL12構造からなる白金-コバルトを核とする態様の双方を含む。後者の態様の場合、酸素還元活性を向上させるためにはL10構造の比率が大きいほど好ましい。
上記構成の白金規則格子粒子を触媒担体に担持した燃料電池用触媒を、本願において「白金規則格子触媒」と称する。
The present invention is a fuel cell catalyst in which platinum regular lattice particles are supported on a catalyst carrier.
By "platinum superlattice particles" in the present application, L1 0 structure of the platinum - cobalt superlattice alloy as the core, the platinum L1 2 structure and the outer layer means a metal particle, characterized in that. The - "platinum L1 0 structure nucleus consisting of cobalt ordered lattice alloy", platinum consisting L1 0 structure - aspects that cobalt core - and manner of a cobalt core, platinum consisting L1 0 structure and L1 2 structure Including both. In the latter embodiment, in order to improve the oxygen reduction activity is preferably larger the ratio of L1 0 structure.
The fuel cell catalyst in which the platinum ordered lattice particles having the above structure are supported on a catalyst carrier is referred to as a “platinum ordered lattice catalyst” in the present application.

前記白金規則格子粒子は、平均粒径が1〜10nm、より好ましくは2〜5nmである。粒子径が10nm超では白金の粒子の活性点が減少してしまい、結晶構造による活性向上を打ち消してしまう。また1nm以下では触媒担体の細孔内に入り込んでしまい、燃料電池内の酸素還元反応に寄与せず活性の低下を招いたり、粒子の溶出によって耐久性が低下する問題が生じる。   The platinum regular lattice particles have an average particle diameter of 1 to 10 nm, more preferably 2 to 5 nm. When the particle diameter exceeds 10 nm, the active sites of the platinum particles decrease, and the activity improvement due to the crystal structure is negated. On the other hand, if the thickness is less than 1 nm, it enters into the pores of the catalyst carrier and does not contribute to the oxygen reduction reaction in the fuel cell, leading to a decrease in activity, or a problem that durability is reduced due to elution of particles.

前記白金規則格子粒子の触媒担体上への担持量は0.1〜60mass%であり、好ましくは1〜50mass%である。0.1mass%未満では触媒量が足らないために十分な活性を得ることができず、60mass%超では粒子の凝集が発生し、白金の利用率が低下する問題がある。   The supported amount of the platinum ordered lattice particles on the catalyst carrier is 0.1 to 60 mass%, preferably 1 to 50 mass%. If the amount is less than 0.1 mass%, a sufficient amount of catalyst cannot be obtained because the amount of the catalyst is insufficient, and if it exceeds 60 mass%, there is a problem that aggregation of particles occurs and the utilization rate of platinum decreases.

触媒担体としては特に制限されるものではなく、従来から触媒の担体として使用されているものが同様に使用可能であり、特にカーボンブラック、アセチレンブラック、カーボンナノチューブ、カーボンナノホーン、フラーレン、その他導電性酸化物などの担体が好適である。   The catalyst carrier is not particularly limited, and those conventionally used as catalyst carriers can be used as well, and in particular, carbon black, acetylene black, carbon nanotubes, carbon nanohorns, fullerenes, and other conductive oxides. Carriers such as products are preferred.

上記構成の白金規則格子触媒は、以下の工程a〜cを経て製造することができる。
a)白金とコバルトからなる二核錯体を触媒担体に付着させ、その二核錯体を還元と同時
に合金化することで、A1構造からなる白金-コバルト合金粒子をカーボン担体表面に
担持させる工程。
b)この白金-コバルト合金粒子に熱処理を加えて、L10構造の白金-コバルト規則格子
合金粒子へ変化させる工程。
c)このL10構造白金-コバルト規則格子合金粒子の外層部(表層部)から、コバルトを
溶出させて、L12構造の白金からなる外層を形成する工程。
The platinum ordered lattice catalyst having the above structure can be produced through the following steps a to c.
a) A step in which platinum-cobalt alloy particles having an A1 structure are supported on the surface of a carbon carrier by attaching a binuclear complex comprising platinum and cobalt to a catalyst carrier and alloying the binuclear complex at the same time as reduction.
In addition to heat treatment cobalt alloy particles, L1 0 structure of platinum - - b) The platinum step of changing the cobalt ordered lattice alloy particles.
c) The L1 0 structure platinum - an outer layer of cobalt superlattice alloy particles (surface layer portion), eluting the cobalt, to form an outer layer of platinum of L1 2 structure.

