JP2010025606A - Bent pipe stress evaluation method and bent pipe stress evaluation device - Google Patents

Bent pipe stress evaluation method and bent pipe stress evaluation device Download PDF

Info

Publication number
JP2010025606A
JP2010025606A JP2008184474A JP2008184474A JP2010025606A JP 2010025606 A JP2010025606 A JP 2010025606A JP 2008184474 A JP2008184474 A JP 2008184474A JP 2008184474 A JP2008184474 A JP 2008184474A JP 2010025606 A JP2010025606 A JP 2010025606A
Authority
JP
Japan
Prior art keywords
pipe
amount
straight pipe
stress
straight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008184474A
Other languages
Japanese (ja)
Other versions
JP5578773B2 (en
Inventor
Shoichi Iimura
正一 飯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Capty Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Capty Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Capty Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2008184474A priority Critical patent/JP5578773B2/en
Publication of JP2010025606A publication Critical patent/JP2010025606A/en
Application granted granted Critical
Publication of JP5578773B2 publication Critical patent/JP5578773B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bent pipe stress evaluation method and a bent pipe stress evaluation device capable of evaluating axial and circumferential stress generated in the bent pipe precisely from the amount of sectional flatness in a straight pipe connected to the bent pipe even if it is not possible to directly measure the bent pipe section since other buried objects, or the like approach. <P>SOLUTION: A control section 7 sets appropriate amount-of-flatness measurement section 41 according to pipelines to an exposed straight pipe 35a, based on previously input pipeline information. The amount-of-flatness measurement section 41 is set at a position separated by measurement distance 47 that is 0.5 to 1.5 times larger than a pipe diameter 45 in the direction of the straight pipe 35a from a pipe connection section 43, namely a connection section of a bent pipe 37 and the straight pipe 35a. Then, the amount of flatness in the straight pipe is calculated from the amount of flatness in the straight pipe 35a at the amount-of-flatness measurement section 41. Then, the amount of flatness in the bent pipe is calculated from a flatness ratio at the position of the amount-of-flatness measurement section 41 and the measured amount of flatness in the straight pipe, thus calculating axial and circumferential stress generated in the bent pipe. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、直管と曲管とが接続された管路において、曲管に生じる応力を評価することが可能な曲管の応力評価方法および曲管の応力評価装置に関するものである。   The present invention relates to a bending pipe stress evaluation method and a bending pipe stress evaluation apparatus capable of evaluating stress generated in a bending pipe in a pipe line in which a straight pipe and a bending pipe are connected.

従来、埋設管が地盤沈下などの影響を受け、埋設管に応力が発生すると、この応力が一定値を超えないように、適宜管路上の土砂を取り除き、管路の沈下分を持ち上げて、応力を低減する応力解放工事が行われる。したがって、管路の応力評価は重要である。   Conventionally, if the buried pipe is affected by ground subsidence and stress occurs in the buried pipe, the sediment on the pipe is removed as appropriate so that the stress does not exceed a certain value, Stress relieving work is performed to reduce this. Therefore, stress evaluation of the pipeline is important.

一方、管路は、障害物を避けたり埋設工事の施工条件等のため、直管と曲管とが組み合わされて形成される。前述の通り、埋設管が地盤沈下の影響を受けると、通常、管路に生じる応力は、曲管の中央部に最大応力が発生することが多い。したがって、曲管の中央部における応力評価は特に重要である。   On the other hand, the pipe line is formed by combining a straight pipe and a curved pipe in order to avoid an obstacle or to perform the construction conditions of the burial work. As described above, when the buried pipe is affected by the ground subsidence, the stress generated in the pipe is usually the maximum stress in the central portion of the curved pipe. Therefore, stress evaluation at the central part of the curved pipe is particularly important.

図8は、地面71に埋設された管路における曲管75の応力評価方法を示す図である。直管73aと直管73bとの間に曲管75が接続される。前述の通り、管路が地盤沈下等の影響を受けると、曲管75の特に中央部(図中矢印X部近傍)に最大応力が発生することが多い。   FIG. 8 is a diagram illustrating a stress evaluation method for the curved pipe 75 in the pipe line embedded in the ground 71. A curved pipe 75 is connected between the straight pipe 73a and the straight pipe 73b. As described above, when the pipe line is affected by ground subsidence or the like, the maximum stress is often generated particularly in the central portion of the curved pipe 75 (in the vicinity of the arrow X portion in the figure).

曲管75の応力を知るためには、図8に示すように地面71を掘削し、曲管75を露出させる。その後、露出した曲管75の応力を直接測定することで、精度よく曲管75の応力を知ることができる。   In order to know the stress of the curved pipe 75, the ground 71 is excavated as shown in FIG. Thereafter, by directly measuring the stress of the exposed bent tube 75, the stress of the bent tube 75 can be accurately known.

このような、曲管の応力評価方法としては、例えば、曲管の周方向に磁気異方性センサを移動させながら主応力差の分布を測定し、その値をカルマンの式に回帰させることで曲管に発生する応力を推定する方法がある(特許文献1)。   As such a stress evaluation method for a curved pipe, for example, the distribution of the principal stress difference is measured while moving the magnetic anisotropy sensor in the circumferential direction of the curved pipe, and the value is returned to the Kalman equation. There is a method for estimating the stress generated in a curved pipe (Patent Document 1).

また、曲管部の中央断面における扁平量を測定し、扁平量から応力計算によって曲管部に生じる応力を算出する方法がある(特許文献2)。   In addition, there is a method of measuring a flat amount in a central section of a bent pipe portion and calculating a stress generated in the bent pipe portion from the flat amount by stress calculation (Patent Document 2).

また、隠蔽部分に曲管部が設けられ、曲管部に接続された直管部が露出しており、直管部の応力を磁歪装置で測定し、曲管部の応力またはひずみを推定する方法がある(特許文献3)。   In addition, a bent pipe part is provided in the concealed part, and the straight pipe part connected to the bent pipe part is exposed, and the stress or strain of the bent pipe part is estimated by measuring the stress of the straight pipe part with a magnetostrictive device. There is a method (Patent Document 3).

特開2003−177066号公報JP 2003-177066 A 特開平2003−344184号公報Japanese Patent Laid-Open No. 2003-344184 特開平5−281062号公報JP-A-5-281062

しかし、特許文献1に記載された手法では、曲管に生じる応力を極めて精度よく測定することが可能ではあるが、曲管の周囲に他の埋設物がある場合や、曲管が構造物の壁内などに設けられる場合などのように、曲管へアクセスすることが困難な場合には、曲管の応力を直接測定することができないという問題がある。   However, with the technique described in Patent Document 1, it is possible to measure the stress generated in the curved pipe with extremely high accuracy. However, when there is another embedded object around the curved pipe, When it is difficult to access the curved pipe, such as when it is provided in a wall, there is a problem that the stress of the curved pipe cannot be directly measured.

また、特許文献2に記載の手法では、曲管建設当時における初期の段階の曲管の扁平量が把握されていることが原則であるが、通常、初期の曲管断面の扁平量が不明な場合が多いため、曲管の応力を正確に知ることができないという問題がある。また、特許文献1と同様に、曲管の扁平量を直接測定する必要があることから、曲管の周囲に他の埋設物がある場合や、曲管が構造物の壁内などに設けられる場合などのように、曲管へアクセスすることが困難な場合には、曲管の応力を直接測定することができないという問題がある。   In addition, in the technique described in Patent Document 2, it is a principle that the flattening amount of the curved pipe at the initial stage at the time of construction of the curved pipe is known, but usually the flattening amount of the initial section of the curved pipe is unknown. Since there are many cases, there is a problem that the stress of the bent pipe cannot be accurately known. Moreover, since it is necessary to measure the flat amount of a curved pipe directly like patent document 1, when there exists another buried object around a curved pipe, a curved pipe is provided in the wall of a structure, etc. In some cases, such as when it is difficult to access the curved pipe, there is a problem that the stress of the curved pipe cannot be directly measured.

