JPH03252538A - Nondestructive stress estimating method for buried piping system - Google Patents

Nondestructive stress estimating method for buried piping system

Info

Publication number
JPH03252538A
JPH03252538A JP4957090A JP4957090A JPH03252538A JP H03252538 A JPH03252538 A JP H03252538A JP 4957090 A JP4957090 A JP 4957090A JP 4957090 A JP4957090 A JP 4957090A JP H03252538 A JPH03252538 A JP H03252538A
Authority
JP
Japan
Prior art keywords
stress
piping
buried
value
ground displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4957090A
Other languages
Japanese (ja)
Other versions
JP2800056B2 (en
Inventor
Yasuo Ogawa
安雄 小川
Shojiro Oka
岡 正治郎
Akiho Kamiura
神浦 秋帆
Nobuhisa Suzuki
信久 鈴木
Yuji Matoba
的場 有治
Sadaaki Sakai
禎明 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, NKK Corp, Nippon Kokan Ltd filed Critical Osaka Gas Co Ltd
Priority to JP4957090A priority Critical patent/JP2800056B2/en
Publication of JPH03252538A publication Critical patent/JPH03252538A/en
Application granted granted Critical
Publication of JP2800056B2 publication Critical patent/JP2800056B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Sewage (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PURPOSE:To estimate a stress value or strain value without requiring large-scale construction by performing small local digging within the range of earthquake displacement and analyzing the stress deformation of a buried part piping model according to the result of stress measurement. CONSTITUTION:The small local digging is carried out within the range of the influence of the earthquake sinking, landslide, etc., of the buried piping system and a stress measuring instrument which uses X rays, a magnetostriction method, an acousto-elastic method, etc., measures the current bending stress of the exposed buried piping without destruction. Consequently, the piping need not be cut. The stress of the buried piping is estimated by a stress deformation analyzing method according to the measurement result by using a signal processing method. Namely, stress measurement data on the buried piping which is measured as an absolute value and a set piping analytic model are inputted to the processing means and computer simulation is carried out so that the stress measured value equals a stress value found by the analysis. Thus, the found sinking quantity is used as an input conditions and stress values at other points in the ground displacement area are calculated as estimated values according to the condition.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、埋設配管系に対して地盤沈下や地滑り等が生
じた場合に、部分的な小掘削を行って露出した配管部の
非破壊応力測定により、地盤変位領域における埋設部配
管に生じる応力値を推定する埋設配管系の非破壊応力推
定法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a non-destructive method for removing exposed piping parts by performing small local excavations when ground subsidence or landslides occur in a buried piping system. The present invention relates to a non-destructive stress estimation method for buried piping systems that estimates stress values generated in buried piping in areas of ground displacement through stress measurements.

[従来の技術] 埋設配管系においては、道路陥没等の局所的な地盤沈下
や地滑り等を受けた場合、これらの影響による配管系の
応力値又は歪値を定量的に評価したいという要望は従来
より生じていた。
[Prior art] In the case of buried piping systems, when localized ground subsidence such as road subsidence or landslides occurs, there has been a desire to quantitatively evaluate stress or strain values in the piping system due to these effects. It was happening more.

第8図は埋設配管系の配管変位の一例を示す図であり、
図においては、当初パイプラインが一定の深さの地中に
埋設されていたが、その後地盤沈下があり、この沈下に
よる配管変位が生じた状態を示している。またパイプラ
インの二点鎖線は埋設時の変位前の状態を示し、実線は
地盤沈下により変位した状態を示している。一般に地盤
変位量d1とこの沈下による配管変位量d2も不明であ
る。従来第8図のような埋設配管系の地盤変位部に生じ
た応力値又は歪値を測定するには、埋設管路のかなり長
い延長を掘削して露出させた配管部の多くの箇所にスト
レンゲージ等の歪センサを取付け、歪測定器の初期値を
ゼロに調整しておく。
FIG. 8 is a diagram showing an example of piping displacement in a buried piping system,
The figure shows a situation in which the pipeline was initially buried underground at a certain depth, but the ground subsequently subsided, and this subsidence caused the pipe to become displaced. Furthermore, the two-dot chain line of the pipeline shows the state before displacement at the time of burial, and the solid line shows the state after displacement due to ground subsidence. Generally, the amount of ground displacement d1 and the amount of piping displacement d2 due to this subsidence are also unknown. Conventionally, in order to measure the stress or strain value that occurs in the ground displacement part of a buried piping system as shown in Figure 8, a fairly long extension of the buried pipe is excavated and many parts of the exposed piping part are strained. Install a strain sensor such as a gauge and adjust the initial value of the strain measuring device to zero.

次に配管の一部を切断し、応力を解放することによって
得られる切断前後における歪測定値の差分を当該配管系
が受けていた歪値として定量的評価を行っていた。
Next, a part of the piping is cut and the stress is released, and the difference between the measured strain values before and after the cutting is used for quantitative evaluation as the strain value that the piping system has been subjected to.

[発明が解決しようとする課題] 上記のような従来の埋設配管系の応力値又は歪値の測定
方法では、埋設配管路のかなり長い部分の掘削及び配管
の切断という大規模な工事が必要であるという問題点が
あった。
[Problems to be Solved by the Invention] The conventional method for measuring stress or strain values of buried piping systems as described above requires large-scale construction work such as excavating a fairly long section of the buried piping path and cutting the pipe. There was a problem.

