JP2010026628A - Unmanned carrier - Google Patents

Unmanned carrier Download PDF

Info

Publication number
JP2010026628A
JP2010026628A JP2008184741A JP2008184741A JP2010026628A JP 2010026628 A JP2010026628 A JP 2010026628A JP 2008184741 A JP2008184741 A JP 2008184741A JP 2008184741 A JP2008184741 A JP 2008184741A JP 2010026628 A JP2010026628 A JP 2010026628A
Authority
JP
Japan
Prior art keywords
traveling
drive wheels
guided vehicle
automatic guided
travel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008184741A
Other languages
Japanese (ja)
Inventor
Masayasu Miyawaki
雅靖 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TCM Corp
Original Assignee
TCM Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TCM Corp filed Critical TCM Corp
Priority to JP2008184741A priority Critical patent/JP2010026628A/en
Publication of JP2010026628A publication Critical patent/JP2010026628A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide only one guidance line for transverse traveling in an unmanned carrier for performing longitudinal traveling and transverse traveling along the guidance line laid on a road surface. <P>SOLUTION: The unmanned carrier 10 is provided with: drive wheels 12 and 13 arranged at the front and rear ends of a body 11; an guidance line sensor 14 for detecting the guidance line 31 laid on the road surface; and a control part 16 for controlling the drive wheels 12 and 13 according to the output of the guidance line sensor 14. Steering is controlled along the guidance line 31 by the control part 16 so that longitudinal traveling and traverse traveling orthogonal to the longitudinal traveling can be achieved. The control part 16 controls drive wheels 12 and 13 in backward and forward traveling by an independent steering system and controls the drive wheels 12 and 13 in a two-wheel speed difference steering system in transverse traveling while holding them in transverse parallel directions in transverse traveling. Thus, time and labor and laying costs can be reduced by providing only one guidance line 31 for transverse traveling. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、路面に敷設された誘導線に沿って前後走行及び横行走行をする無人搬送車に関する。   The present invention relates to an automated guided vehicle that travels back and forth and traverses along a guide line laid on a road surface.

従来から、路面に敷設された2本の誘導線に沿って前後走行及び横行走行をする無人搬送車が知られている(例えば、特許文献1参照)。また、前後走行を1本の誘導線に沿って行う無人搬送車が知られている。図8(a)(b)は、そのような無人搬送車を示す。無人搬送車50は、独立ステアリング方式であり、車体の前後部の下部に各々独立して換向自在な駆動輪51、52が配設されている。駆動輪51、52の換向とは、ステアリング角を変化させることである。路面には、磁気テープ等の誘導線61が敷設され、無人搬送車50には、誘導線61を検知する誘導線センサ53、54が、それぞれ駆動輪51、52の前後に取り付けられている。無人搬送車50は、車輪として、駆動輪51、52の他、キャスタ輪55を備える。図8(a)に示すように、無人搬送車50は、前後走行時には、誘導線センサ53、54が同じ誘導線61Aを検知し、誘導線センサ53、54の出力に基づいて駆動輪51、52がそれぞれ換向制御され、1本の誘導線61Aに沿って走行する。また、図8(b)に示すように、無人搬送車50は、横行走行時には、誘導線センサ53が誘導線61Bを検知し、誘導線センサ53の出力に基づいて駆動輪51が換向制御されると共に、誘導線センサ54が別の誘導線61Cを検知し、誘導線センサ54の出力に基づいて駆動輪52が換向制御され、2本の平行な誘導線61B、61Cに沿って走行する。   2. Description of the Related Art Conventionally, there is known an automatic guided vehicle that travels back and forth and traverses along two guide lines laid on a road surface (see, for example, Patent Document 1). In addition, an automatic guided vehicle that performs front and rear traveling along one guide line is known. FIGS. 8A and 8B show such an automatic guided vehicle. The automatic guided vehicle 50 is an independent steering system, and drive wheels 51 and 52 that can be independently turned are disposed at lower portions of the front and rear portions of the vehicle body. The conversion of the drive wheels 51 and 52 is to change the steering angle. A guide wire 61 such as a magnetic tape is laid on the road surface, and guide wire sensors 53 and 54 for detecting the guide wire 61 are attached to the automatic guided vehicle 50 before and after the drive wheels 51 and 52, respectively. The automatic guided vehicle 50 includes caster wheels 55 in addition to drive wheels 51 and 52 as wheels. As shown in FIG. 8A, the automatic guided vehicle 50 detects the same guide line 61A when the vehicle runs forward and backward, and the drive wheels 51, 54 are detected based on the outputs of the guide line sensors 53, 54. Each of 52 is controlled to turn and travels along one guide line 61A. Further, as shown in FIG. 8B, when the automatic guided vehicle 50 travels in a traverse direction, the guide line sensor 53 detects the guide line 61 </ b> B, and the driving wheel 51 performs the turn control based on the output of the guide line sensor 53. At the same time, the guide line sensor 54 detects another guide line 61C, and the driving wheel 52 is controlled to be turned based on the output of the guide line sensor 54, and travels along the two parallel guide lines 61B and 61C. To do.

従って、誘導線61は、無人搬送車50の前後走行用には1本の誘導線61Aの敷設で足りるが、横行走行用には2本の誘導線61B、61Cを前後部の駆動輪51、52の間隔に合わせて平行に敷設しなければならず、誘導線61B、61Cの敷設に手間とコストがかかっていた。   Therefore, the guide wire 61 is sufficient to lay one guide wire 61A for the front-rear travel of the automated guided vehicle 50, but for the transverse travel, the two guide wires 61B, 61C are connected to the front and rear drive wheels 51, The guide wires 61B and 61C have to be laid in parallel with the interval of 52, and labor and cost have been required for laying the guide wires 61B and 61C.