また、特許文献3に記載された手法は、あらかじめ実験によって直管部に発生する周方向応力・ひずみと、診断したい曲管に発生する応力との関係を求めておき、現場で磁歪装置によって直管部の周方向応力を求め、実験値と照らし合わせることで曲管部の応力を診断するものである。   In addition, the technique described in Patent Document 3 obtains the relationship between the circumferential stress / strain generated in the straight pipe portion by experiments and the stress generated in the curved pipe to be diagnosed in advance, and is directly corrected by a magnetostrictive device in the field. The stress in the curved pipe part is diagnosed by obtaining the circumferential stress of the pipe part and comparing it with the experimental value.

しかし、曲管部の応力は直管部の変形の影響を受ける旨の記載はあるが、磁歪装置の出力とsinθ近似値との各角度における偏差に近似するsin2θによって、変形による影響を近似させて応力を得るものであり、このようにみなした場合に、実際の応力との乖離の程度は明確ではないという問題がある。すなわち、曲管の断面扁平の影響がある直管部における軸方向の応力を高い精度で求めることができないため、その結果として曲管に生じる軸方向および円周方向の応力を高い精度で推定することはできないという問題がある。   However, although there is a description that the stress of the curved pipe part is affected by the deformation of the straight pipe part, the influence of the deformation is approximated by sin2θ that approximates the deviation at each angle between the output of the magnetostrictive device and the approximate value of sinθ. There is a problem that the degree of deviation from the actual stress is not clear when considered in this way. That is, since the stress in the axial direction in the straight pipe portion that is affected by the cross-sectional flatness of the curved pipe cannot be obtained with high accuracy, the axial and circumferential stresses generated in the curved pipe as a result are estimated with high accuracy. There is a problem that you can't.

本発明は、このような問題に鑑みてなされたもので、他の埋設物などが近接して曲管部を直接測定することができない場合であっても、曲管に接続された直管の断面扁平量から、精度よく曲管に生じる軸方向および円周方向の応力を評価することが可能な、曲管の応力評価方法および曲管の応力評価装置を提供することを目的とする。   The present invention has been made in view of such a problem, and even when other embedded objects are close to each other and the curved pipe portion cannot be directly measured, the straight pipe connected to the curved pipe is used. It is an object of the present invention to provide a curved pipe stress evaluation method and a curved pipe stress evaluation apparatus capable of accurately evaluating axial and circumferential stresses generated in a curved pipe from the cross-sectional flat amount.

前述した目的を達成するため、第1の発明は、直管と曲管とが接続された管体における曲管の応力評価方法であって、前記直管と前記曲管との接続部から前記直管側に前記直管の径の0.5〜1.5倍の位置に扁平量測定部を設定する工程(a)と、前記扁平量測定部で直管の扁平量を測定する工程(b)と、前記直管の扁平量に基づいて前記曲管の扁平量を算出する工程(c)と、前記曲管の扁平量に基づいて前記曲管の応力を算出する工程(d)と、を具備することを特徴とする曲管の応力評価方法である。   In order to achieve the above-mentioned object, the first invention is a stress evaluation method of a curved pipe in a pipe body in which a straight pipe and a curved pipe are connected, and the first pipe and the curved pipe are connected to each other from the connecting portion. A step (a) of setting a flat amount measuring unit at a position 0.5 to 1.5 times the diameter of the straight pipe on the straight pipe side, and a step of measuring the flat amount of the straight pipe by the flat amount measuring unit ( b), a step (c) of calculating the flat amount of the curved pipe based on the flat amount of the straight pipe, and a step (d) of calculating a stress of the curved pipe based on the flat amount of the curved pipe. A stress evaluation method for a curved pipe, comprising:

前記管体のパイプ係数に応じて、前記曲管の中央断面における扁平量と、扁平量測定部における前記直管の扁平量との扁平比を予め算出し、前記工程(c)では、前記扁平比から前記曲管の扁平量が算出されてもよい。   According to the pipe coefficient of the tubular body, a flatness ratio between a flattening amount in the central cross section of the curved pipe and a flattening amount of the straight pipe in the flattening amount measuring unit is calculated in advance, and in the step (c), the flattening The flat amount of the bent pipe may be calculated from the ratio.

第1の発明によれば、曲管との接続部から直管側に直管の径の0.5〜1.5倍の位置で直管の扁平量を測定し、直管の扁平量から曲管の扁平量およびこれによる応力を算出するため、建設時の曲管の扁平量が不明な場合であっても精度よく曲管の応力を評価することができる。特にパイプ係数毎に、各測定位置における、直管の扁平量と曲管中央の扁平量との比を求めておくことで、直管の扁平量から容易かつ正確に曲管の応力を算出することができる。   According to 1st invention, the flat amount of a straight pipe is measured in the position 0.5 to 1.5 times the diameter of a straight pipe from the connection part with a curved pipe to the straight pipe side, From the flat amount of a straight pipe, Since the flattening amount of the bent pipe and the stress due thereto are calculated, the stress of the bent pipe can be accurately evaluated even when the flattened amount of the bent pipe at the time of construction is unknown. In particular, by calculating the ratio of the flat tube flat amount and the flat tube center flat amount at each measurement position for each pipe coefficient, the stress of the bent tube can be calculated easily and accurately from the flat tube flat amount. be able to.

第2の発明は、直管と曲管とが接続された管体における曲管の応力評価装置であって、前記直管と前記曲管との接続部から前記直管側に前記直管の径の0.5〜1.5倍の位置に扁平量測定部を設定する手段と、前記扁平量測定部における前記直管の扁平量を測定する手段と、前記直管の扁平量に基づいて、前記曲管の扁平量を算出する手段と、前記曲管の扁平量に基づいて前記曲管の応力を算出する手段と、を具備することを特徴とする曲管の応力評価装置である。   A second invention is a stress evaluation apparatus for a curved pipe in a pipe body in which a straight pipe and a curved pipe are connected, and the straight pipe is connected to the straight pipe side from a connecting portion between the straight pipe and the curved pipe. Based on the means for setting the flat amount measuring unit at a position 0.5 to 1.5 times the diameter, the means for measuring the flat amount of the straight pipe in the flat amount measuring unit, and the flat amount of the straight pipe A bending pipe stress evaluation apparatus comprising: means for calculating a flattening amount of the bent pipe; and means for calculating a stress of the bent pipe based on the flattening amount of the bent pipe.

第2の発明によれば、曲管との接続部から直管側に直管の径の0.5〜1.5倍の位置に直管の扁平量測定部を設定し、直管の扁平量から曲管の扁平量およびこれによる応力を算出するため、建設時の曲管の扁平量が不明な場合であっても精度よく曲管の応力を評価することができる。   According to the second aspect of the present invention, the straight pipe flatness measuring unit is set at a position 0.5 to 1.5 times the diameter of the straight pipe from the connecting part to the curved pipe to the straight pipe side. Since the flattened amount of the bent pipe and the stress due to this are calculated from the amount, even if the flattened amount of the bent pipe at the time of construction is unknown, the stress of the bent pipe can be accurately evaluated.