各工程の実施方法は特に限定されないが、望ましい例を挙げて説明すると以下のとおりである。   Although the implementation method of each process is not specifically limited, It will be as follows when a desirable example is given and demonstrated.

本発明で用いるA1構造からなる白金-コバルト合金粒子は、白金とコバルトの組成比(モル比)が、4:6〜6:4必要である。
ただしこの組成比の白金とコバルトを用いた場合であっても、後述するA1構造からなる白金-コバルト合金粒子は通常得られない。
The platinum-cobalt alloy particles having an A1 structure used in the present invention must have a composition ratio (molar ratio) of platinum to cobalt of 4: 6 to 6: 4.
However, even when platinum and cobalt having this composition ratio are used, platinum-cobalt alloy particles having an A1 structure described later cannot usually be obtained.

本発明におけるA1構造からなる白金-コバルト合金粒子の作製工程では、白金とコバルトからなる二核錯体を触媒担体に付着させ、その二核錯体を還元と同時に合金化して得ることができる。例えばシュウ酸基が付いた白金とコバルトの二核錯体と触媒担体を混合した後、乾燥させて、得られた白金合金用錯体が付着した担体を、水素、一酸化炭素などの還元性ガス又は窒素、ヘリウムやアルゴンなどの不活性ガス雰囲気下で200℃〜400℃、好ましくは200℃〜300℃で加熱処理する。これにより、還元と同時に合金化させ、A1構造からなる白金-コバルト合金粒子を得ることができる。また、上述したシュウ酸白金とシュウ酸コバルトを用いた方法によれば、低温でのA1構造の合金形成が可能になるため、熱処理時における粒子成長を抑制して微細な合金粒子を担持させることができる。   In the production process of platinum-cobalt alloy particles having an A1 structure in the present invention, a binuclear complex composed of platinum and cobalt is attached to a catalyst carrier, and the binuclear complex can be alloyed simultaneously with reduction. For example, a platinum-cobalt binuclear complex with an oxalic acid group and a catalyst carrier are mixed and then dried, and the resulting carrier with the platinum alloy complex attached thereto is reduced gas such as hydrogen or carbon monoxide or Heat treatment is performed at 200 ° C. to 400 ° C., preferably 200 ° C. to 300 ° C. in an inert gas atmosphere such as nitrogen, helium, or argon. Thereby, it is possible to obtain platinum-cobalt alloy particles having an A1 structure by alloying simultaneously with the reduction. In addition, according to the above-described method using platinum oxalate and cobalt oxalate, it is possible to form an alloy having an A1 structure at a low temperature, so that the growth of particles during heat treatment is suppressed and fine alloy particles are supported. Can do.

L10構造の白金-コバルト規則格子合金粒子の作製工程では、例えば前記工程で作製した白金-コバルト合金粒子を水素、一酸化炭素などの還元性ガス又は窒素、ヘリウムやアルゴンなどの不活性ガス雰囲気下で500℃〜1000℃、好ましくは500℃〜800℃で熱処理する。これにより、A1構造からなる白金-コバルト合金粒子を、本発明によるL10構造の白金-コバルト規則格子合金粒子へ変化させることができる。 L1 0 structure of platinum - The manufacturing process of the cobalt ordered lattice alloy particles, for example, the platinum produced in step - hydrogen cobalt alloy particles, inert gas atmosphere such as a reducing gas or nitrogen, helium or argon, such as carbon monoxide Then, heat treatment is performed at 500 ° C. to 1000 ° C., preferably 500 ° C. to 800 ° C. Thus, platinum consisting A1 structure - cobalt alloy particles, platinum L1 0 structure according to the invention - can be changed to a cobalt ordered lattice alloy particles.

なお、本発明によるL10構造の白金-コバルト規則格子合金粒子は、上記A1構造を得ることにより形成できる。高温で形成されるA1構造では上記燃料電池に適したL10構造の白金-コバルト規則格子合金を得ることができ無い。 Incidentally, platinum L1 0 structure according to the invention - cobalt superlattice alloy particles can be formed by obtaining the A1 structure. The A1 structure formed at high temperature platinum L1 0 structure suitable for the fuel cell - not possible to obtain a cobalt superlattice alloy.