図9は、無人搬送車50が前進走行から横行走行に切換後しばらく走行したときの走行状態を示す。無人搬送車50は、各駆動輪51、52がそれぞれ誘導線61B、61Cに沿うように走行するが、両駆動輪51、52の回転速度差等により、次第にヨー角θが生じて平面視で傾いた状態となり、安定した直線走行ができず、長距離の横行走行ができなかった。近年、通路の奥等にある搬送先に横行走行で寄付くレイアウトが増加傾向にあり、横行走行の安定化が求められていた。
特開平8−123550号公報
FIG. 9 shows a traveling state when the automatic guided vehicle 50 travels for a while after switching from the forward traveling to the transverse traveling. The automatic guided vehicle 50 travels so that the drive wheels 51 and 52 are along the guide lines 61B and 61C, respectively. However, due to a difference in rotational speed between the drive wheels 51 and 52, the yaw angle θ is gradually generated in plan view. It was in a tilted state, and it was not possible to travel stably on a straight line. In recent years, there has been an increase in the layout of donating to a transport destination in the back of a passage by traversing, and stabilization of traversing has been required.
JP-A-8-123550

本発明は、上記問題を解決するものであり、路面に敷設された誘導線に沿って前後走行及び横行走行をする無人搬送車において、横行走行用の誘導線を1本にすると共に、横行走行時に安定して直線走行ができるようにすることを目的とする。   The present invention solves the above problem, and in an automated guided vehicle that travels back and forth and traverses along a guide line laid on the road surface, the traverse travel is reduced to one. The goal is to be able to run in a straight line with stability at times.

上記目的を達成するために請求項1の発明は、車体の前後部に配設された換向自在な駆動輪と、路面に敷設された誘導線を検知する誘導線センサと、前記誘導線センサの出力に基づいて前記駆動輪を制御する制御部と、を備え、前記制御部により前記誘導線に沿ってステアリングが制御されて前後走行及び前後方向に直交する横行走行をする無人搬送車において、前記制御部は、前後走行時には、前記駆動輪を独立ステアリング方式で制御し、横行走行時には、前記駆動輪を互いに横行用の平行な向きに保持すると共に、前記駆動輪を2輪速度差ステアリング方式で制御するものである。   In order to achieve the above object, a first aspect of the present invention is directed to convertible drive wheels disposed in front and rear portions of a vehicle body, a guide line sensor for detecting a guide line laid on a road surface, and the guide line sensor. A control unit that controls the drive wheel based on the output of the automatic guided vehicle, the steering unit is controlled along the guide line by the control unit to perform the front-rear traveling and the transverse traveling orthogonal to the front-rear direction, The control unit controls the drive wheels by an independent steering system during front-rear travel, and holds the drive wheels in a parallel orientation for traversal during traverse travel, and the two-wheel speed difference steering system. It is to be controlled by.

請求項2の発明は、請求項1に記載の無人搬送車において、前記駆動輪の向きをロックするステアリングロック機構を備え、前記制御部は、前後走行時に前記ステアリングロック機構を解除して前記駆動輪を換向自在とし、横行走行時に前記ステアリングロック機構を作動させて前記駆動輪を互いに平行な向きにロックするものである。   According to a second aspect of the present invention, in the automatic guided vehicle according to the first aspect, a steering lock mechanism that locks a direction of the driving wheel is provided, and the control unit releases the steering lock mechanism during front-rear traveling to perform the driving. The wheels can be turned freely, and the steering lock mechanism is operated during traversing to lock the drive wheels in directions parallel to each other.

請求項3の発明は、請求項1又は請求項2に記載の無人搬送車において、前記駆動輪を路面から扛上させるリフトアップ機構を備え、前記制御部は、前後走行と横行走行との切換え時に、前記リフトアップ機構に前記駆動輪を路面から扛上させるものである。   A third aspect of the present invention is the automatic guided vehicle according to the first or second aspect, further comprising a lift-up mechanism that lifts the driving wheel from the road surface, and the control unit switches between front-rear traveling and lateral traveling. Sometimes, the lift-up mechanism lifts the drive wheel from the road surface.

請求項1の発明によれば、横行走行時には、両駆動輪を同じ方向に保持し、2輪速度差ステアリング方式で制御するので、横行走行用の誘導線を1本にでき、誘導線敷設の手間とコストを減らすことができる。   According to the first aspect of the present invention, since the two driving wheels are held in the same direction and controlled by the two-wheel speed difference steering system when traversing, a single guiding wire for traversing traveling can be provided. Save time and money.

請求項2の発明によれば、横行走行時に駆動輪を互いに平行な向きにロックするので、安定した直線走行ができ、長距離の横行走行をすることができる。   According to the second aspect of the present invention, since the driving wheels are locked in parallel to each other during traversing traveling, stable straight traveling can be performed, and long-distance traveling can be performed.

請求項3の発明によれば、前後走行と横行走行との切換え時に、リフトアップ機構によって駆動輪を路面から扛上するので、据え切り状態とはならず、駆動輪と誘導線の損傷が防止される。   According to the invention of claim 3, since the driving wheel is lifted from the road surface by the lift-up mechanism at the time of switching between the forward and backward traveling and the transverse traveling, the stationary state is not brought about and the driving wheel and the guide wire are prevented from being damaged. Is done.

