JP2010023188A - Swing discharge machining method and swing discharge machining apparatus in engraving discharge machining operation - Google Patents

Swing discharge machining method and swing discharge machining apparatus in engraving discharge machining operation Download PDF

Info

Publication number
JP2010023188A
JP2010023188A JP2008187828A JP2008187828A JP2010023188A JP 2010023188 A JP2010023188 A JP 2010023188A JP 2008187828 A JP2008187828 A JP 2008187828A JP 2008187828 A JP2008187828 A JP 2008187828A JP 2010023188 A JP2010023188 A JP 2010023188A
Authority
JP
Japan
Prior art keywords
machining
feed
divided
depth direction
swing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008187828A
Other languages
Japanese (ja)
Other versions
JP5084650B2 (en
Inventor
Yoshio Shiratori
義雄 白鳥
Wataru Mizutani
亘 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sodick Co Ltd
Original Assignee
Sodick Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodick Co Ltd filed Critical Sodick Co Ltd
Priority to JP2008187828A priority Critical patent/JP5084650B2/en
Publication of JP2010023188A publication Critical patent/JP2010023188A/en
Application granted granted Critical
Publication of JP5084650B2 publication Critical patent/JP5084650B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a desired machining condition of a machining operation such as a drilling operation, a through-hole boring operation or the like having multi-stage machining conditions combined by an NC program, without modifying or changing the program, only by inputting and setting the number of divisions and a feed quantity of the division. <P>SOLUTION: A position is selected that is located at a prescribed length before a feed finish position in the direction of a machining depth by the NC program. A machining feed length to a machining feed finish position from this position and a swing quantity of an enlarged swing in the direction of a side surface at the position before the feed finish position are divided into micro machining sections of a previously selected number of divisions. A swing discharge machining operation from the position before the feed finish position by the movement in the direction of depth and the direction of swing for each of the micro division machining sections is sequentially advanced to the feed finish position without changing an electric machining condition to the position before the feed finish position by deciding whether or not the machining operation is completed for each of the micro division machining sections to switch to a next machining operation of the NC program. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、形彫放電加工における揺動放電加工方法及び該揺動放電加工方法の実施に使用する揺動放電加工装置に関する。 The present invention relates to an oscillating electric discharge machining method in sculpture electric discharge machining and an oscillating electric discharge machining apparatus used for the implementation of the oscillating electric discharge machining method.

形彫り放電加工は、被加工体に所望の形状の穴を形成するものであり、その所望の形状に対応する形状を有する総型の電極を用いて、その電極の形状を被加工体に転写するように加工する方法や、単純な形状の電極、例えば小形の柱状電極を用い、て被加工体に所望の形状を加工する輪郭加工や創成加工と言われる加工方法などがある。 Die-sinking electric discharge machining is to form a hole of a desired shape in the workpiece, and using the electrode of the total shape having a shape corresponding to the desired shape, the shape of the electrode is transferred to the workpiece. And a processing method called a contour processing or a creation processing for processing a desired shape on a workpiece by using a simple shape electrode, for example, a small columnar electrode.

一つの加工形状を、例えば荒加工から仕上げ加工までの如くいくつかの加工工程に分けて放電加工するときは、各加工工程で設定される各電気的な加工条件の値が異なるので、そのときの電極の消耗度や放電ギャップの大きさが異なる。従って、各加工工程毎に、その加工工程において目標とする加工穴の輪郭形状と電気的な加工条件に基づく放電ギャップを考慮して電極を製作し、各加工工程毎に電極を準備して加工する必要がある。このため、加工工程が多数になると、その分電極も必要になり、複数の相似の電極を製作することは、作業が煩雑でそれだけ時間を要することになるから、一つの加工形状を加工するために全体的に要する作業時間は相当要することになる。 When electric discharge machining is performed by dividing one machining shape into several machining processes such as rough machining to finishing machining, the values of each electrical machining condition set in each machining process are different. The degree of wear of the electrodes and the size of the discharge gap are different. Therefore, for each machining process, an electrode is manufactured in consideration of the discharge hole based on the contour shape of the machining hole targeted in the machining process and the electrical machining conditions, and the electrode is prepared and machined for each machining process. There is a need to. For this reason, when the number of processing steps becomes large, the corresponding number of electrodes is required, and manufacturing a plurality of similar electrodes is complicated and requires time, so that one processing shape is processed. Therefore, the work time required for the whole process is considerably long.