前記工程で得られた白金-コバルト規則格子合金粒子の外層部からコバルトを溶出させる工程では、例えば該合金粒子に硝酸、硫酸、塩酸などの無機酸又はシュウ酸、酢酸等の有機酸を作用させることで、表面のコバルトを溶出させることができる。これにより、L12構造の白金を外層とし、L10構造の白金-コバルト規則格子合金を核とする、白金規則格子触媒を得ることができる。 In the step of eluting cobalt from the outer layer portion of the platinum-cobalt ordered lattice alloy particles obtained in the above step, for example, an inorganic acid such as nitric acid, sulfuric acid or hydrochloric acid or an organic acid such as oxalic acid or acetic acid is allowed to act on the alloy particles. Thus, cobalt on the surface can be eluted. Thus, the platinum L1 2 structure and the outer layer, L1 0 structure of the platinum - containing cobalt ordered lattice alloy core, can be obtained platinum superlattice catalyst.

本発明を以下の実施例にて説明するが、実施の形態で限定されるものではない。   The present invention will be described in the following examples, but is not limited to the embodiments.

(実施例1)
白金量で40g、コバルト量で12gを含むシュウ酸基が付いた白金とコバルトの二核錯体溶液中に48gのカーボン担体(ケッチェンブラックEC300J)を分散させ、ロータリーエバポレーターにて混合、乾燥することでカーボン担体表面に二核錯体を付着させ、窒素雰囲気下、300℃で白金及びコバルトを還元してA1構造の50mol%白金-50mol%コバルト合金担持カーボン(白金担持率 = 40mass%)を得た。このA1構造の白金-コバルト合金担持カーボンを窒素雰囲気下、800℃で熱処理する事でL10構造だけからなる白金-コバルト規則格子合金担持カーボンを得た。このL10構造の白金-コバルト規則格子合金担持カーボンを25℃の1mol/L硝酸水溶液中に4時間、分散させる事でコバルトを溶出して、L12構造の白金規則格子を外層とし、L10構造の白金-コバルト規則格子合金を核とするL12構造への変換率50%の白金規則格子触媒-1を得た。
Example 1
Disperse 48g of carbon support (Ketjen Black EC300J) in a platinum and cobalt binuclear complex solution with oxalic acid groups containing 40g of platinum and 12g of cobalt, and mix and dry with a rotary evaporator. To attach a binuclear complex to the surface of the carbon support and reduce platinum and cobalt at 300 ° C in a nitrogen atmosphere to obtain 50 mol% platinum-50 mol% cobalt alloy supported carbon (platinum support rate = 40 mass%) with A1 structure. . Platinum of the A1 structural - to obtain a cobalt-ordered lattice alloy-supported carbon - cobalt alloy-supported carbon in a nitrogen atmosphere, platinum containing only L1 0 structure can be heat-treated at 800 ° C.. Platinum of the L1 0 structure - 4 hours cobalt ordered lattice alloy-supported carbon in 1 mol / L nitric acid aqueous solution of 25 ° C., eluting the cobalt by dispersing the platinum ordered lattice L1 2 structure and an outer layer, L1 0 platinum structure - cobalt superlattice alloy to obtain a conversion rate of 50% platinum superlattice catalysts -1 to L1 2 structure at the core.

前述した変換率は下記式に従って求めた。
[(酸による溶出後のL12の存在量 − 酸による溶出前のL12の存在量) / 酸による溶出前のL10の存在量] × 100
The conversion rate mentioned above was calculated | required according to the following formula.
[(L1 2 abundance after elution with acid - abundance of L1 2 before elution with acid) / L1 0 abundance of prior to elution with acid] × 100