以下、本発明の第1の実施形態に係る無人搬送車について説明する。図1(a)(b)は、本実施形態の無人搬送車の構成を示す。無人搬送車10は、車体11の前後部の下部に配設された換向自在な駆動輪12、13と、路面に敷設された誘導線31を検知する誘導線センサ14と、誘導線センサ14の出力に基づいて駆動輪12、13を制御する制御部16とを備える。誘導線センサ14は、駆動輪12、13に設けられた前後走行誘導線センサ14Aと車体11下部に設けられた横行走行誘導線センサ14Bとから成る。また、無人搬送車10は、路面に配設されたアドレスマーク32の情報を受信するアドレスセンサ15を車体11下部に備える。アドレスセンサ15は、前後走行アドレスセンサ15Aと横行走行アドレスセンサ15Bとから成る。   Hereinafter, an automatic guided vehicle according to a first embodiment of the present invention will be described. Fig.1 (a) (b) shows the structure of the automatic guided vehicle of this embodiment. The automatic guided vehicle 10 includes convertible drive wheels 12 and 13 disposed at lower portions of the front and rear portions of a vehicle body 11, a guide line sensor 14 that detects a guide line 31 laid on a road surface, and a guide line sensor 14 The control part 16 which controls the drive wheels 12 and 13 based on the output of this is provided. The guide line sensor 14 includes a front / rear travel guide line sensor 14A provided on the drive wheels 12 and 13 and a transverse travel guide line sensor 14B provided on the lower portion of the vehicle body 11. In addition, the automatic guided vehicle 10 includes an address sensor 15 that receives information on an address mark 32 disposed on a road surface at a lower portion of the vehicle body 11. The address sensor 15 includes a front / rear travel address sensor 15A and a traversing travel address sensor 15B.

無人搬送車10は、例えば、工場、倉庫等で使用される荷搬送用車両であり、無人で自動走行が可能である。無人搬送車10前部の駆動輪12と後部の駆動輪13は、それぞれステアリングシャフト17を介して換向自在に車体11下部に配設されており、ステアリングモータ18によって換向される。駆動輪12、13には、駆動用の走行モータ19が取り付けられている。駆動輪12、13、ステアリングシャフト17、ステアリングモータ18と走行モータ19等が無人搬送車10を走行させるドライブユニット20を構成している。無人搬送車10は、車輪として、駆動輪12、13の他、キャスタ輪21を備え、また、ステアリングモータ18、走行モータ19等へ電力を供給するバッテリ(図示せず)を車体11内に備える。   The automatic guided vehicle 10 is, for example, a load transport vehicle used in a factory, a warehouse, or the like, and can automatically run unattended. The front drive wheel 12 and the rear drive wheel 13 of the automatic guided vehicle 10 are disposed at the lower part of the vehicle body 11 through a steering shaft 17 and are converted by a steering motor 18. A drive traveling motor 19 is attached to the drive wheels 12 and 13. The drive wheels 12 and 13, the steering shaft 17, the steering motor 18 and the traveling motor 19 constitute a drive unit 20 that causes the automatic guided vehicle 10 to travel. The automatic guided vehicle 10 includes, as wheels, caster wheels 21 in addition to drive wheels 12 and 13, and a battery (not shown) that supplies power to the steering motor 18, the traveling motor 19, and the like in the vehicle body 11. .

誘導線31は、無人搬送車10の走行経路の路面上に敷設される、誘導制御用の細長い誘導体であり、例えば、磁気テープである。誘導線センサ14は、誘導線31を検知するセンサであり、例えば、誘導線31が磁気テープの場合、磁気テープが発生する磁気を検知する磁気センサである。前後走行誘導線センサ14Aは、駆動輪12、13の前後に取り付けられ、駆動輪12、13と共に換向する。横行走行誘導線センサ14Bは、前後走行誘導線センサ14Aとは別に、通常、前後の駆動輪12、13の間の車体11下部に配置される。アドレスマーク32は、無人搬送車10の走行経路の路面上に敷設される、例えば、RFID(Radio Frequency Identification)であり、無人搬送車10に進行方向等を指示するための情報を有している。アドレスマーク32の情報は、前後走行時には前後走行アドレスセンサ15Aによって受信され、横行走行時には横行走行アドレスセンサ15Bによって受信される。   The guide wire 31 is an elongate derivative for guidance control, which is laid on the road surface of the traveling route of the automatic guided vehicle 10, and is, for example, a magnetic tape. The guide wire sensor 14 is a sensor that detects the guide wire 31. For example, when the guide wire 31 is a magnetic tape, the guide wire sensor 14 is a magnetic sensor that detects magnetism generated by the magnetic tape. The front / rear travel guide line sensor 14 </ b> A is attached in front of and behind the drive wheels 12 and 13, and is converted together with the drive wheels 12 and 13. The traversing travel guide line sensor 14B is usually disposed at the lower part of the vehicle body 11 between the front and rear drive wheels 12 and 13 separately from the front and rear travel guide line sensor 14A. The address mark 32 is, for example, RFID (Radio Frequency Identification) laid on the road surface of the traveling route of the automated guided vehicle 10 and has information for instructing the automated guided vehicle 10 on the traveling direction and the like. . The information of the address mark 32 is received by the front / rear travel address sensor 15A during front / rear travel, and is received by the traverse travel address sensor 15B during traverse travel.