またこの方法では、最大応力が発生している箇所が特定
しにくいのみならず、配管の切断前後における配管系の
応力状態の相対値は評価できるが、絶対値は評価するこ
とが困難であるという問題点があった。
In addition, with this method, it is not only difficult to identify the location where the maximum stress occurs, but although it is possible to evaluate the relative value of the stress state of the piping system before and after cutting the pipe, it is difficult to evaluate the absolute value. There was a problem.

本発明はかかる問題点を解決するためになされたもので
、埋設配管路の大規模な掘削及び配管の切断という工事
を要さずに、地盤変位領域における埋設配管系の応力値
又は歪値を推定できる埋設配管系の非破壊応力推定法を
得ることを目的とする。
The present invention has been made to solve such problems, and it is possible to calculate the stress or strain value of a buried piping system in a ground displacement area without requiring construction work such as large-scale excavation of the buried piping path and cutting of the pipe. The purpose of this study is to obtain a non-destructive stress estimation method for buried piping systems.

[課題を解決するための手段] この発明に係る埋設配管系の非破壊応力推定方法は、パ
イプラインを地中に埋設した埋設配管系が地盤変位を受
けたときに、該地盤変位の影響の範囲内で局所的な小掘
削を行ない、該小掘削により露出した配管部における応
力を非破壊測定方式により測定する非破壊応力測定手段
と、該非破壊応力測定手段から得られた応力測定結果に
より地盤変位領域における埋設部配管モデルの応力変形
解析を行い、前記応力測定値と一致する応力解析結果が
得られる地盤変位量を算出し、該算出された地盤変位量
に基づき前記地盤変位領域における埋設部配管に生ずる
応力値又は歪値を推定する信号処理手段とを備えたもの
である。
[Means for Solving the Problems] A non-destructive stress estimation method for a buried piping system according to the present invention, when a buried piping system in which a pipeline is buried underground is subjected to ground displacement, calculates the effect of the ground displacement. A small local excavation is carried out within the area, and a non-destructive stress measurement means is used to measure the stress in the exposed piping part by the small excavation using a non-destructive measurement method. A stress deformation analysis of the buried part piping model in the displacement area is performed, the amount of ground displacement that yields a stress analysis result that matches the stress measurement value is calculated, and the buried part in the ground displacement area is calculated based on the calculated amount of ground displacement. It is equipped with a signal processing means for estimating the stress value or strain value occurring in the piping.

[作用] 本発明においては、パイプラインを地中に埋設した埋設
配管系が地盤変位を受けたときに、該地盤変位の影響の
範囲内で局所的な小掘削を行ない、該小掘削により露出
した配管部における応力を非破壊応力測定手段(例えば
X線、磁気歪法、音弾性法による非破壊方式の応力測定
装置)により測定し、信号処理手段(例えばデジタル計
算機、マイクロコンピュータ)により、前記非破壊応力
測定手段から得られた応力測定結果により地盤変位領域
における埋設部配管モデルの応力変形解析を行い、前記
応力測定値と一致する応力解析結果が得られる地盤変位
量を算出し、該算出された地盤変位量に基づき前記地盤
変位領域における埋設部配管に生ずる応力値又は歪値を
推定する。
[Function] In the present invention, when a buried piping system in which a pipeline is buried underground is subject to ground displacement, a small local excavation is performed within the range of the influence of the ground displacement, and the small excavation causes the exposed area to be removed. The stress in the pipe section is measured by a non-destructive stress measuring means (for example, a non-destructive stress measuring device using X-ray, magnetostrictive method, or acousto-elastic method), and the stress in the piping section is measured by a signal processing means (for example, a digital computer, a microcomputer). Perform stress deformation analysis of the buried piping model in the ground displacement area based on the stress measurement results obtained from the non-destructive stress measurement means, calculate the amount of ground displacement that will give a stress analysis result that matches the stress measurement value, and calculate the amount of ground displacement. The stress value or strain value occurring in the buried pipe in the ground displacement area is estimated based on the ground displacement amount determined.

[実施例] 本発明は、埋設配管系に対する地盤沈下や地滑り等の影
響を埋設配管系の非破壊応力推定法により定量評価せん
とするものである。
[Example] The present invention aims to quantitatively evaluate the effects of ground subsidence, landslides, etc. on a buried piping system using a non-destructive stress estimation method for the buried piping system.

最初に本発明に係る非破壊応力推定方法の骨子を以下に
説明する。
First, the outline of the non-destructive stress estimation method according to the present invention will be explained below.

(1)まず埋設配管系の地盤性下等の影響の範囲内で、
単数又は複数の局所的な小掘削を行い、露出した配管部
の応力測定を行なう。
(1) First, within the influence of the ground quality of the buried piping system,
One or more localized small excavations are made and stress measurements are made on the exposed piping.

この応力測定は、露出した埋設配管の現状の曲げ応力を
非破壊で測定できる応力測定装置により行う。例えばX
線による応力測定装置、磁気歪法による応力測定装置、
音弾性法による応力測定装置のいずれかの装置で行えば
よい。この非破壊方式の応力測定により従来のストレン
ゲージ測定器のように配管の切断は不要となる。
This stress measurement is performed using a stress measurement device that can non-destructively measure the current bending stress of the exposed buried pipe. For example,
Stress measuring device using wire, stress measuring device using magnetostrictive method,
The measurement may be performed using any stress measuring device using the acousto-elastic method. This non-destructive method of stress measurement eliminates the need to cut pipes, unlike conventional strain gauge measuring instruments.