本発明によれば、他の埋設物などが近接して曲管部を直接測定することができない場合であっても、曲管に接続された直管の断面扁平量から、精度よく曲管に生じる軸方向および円周方向の応力を評価することが可能な、曲管の応力評価方法および曲管の応力評価装置を提供することができる。   According to the present invention, even when other embedded objects are close to each other and the curved pipe portion cannot be directly measured, it is possible to accurately convert the curved pipe from the cross-sectional flat amount of the straight pipe connected to the curved pipe. It is possible to provide a bent pipe stress evaluation method and a bent pipe stress evaluation apparatus capable of evaluating the generated axial and circumferential stresses.

以下、本発明の実施の形態を詳細に説明する。図1は、本実施の形態に係る曲管の応力評価装置1を実現するハードウェア構成図である。曲管の応力評価装置1は、主に解析装置3と扁平量測定器5等から構成される。解析装置3はコンピュータであり、扁平量測定器5は、管体の外形を測定できればよく、例えばデジタルノギス等が使用できる。   Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 is a hardware configuration diagram for realizing a stress evaluation apparatus 1 for a curved pipe according to the present embodiment. The bent pipe stress evaluation device 1 is mainly composed of an analysis device 3 and a flatness measuring device 5. The analysis device 3 is a computer, and the flatness measuring device 5 only needs to be able to measure the outer shape of the tubular body. For example, a digital caliper can be used.

解析装置3は、制御部7、記憶部9、メディア入出力部11、通信制御部13、入力部15、表示部17、周辺機器I/F部19等から構成され、それらがバス21を介して接続される。   The analysis device 3 includes a control unit 7, a storage unit 9, a media input / output unit 11, a communication control unit 13, an input unit 15, a display unit 17, a peripheral device I / F unit 19, and the like. Connected.

制御部7は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等で構成される。
CPUは、記憶部9、ROM、記録媒体等に格納されるプログラムをRAM上のワークメモリ領域に呼び出して実行し、バス21を介して接続された各装置を駆動制御し、曲管の応力評価装置1が行う処理を実現する。
The control unit 7 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
The CPU calls a program stored in the storage unit 9, ROM, recording medium, etc. to a work memory area on the RAM, executes it, controls the drive of each device connected via the bus 21, and evaluates the stress of the curved pipe. The processing performed by the device 1 is realized.

ROMは、不揮発性メモリであり、コンピュータのブートプログラムやBIOS等のプログラム、データ等を恒久的に保持している。
RAMは、揮発性メモリであり、記憶部9、ROM、記録媒体等からロードしたプログラム、データ等を一時的に保持するとともに、制御部7が各種処理を行う為に使用するワークエリアを備える。
The ROM is a non-volatile memory and permanently holds a computer boot program, a program such as BIOS, data, and the like.
The RAM is a volatile memory, and temporarily stores programs, data, and the like loaded from the storage unit 9, ROM, recording medium, and the like, and includes a work area used by the control unit 7 for performing various processes.

記憶部9は、HDD(ハードディスクドライブ)であり、制御部7が実行するプログラム、プログラム実行に必要なデータ、OS(オペレーティングシステム)等が格納される。プログラムに関しては、OS(オペレーティングシステム)に相当する制御プログラムや、後述の処理に相当するアプリケーションプログラムが格納されている。
これらの各プログラムコードは、制御部7により必要に応じて読み出されてRAMに移され、CPUに読み出されて各種の手段として実行される。
The storage unit 9 is an HDD (hard disk drive), and stores a program executed by the control unit 7, data necessary for program execution, an OS (operating system), and the like. As for the program, a control program corresponding to an OS (operating system) and an application program corresponding to processing described later are stored.
Each of these program codes is read by the control unit 7 as necessary, transferred to the RAM, read by the CPU, and executed as various means.

メディア入出力部11(ドライブ装置)は、データの入出力を行い、例えば、フロッピー(登録商標)ディスクドライブ、CDドライブ(−ROM、−R、RW等)、DVDドライブ(−ROM、−R、−RW等)、MOドライブ等のメディア入出力装置を有する。   The media input / output unit 11 (drive device) performs data input / output. For example, a floppy (registered trademark) disk drive, CD drive (-ROM, -R, RW, etc.), DVD drive (-ROM, -R, etc.) -RW etc.) and media input / output devices such as MO drives.

通信制御部13は、通信制御装置、通信ポート等を有し、コンピュータとネットワーク間の通信を媒介する通信インタフェースであり、ネットワークを介して、他のコンピュータ間との通信制御を行う。   The communication control unit 13 includes a communication control device, a communication port, and the like, and is a communication interface that mediates communication between a computer and a network, and performs communication control between other computers via the network.

入力部15は、データの入力を行い、例えば、キーボード、マウス等のポインティングデバイス、テンキー等の入力装置を有する。
入力部15を介して、コンピュータに対して、操作指示、動作指示、データ入力等を行うことができる。
The input unit 15 inputs data and includes, for example, a keyboard, a pointing device such as a mouse, and an input device such as a numeric keypad.
An operation instruction, an operation instruction, data input, and the like can be performed on the computer via the input unit 15.

表示部17は、CRTモニタ、液晶パネル等のディスプレイ装置、ディスプレイ装置と連携してコンピュータのビデオ機能を実現するための論理回路等(ビデオアダプタ等)を有する。   The display unit 17 includes a display device such as a CRT monitor and a liquid crystal panel, and a logic circuit (such as a video adapter) for realizing the video function of the computer in cooperation with the display device.

周辺機器I/F(インタフェース)部19は、コンピュータに周辺機器を接続させるためのポートであり、周辺機器I/F部19を介してコンピュータは周辺機器とのデータの送受信を行う。周辺機器I/F部19は、USBやIEEE1394やRS−232C等で構成されており、通常複数の周辺機器I/Fを有する。   The peripheral device I / F (interface) unit 19 is a port for connecting a peripheral device to the computer, and the computer transmits and receives data to and from the peripheral device via the peripheral device I / F unit 19. The peripheral device I / F unit 19 is configured by USB, IEEE 1394, RS-232C, or the like, and usually includes a plurality of peripheral devices I / F.

周辺機器I/F部19には、扁平量測定器5が接続される。扁平量測定器5からの測定データは、周辺機器I/F部19から解析装置3へ入力され、記憶部9等へ保存される。なお、周辺機器I/F部19と扁平量測定器5との接続形態は有線、無線を問わない。   The flatness measuring device 5 is connected to the peripheral device I / F unit 19. Measurement data from the flatness measuring device 5 is input from the peripheral device I / F unit 19 to the analysis device 3 and stored in the storage unit 9 or the like. The connection form between the peripheral device I / F unit 19 and the flatness measuring device 5 may be wired or wireless.

バス21は、各装置間の制御信号、データ信号等の授受を媒介する経路である。   The bus 21 is a path that mediates transmission / reception of control signals, data signals, and the like between the devices.

次に、曲管の応力評価装置1の動作について説明する。図2は、曲管の応力評価装置1による曲管の応力を評価する工程を示すフローチャートである。   Next, the operation of the bent pipe stress evaluation apparatus 1 will be described. FIG. 2 is a flowchart showing a process of evaluating the stress of the curved pipe by the stress evaluation apparatus 1 for the curved pipe.