図2は、制御部16の入出力構成を示す。制御部16は、例えば、プログラマブルコントローラであり、制御部16へ前後走行誘導線センサ14A及び横行走行誘導線センサ14B並びに前後走行アドレスセンサ15A及び横行走行アドレスセンサ15B等が接続され、制御部16からステアリングモータ18、走行モータ19等が駆動回路22を介して接続される。駆動回路22は、例えば、モータ駆動用のインバータ回路である。制御部16は、誘導線センサ14、15の出力に基づき、ステアリングモータ18を制御することにより、駆動輪12、13の換向を制御し、走行モータ19を制御することにより駆動輪12、13の駆動を制御する。無人搬送車10は、制御部16により誘導線31に沿ってステアリングが制御されて前後走行及び前後方向に直交する横行走行をする。制御部16は、ステアリングの制御を独立ステアリング方式と2輪速度差ステアリング方式とに切換える機能を有する。独立ステアリング方式は、駆動輪12、13が各々独立に換向して進行方向を決める方式であり、通常の旋回のほか、その場旋回等を可能とし、無人搬送車10の走行に必要なスペースを狭くできる利点がある。2輪速度差ステアリング方式は、駆動輪12、13を換向せずに、駆動輪12と駆動輪13が進行方向に対して略横並びとなった状態で、その2輪の回転速度の差によって進行方向を決める方式である。制御部16は、無人搬送車10の前後走行時には、駆動輪12、13を独立ステアリング方式で制御し、横行走行時には、駆動輪12、13を互いに横行用の平行な向きに保持すると共に、駆動輪12、13を2輪速度差ステアリング方式で制御する。   FIG. 2 shows an input / output configuration of the control unit 16. The control unit 16 is, for example, a programmable controller, and the control unit 16 is connected to the front / rear travel guide line sensor 14A, the traversing travel guide line sensor 14B, the front / rear travel address sensor 15A, the traversing travel address sensor 15B, and the like. A steering motor 18, a traveling motor 19, etc. are connected via a drive circuit 22. The drive circuit 22 is, for example, an inverter circuit for driving a motor. The control unit 16 controls the steering motor 18 based on the outputs of the guide wire sensors 14 and 15, thereby controlling the direction of the driving wheels 12 and 13, and controlling the traveling motor 19 to drive the driving wheels 12 and 13. Control the drive. The automatic guided vehicle 10 travels in the front-rear direction and the traverse direction orthogonal to the front-rear direction by controlling the steering along the guide line 31 by the control unit 16. The control unit 16 has a function of switching steering control between an independent steering system and a two-wheel speed difference steering system. The independent steering system is a system in which the driving wheels 12 and 13 are independently converted to determine the traveling direction, and can be turned on the spot in addition to normal turning, and space required for the automatic guided vehicle 10 to travel. There is an advantage that can be narrowed. The two-wheel speed difference steering method is based on the difference in rotational speed between the two wheels without turning the driving wheels 12 and 13 and the driving wheels 12 and 13 are arranged substantially side by side in the traveling direction. This is a method for determining the direction of travel. The control unit 16 controls the drive wheels 12 and 13 by an independent steering method when the automatic guided vehicle 10 travels forward and backward, and holds the drive wheels 12 and 13 in a parallel direction for traversal and travels while traversing. The wheels 12 and 13 are controlled by a two-wheel speed difference steering system.

次に、無人搬送車10の走行について詳しく説明する。図3(a)〜(d)は、無人搬送車10の前進走行から横行走行への切換えを時系列順に示す。図3(a)に示すように、無人搬送車10が前進走行するとき、前後走行誘導線センサ14Aが前後走行誘導線31Aを検知する。制御部16は、この前後走行誘導線センサ14Aからの出力に基づいて前後部の駆動輪12、13を独立ステアリング方式で個別に換向させることにより、前後走行誘導線31Aに沿ってステアリングを制御すると共に、走行モータ19を制御して無人搬送車10を前進走行させる。このとき、キャスタ輪21は、進行方向を向いて転動する。なお、無人搬送車10が後進走行するときは、制御部16は、前進走行と同様に独立ステアリング方式で駆動輪12、13を制御する。   Next, the travel of the automatic guided vehicle 10 will be described in detail. FIGS. 3A to 3D show time-series order switching of the automatic guided vehicle 10 from forward traveling to traversing traveling. As shown in FIG. 3A, when the automatic guided vehicle 10 travels forward, the front / rear travel guideline sensor 14A detects the front / rear travel guideline 31A. The control unit 16 controls the steering along the front / rear driving guide line 31A by individually turning the driving wheels 12 and 13 of the front / rear part by an independent steering system based on the output from the front / rear driving guide line sensor 14A. At the same time, the traveling motor 19 is controlled to cause the automatic guided vehicle 10 to travel forward. At this time, the caster wheel 21 rolls in the traveling direction. When the automatic guided vehicle 10 travels backward, the control unit 16 controls the drive wheels 12 and 13 by an independent steering method as in forward travel.