(2)次に(1)項で行った露出部配管の応力測定結果
に基づき、埋設部配管の応力推定を、応力変形解析法に
より行う。この方法により従来のように大規模な埋設配
管路の掘削及び配管の切断という工事は不要となる。
(2) Next, based on the stress measurement results of the exposed piping performed in section (1), stress estimation of the buried piping is performed using a stress deformation analysis method. This method eliminates the need for large-scale excavation of underground pipes and cutting of pipes, as required in the past.

以下非破壊方式の応力測定装置の実施例と、この応力測
定結果に基づく応力変形解析法の実施例について詳細に
説明する。
An example of a non-destructive stress measuring device and an example of a stress deformation analysis method based on the stress measurement results will be described in detail below.

この実施例においては、局所的な小掘削を行って露出し
た配管部の曲げ応力を非破壊で測定する装置例として、
磁歪応力測定装置の場合について述べる。
In this example, as an example of a device for non-destructively measuring the bending stress of the exposed piping part after performing a small local excavation,
The case of a magnetostrictive stress measuring device will be described.

鋼材又は鋼製構造物等の応力及び残留応力を非破壊で測
定する方法として、X線や超音波のほかに磁歪センサに
よる方法がある。この磁歪センサを用いて磁化可能な丸
棒、バイブ等円柱材料の応力を測定する方法としては先
に出願した特願昭63−153822号公報に示された
磁歪応力測定法がある。
In addition to X-rays and ultrasonic waves, methods using magnetostrictive sensors are available as methods for non-destructively measuring stress and residual stress in steel materials, steel structures, etc. As a method for measuring the stress of a magnetizable cylindrical material such as a round bar or a vibrator using this magnetostrictive sensor, there is a magnetostrictive stress measurement method disclosed in the previously filed Japanese Patent Application No. 153822/1982.

磁歪応力測定法は、磁性材料に荷重が作用すると透磁率
に異方性が生じ、荷重方向の透磁率が大きくなり、反対
に荷重方向と直角方向の透磁率が小さくなるので、両送
磁率の差を励磁コイルと検出コイルを持つ磁歪センサ(
磁気異方性センサともいう)によって検出することによ
り、主応力の方向および大きさを測定する方法である。
In the magnetostrictive stress measurement method, when a load is applied to a magnetic material, anisotropy occurs in the magnetic permeability, and the permeability in the direction of the load increases, while the permeability in the direction perpendicular to the load direction decreases. A magnetostrictive sensor with an excitation coil and a detection coil (
This method measures the direction and magnitude of principal stress by detecting it with a magnetic anisotropy sensor (also called a magnetic anisotropy sensor).

この測定方法によると、−点の測定時間がlO〜100
■secですみ、取扱いもきわめて便宜である。
According to this measurement method, the measurement time at the - point is 10~100
■It takes only seconds and is extremely convenient to handle.

ところが、従来の磁歪応力測定法は、一般に磁歪センサ
を被測定面に接触させて行うものであるため、被測定面
の状態によって接触面における磁気抵抗が大きく異なる
。そのため、測定誤差が大きくなるという欠点があった
However, since conventional magnetostrictive stress measurement methods are generally performed by bringing a magnetostrictive sensor into contact with a surface to be measured, the magnetic resistance at the contact surface varies greatly depending on the state of the surface to be measured. Therefore, there was a drawback that the measurement error became large.

そこで、非接触状態、すなわち磁歪センサを被測定面か
ら一定の距離だけ離した状態で測定するという考え方が
出てくるわけであるが、この場合は磁歪感度が低下する
ため、磁歪センサの設定にありきわめて微妙な調整が必
要であるという別の問題があった。
Therefore, the idea of measuring in a non-contact state, that is, with the magnetostrictive sensor a certain distance away from the surface to be measured, has come up, but in this case, the magnetostrictive sensitivity decreases, so the settings of the magnetostrictive sensor must be adjusted. There was another problem that required some very delicate adjustments.

前記先願の発明においては、前記非接触計測における問
題点を解決し、磁化可能な丸棒、ノくイブ等の円柱材料
に対する磁歪応力測定法を非接触方式で実施できる装置
を開発し、その測定装置を使用して円柱材料の円周方向
の応力分布を従来よりも精度良く測定できる方法を提供
した。
The invention of the earlier application solves the problems in the non-contact measurement and develops a device that can perform magnetostrictive stress measurement on cylindrical materials such as magnetizable round bars and knobs in a non-contact manner. We have provided a method that uses a measuring device to measure the stress distribution in the circumferential direction of a cylindrical material with higher accuracy than before.

第1図は先の出願に係る磁歪応力測定法を説明する図で
あり、同図(a)は円柱材料1に曲げ荷重を加えて、円
柱材料1の上側に引張り応力+σ、下側に圧縮応力−σ
が働いている状態を示す。また同図(b)は円柱材料1
の中心軸に対して垂直に、且つその外周面と一定の距離
りのリフト・オフ(ギャップのこと)を保ちながら、磁
歪センサ2を円柱材料1の最上点即ち0″の角度位置よ
り時計廻り方向に円周方向に沿って1回転させて、磁歪
センサ2がO″〜380°間のそれぞれの角度位置にお
いて検出する磁歪信号を連続的に測定する方法を示して
いる。
FIG. 1 is a diagram explaining the magnetostrictive stress measurement method according to the previous application, and FIG. Stress - σ
indicates that it is working. In addition, the same figure (b) shows the cylindrical material 1.
While maintaining a lift-off (gap) perpendicular to the central axis of the cylinder and a certain distance from the outer circumferential surface, move the magnetostrictive sensor 2 clockwise from the top point of the cylindrical material 1, that is, the 0'' angular position. This figure shows a method of continuously measuring magnetostrictive signals detected by the magnetostrictive sensor 2 at each angular position between 0'' and 380° by making one rotation along the circumferential direction.