まず、制御部7は、あらかじめ記憶部9に保存されている測定対象である管径の情報に基づいて、直管の扁平量を測定する直管扁平量測定部を設定する(ステップ101)。   First, the control unit 7 sets a straight tube flat amount measuring unit that measures a flat tube flat amount based on information on a tube diameter that is a measurement target stored in the storage unit 9 in advance (step 101).

扁平量測定部の設定に当たっては、まず、地面を掘削して管路を露出させる。図3、図4は、直管35a、35b、曲管37がそれぞれ接続された管路を示す図である。図3に示すように、曲管37は直管35a、35bと接続され、地面34に埋設される。曲管37近傍には、他の埋設管39が埋設されている。前述の通り、曲管37の中央部(図中矢印A)近傍を直接応力測定が可能であれば、従来の方法で正確に曲管の軸方向および円周方向の応力を知ることができる。しかし、曲管37近傍に埋設管39が存在するため、曲管37の応力を直接測定することができない。   In setting the flatness measuring unit, first, the ground is excavated to expose the pipeline. FIG. 3 and FIG. 4 are diagrams showing pipes to which the straight pipes 35a and 35b and the curved pipe 37 are respectively connected. As shown in FIG. 3, the curved pipe 37 is connected to the straight pipes 35 a and 35 b and is embedded in the ground 34. In the vicinity of the curved pipe 37, another buried pipe 39 is buried. As described above, if the stress can be directly measured in the vicinity of the central portion (arrow A in the figure) of the curved pipe 37, the stress in the axial direction and the circumferential direction of the curved pipe can be accurately known by a conventional method. However, since the buried pipe 39 exists in the vicinity of the curved pipe 37, the stress of the curved pipe 37 cannot be directly measured.

図4は、直管35a、35bが露出するように、地面34を掘削した状態を示す図である。埋設管39がなければ、曲管37が露出するように地面34を掘削すれば良いが、曲管37の応力測定が不可能である場合には、直管35aの扁平量から曲管の軸方向および円周方向の応力を評価する。   FIG. 4 is a diagram illustrating a state where the ground 34 is excavated so that the straight pipes 35a and 35b are exposed. If there is no buried pipe 39, the ground 34 may be excavated so that the curved pipe 37 is exposed. However, if the stress measurement of the curved pipe 37 is impossible, the axis of the curved pipe is determined from the flat amount of the straight pipe 35a. Evaluate direction and circumferential stresses.

制御部7は、あらかじめ入力され、記憶部9に保持された管路情報に基づき、露出した直管35aに、管路に応じた適切な扁平量測定部41を設定する。扁平量測定部41は、曲管37と直管35aとの接続部である管接続部43から、直管35aの方向に、管径45の0.5〜1.5倍の測定部距離47離れた位置に設定される。   The control unit 7 sets an appropriate flat amount measuring unit 41 corresponding to the pipeline in the exposed straight pipe 35a based on the pipeline information input in advance and held in the storage unit 9. The flat amount measuring unit 41 has a measuring unit distance 47 that is 0.5 to 1.5 times the pipe diameter 45 in the direction of the straight pipe 35a from the pipe connecting part 43 that is a connecting part of the curved pipe 37 and the straight pipe 35a. Set to a distant position.

ここで、測定部距離47を0.5よりも小さくし、扁平量測定部41を曲管37側に設定すると、測定値は曲管37と直管35aとの溶接等に伴う外径変化の影響や、接合部が厚肉になることによる扁平量の変化の影響を受けるため、曲管37に作用する応力に伴う扁平量が正確に測定することが困難となる。したがって、曲管37の軸方向および円周方向の応力を正確に評価することができない。   Here, when the measurement part distance 47 is made smaller than 0.5 and the flatness measurement part 41 is set on the curved pipe 37 side, the measured value is a change in the outer diameter due to welding between the curved pipe 37 and the straight pipe 35a. It is difficult to accurately measure the amount of flatness associated with the stress acting on the curved pipe 37 because it is affected by the influence and the change in the amount of flatness due to the thickened joint. Therefore, the stress in the axial direction and the circumferential direction of the curved pipe 37 cannot be accurately evaluated.

一方、測定部距離47を1.5よりも大きくし、扁平量測定部41を、管接続部43から曲管37から遠い位置に設定すると、曲管37へ生じる応力に伴う直管35aの扁平量が小さくなりすぎるため、曲管37における応力を正確に評価することができない。したがって、測定部距離47は、曲管37と直管35aとの管接続部43から直管35a側へ、管径45の0.5倍〜1.5倍の間に設定することが望ましく、曲管37と直管35aとの接合影響を受けない範囲内で、できるだけ管接続部43に近い方が、精度が高く望ましい。   On the other hand, when the measuring portion distance 47 is set to be larger than 1.5 and the flat amount measuring portion 41 is set at a position far from the curved pipe 37 from the pipe connecting portion 43, the flatness of the straight pipe 35a due to the stress generated in the curved pipe 37 Since the amount becomes too small, the stress in the curved pipe 37 cannot be accurately evaluated. Therefore, it is desirable to set the measurement unit distance 47 between 0.5 times and 1.5 times the pipe diameter 45 from the pipe connection part 43 between the curved pipe 37 and the straight pipe 35a to the straight pipe 35a side. As close as possible to the pipe connecting portion 43 within the range where the bent pipe 37 and the straight pipe 35a are not affected, it is desirable that the accuracy is high.

次に、制御部7は、扁平量測定器5により、扁平量測定部41における直管35aの扁平量を測定する(ステップ102)。扁平量の測定は、例えばデジタルノギスによるものである。扁平量の測定は、例えば直管の互いに垂直な2方向の外径を測定し、各測定方向における建設初期からの扁平量から算出する。   Next, the control unit 7 measures the flat amount of the straight pipe 35a in the flat amount measuring unit 41 by the flat amount measuring device 5 (step 102). The flat amount is measured by, for example, digital calipers. The flat amount is measured, for example, by measuring the outer diameter of the straight pipe in two directions perpendicular to each other, and calculating from the flat amount from the initial stage of construction in each measurement direction.

図5は、扁平量の測定方法を示す図である。管体49の扁平量を測定する場合には、図5(a)に示すように、管体49の測定部位における断面50における管頂51と管底52を結ぶ方向(図中矢印C方向)とこれに垂直な方向(図中矢印B方向)の外径を測定する。管頂51は、曲管部における曲げの最外周の延長線であり、管底52は、曲管部における曲げの最内周の延長線をいう。したがって、図5(a)の矢印C方向は直管に接続された曲管の曲げ方向であり、矢印Bは、矢印Cと直行する方向である。   FIG. 5 is a diagram showing a method for measuring the flatness. When measuring the flattening amount of the tube body 49, as shown in FIG. 5A, the direction connecting the tube top 51 and the tube bottom 52 in the cross section 50 at the measurement site of the tube body 49 (the direction of arrow C in the figure). And the outer diameter in the direction perpendicular to this (the direction of arrow B in the figure). The pipe top 51 is an extension line of the outermost periphery of the bending in the curved pipe part, and the pipe bottom 52 is an extension line of the innermost periphery of the bending in the curved pipe part. Therefore, the arrow C direction in FIG. 5A is the bending direction of the curved pipe connected to the straight pipe, and the arrow B is the direction perpendicular to the arrow C.