(実施例2)
白金量で40g、コバルト量で12gを含むシュウ酸基が付いた白金とコバルトの二核錯体溶液中に48gのカーボン担体(ケッチェンブラックEC300J)を分散させ、ロータリーエバポレーターにて混合、乾燥することでカーボン担体表面に二核錯体を付着させ、窒素雰囲気下、200℃で白金及びコバルトを還元してA1構造の50mol%白金-50mol%コバルト合金担持カーボン(白金担持率 = 40mass%)を得た。このA1構造の白金-コバルト合金担持カーボンを窒素雰囲気下、500℃で熱処理する事でL10構造及びL12構造のモル比が1:0.5の白金-コバルト規則格子合金担持カーボンを得た。このL10構造及びL12構造の白金-コバルト規則格子合金担持カーボンを25℃の1mol/L硝酸水溶液中に4時間、分散させる事でコバルトを溶出して、L12構造の白金規則格子を外層とし、L10構造の白金-コバルト規則格子合金を核とするL12構造への変換率40%の白金規則格子触媒-2を得た。
(Example 2)
Disperse 48g of carbon support (Ketjen Black EC300J) in a platinum and cobalt binuclear complex solution with oxalic acid groups containing 40g of platinum and 12g of cobalt, and mix and dry with a rotary evaporator. To attach a binuclear complex to the surface of the carbon support and reduce platinum and cobalt at 200 ° C in a nitrogen atmosphere to obtain 50 mol% platinum-50 mol% cobalt alloy supported carbon (platinum support rate = 40 mass%) of A1 structure. . Platinum this A1 structure - cobalt alloy-supported carbon in a nitrogen atmosphere, the molar ratio of the L1 0 structure and L1 2 structure can be heat-treated at 500 ° C. is 1: 0.5 platinum - obtain cobalt ordered lattice alloy-supported carbon. The platinum-cobalt ordered lattice alloy-supported carbon of L1 0 structure and L1 2 structure is dispersed in 1 mol / L nitric acid aqueous solution at 25 ° C for 4 hours to elute cobalt, and the platinum ordered lattice of L1 2 structure is outer layer. and then, L1 0 structure of platinum - to obtain cobalt ordered lattice alloy conversion rate of 40% platinum superlattice catalyst into L1 2 structure the core 2.

本発明の白金規則格子触媒のL10構造とL12構造のmol比、粒子径、酸素還元活性、硫酸溶液中へのコバルトの溶出量を表1に示す。 Mol ratio of L1 0 structure and the L1 2 structure platinum superlattice catalyst of the present invention, the particle size, oxygen reduction activity, the amount of elution of cobalt into sulfuric acid solution shown in Table 1.

Figure 2010198885
Figure 2010198885

それぞれの測定方法は次による。
L10構造とL12構造のmol比: XRDのピーク面積による。
粒子径: TEM写真より算出した。
酸素還元活性: 電解質=0.5mol/L硫酸水溶液(酸素飽和)、回転速度=1500rpm、電位掃引速度=5mV/secの条件で測定し、0.85Vでの単位白金重量辺りの電流値で評価した。
コバルト溶出量: 80℃の1mol/Lの硫酸水溶液中に96時間分散させ、硫酸溶液中のコバルト濃度からコバルトの溶出量を評価した。
Each measurement method is as follows.
Mol ratio of L1 0 structure and L1 2 structure: It depends on the peak area of XRD.
Particle size: Calculated from a TEM photograph.
Oxygen reduction activity: Measured under the conditions of electrolyte = 0.5 mol / L sulfuric acid aqueous solution (oxygen saturation), rotation speed = 1500 rpm, potential sweep speed = 5 mV / sec, and evaluated by current value per unit platinum weight at 0.85V.
Cobalt elution amount: Dispersed in a 1 mol / L sulfuric acid aqueous solution at 80 ° C. for 96 hours, and the cobalt elution amount was evaluated from the cobalt concentration in the sulfuric acid solution.

Claims (2)

L10構造の白金-コバルト規則格子合金を核とし、L12構造の白金を外層とする白金規則格子触媒。 L1 0 structure of the platinum - cobalt superlattice alloy as the core, platinum ordered lattice catalyst platinum L1 2 structure and the outer layer. 白金規則格子触媒の製造方法において、
触媒担体上にA1構造からなる白金-コバルト合金粒子を得る工程と、
この白金-コバルト合金粒子を、L10構造の白金-コバルト規則格子合金粒子へ変化させる工程と、
この白金-コバルト規則格子合金粒子からコバルトを溶出させ、L12構造の白金からなる外層を形成する工程と、
を含むことを特徴とする燃料電池用白金規則格子触媒の製造方法。
In the method for producing a platinum ordered lattice catalyst,
Obtaining platinum-cobalt alloy particles having an A1 structure on a catalyst support;
Cobalt alloy particles, L1 0 structure of platinum - - platinum and step of changing the cobalt ordered lattice alloy particles,
The platinum - cobalt was eluted from the cobalt ordered lattice alloy particles, a step of forming an outer layer consisting of platinum L1 2 structure,
A method for producing a platinum ordered lattice catalyst for a fuel cell, comprising:
JP2009041570A 2009-02-24 2009-02-24 Platinum ordered lattice catalyst for fuel cell and method for producing the same Active JP5506075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009041570A JP5506075B2 (en) 2009-02-24 2009-02-24 Platinum ordered lattice catalyst for fuel cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009041570A JP5506075B2 (en) 2009-02-24 2009-02-24 Platinum ordered lattice catalyst for fuel cell and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010198885A true JP2010198885A (en) 2010-09-09
JP5506075B2 JP5506075B2 (en) 2014-05-28