第2図は第1図の磁歪応力測定法によるSIN近似法を
説明する図であり、同図(a)は磁歪センサ2が円柱材
料1の外周上の方位を示す角度とその応力分布を示し、
角度0″ (即ち円柱材料1の真上)において最大引張
り応力が、角度180@(即ち円柱材料1の真下)にお
いて最大圧縮応力が発生することから、応力分布はSI
Nθ曲線に近似して分布する。
FIG. 2 is a diagram for explaining the SIN approximation method using the magnetostrictive stress measurement method shown in FIG. ,
Since the maximum tensile stress occurs at an angle of 0'' (i.e. directly above the cylindrical material 1) and the maximum compressive stress occurs at an angle of 180@ (i.e. directly below the cylindrical material 1), the stress distribution is SI
The distribution approximates the Nθ curve.

第2図(b)は−20kg /−の荷重を円柱材料に加
えたときの、歪ゲージによる応力の実測値とSINθ近
似値とを示している。この図から実際の応力分布とSI
Nθ曲線とはかなり近似していることが判る。
FIG. 2(b) shows the actual value of stress measured by the strain gauge and the approximate value of SINθ when a load of -20 kg/- is applied to the cylindrical material. From this figure, the actual stress distribution and SI
It can be seen that it is quite similar to the Nθ curve.

従ってこのSINθ近似値と歪ゲージ等により実測した
応力値とを対応させた較正曲線をあらかじめ用意してお
くことにより、曲げ応力の絶対値を磁歪応力測定法によ
り測定することができる。
Therefore, by preparing in advance a calibration curve in which this SINθ approximate value corresponds to stress values actually measured using a strain gauge or the like, the absolute value of bending stress can be measured by the magnetostrictive stress measurement method.

以上により磁歪応力測定法の説明を終了し、次に磁歪応
力測定装置について説明する。
This concludes the explanation of the magnetostrictive stress measuring method, and next the magnetostrictive stress measuring device will be explained.

第3図は本発明に係る露出配管部における管の曲げ応力
を測定する装置例としての磁歪応力測定装置のブロック
図である。図においてIOは走行装置部であり、磁気異
方性センサト1及び走行台車12を内蔵する。磁気異方
性センサ11は非接触により管材の円周方向の磁気異方
性を検出するためのセンサであり、例えば直交する励磁
コイルと検出コイルとを備え、励磁コイルに一定の励振
電流を流して、応力の作用によって生じる磁気異方性を
検出コイルから得られる電圧信号として検出するもので
ある。走行台車1zは例えば管外周上に設けられたレー
ル又は/及びギヤ上を走行し、磁気異方性センサ11を
管の円周方向に移動させ計測を行わせるための走行機構
である。13は磁歪測定部であり、磁気異方性センサ1
1の励磁コイルに定電流を供給し、同時に該センサ11
の検出コイルより得られる検出信号を増幅し、磁気異方
性に比例した電圧信号として出力する磁歪測定部である
。14はモータ・ドライバであり、走行台車12に走行
駆動信号を供給し走行させ、その走行結果の位置情報と
してエンコーダ信号が帰還される。15はA/D変換器
、16は例えばR8232C等のインタフェース、I7
はパーソナル・コンピュータ(以下パソコンという)、
18はCRT又は液晶等を用いたデータ表示部である。
FIG. 3 is a block diagram of a magnetostrictive stress measuring device as an example of a device for measuring bending stress of a pipe in an exposed piping section according to the present invention. In the figure, IO is a traveling unit, which includes a magnetic anisotropic sensor 1 and a traveling trolley 12. The magnetic anisotropy sensor 11 is a sensor for detecting magnetic anisotropy in the circumferential direction of a pipe material in a non-contact manner, and includes, for example, an excitation coil and a detection coil that are perpendicular to each other, and a constant excitation current is passed through the excitation coil. The magnetic anisotropy caused by the action of stress is detected as a voltage signal obtained from a detection coil. The traveling trolley 1z is a traveling mechanism that travels, for example, on rails and/or gears provided on the outer periphery of the tube, and moves the magnetic anisotropy sensor 11 in the circumferential direction of the tube to perform measurements. 13 is a magnetostriction measuring section, and magnetic anisotropy sensor 1
A constant current is supplied to the excitation coil of sensor 11, and at the same time
This is a magnetostriction measurement unit that amplifies the detection signal obtained from the detection coil and outputs it as a voltage signal proportional to magnetic anisotropy. Reference numeral 14 denotes a motor driver which supplies a driving signal to the traveling trolley 12 to cause it to travel, and returns an encoder signal as position information as a result of the traveling. 15 is an A/D converter, 16 is an interface such as R8232C, I7
is a personal computer (hereinafter referred to as a personal computer),
18 is a data display section using a CRT or liquid crystal.