続いて、図3(b)に示すように、走行経路上の所定地点の路面にアドレスマーク32が配設されており、前後走行アドレスセンサ15Aは、アドレスマーク32を検知する。この地点は、例えば、前進走行から横行走行への変更地点であり、アドレスマーク32には、前進方向右側の横行走行を指示する情報が、符号化されて記憶されている。前後走行アドレスセンサ15Aは、その情報を受信する。制御部16は、前後走行アドレスセンサ15Aが受信した情報に基づいて、駆動輪12、13による前進走行を停止させ、駆動輪12、13を横行用の向きに換向する。駆動輪12、13は、横行用の向きでは、ステアリング角が略90°となる。   Subsequently, as shown in FIG. 3B, an address mark 32 is provided on a road surface at a predetermined point on the travel route, and the front / rear travel address sensor 15A detects the address mark 32. This point is, for example, a change point from forward travel to traverse travel, and the address mark 32 stores information instructing traverse travel on the right in the forward direction in an encoded manner. The front / rear travel address sensor 15A receives the information. Based on the information received by the front / rear travel address sensor 15A, the control unit 16 stops the forward travel by the drive wheels 12 and 13 and converts the drive wheels 12 and 13 to the transverse direction. The drive wheels 12 and 13 have a steering angle of approximately 90 ° in the transverse direction.

続いて、図3(c)に示すように、駆動輪12、13が横行用の向きに換向すると、制御部16は、ステアリングモータ18の回転を停止して駆動輪12、13を互いに横行用の平行な向きに保持すると共に、ステアリングの制御を独立ステアリング方式から2輪速度差ステアリング方式に切換える。   Subsequently, as shown in FIG. 3 (c), when the drive wheels 12 and 13 are turned to the direction for traversal, the control unit 16 stops the rotation of the steering motor 18 and traverses the drive wheels 12 and 13 to each other. The steering control is switched from the independent steering system to the two-wheel speed difference steering system.

続いて、図3(d)に示すように、横行走行誘導線センサ14Bは、横行走行誘導線31Bを検知する。制御部16は、この横行走行誘導線センサ14Bからの出力に基づいて、1本の横行走行誘導線31Bに沿って駆動輪12、13を2輪速度差ステアリング方式で制御すると共に、走行モータ19を制御して無人搬送車10を横行走行させる。このとき、キャスタ輪は、横行走行の進行方向に向いて転動する。無人搬送車10は、駆動輪12、13を同じ回転速度で駆動すると直進し、回転速度差を付けると進行方向が変化する。なお、横行走行から前後走行への切換えは、横行走行アドレスセンサ15Bが受信した情報に基づいて、上記の前後走行から横行走行への切換えの概ね逆の手順で行われる。   Subsequently, as shown in FIG. 3D, the traversing travel guide line sensor 14B detects the traversing travel guide line 31B. The control unit 16 controls the drive wheels 12 and 13 by the two-wheel speed difference steering system along one traverse travel guide line 31B based on the output from the traverse travel guide line sensor 14B, and a travel motor 19 To control the automatic guided vehicle 10 to traverse. At this time, the caster wheel rolls in the traveling direction of the transverse traveling. The automatic guided vehicle 10 goes straight when the drive wheels 12 and 13 are driven at the same rotational speed, and the traveling direction changes when a rotational speed difference is given. Note that the switching from the transverse traveling to the front / rear traveling is performed in a generally reverse procedure of the above-described switching from the front / rear traveling to the transverse traveling based on the information received by the transverse traveling address sensor 15B.

このように、無人搬送車10は、横行走行時には、両駆動輪12、13を同じ方向に保持し、2輪速度差ステアリング方式で制御するので、横行走行用の誘導線31Bを1本にでき、誘導線31敷設の手間とコストを減らすことができる。   In this way, the automatic guided vehicle 10 holds the drive wheels 12 and 13 in the same direction and controls by the two-wheel speed difference steering system when traveling in the transverse direction, so that the guide line 31B for the transverse traveling can be made one. The labor and cost of laying the guide wire 31 can be reduced.

無人搬送車10は、両駆動輪12、13を同じ方向に確実に保持するために、駆動輪12、13の向きを機械的にロックする機構を備えてもよい。図4は、そのようなステアリングロック機構の一例を示す。ステアリングロック機構23は、互いに係合可能な位置決めブロック231とストッパ232とを備え、位置決めブロック231はステアリングシャフト17に固定され、ストッパ232は、車体11にストッパ232の動作機構を介して取り付けられる。なお、図4において、駆動輪12(又は13)を制動する制動機24が設けられている。   The automatic guided vehicle 10 may include a mechanism that mechanically locks the directions of the drive wheels 12 and 13 in order to securely hold the drive wheels 12 and 13 in the same direction. FIG. 4 shows an example of such a steering lock mechanism. The steering lock mechanism 23 includes a positioning block 231 and a stopper 232 that can be engaged with each other. The positioning block 231 is fixed to the steering shaft 17, and the stopper 232 is attached to the vehicle body 11 via an operating mechanism of the stopper 232. In FIG. 4, a brake 24 for braking the drive wheel 12 (or 13) is provided.