Family

ID=42823424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009041570A Active JP5506075B2 (en) 2009-02-24 2009-02-24 Platinum ordered lattice catalyst for fuel cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP5506075B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012016684A (en) * 2010-07-09 2012-01-26 Toyota Motor Corp Method of producing core-shell catalyst particle, and core-shell catalyst particle produced by the production method
WO2012011170A1 (en) * 2010-07-21 2012-01-26 トヨタ自動車株式会社 Fine catalyst particles and method for producing fine catalyst particles
WO2015020079A1 (en) * 2013-08-09 2015-02-12 日産自動車株式会社 Catalyst particles, and electrocatalyst, electrolyte membrane-electrode assembly, and fuel cell using such catalyst particles
JP2017170404A (en) * 2016-03-25 2017-09-28 日産自動車株式会社 Method for producing catalyst particle and method for producing electrode catalyst
WO2017183475A1 (en) * 2016-04-19 2017-10-26 日産自動車株式会社 Electrocatalyst, membrane electrode assembly using said electrocatalyst, and fuel cell
CN114566661A (en) * 2022-03-09 2022-05-31 昆明理工大学 Preparation method of carbon material surface loaded with platinum-cobalt nanoparticles
WO2022196404A1 (en) * 2021-03-19 2022-09-22 パナソニックIpマネジメント株式会社 Electrode catalyst, electrode catalyst layer using said electrode catalyst, membrane/electrode assembly, and electrochemical device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052718A (en) * 1999-08-12 2001-02-23 Fuji Electric Co Ltd Manufacture of catalyst and fuel cell using catalyst
JP2005135900A (en) * 2003-10-06 2005-05-26 Nissan Motor Co Ltd Electrode catalyst for fuel cell and its manufacturing method
JP2010027364A (en) * 2008-07-18 2010-02-04 Nissan Motor Co Ltd Electrode catalyst for fuel cell and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052718A (en) * 1999-08-12 2001-02-23 Fuji Electric Co Ltd Manufacture of catalyst and fuel cell using catalyst
JP2005135900A (en) * 2003-10-06 2005-05-26 Nissan Motor Co Ltd Electrode catalyst for fuel cell and its manufacturing method
JP2010027364A (en) * 2008-07-18 2010-02-04 Nissan Motor Co Ltd Electrode catalyst for fuel cell and its manufacturing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012016684A (en) * 2010-07-09 2012-01-26 Toyota Motor Corp Method of producing core-shell catalyst particle, and core-shell catalyst particle produced by the production method
WO2012011170A1 (en) * 2010-07-21 2012-01-26 トヨタ自動車株式会社 Fine catalyst particles and method for producing fine catalyst particles
JP5510462B2 (en) * 2010-07-21 2014-06-04 トヨタ自動車株式会社 ELECTRODE CATALYST PARTICLE FOR FUEL CELL AND METHOD FOR PRODUCING ELECTRODE CATALYST PARTICLE FOR FUEL CELL
US10847811B2 (en) 2013-08-09 2020-11-24 Nissan Motor Co., Ltd. Catalyst particle, and electrode catalyst, electrolyte membrane-electrode assembly, and fuel cell using the same
WO2015020079A1 (en) * 2013-08-09 2015-02-12 日産自動車株式会社 Catalyst particles, and electrocatalyst, electrolyte membrane-electrode assembly, and fuel cell using such catalyst particles
JPWO2015020079A1 (en) * 2013-08-09 2017-03-02 日産自動車株式会社 Catalyst particles and electrode catalyst, electrolyte membrane-electrode assembly and fuel cell using the same
US10014532B2 (en) 2013-08-09 2018-07-03 Nissan Motor Co., Ltd. Catalyst particle, and electrode catalyst, electrolyte membrane-electrode assembly, and fuel cell using the same
JP2017170404A (en) * 2016-03-25 2017-09-28 日産自動車株式会社 Method for producing catalyst particle and method for producing electrode catalyst
WO2017183475A1 (en) * 2016-04-19 2017-10-26 日産自動車株式会社 Electrocatalyst, membrane electrode assembly using said electrocatalyst, and fuel cell
US10562018B2 (en) 2016-04-19 2020-02-18 Nissan Motor Co., Ltd. Electrode catalyst, and membrane electrode assembly and fuel cell using electrode catalyst
JPWO2017183475A1 (en) * 2016-04-19 2019-02-28 日産自動車株式会社 Electrode catalyst, membrane electrode assembly and fuel cell using the electrode catalyst
WO2022196404A1 (en) * 2021-03-19 2022-09-22 パナソニックIpマネジメント株式会社 Electrode catalyst, electrode catalyst layer using said electrode catalyst, membrane/electrode assembly, and electrochemical device
CN114566661A (en) * 2022-03-09 2022-05-31 昆明理工大学 Preparation method of carbon material surface loaded with platinum-cobalt nanoparticles