図5(b)は、断面50の扁平状態を示す図である。断面50aは、設置初期の状態での管体の断面50である、断面50aの各方向(図中矢印B方向およびC方向)の外径は、それぞれd01、d02である。すなわち、管体が設置時に真円であればd01とd02は一致する。   FIG. 5B is a diagram illustrating a flat state of the cross section 50. The cross section 50a is the cross section 50 of the tubular body in the initial installation state, and the outer diameters in each direction (arrow B direction and C direction in the figure) of the cross section 50a are d01 and d02, respectively. That is, d01 and d02 match if the tube is a perfect circle when installed.

なお、直管であっても、製造時に若干扁平する場合がある。しかし、直管の扁平量は記録が残っていることが多いため、設置時の扁平量のデータから、正確にd01、d02を得ることができる。また、仮に直管の初期の扁平量が不明であっても、曲管と比較して、直管の製造時における扁平量は極めて小さいため、直管の初期の扁平量を0としても高い信頼性を確保できる。   Even a straight pipe may be slightly flattened during manufacture. However, since the flattening amount of the straight pipe often remains recorded, d01 and d02 can be accurately obtained from the flattening amount data at the time of installation. Even if the initial flat amount of the straight pipe is unknown, the flat amount at the time of manufacturing the straight pipe is extremely small compared to the curved pipe, so high reliability even if the initial flat amount of the straight pipe is zero. Can be secured.

断面50bは、曲管に応力が生じることにより曲管が扁平し、曲管の扁平変形に伴い、曲管に接続された直管が扁平した状態の断面50である。管体が扁平した状態の断面50bは、図中矢印B方向およびC方向の外形が、それぞれd1、d2となる。この際、図5(b)に示すように、d01の外形がd1へ変形する際の、管体両側の変位量をそれぞれei1とする。同様に、d02の外形がd2へ変形する際の、管体両側の変位量をそれぞれei2とする。すると、面内曲げ扁平量e1は、式(1)で算出される。
e1=2(ei1+ei2) ・・・(1)
The cross section 50b is a cross section 50 in a state in which the curved pipe is flattened due to the stress generated in the curved pipe, and the straight pipe connected to the curved pipe is flattened due to the flat deformation of the curved pipe. In the cross section 50b in a state where the tube body is flat, the outer shapes in the arrow B direction and the C direction in the drawing are d1 and d2, respectively. At this time, as shown in FIG. 5B, the amount of displacement on both sides of the tubular body when the outer shape of d01 is deformed to d1 is denoted by ei1. Similarly, let ei2 be the amount of displacement on both sides of the tubular body when the outer shape of d02 is deformed to d2. Then, the in-plane bending flat amount e1 is calculated by the equation (1).
e1 = 2 (ei1 + ei2) (1)

次に、制御部7は、ステップ102で測定された直管35aの外径を解析装置3に入力する(ステップ103)。たとえば、測定された外径データを解析装置3に取り込み、記憶部9へデータを保存する。データの入力は、周辺機器I/F部19によって、扁平量測定器5からのデータを記憶部9へ保存してもよく、また、入力部15を介して行っても良い。また、メディア入出力部11を用いても良い。また、ネットワークを介して、他のコンピュータからデータを送信しても良い。制御部7は、入力された直管35aの外径データから式(1)を用いて扁平量e1を算出し、扁平量データを記憶部9へ保存する。   Next, the control unit 7 inputs the outer diameter of the straight pipe 35a measured in step 102 to the analyzer 3 (step 103). For example, the measured outer diameter data is taken into the analysis device 3 and stored in the storage unit 9. Data input may be performed by the peripheral device I / F unit 19 storing data from the flatness measuring device 5 in the storage unit 9 or via the input unit 15. Further, the media input / output unit 11 may be used. In addition, data may be transmitted from another computer via a network. The control unit 7 calculates the flat amount e1 from the input outside diameter data of the straight pipe 35a using the equation (1), and stores the flat amount data in the storage unit 9.

次に、制御部7は、ステップ103により取り込まれた直管35a扁平量データに基づき、あらかじめ記憶部9に保持されている、直管35aの扁平量と曲管37の扁平量との比のデータから、曲管37の扁平量を算出する(ステップ104)。   Next, the control unit 7 determines the ratio of the flat amount of the straight pipe 35a and the flat amount of the curved pipe 37, which is stored in advance in the storage unit 9, based on the straight pipe 35a flat amount data captured in step 103. The flattening amount of the curved pipe 37 is calculated from the data (step 104).

ここで、曲管と直管とが接続された状態においては、曲管に応力が生じている場合に、曲管に接続される直管の断面は、曲管の断面扁平の影響を受け、曲管に比べると小さいものの大きく扁平する。直管の扁平量と曲管の扁平量との比である扁平比の大きさは、曲管からの距離により定まるほぼ一定の比となる。これは、荷重点からの距離に比例するモーメントが作用した場合(モデル)であっても、距離に無関係に一定のモーメントが作用した場合(モデル)であっても同様に略同一の比率である。   Here, in the state where the curved pipe and the straight pipe are connected, when a stress is generated in the curved pipe, the cross section of the straight pipe connected to the curved pipe is affected by the flatness of the cross section of the curved pipe, Although it is small compared to a curved pipe, it flattens greatly. The size of the flatness ratio, which is the ratio between the flattening amount of the straight pipe and the flattening amount of the curved pipe, is a substantially constant ratio determined by the distance from the curved pipe. This is the same ratio even if a moment proportional to the distance from the load point is applied (model) or a constant moment is applied regardless of the distance (model). .

したがって、あらかじめ実験や計算で、曲管と直管とを接続した状態において、直管の一端に荷重を付与し、この場合での荷重に伴う曲管部の扁平量と、直管と曲管との接続部から直管方向へ所定の距離(例えば管径の0.5倍の位置)における直管の扁平量との比を求めておくことで、直管部の扁平量から容易に曲管部の扁平量を知ることができる。なお、扁平比はパイプ係数(管の半径をr、曲管の曲率半径をR、肉厚をtとした時にtR/rによりあらわされる係数)により異なるため、測定対象となるパイプ係数毎に、扁平比を求めておく必要がある。 Therefore, in a state where the curved pipe and the straight pipe are connected in advance by experiments and calculations, a load is applied to one end of the straight pipe, and the flat amount of the curved pipe portion accompanying the load in this case, the straight pipe and the curved pipe By calculating the ratio of the straight pipe flatness at a predetermined distance (for example, 0.5 times the pipe diameter) from the connecting part to the straight pipe direction, it is easy to bend from the flat pipe flatness. You can know the flatness of the tube. The flatness ratio varies depending on the pipe coefficient (coefficient represented by tR / r 2 when the radius of the pipe is r, the radius of curvature of the curved pipe is R, and the thickness is t). It is necessary to obtain the aspect ratio.

次に、制御部7は、ステップ104により算出された曲管37扁平量に基づいて、曲管37に生じる軸方向応力を算出する(ステップ105)。曲管37の応力の算出に当たっては、曲管37に生じる扁平量からモーメントを求め、モーメントから曲管37に生じる軸方向および円周方向の応力を算出することができる。このような曲管37の扁平量から軸方向および円周方向の応力を算出する方法としては、たとえば、特開2003−344184号公報に記載の方法を用いることができる。   Next, the control unit 7 calculates the axial stress generated in the curved pipe 37 based on the flat amount of the curved pipe 37 calculated in step 104 (step 105). In calculating the stress of the curved pipe 37, the moment can be obtained from the flat amount generated in the curved pipe 37, and the axial and circumferential stresses generated in the curved pipe 37 can be calculated from the moment. As a method for calculating the stress in the axial direction and the circumferential direction from the flat amount of the curved pipe 37, for example, a method described in Japanese Patent Application Laid-Open No. 2003-344184 can be used.