次に、ステアリングロック機構23の動作を説明する。図5(a)(b)(c)は、ステアリングロック機構23の解除状態から作動状態までの動作を時系列順に示す。ステアリングロック機構23の動作は、制御部16によって制御される。図5(a)に示すように、無人搬送車10の前後走行時は、ステアリングロック機構23は解除されており、ステアリングシャフト17が車体11に対して回動自在であり、駆動輪12、13が換向自在となっている。図5(b)に示すように、前後走行から横行走行に切り換えるとき、ステアリングシャフト17が略90°回動され、駆動輪12、13が横行用の向きに換向される。図5(c)に示すように、ストッパ232は、ストッパ作動用シリンダ233によって支点234の周りを回動し、位置決めブロック231に係合する。ストッパ作動用シリンダ233は、基端側が車体側に取り付けられている。例えば、位置決めブロック231が係合凹部、ストッパ232が係合凸部となっており、それらが互いに係合することにより、ステアリングシャフト17が車体に対して固定され、駆動輪12、13が互いに横行用の平行な向きにロックされる。従って、駆動輪12、13は、換向せず、2輪速度差だけでステアリングされる。そのため、無人搬送車10は、長距離の横行走行をしても直線走行でヨー角が生じない。   Next, the operation of the steering lock mechanism 23 will be described. FIGS. 5A, 5B, and 5C show the operation from the released state to the activated state of the steering lock mechanism 23 in chronological order. The operation of the steering lock mechanism 23 is controlled by the control unit 16. As shown in FIG. 5A, when the automatic guided vehicle 10 travels forward and backward, the steering lock mechanism 23 is released, the steering shaft 17 is rotatable with respect to the vehicle body 11, and the drive wheels 12, 13 are driven. Is freely convertible. As shown in FIG. 5B, when switching from front / rear running to transverse running, the steering shaft 17 is rotated by approximately 90 °, and the drive wheels 12 and 13 are turned to the transverse direction. As shown in FIG. 5C, the stopper 232 is rotated around the fulcrum 234 by the stopper operating cylinder 233 and is engaged with the positioning block 231. The stopper operating cylinder 233 has a proximal end attached to the vehicle body side. For example, the positioning block 231 is an engaging concave portion and the stopper 232 is an engaging convex portion. When they are engaged with each other, the steering shaft 17 is fixed to the vehicle body, and the drive wheels 12 and 13 are traversed with each other. Locked in parallel orientation. Accordingly, the drive wheels 12 and 13 are not turned and are steered only by the two-wheel speed difference. For this reason, the automatic guided vehicle 10 does not generate a yaw angle in a straight line even when traveling long distances.

このように、無人搬送車10は、横行走行時に駆動輪12、13を互いに平行な向きにロックするので、安定した直線走行ができ、長距離の横行走行をすることができる。   Thus, since the automatic guided vehicle 10 locks the drive wheels 12 and 13 in a parallel direction during traversal travel, the automatic guided vehicle 10 can travel stably in a straight line and can travel long distances.

次に、本発明の第2の実施形態に係る無人搬送車について説明する。図6(a)(b)は、本実施形態の無人搬送車の構成を示す。なお、アドレスセンサ15とアドレスマーク32は、第1の実施形態と同様であり、図示を省略する。本実施形態の無人搬送車40は、第1の実施形態の無人搬送車10と同様の構成に加えて、駆動輪12、13を路面から扛上させるリフトアップ機構41を備える。また、無人搬送車40は、キャスタ輪21だけで車体11を路面から支持できるように、3つ以上、例えば4つのキャスタ輪21を備える。図6(b)に示すように、リフトアップ機構41は、例えば、平行クランク機構411と、平行クランク機構411を作動するリフトアップシリンダ412とを備える。駆動輪12、13は、ステアリングシャフト17を介して、平行クランク機構411によって車体11の下部に支持され、リフトアップシリンダ412の伸縮によって降下上昇する。制御部16は、前後走行と横行走行との切換え時に、リフトアップ機構41に駆動輪12、13を路面から扛上させる。駆動輪12、13を路面から扛上させたとき、車体11は、キャスタ輪21によって路面から支持される。   Next, an automatic guided vehicle according to the second embodiment of the present invention will be described. 6A and 6B show the configuration of the automatic guided vehicle of the present embodiment. Note that the address sensor 15 and the address mark 32 are the same as those in the first embodiment, and are not shown. In addition to the same configuration as the automatic guided vehicle 10 of the first embodiment, the automatic guided vehicle 40 of the present embodiment includes a lift-up mechanism 41 that lifts the drive wheels 12 and 13 from the road surface. The automatic guided vehicle 40 includes three or more, for example, four caster wheels 21 so that the vehicle body 11 can be supported from the road surface only by the caster wheels 21. As shown in FIG. 6B, the lift-up mechanism 41 includes, for example, a parallel crank mechanism 411 and a lift-up cylinder 412 that operates the parallel crank mechanism 411. The drive wheels 12 and 13 are supported on the lower part of the vehicle body 11 by the parallel crank mechanism 411 via the steering shaft 17, and are raised and lowered by the expansion and contraction of the lift-up cylinder 412. The control unit 16 causes the lift-up mechanism 41 to lift the drive wheels 12 and 13 from the road surface when switching between front and rear traveling and traversing traveling. When the drive wheels 12 and 13 are lifted from the road surface, the vehicle body 11 is supported from the road surface by the caster wheels 21.

リフトアップ機構41が無ければ、無人搬送車は、前後走行と横行走行との切換え時に、駆動輪が路面で据え切り状態となり、駆動輪と誘導線31を損傷するおそれがある。本実施形態の無人搬送車40は、前後走行と横行走行との切換え時に、リフトアップ機構41によって駆動輪12、13を路面から扛上するので、据え切り状態とはならず、駆動輪12、13と誘導線31の損傷が防止される。   If the lift-up mechanism 41 is not provided, the automatic guided vehicle may be in a state where the driving wheels are stationary on the road surface when switching between the forward and backward traveling and the transverse traveling, and the driving wheels and the guide wire 31 may be damaged. The automatic guided vehicle 40 of the present embodiment lifts the drive wheels 12 and 13 from the road surface by the lift-up mechanism 41 at the time of switching between the front and rear traveling and the transverse traveling. 13 and the guide wire 31 are prevented from being damaged.