Also Published As

Publication number Publication date
JP5506075B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
CN113600209B (en) Method for preparing high-dispersion carbon-supported Pt-based ordered alloy catalyst and catalyst
JP4590937B2 (en) Electrode catalyst and method for producing the same
JP5506075B2 (en) Platinum ordered lattice catalyst for fuel cell and method for producing the same
Yang et al. Carbon supported heterostructured Pd–Ag nanoparticle: Highly active electrocatalyst for ethylene glycol oxidation
KR100868756B1 (en) Pt/Ru alloy supported catalyst, manufacturing method thereof, and fuel cell using the same
KR101265075B1 (en) Preparing method of alloy catalyst for fuel cell using silica coating
JP2005135900A (en) Electrode catalyst for fuel cell and its manufacturing method
CN105431230A (en) Method for forming noble metal nanoparticles on a support
CN111725524B (en) Fuel cell cathode catalyst, preparation method thereof, membrane electrode and fuel cell
WO2019179530A1 (en) Platinum-based alloy catalyst and preparation method therefor, membrane electrode, and fuel cell
AU2012271494A1 (en) Non-PGM cathode catalysts for fuel cell application derived from heat treated heteroatomic amines precursors
KR102255855B1 (en) Platinum-based alloy catalyst for oxygen reduction reaction, method of manufacturing the platinum alloy catalyst, and fuel cell having the platinum alloy catalyst
Kar et al. Investigation on the reduction of the oxides of Pd and graphite in alkaline medium and the simultaneous evolution of oxygen reduction reaction and peroxide generation features
Kong et al. Pd9Au1@ Pt/C core-shell catalyst prepared via Pd9Au1-catalyzed coating for enhanced oxygen reduction
CN116154189A (en) Intermediate Kong Bo @platinum nickel core-shell framework nanowire and preparation method thereof
Zhou et al. Precisely tuning the electronic structure of ordered PtFe alloy supported on multi-walled carbon nanotubes for enhanced methanol oxidation
JP2009193956A (en) Electrode catalyst for fuel cell, and solid polymer fuel cell using the same
JP2005216772A (en) Electrode catalyst, electrode and mea carrying the same
JP5150141B2 (en) Fuel cell catalyst material, membrane electrode assembly using fuel cell catalyst material, and fuel cell using membrane electrode assembly
CN110586090B (en) Noble metal alloy shell-core catalyst prepared by using organic reducing agent and preparation method thereof
WO2015098181A1 (en) Method for producing electrode catalyst for fuel cells
JP2008123860A (en) Metal oxide-carrying carbon and fuel cell electrode employing it
US20230163318A1 (en) Catalyst for fuel cell, fuel cell comprising the same and manufacturing method thereof
CN114824319B (en) N-doped TiO 2-x Preparation method and application of supported PtCu alloy nano catalyst
JP2006210314A (en) Electrode catalyst for fuel cell and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R150 Certificate of patent or registration of utility model

Ref document number: 5506075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250