次に、制御部7は、ステップ105により算出された曲管37の軸方向および円周方向の応力を所定の方法で出力する。なお、算出データの出力は、表示部17を介してディスプレイ装置に表示しても良い。また、適当なファイル形式によるファイルに出力しても良い。また、ネットワークを介して、他のコンピュータにデータの送信を行っても良い。以上により、曲管37の軸方向および円周方向の応力を知ることができる。   Next, the control unit 7 outputs the stress in the axial direction and the circumferential direction of the curved pipe 37 calculated in Step 105 by a predetermined method. The output of the calculation data may be displayed on the display device via the display unit 17. Moreover, you may output to the file by a suitable file format. In addition, data may be transmitted to another computer via a network. As described above, the stress in the axial direction and the circumferential direction of the curved pipe 37 can be known.

本発明にかかる曲管の応力評価装置1によって算出された曲管の軸方向および円周方向の応力についてその妥当性を検証した。図6は、実験に用いた管路モデルを示す模式図である。   The validity of the axial and circumferential stresses of the curved pipe calculated by the curved pipe stress evaluation apparatus 1 according to the present invention was verified. FIG. 6 is a schematic diagram showing a pipeline model used in the experiment.

直管53aと直管53bとの間に、90°の開き角度でまがった曲管55を接続して実験に供した。直管53a、53bは外径が318.5mmで肉厚が9.9mmの鋼管を用いた。曲管55は、外径318.5mmで肉厚が11.8mm、曲率半径が457.2mmの鋼管を用いた。管接続部57は、直管53aと曲管55との接合部である。直管53a、53bと曲管55とはそれぞれ溶接によって接合した。   A curved pipe 55 wound at an opening angle of 90 ° was connected between the straight pipe 53a and the straight pipe 53b for use in the experiment. The straight pipes 53a and 53b were steel pipes having an outer diameter of 318.5 mm and a thickness of 9.9 mm. The curved pipe 55 was a steel pipe having an outer diameter of 318.5 mm, a thickness of 11.8 mm, and a curvature radius of 457.2 mm. The pipe connecting portion 57 is a joint portion between the straight pipe 53 a and the curved pipe 55. The straight pipes 53a and 53b and the curved pipe 55 were joined by welding.

直管53a、53bのそれぞれの、曲管55との接合部である管接続部57と反対側の端部にはフランジ63a、63bが設けられ、フランジ63bによって、直管53bを床65に対して垂直に固定した。   Flange 63a, 63b is provided in the edge part on the opposite side to the pipe connection part 57 which is a junction part with the curved pipe 55 of each of the straight pipes 53a, 53b, and the straight pipe 53b is connected with respect to the floor 65 by the flange 63b. And fixed vertically.

直管53aの端部(フランジ63a)に対して、図示を省略したジャッキによって、矢印Wの方向に荷重を加え、直管53a、曲管55それぞれの扁平量を測定した。なお、矢印Wは、直管53aに垂直かつ曲管55の曲がりの方向である。   A load in the direction of arrow W was applied to the end portion (flange 63a) of the straight pipe 53a with a jack (not shown), and the flatness of each of the straight pipe 53a and the curved pipe 55 was measured. Note that an arrow W is a direction perpendicular to the straight pipe 53a and the curved pipe 55 is bent.

直管53aの扁平量測定部67は、管接続部57から直管53aの側に測定部距離61(=L)だけ離れた位置に設定した。なお、測定部距離61は、管径59(=D)の0.5倍〜1.5倍の位置で設定した(L=0.5D〜1.5D)。なお、直管53aの外径の測定に当たっては、デジタルノギスを用い、図5のB方向、C方向に対応する、曲管55の曲げ方向およびこれに垂直な方向の2方向の外形を測定した。測定された外径データから(1)式を用い、直管の扁平量を求めた。また、曲管55の扁平量も同様の方法で測定した。   The flatness measurement unit 67 of the straight pipe 53a is set at a position away from the pipe connection part 57 by the measurement unit distance 61 (= L) on the straight pipe 53a side. The measurement unit distance 61 was set at a position 0.5 to 1.5 times the tube diameter 59 (= D) (L = 0.5D to 1.5D). In measuring the outer diameter of the straight pipe 53a, digital calipers were used to measure the outer shape in two directions, that is, the bending direction of the bent pipe 55 and the direction perpendicular thereto, corresponding to the B direction and the C direction in FIG. . The flattening amount of the straight pipe was determined from the measured outer diameter data using the equation (1). Further, the flattening amount of the bent pipe 55 was also measured by the same method.

図7は、それぞれの扁平量測定部67(測定部距離61)における、扁平量測定結果を示す。なお、解析結果69は、曲管の扁平量の実測値(E点)から、有限要素法による解析で直管における各点での扁平量を求めた解析結果である。図7から明らかなように、解析結果と各実測値(F、G、H点)はよく一致している。なお、E点は曲管55の曲げの中央部における扁平量、F点はL=0.5D、G点はL=1.0D、H点はL=1.5Dにおける扁平量を示す。   FIG. 7 shows the flatness measurement result in each flatness measurement unit 67 (measurement unit distance 61). The analysis result 69 is an analysis result obtained by calculating the flat amount at each point in the straight pipe by the analysis by the finite element method from the actually measured value (E point) of the flat amount of the curved pipe. As is clear from FIG. 7, the analysis result and each measured value (F, G, H points) are in good agreement. In addition, E point shows the flat amount in the center part of the bending of the curved pipe 55, F point shows L = 0.5D, G point shows L = 1.0D, H point shows the flat amount in L = 1.5D.

表1は、直管の扁平量を曲管の扁平量で除した扁平比について、実測値と有限要素法による解析値との比較結果を示す。   Table 1 shows a comparison result between an actual measurement value and an analysis value by a finite element method with respect to a flatness ratio obtained by dividing a flat tube flat amount by a flat tube flat amount.

Figure 2010025606
Figure 2010025606

表1において、Lは測定部距離61、Dは管径59を示す。また、解析結果1は、荷重点からの距離に比例するモーメントが作用したモデルでの解析結果を示し、解析結果2は、距離に無関係に一定のモーメントが作用したモデルでの解析結果を示す。   In Table 1, L indicates the measurement part distance 61 and D indicates the tube diameter 59. The analysis result 1 shows the analysis result in a model in which a moment proportional to the distance from the load point is applied, and the analysis result 2 shows the analysis result in a model in which a constant moment is applied regardless of the distance.

表1からも明らかなように、直管部と曲管部の扁平比は、解析モデルによらず、測定位置によって定められる。したがって、パイプ係数が同一であれば、たとえばL=0.5Dにおける直管の扁平量を測定することで、曲管の扁平量は直管の扁平量の略2倍程度であることが容易に算出できる。   As is clear from Table 1, the flatness ratio between the straight pipe portion and the curved pipe portion is determined by the measurement position regardless of the analysis model. Therefore, if the pipe coefficients are the same, for example, by measuring the flat amount of the straight pipe at L = 0.5D, the flat amount of the curved pipe is easily about twice the flat amount of the straight pipe. It can be calculated.