図7は、リフトアップ機構の別例を示す。無人搬送車40は、リフトアップ機構として伸縮自在なジャッキ42を車体11下部に複数備える。キャスタ輪21の数については、キャスタ輪21による車体11の支持を考慮する必要はない。ジャッキ42は、伸びたときに、車体11を路面から支持し、そのとき、駆動輪12、13は、車体11ごと路面から扛上される。   FIG. 7 shows another example of the lift-up mechanism. The automatic guided vehicle 40 includes a plurality of jacks 42 that can be expanded and contracted as a lift-up mechanism at the lower part of the vehicle body 11. As for the number of caster wheels 21, it is not necessary to consider the support of the vehicle body 11 by the caster wheels 21. The jack 42 supports the vehicle body 11 from the road surface when extended, and the drive wheels 12 and 13 are lifted from the road surface together with the vehicle body 11 at that time.

なお、本発明は、上記の実施形態の構成に限られず、発明の要旨を変更しない範囲で種々の変形が可能である。例えば、ストッパ作動用シリンダ233とリフトアップシリンダ412は、油圧駆動であっても、電動又は空気圧駆動であってもよい。   In addition, this invention is not restricted to the structure of said embodiment, A various deformation | transformation is possible in the range which does not change the summary of invention. For example, the stopper actuating cylinder 233 and the lift-up cylinder 412 may be hydraulically driven or electrically or pneumatically driven.

(a)は本発明の第1の実施形態に係る無人搬送車の平面透視図、(b)は同無人搬送車の側面図。(A) is a plane perspective view of the automatic guided vehicle according to the first embodiment of the present invention, (b) is a side view of the automatic guided vehicle. 同無人搬送車の制御ブロック図。The control block diagram of the automatic guided vehicle. (a)は同無人搬送車の前進走行時の平面透視図、(b)及び(c)は前進走行から横行走行への切換え時の平面透視図、(d)は横行走行時の平面透視図。(A) is a plan perspective view when the automatic guided vehicle is traveling forward, (b) and (c) are plan perspective views when switching from forward travel to traverse travel, and (d) is a plan perspective view during traverse travel. . 同無人搬送車のステアリングロック機構の位置を示す立面断面図。The elevation sectional view showing the position of the steering lock mechanism of the automatic guided vehicle. (a)及び(b)はステアリングロック機構の解除状態を示す平面図、(c)は同機構の作動状態を示す平面図。(A) And (b) is a top view which shows the cancellation | release state of a steering lock mechanism, (c) is a top view which shows the operation state of the mechanism. (a)は本発明の第2の実施形態に係る無人搬送車の一例の平面透視図、(b)は同無人搬送車のリフトアップ機構の側面図。(A) is a plane perspective view of an example of the automatic guided vehicle according to the second embodiment of the present invention, and (b) is a side view of a lift-up mechanism of the automatic guided vehicle. (a)は同実施形態に係る無人搬送車の別例の平面透視図、(b)は同無人搬送車のジャッキの側面図。(A) is a plane perspective view of another example of the automatic guided vehicle according to the embodiment, and (b) is a side view of a jack of the automatic guided vehicle. (a)は従来の無人搬送車の前後走行時の平面透視図、(b)は同無人搬送車の横行走行時の平面透視図。(A) is a plane perspective view at the time of front-and-rear driving | running | working of the conventional automatic guided vehicle, (b) is a plane perspective view at the time of transverse running of the automatic guided vehicle. 長距離の横行走行をしたときの従来の無人搬送車の平面透視図。The plane see-through | perspective view of the conventional automatic guided vehicle when carrying out the long-distance traverse driving | running | working.

符号の説明Explanation of symbols

10 無人搬送車
11 車体
12、13 駆動輪
14(14A、14B) 誘導線センサ
15(15A、15B) アドレスセンサ
16 制御部
23 ステアリングロック機構
31(31A、31B) 誘導線
32 アドレスマーク
41 リフトアップ機構
DESCRIPTION OF SYMBOLS 10 Automatic guided vehicle 11 Car body 12, 13 Drive wheel 14 (14A, 14B) Guide line sensor 15 (15A, 15B) Address sensor 16 Control part 23 Steering lock mechanism 31 (31A, 31B) Guide line 32 Address mark 41 Lift-up mechanism

Claims (3)