第3図の動作を説明する。管材の円周方向の応力を測定
するには、例えば管材の中心軸に対する垂直面上の管材
外周面に、図示されないレール又は/及びギヤを取付け
、このレール又は/及びギヤ上にホルダを介して走行装
置部10を走行可能に取付ける。次にパソコン17はイ
ンタフェース16を介してモータ・ドライバ14に1回
転の走行指令を与え、モータ・ドライバ14は前記レー
ル又は/及びギヤ上の走行装置10を管周に沿って1回
転走行させる。この走行中に、磁気異方性センサ11(
磁歪センサ2と同一のもの)が第1図(b)に示される
管材外周面上の09〜360°間の各角度位置において
、該センサ11からそれぞれ検出された各検出信号は磁
歪測定部13により信号増幅後出力され、さらに該出力
はA/D変換器15により量子化され、パソコン17に
供給される。パソコン17は磁気異方性センサ11の管
材外周上の方位を示す各角度に対する磁歪測定部13か
らの測定値、又は/及びこの測定値をSIN近似曲線に
より近似した応力計測データを、図形もしくは数値表示
形式により、データ表示部工8に表示させ、必要の場合
図示されないプリンタによりハードコピーを出力する。
The operation shown in FIG. 3 will be explained. To measure the stress in the circumferential direction of a tube, for example, a rail or/and gear (not shown) is attached to the outer peripheral surface of the tube on a plane perpendicular to the central axis of the tube, and a holder is placed on the rail or/and gear. The traveling device section 10 is installed so that it can travel. Next, the personal computer 17 gives a traveling command for one rotation to the motor driver 14 via the interface 16, and the motor driver 14 causes the traveling device 10 on the rail or/and gear to travel one rotation along the tube circumference. During this traveling, the magnetic anisotropy sensor 11 (
Each detection signal detected by the sensor 11 at each angular position between 09° and 360° on the outer circumferential surface of the tube shown in FIG. The signal is amplified and outputted by the A/D converter 15, and the output is quantized by the A/D converter 15 and supplied to the personal computer 17. The personal computer 17 converts the measured values from the magnetostrictive measurement unit 13 for each angle indicating the direction on the outer circumference of the tube material of the magnetic anisotropy sensor 11 and/or the stress measurement data obtained by approximating the measured values by a SIN approximation curve into graphic or numerical form. Depending on the display format, the data display section 8 displays the data, and if necessary, outputs a hard copy using a printer (not shown).

本測定装置のデータ表示部18に表示された応力計測デ
ータ又はプリンタにより出力されたハードコピーデータ
に基づき、次の信号処理である増設部配管系の非破壊応
力推定処理を行うことができる。
Based on the stress measurement data displayed on the data display section 18 of this measuring device or the hard copy data output by the printer, the next signal processing, which is non-destructive stress estimation processing for the extension piping system, can be performed.

また上記実施例においては、露出配管部に働いている管
の曲げ応力を非破壊で測定する装置として磁歪応力測定
装置の例を示したが、本発明はこれに限定されるもので
はなく、X線による応力測定装置や音弾性法による応力
測定装置等の非破壊方式で応力を測定できる装置であれ
ば、いずれの装置によってもよい。
Furthermore, in the above embodiment, an example of a magnetostrictive stress measuring device was shown as a device for non-destructively measuring the bending stress of the pipe acting on the exposed piping section, but the present invention is not limited to this. Any device that can measure stress in a non-destructive manner, such as a stress measuring device using a wire or a stress measuring device using an acousto-elastic method, may be used.

上記いずれかの応力測定装置を用いて、局所約手掘削を
行って露出した埋設配管部の所要数箇所Jごついで応力
測定を行う。
Using one of the stress measuring devices described above, stress measurements are performed at a required number of locations J of the buried piping section exposed by local manual excavation.

第7図は埋設配管系の一部を小掘削し、その露出配管部
の応力測定を行う状態を説明する図である。同図の矢印
で示される露出配管部の測定箇所に−)いて測定を行い
、その応力測定値σ 、σ 。
FIG. 7 is a diagram illustrating a state in which a small portion of a buried piping system is excavated and the stress of the exposed piping portion is measured. Measurements were taken at the measurement points of the exposed piping section indicated by the arrows in the same figure, and the stress measurement values σ and σ were measured.

】  2 σ3・・・等を得る。]  2 Obtain σ3...etc.

次に前記露出配管部の応力側結果に基づく埋設配管系の
応力推定法につき説明する。
Next, a method for estimating the stress of the buried piping system based on the stress side results of the exposed piping section will be explained.

第4図は本発明に係る埋設配管系の応力推定処理の流れ
図である。
FIG. 4 is a flowchart of stress estimation processing for a buried piping system according to the present invention.

第5図は第4図の配管応力変形解析に使用する解析モデ
ルの一例を示す図である。
FIG. 5 is a diagram showing an example of an analytical model used for the pipe stress deformation analysis of FIG. 4.

第5図を参照し第4図の説明を行う。第4図の流れ図に
よる応力推定処理は、例えばデジタル計算機やマイクロ
コンピュータ等の信号処理手段を用いて実施する。同図
のステップS1においては、前記応力測定装置から得ら
れた露出配管部の所要位置についての応力測定データを
信号処理手段に人力する。この応力測定データは絶対値
として計測されたものである。次にステップS2におい
て、配管解析モデルを設定し、この設定データを同様に
信号処理手段に入力する。
FIG. 4 will be explained with reference to FIG. The stress estimation process according to the flowchart of FIG. 4 is performed using a signal processing means such as a digital computer or a microcomputer, for example. In step S1 in the same figure, stress measurement data regarding a desired position of the exposed piping section obtained from the stress measurement device is manually input to the signal processing means. This stress measurement data is measured as an absolute value. Next, in step S2, a piping analysis model is set, and this setting data is similarly input to the signal processing means.