なお、図7では割愛したが、L<0.5Dの位置における扁平量の測定結果は、直管と曲管との溶接の影響等を受け、また、接続部近傍が厚肉となることからも、正確な外径を測定することができず、正確な扁平量を得ることができなかった。また、図7から明らかなように、L>1.5Dでは、曲管の扁平量に対して、直管の扁平量が極めて小さくなる(すなわち扁平比が極めて小さくなる)ため、直管の扁平量から直管の扁平量を求めることが困難である。   Although omitted in FIG. 7, the measurement result of the flat amount at the position of L <0.5D is affected by the welding of the straight pipe and the curved pipe, and the vicinity of the connection portion is thick. However, an accurate outer diameter could not be measured, and an accurate flat amount could not be obtained. Further, as is apparent from FIG. 7, when L> 1.5D, the flat tube flat amount is extremely small (that is, the flat ratio is extremely small) with respect to the flat tube flat amount. It is difficult to determine the flat amount of the straight pipe from the amount.

したがって、接続部における悪影響を受けずに、できる限り高い精度で測定を行うためには、Lは0.5D〜1.5D程度が望ましく、特に望ましくは、L=0.5D程度である。なお、前述の通り、望ましい測定部距離47はパイプ係数に依存するため、特に望ましい測定部距離については、あらかじめパイプ係数毎の扁平比を求め、扁平量の測定に影響を与えない範囲でできるだけ大きな扁平比となる測定部距離を求めればよい。   Therefore, in order to perform measurement with as high accuracy as possible without being adversely affected by the connection portion, L is preferably about 0.5D to 1.5D, and particularly preferably about L = 0.5D. As described above, since the desired measurement unit distance 47 depends on the pipe coefficient, the flatness ratio for each pipe coefficient is obtained in advance for the particularly desirable measurement unit distance and is as large as possible without affecting the measurement of the flat amount. What is necessary is just to obtain | require the measurement part distance used as an aspect ratio.

以上本発明の実施の形態によれば、直管に接続された曲管の応力が直接測定できない場合であっても、精度よく曲管の応力を測定することができる。   As described above, according to the embodiment of the present invention, even when the stress of the curved pipe connected to the straight pipe cannot be directly measured, the stress of the curved pipe can be accurately measured.

直管の扁平量は直管の外径から容易に測定することができる。また、あらかじめ求められた扁平比を用いることで、直管の扁平量から容易に曲管の扁平量を算出することができる。さらに、直管の扁平量測定位置を、直管と曲管の接続部から直管側に直管径の0.5〜1.5倍の位置に設定することで、接合部の影響を受けることなく正確に曲管の扁平量を算出することができる。   The flat amount of the straight pipe can be easily measured from the outer diameter of the straight pipe. Further, by using the flatness ratio obtained in advance, the flattening amount of the curved pipe can be easily calculated from the flattening amount of the straight pipe. In addition, the straight pipe flatness measurement position is set to a position 0.5 to 1.5 times the diameter of the straight pipe from the straight pipe-curved pipe connection section to the straight pipe side. It is possible to accurately calculate the flat amount of the bent pipe without any problem.

以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although embodiment of this invention was described referring an accompanying drawing, the technical scope of this invention is not influenced by embodiment mentioned above. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.

例えば、曲管の扁平量から曲管の応力を算出するためには、特開2003−344184号公報に記載のように、モーメントを求め、モーメントから応力を算出するとしたが、有限要素法等によって算出することもできる。また、扁平比を用いずに、直管の扁平量から、図6に示すモデルでの有限要素法等による解析で直接曲管に生じる扁平量および応力を算出することもできる。   For example, in order to calculate the stress of the bent pipe from the flat amount of the bent pipe, as described in JP-A-2003-344184, the moment is obtained and the stress is calculated from the moment. It can also be calculated. Further, without using the flatness ratio, it is possible to calculate the flattening amount and the stress directly generated in the curved pipe by the analysis by the finite element method or the like in the model shown in FIG. 6 from the flattening amount of the straight pipe.

曲管の応力評価装置1を実現するハードウェア構成図。The hardware block diagram which implement | achieves the stress evaluation apparatus 1 of a curved pipe. 曲管の応力評価装置1による応力の評価工程を示すフローチャート。The flowchart which shows the evaluation process of the stress by the stress evaluation apparatus 1 of a curved pipe. 直管35aの扁平量測定方法を示す図。The figure which shows the flat amount measuring method of the straight pipe | tube 35a. 直管35aの扁平量測定方法を示す図。The figure which shows the flat amount measuring method of the straight pipe | tube 35a. 扁平量の測定方法を示す図。The figure which shows the measuring method of flat amount. 直管53aの扁平量測定位置と曲管の扁平量との関係を調べるための試験体を示す図。The figure which shows the test body for investigating the relationship between the flat amount measurement position of the straight pipe 53a, and the flat amount of a curved pipe. 曲管端部からの距離による、直管および曲管の扁平量と解析結果との関係を示す図。The figure which shows the relationship between the flat amount of a straight pipe and a curved pipe, and the analysis result by the distance from a curved pipe edge part. 従来の曲管の応力測定方法を示す図。The figure which shows the stress measuring method of the conventional curved pipe.

符号の説明Explanation of symbols

1………曲管の応力評価装置
3………解析装置
5………扁平量測定器
7………制御部
9………記憶部
11………メディア出力部
13………通信制御部
15………入力部
17………表示部
19………周辺機器I/F部
21………バス
34………地面
35a、35b………直管
37………曲管
39………埋設管
41………扁平量測定部
43………管接続部
45………管径
47………測定部距離
49………管体
50、50a、50b………断面
51………管頂
52………管底
53a、53b………直管
55………曲管
57………管接続部
59………管径
61………測定部距離
63a、63b………フランジ
65………床
67………応力測定部
69………解析結果
71………地面
73a、73b………直管
75………曲管
DESCRIPTION OF SYMBOLS 1 ......... Stress evaluation apparatus 3 of a bending pipe ......... Analysis apparatus 5 ......... Flat measuring device 7 ......... Control part 9 ......... Storage part 11 ......... Media output part 13 ......... Communication control part 15 ......... Input unit 17 ......... Display unit 19 ......... Peripheral device I / F unit 21 ......... Bus 34 ......... Ground 35a, 35b ......... Straight pipe 37 ......... Bent pipe 39 ......... Buried pipe 41 ......... Flatness measuring part 43 ... ... Pipe connecting part 45 ... ... Pipe diameter 47 ... ... Measuring part distance 49 ... ... Pipe bodies 50, 50a, 50b ... ... Section 51 ... ... Pipe Top 52 ......... Pipe bottoms 53a and 53b ... Straight pipe 55 ... ... Curved pipe 57 ... ... Pipe connection part 59 ... ... Pipe diameter 61 ... ... Measuring part distance 63a, 63b ... ... Flange 65 ... …… Floor 67 ………… Stress measurement unit 69 ………… Analysis result 71 ……… Ground 73a, 73b ……… Straight pipe 75 ………… Bent pipe

Claims (3)