車体の前後部に配設された換向自在な駆動輪と、路面に敷設された誘導線を検知する誘導線センサと、前記誘導線センサの出力に基づいて前記駆動輪を制御する制御部と、を備え、前記制御部により前記誘導線に沿ってステアリングが制御されて前後走行及び前後方向に直交する横行走行をする無人搬送車において、
前記制御部は、前後走行時には、前記駆動輪を独立ステアリング方式で制御し、横行走行時には、前記駆動輪を互いに横行用の平行な向きに保持すると共に、前記駆動輪を2輪速度差ステアリング方式で制御することを特徴とする無人搬送車。
A convertible drive wheel disposed at the front and rear of the vehicle body, a guide line sensor for detecting a guide line laid on the road surface, and a control unit for controlling the drive wheel based on the output of the guide line sensor; In the automatic guided vehicle in which the steering is controlled along the guide line by the control unit and the vehicle travels in the front-rear direction and the transverse direction orthogonal to the front-rear direction,
The control unit controls the drive wheels by an independent steering system during front-rear travel, and holds the drive wheels in a parallel orientation for traversal during traverse travel, and the two-wheel speed difference steering system. An automatic guided vehicle controlled by
前記駆動輪の向きをロックするステアリングロック機構を備え、
前記制御部は、前後走行時に前記ステアリングロック機構を解除して前記駆動輪を換向自在とし、横行走行時に前記ステアリングロック機構を作動させて前記駆動輪を互いに平行な向きにロックすることを特徴とする請求項1に記載の無人搬送車。
A steering lock mechanism for locking the direction of the drive wheel;
The control unit releases the steering lock mechanism during front-rear travel so that the drive wheels can be freely turned, and operates the steering lock mechanism during traverse travel to lock the drive wheels in parallel directions. The automatic guided vehicle according to claim 1.
前記駆動輪を路面から扛上させるリフトアップ機構を備え、
前記制御部は、前後走行と横行走行との切換え時に、前記リフトアップ機構に前記駆動輪を路面から扛上させることを特徴とする請求項1又は請求項2に記載の無人搬送車。
A lift-up mechanism for lifting the drive wheel from the road surface;
3. The automatic guided vehicle according to claim 1, wherein the control unit causes the lift-up mechanism to lift the driving wheel from a road surface when switching between front and rear traveling and traversing traveling.
JP2008184741A 2008-07-16 2008-07-16 Unmanned carrier Pending JP2010026628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008184741A JP2010026628A (en) 2008-07-16 2008-07-16 Unmanned carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008184741A JP2010026628A (en) 2008-07-16 2008-07-16 Unmanned carrier

Publications (1)

Publication Number Publication Date
JP2010026628A true JP2010026628A (en) 2010-02-04

Family

ID=41732430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008184741A Pending JP2010026628A (en) 2008-07-16 2008-07-16 Unmanned carrier

Country Status (1)

Country Link
JP (1) JP2010026628A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108725666A (en) * 2017-04-24 2018-11-02 本田技研工业株式会社 Handstand spot cars
CN112824271A (en) * 2019-11-20 2021-05-21 株式会社迪思科 Transport vehicle and transport system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56131462A (en) * 1980-03-15 1981-10-15 Agency Of Ind Science & Technol Steering control device for all-direction movable car
JPS59187810U (en) * 1983-05-26 1984-12-13 株式会社ダイフク guided unmanned vehicle
JPH05241658A (en) * 1992-02-28 1993-09-21 Sumitomo Heavy Ind Ltd Traveling control method for unmanned truck and travel controlling device for realizing the device
JPH09128052A (en) * 1995-11-02 1997-05-16 Japan Tobacco Inc Self-traveling carriage
JPH1011138A (en) * 1996-06-27 1998-01-16 Nissan Motor Co Ltd Unmanned carrier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56131462A (en) * 1980-03-15 1981-10-15 Agency Of Ind Science & Technol Steering control device for all-direction movable car
JPS59187810U (en) * 1983-05-26 1984-12-13 株式会社ダイフク guided unmanned vehicle
JPH05241658A (en) * 1992-02-28 1993-09-21 Sumitomo Heavy Ind Ltd Traveling control method for unmanned truck and travel controlling device for realizing the device
JPH09128052A (en) * 1995-11-02 1997-05-16 Japan Tobacco Inc Self-traveling carriage
JPH1011138A (en) * 1996-06-27 1998-01-16 Nissan Motor Co Ltd Unmanned carrier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108725666A (en) * 2017-04-24 2018-11-02 本田技研工业株式会社 Handstand spot cars
CN112824271A (en) * 2019-11-20 2021-05-21 株式会社迪思科 Transport vehicle and transport system

Similar Documents

Publication Publication Date Title
JP5848915B2 (en) Automated guided vehicle and automated guided vehicle system using the same
JP6632838B2 (en) Vehicle transport method
JP5045705B2 (en) Transport vehicle system
JP2009525553A (en) Automatic guided vehicle with variable travel path
CN102455705B (en) Automatic handling system
JP6009011B2 (en) Automatic carrier and connecting member for automatic carrier
JP2017503732A (en) Self-guided container straddle carrier device with movable sensor assembly
JP2016074507A (en) Unmanned carrier for container
JP4947443B2 (en) Traveling vehicle system
JP2010026628A (en) Unmanned carrier
JP2010247683A (en) Conveyance vehicle system
JP6009010B2 (en) Automatic conveyance vehicle and method of connecting automatic conveyance vehicles
JP5855296B1 (en) Automated guided vehicle and travel control method for automated guided vehicle
JP5412890B2 (en) MOBILE BODY, MOBILE BODY CONTROL METHOD, AND MOBILE BODY SYSTEM
JP2021144363A (en) Autonomous traveling device, autonomous traveling control method, and autonomous traveling control program
JP7052398B2 (en) Automated guided vehicle control method
JP7365619B2 (en) Trolleys and vehicles
JP4749047B2 (en) Cargo handling system
JPH11245839A (en) Multiaxle automatic guided vehicle
JP6816933B1 (en) Cargo handling vehicle that can be switched between unmanned driving and manned driving
JP2007145490A (en) Moving body control device, moving body using this control device and moving body control method
JP2009242063A (en) Travel car system
JP4591714B2 (en) Spot guided vehicle
JP2974110B2 (en) Mobile vehicle control equipment
JP2005239352A (en) Automatically traveling system for transfer crane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130521