第5図はこの配管解析モデルの一例を示す図であり、同
図においては、パイプラインは地表面より深さ1600
+n+sに埋設されており、パイプラインの途中に設け
られたバルブを含む部分を局所的に小掘削し、応力測定
点J1における応力値を測定している。また解析条件と
しては、例えば管径×管厚データとして200 Aの管
径21B、3φ×管厚5.8鶴、地盤変位領域長Ωは5
 m %応力測定点J1と最大歪発生推定ポイント間の
距離は350hm、地盤変位量は最小5cmから5cm
ピッチ毎に最大40cmまで、などのデータを信号処理
手段に入力する。
Figure 5 is a diagram showing an example of this piping analysis model. In the figure, the pipeline is located at a depth of 1600 m below the ground surface.
+n+s, and a small area including a valve installed in the middle of the pipeline is excavated locally, and the stress value at the stress measurement point J1 is measured. In addition, as analysis conditions, for example, the pipe diameter x pipe thickness data is 200A pipe diameter 21B, 3φ x pipe thickness 5.8mm, and the ground displacement area length Ω is 5.
The distance between the m% stress measurement point J1 and the estimated maximum strain point is 350hm, and the amount of ground displacement is between 5cm and 5cm.
Data such as pitch up to a maximum of 40 cm is input to the signal processing means.

第4図のステップS3において、前記埋設部端盤を非線
形バネとし、埋設部に基準沈下量(例えば前記5anか
ら5anピツチ毎に40(7)まで)を与えて配管応力
変形解析を行う。一般に配管解析モデルと地盤沈下量が
与えられると、配管系の応力変形を非線形有限要素解析
プログラム等により解析する技術は既に公知である。例
えば土木学会第44回年次学術講演会講演概要集(第1
部)、平成元年10月、“地盤の永久変位による埋設パ
イプラインの変形挙動”対日はか、p、1138〜11
89、同学会第43回年次学術講演会講演概要(第1部
)、昭和63年IO月、“埋設管路の非線形挙動の無次
元表示”絵本ほか、p、1138〜1139の文献など
にその技術内容が開示されている。
In step S3 of FIG. 4, a pipe stress deformation analysis is performed by using the buried part end plate as a nonlinear spring and giving a standard settlement amount to the buried part (for example, from 5 ann to 40 (7) for every 5 ann pitch). Generally, when a piping analysis model and the amount of ground subsidence are given, techniques for analyzing stress deformation of a piping system using a nonlinear finite element analysis program are already known. For example, the 44th Annual Academic Conference of the Japan Society of Civil Engineers (Vol. 1)
(Part), October 1989, “Deformation behavior of buried pipelines due to permanent displacement of the ground”, Japan, p. 1138-11.
89, Summaries of the 43rd Annual Academic Conference of the Society (Part 1), IO, 1986, “Dimensionless Representation of Nonlinear Behavior of Buried Pipelines,” picture book, etc., p. 1138-1139, etc. The technical details are disclosed.

第4図のステップS4においては、ステップS1にて応
力測定データを入力した測定位置(以下節点という)に
おいて、応力測定値とステップS3にて配管応力変形解
析により求めた応力値又は歪値が等しくなるように信号
処理手段を用いてコンピュータシミュレーションを行な
い、地盤変位領域における埋設配管系の他の節点の沈下
量を算出する。即ちこのシミュレーションにより得られ
る沈下量に基づき配管解析モデルの節点において解析さ
れた応力解析値と、実測された応力測定値とが一致する
ように地盤の変位j1(入力条件)を逆に求めるわけで
ある。ステップS5においては、ステップS4にて応力
の解析値と実測値とが一致するようにして求めた沈下量
を入力条件として、この沈下量に基づき地盤変位領域に
おける埋設配管系の他の節点の応力値又は歪値を推定値
として算出する。ステップS6においては、ステップS
5にて推定した配管系全体の外力と各節点の応力値又は
歪値を信号処理手段より記録器又は表示器を介して出力
する。
In step S4 of FIG. 4, at the measurement position (hereinafter referred to as a node) where the stress measurement data was input in step S1, the stress measurement value and the stress value or strain value determined by the pipe stress deformation analysis in step S3 are equal. A computer simulation is performed using signal processing means to calculate the amount of settlement of other nodes of the buried piping system in the ground displacement area. In other words, based on the amount of settlement obtained by this simulation, the ground displacement j1 (input condition) is calculated inversely so that the stress analysis value analyzed at the node of the piping analysis model matches the actually measured stress measurement value. be. In step S5, the input condition is the amount of settlement determined so that the analytical value and the measured value of stress match in step S4, and the stress at other nodes of the buried piping system in the ground displacement area is calculated based on this amount of settlement. Calculate the value or distortion value as an estimated value. In step S6, step S
The external force of the entire piping system estimated in step 5 and the stress value or strain value of each node are output from the signal processing means via a recorder or a display.