直管と曲管とが接続された管体における曲管の応力評価方法であって、
前記直管と前記曲管との接続部から前記直管側に前記直管の径の0.5〜1.5倍の位置に扁平量測定部を設定する工程(a)と、
前記扁平量測定部で直管の扁平量を測定する工程(b)と、
前記直管の扁平量に基づいて前記曲管の扁平量を算出する工程(c)と、
前記曲管の扁平量に基づいて前記曲管の応力を算出する工程(d)と、
を具備することを特徴とする曲管の応力評価方法。
A method for evaluating stress of a curved pipe in a pipe body in which a straight pipe and a curved pipe are connected,
A step (a) of setting a flat amount measuring part at a position 0.5 to 1.5 times the diameter of the straight pipe from the connecting part between the straight pipe and the curved pipe to the straight pipe side;
A step (b) of measuring a flat tube flat amount in the flat amount measuring unit;
Calculating the flat amount of the curved pipe based on the flat amount of the straight pipe;
A step (d) of calculating a stress of the bent pipe based on a flattening amount of the bent pipe;
A stress evaluation method for a curved pipe, comprising:
前記管体のパイプ係数に応じて、前記曲管の中央断面における扁平量と、扁平量測定部における前記直管の扁平量との扁平比を予め算出し、
前記工程(c)では、前記扁平比から前記曲管の扁平量を算出することを特徴とする請求項1記載の曲管の応力評価方法。
In accordance with the pipe coefficient of the tubular body, the flattening ratio between the flattening amount in the central cross section of the curved pipe and the flattening amount of the straight pipe in the flattening amount measuring unit is calculated in advance.
2. The method for evaluating stress in a curved pipe according to claim 1, wherein in the step (c), a flattening amount of the curved pipe is calculated from the flatness ratio.
直管と曲管とが接続された管体における曲管の応力評価装置であって、
前記直管と前記曲管との接続部から前記直管側に前記直管の径の0.5〜1.5倍の位置に扁平量測定部を設定する手段と、
前記扁平量測定部における前記直管の扁平量を測定する手段と、
前記直管の扁平量に基づいて、前記曲管の扁平量を算出する手段と、
前記曲管の扁平量に基づいて前記曲管の応力を算出する手段と、
を具備することを特徴とする曲管の応力評価装置。
A stress evaluation device for a curved pipe in a pipe body in which a straight pipe and a curved pipe are connected,
Means for setting a flat amount measuring unit at a position 0.5 to 1.5 times the diameter of the straight pipe from the connecting part between the straight pipe and the curved pipe to the straight pipe side;
Means for measuring a flat amount of the straight pipe in the flat amount measuring unit;
Means for calculating the flattening amount of the curved pipe based on the flattening amount of the straight pipe;
Means for calculating a stress of the bent pipe based on a flattening amount of the bent pipe;
A stress evaluation apparatus for a curved pipe, comprising:
JP2008184474A 2008-07-16 2008-07-16 Stress evaluation method for curved pipes Active JP5578773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008184474A JP5578773B2 (en) 2008-07-16 2008-07-16 Stress evaluation method for curved pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008184474A JP5578773B2 (en) 2008-07-16 2008-07-16 Stress evaluation method for curved pipes

Publications (2)

Publication Number Publication Date
JP2010025606A true JP2010025606A (en) 2010-02-04
JP5578773B2 JP5578773B2 (en) 2014-08-27

Family

ID=41731593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008184474A Active JP5578773B2 (en) 2008-07-16 2008-07-16 Stress evaluation method for curved pipes

Country Status (1)

Country Link
JP (1) JP5578773B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114034415A (en) * 2021-10-26 2022-02-11 成都飞机工业(集团)有限责任公司 Stress detection method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03176627A (en) * 1989-12-05 1991-07-31 Osaka Gas Co Ltd Estimating method for stress of depressed pipe
JPH03252538A (en) * 1990-03-02 1991-11-11 Osaka Gas Co Ltd Nondestructive stress estimating method for buried piping system
JPH05281062A (en) * 1991-03-29 1993-10-29 Osaka Gas Co Ltd Presuming method for stress or strain in bent pipe
JPH06288842A (en) * 1993-04-06 1994-10-18 Osaka Gas Co Ltd Method and device for measuring magnetostriction stress
JPH0762636B2 (en) * 1988-03-09 1995-07-05 日本鋼管株式会社 Magnetostrictive stress measurement method for cylindrical materials
JP2004028769A (en) * 2002-06-25 2004-01-29 Tokyo Gas Co Ltd Stress evaluating method for curved pipe, stress evaluating device, program, and storage medium for the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762636B2 (en) * 1988-03-09 1995-07-05 日本鋼管株式会社 Magnetostrictive stress measurement method for cylindrical materials
JPH03176627A (en) * 1989-12-05 1991-07-31 Osaka Gas Co Ltd Estimating method for stress of depressed pipe
JPH03252538A (en) * 1990-03-02 1991-11-11 Osaka Gas Co Ltd Nondestructive stress estimating method for buried piping system
JPH05281062A (en) * 1991-03-29 1993-10-29 Osaka Gas Co Ltd Presuming method for stress or strain in bent pipe
JPH06288842A (en) * 1993-04-06 1994-10-18 Osaka Gas Co Ltd Method and device for measuring magnetostriction stress
JP2004028769A (en) * 2002-06-25 2004-01-29 Tokyo Gas Co Ltd Stress evaluating method for curved pipe, stress evaluating device, program, and storage medium for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114034415A (en) * 2021-10-26 2022-02-11 成都飞机工业(集团)有限责任公司 Stress detection method
CN114034415B (en) * 2021-10-26 2022-09-20 成都飞机工业(集团)有限责任公司 Stress detection method

Also Published As

Publication number Publication date
JP5578773B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
US8941821B2 (en) System and method for uniform and localized wall thickness measurement using fiber optic sensors
Noronha Jr et al. Procedures for the strain based assessment of pipeline dents
US9734423B2 (en) System and method for image-based structural health monitoring suitable for structures having uncertain load conditions and support conditions
CA2729223A1 (en) Integrated multi-sensor non-destructive testing
JP4810876B2 (en) Bolt axial force measuring device
JP5578773B2 (en) Stress evaluation method for curved pipes
JP7078060B2 (en) Analytical instrument and diagnostic system
CN114674257A (en) High-precision thickness measuring method and device based on ultrasonic transverse wave detection
JP2010025604A (en) Bent pipe stress evaluation method and bent pipe stress evaluation device
JP2008051637A (en) Method for measuring bending stress of fixed structure, recording medium, and computer
JP4730123B2 (en) Nondestructive inspection jig and ultrasonic nondestructive inspection equipment
CN115431302B (en) Robot joint idle stroke measuring method and device, electronic equipment and storage medium
JP2014070976A (en) Piping stress evaluation device and method
CN110470254A (en) A kind of pipeline creep measurement system and method
JP4336264B2 (en) Displacement measuring device
CN112945107B (en) Component connection detection method based on image recognition and data simulation
JP3868858B2 (en) Bending pipe stress evaluation method, stress evaluation apparatus, program, storage medium
JP2023055443A (en) Estimation device, estimation method, and estimation program
CN112762874B (en) Corrugated pipe expansion joint displacement measurement method
JP2013142539A (en) Mass flowmeter
JP5995833B2 (en) Stress estimation method, stress estimation system, and stress estimation program
JP3868849B2 (en) Bending pipe stress evaluation method, stress evaluation apparatus, program, storage medium
US11506638B2 (en) Contactless odometer
JP2006194605A (en) Mechanical characteristic calculating program and mechanical characteristic measuring instrument
JP7351062B2 (en) Estimation method, estimation device, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20131017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140708

R150 Certificate of patent or registration of utility model

Ref document number: 5578773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250