第6図は第5図の解析モデルにより埋設配管系の歪値を
推定した結果を示す図である。
FIG. 6 is a diagram showing the results of estimating the strain value of the buried piping system using the analytical model shown in FIG. 5.

同図は第5図の解析モデル及び解析条件に基づき地盤変
位量を最小5anから5cmピッチ毎に最大40cmと
して与えた結果として得られた図である。
This figure is a diagram obtained as a result of setting the amount of ground displacement from a minimum of 5 an to a maximum of 40 cm at every 5 cm pitch based on the analysis model and analysis conditions of FIG. 5.

同図によると、Δ印で示される応力測定点J1では応力
値σ−17kg/−1(歪値ε−0,08%)が測定で
確認されており、この場合の丸印で示される配管解析に
よる沈下量は15cmとなる。ここで入力沈下量d −
15001を与え、この解析モデルにより埋設配管系の
応力値又は歪値の推定を行った結果、地盤変位領域内の
最大歪発生位置(第5図で示された地盤変位領域の中心
)で得られる最大歪値ε−0,75%が得られる。この
値が解析モデルにおける推定歪値であり、このようにし
てその他の節点の応力値又は歪値を推定値として算出す
ることができる。
According to the same figure, stress value σ-17kg/-1 (strain value ε-0.08%) was confirmed by measurement at stress measurement point J1 indicated by Δ mark, and in this case the piping indicated by circle mark The amount of settlement according to the analysis is 15 cm. Here, the input settlement amount d −
15001 and estimate the stress or strain value of the buried piping system using this analytical model, it is obtained at the position of maximum strain occurrence within the ground displacement area (the center of the ground displacement area shown in Figure 5). A maximum strain value ε-0.75% is obtained. This value is an estimated strain value in the analytical model, and in this way, stress values or strain values at other nodes can be calculated as estimated values.

[発明の効果] 以上のようにこの発明によれば、パイプラインを地中に
埋設した埋設配管系が地盤変位を受けたときに、該地盤
変位の影響の範囲内で局所的な小掘削を行ない、該小掘
削により露出した配管部における応力非破壊応力測定手
段により測定し、該応力測定結果により地盤変位領域に
おける埋設部配管モデルの応力変形解析を行って算出さ
れた地盤変位量に基づき、前記地盤変位領域における埋
設部配管に生ずる応力値又は歪値を推定するようにした
ので、埋設配管系の応力状態を非破壊且つ部分約手掘削
で推定することができ、安全対策の要否やその順位付は
等の予防保全が簡易に行えるようになったという効果が
得られる。
[Effects of the Invention] As described above, according to the present invention, when a buried piping system in which a pipeline is buried underground is subjected to ground displacement, small local excavation can be performed within the influence of the ground displacement. Based on the amount of ground displacement calculated by performing stress deformation analysis of the buried pipe model in the ground displacement area based on the stress measurement results, Since the stress or strain value occurring in the buried piping in the ground displacement area is estimated, the stress state of the buried piping system can be estimated non-destructively and by partial manual excavation, and it is possible to determine whether safety measures are necessary or not. The effect of ranking is that preventive maintenance such as ranking can be easily performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)及び(b)は先願に係る磁歪応力測定法を
説明する図、第2図(a)及び(b)は第1図の磁歪応
力測定法によるSIN近似法を説明する図、第3図は本
発明に係る露出配管部における管の曲げ応力を測定する
装置例としての磁歪応力測定装置のブロック図、第4図
は本発明に係る埋設配管系の応力推定処理の流れ図、第
5図は第4図の配管応力変形解析に使用する解析モデル
の一例を示す図、第6図は第5図の解析モデルにより埋
設配管系の歪値を推定した結果を示す図、第7図は埋設
配管系の一部を小掘削し、その露出配管部の応力測定を
行う状態を説明する図、第8図は埋設配管系の配管変位
の一例を示す図である。 図において、1は円柱材料、2は磁歪センサ、IOは走
行装置部、11は磁気異方性センサ、12は走行台車、
13は磁歪測定部、14はモータ・ドライバ、15はA
/D変換器、1Bはインタフェース、17はパソコン、
18はデータ表示部である。
Figures 1 (a) and (b) are diagrams explaining the magnetostrictive stress measurement method according to the prior application, and Figures 2 (a) and (b) are diagrams explaining the SIN approximation method using the magnetostriction stress measurement method of Figure 1. 3 is a block diagram of a magnetostrictive stress measuring device as an example of a device for measuring the bending stress of a pipe in an exposed piping section according to the present invention, and FIG. 4 is a flowchart of stress estimation processing for a buried piping system according to the present invention. , Figure 5 is a diagram showing an example of the analytical model used for the piping stress deformation analysis in Figure 4, Figure 6 is a diagram showing the results of estimating the strain value of the buried piping system using the analytical model in Figure 5, FIG. 7 is a diagram illustrating a state in which a small portion of a buried piping system is excavated and the stress of the exposed piping portion is measured, and FIG. 8 is a diagram showing an example of piping displacement in the buried piping system. In the figure, 1 is a cylindrical material, 2 is a magnetostrictive sensor, IO is a traveling unit, 11 is a magnetic anisotropy sensor, 12 is a traveling trolley,
13 is a magnetostriction measuring section, 14 is a motor driver, 15 is A
/D converter, 1B is interface, 17 is personal computer,
18 is a data display section.

Claims (1)

【特許請求の範囲】[Claims] パイプラインを地中に埋設した埋設配管系が地盤変位を
受けたときに、該地盤変位の影響の範囲内で局所的な小
掘削を行ない、該小掘削により露出した配管部における
応力を非破壊応力測定手段により測定し、該応力測定結
果により地盤変位領域における埋設部配管モデルの応力
変形解析を行い、前記応力測定値と一致する応力解析結
果が得られる地盤変位量を算出し、該算出された地盤変
位量に基づき前記地盤変位領域における埋設部配管に生
ずる応力値又は歪値を推定することを特徴とする埋設配
管系の非破壊応力推定法。
When a buried piping system with a pipeline buried underground experiences ground displacement, a small local excavation is performed within the area affected by the ground displacement, and stress in the exposed piping part due to the small excavation is non-destructively reduced. Measured by a stress measuring means, perform stress deformation analysis of the buried piping model in the ground displacement area based on the stress measurement results, calculate the amount of ground displacement for which a stress analysis result that matches the stress measurement value is obtained, and A non-destructive stress estimation method for a buried piping system, comprising estimating a stress value or a strain value occurring in the buried piping in the ground displacement area based on the ground displacement amount.
JP4957090A 1990-03-02 1990-03-02 Non-destructive stress estimation method for buried piping system Expired - Lifetime JP2800056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4957090A JP2800056B2 (en) 1990-03-02 1990-03-02 Non-destructive stress estimation method for buried piping system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4957090A JP2800056B2 (en) 1990-03-02 1990-03-02 Non-destructive stress estimation method for buried piping system

Publications (2)

Publication Number Publication Date
JPH03252538A true JPH03252538A (en) 1991-11-11
JP2800056B2 JP2800056B2 (en) 1998-09-21

Family

ID=12834871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4957090A Expired - Lifetime JP2800056B2 (en) 1990-03-02 1990-03-02 Non-destructive stress estimation method for buried piping system

Country Status (1)

Country Link
JP (1) JP2800056B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06288841A (en) * 1993-03-30 1994-10-18 Osaka Gas Co Ltd Method for measuring stress of underground buried pipe
JP2010025606A (en) * 2008-07-16 2010-02-04 Tokyo Gas Co Ltd Bent pipe stress evaluation method and bent pipe stress evaluation device
JP2015152403A (en) * 2014-02-13 2015-08-24 国立研究開発法人農業・食品産業技術総合研究機構 Piping bending strain estimation method and piping safety factor evaluation method using the same
JP2016075617A (en) * 2014-10-08 2016-05-12 Jfeエンジニアリング株式会社 Valve stress detection method, and valve life prediction method using the method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06288841A (en) * 1993-03-30 1994-10-18 Osaka Gas Co Ltd Method for measuring stress of underground buried pipe
JP2010025606A (en) * 2008-07-16 2010-02-04 Tokyo Gas Co Ltd Bent pipe stress evaluation method and bent pipe stress evaluation device
JP2015152403A (en) * 2014-02-13 2015-08-24 国立研究開発法人農業・食品産業技術総合研究機構 Piping bending strain estimation method and piping safety factor evaluation method using the same
JP2016075617A (en) * 2014-10-08 2016-05-12 Jfeエンジニアリング株式会社 Valve stress detection method, and valve life prediction method using the method

Also Published As

Publication number Publication date
JP2800056B2 (en) 1998-09-21

Similar Documents

Publication Publication Date Title
EP1965206A1 (en) Corrosion evaluation device, and corrosion evaluation method
Spruit et al. Detection of anomalies in diaphragm walls with crosshole sonic logging
Gallage et al. Use of particle image velocimetry (PIV) technique to measure strains in geogrids
JPH03252538A (en) Nondestructive stress estimating method for buried piping system
Faulkner Determination of bridge response using acceleration data.
JPH03185323A (en) Method for estimating stress in pipe at underground part based on measurement of stress in pipe at mounting part
JP2005127963A (en) Nondestructive inspection method and its apparatus
JP3130106B2 (en) Stress measurement method using magnetostrictive sensor
Clark et al. Fatigue load monitoring in steel bridges with Rayleigh waves
JP3159132B2 (en) Method for measuring stress in steel pipes
JPH03176629A (en) Calibrating and measuring method for bending stress of pipe
Wu et al. Feasibility study of an active sensing approach to detect soil slope interlayer slide using piezoceramic buzzers
JPH03176627A (en) Estimating method for stress of depressed pipe
JP4262609B2 (en) Magnetostrictive sensitivity calibration method and apparatus
JP6554065B2 (en) Method and system for evaluating deterioration state of metal structure
JP3080418B2 (en) Method for estimating stress or strain in curved pipe section
McGrath et al. Instrumentation for monitoring buried pipe behavior during backfilling
JP4634628B2 (en) Degradation diagnosis method for steel
JPH03176628A (en) Stress estimating method by fixation of bending stress direction of tube
Johnson Measurement of forces and neutral temperatures in railway rails-an introductory study
Akutagawa et al. Nondestructive stress measurement of H-beams used as rock support structures
JPH0769224B2 (en) Bending stress estimation method for pipes
JPH0886775A (en) Method for evaluating durability of structure
Ma Study examining idealised corrosion pits in metal pipes under longitudinal bending
Lazzarin Measurement of soil stresses in small scale laboratory model tests on granular soils

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080710

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080710

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080710

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090710

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090710

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100710

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100710

Year of fee payment: 12