そこで、一つの加工形状の放電加工において使用する電極の本数をできる限り減らすため、また、使用する電極が複数であっても同形の電極を使用することができるように、電極を加工穴の深さ方向(以下、加工深さ方向という)にだけ被加工体に対して相対移動(サーボ送り動作を含む)させるだけでなく、加工深さ方向と直角な側面方向にも電極を相対移動させて側面方向の加工も同時に加工する方法が、所謂揺動放電加工方法として知られて居り、電極の加工深さ方向のサーボ制御による相対移動の送りと、側面方向の設定またはサーボ制御による相対的加工送り移動とを種々の態様で組合せ、或いは結合させた揺動放電加工方法が知られている。 Therefore, in order to reduce the number of electrodes used in electrical discharge machining of one machining shape as much as possible, and to use the same shape electrode even if there are a plurality of electrodes used, the electrodes are formed in the depth of the machining hole. In addition to the relative movement (including servo feed operation) with respect to the workpiece only in the vertical direction (hereinafter referred to as the machining depth direction), the electrode is also moved relative to the side direction perpendicular to the machining depth direction. The method of machining at the same time in the lateral direction is known as the so-called oscillating electric discharge machining method. Feeding of relative movement by servo control in the machining depth direction of the electrode and relative machining by setting of the side direction or servo control. An oscillating electric discharge machining method in which feed movement is combined or combined in various ways is known.

特開平03−154717号公報Japanese Patent Laid-Open No. 03-154717 特開平03−270825号公報Japanese Patent Laid-Open No. 03-270825 特許第3856159号公報Japanese Patent No. 3856159 特許第3807189号公報Japanese Patent No. 3807189 特開昭56−27743号公報JP 56-27743 A

斯種揺動放電加工方法の基本的な具体例を図により説明する。図4及び図5は、前述したような揺動放電加工における電極と被加工体の荒加工から仕上げ加工までの四段階の加工工程における動きを、加工深さ方向の加工〔図4〕と、これと直角な側面方向の加工〔図5〕とに分けて、側方見で示したものである。 A basic specific example of such a swing electric discharge machining method will be described with reference to the drawings. FIGS. 4 and 5 show the movement in the four-step machining process from rough machining to finishing of the electrode and workpiece in the swing electric discharge machining as described above, machining in the machining depth direction (FIG. 4), This is divided into processing in the side direction perpendicular to this [FIG. 5] and is shown in a side view.

即ち、図4は、電極1、被加工体2間の加工深さ方向(Z軸)の前記4段階の各加工工程により加工深さ方向に送り込まれた送り込み長さHDの説明図で、Eは電極で、E0は加工開始時の位置、E1〜E4は前記4段階の加工工程による各工程の加工が終了したときの電極の位置であり、GD0、GD1〜GD4は同じく設定加工条件での加工間隙長(又は、加工深さ若しくは底面方向のオーバカット)、RD1〜RD4は各加工工程の加工終了時の底面の面粗度、Dは加工目的の加工穴の深さ、B0は仕上げ穴の底面で、加工工程の第2段目以後の加工は、実質上又は最小限直前の加工工程の加工により加工穴の底面に形成された加工面粗度分を除去加工するものとする設定で、前記各加工段階での送り込み量HD1〜HD4は、夫々前記D、GD0〜GD3、RD1〜RD3等から求めることができるので、電極E先端の位置を知ることができる。 That is, FIG. 4 is an explanatory view of the feed length HD fed in the machining depth direction by the above four stages of machining steps in the machining depth direction (Z axis) between the electrode 1 and the workpiece 2. Is the electrode, E0 is the position at the start of processing, E1 to E4 are the positions of the electrodes when processing in each of the above four steps is completed, and GD0 and GD1 to GD4 are similarly set processing conditions Machining gap length (or machining depth or overcut in the bottom direction), RD1 to RD4 are the bottom surface roughness at the end of each machining process, D is the depth of the machining hole for machining, and B0 is the finished hole The processing after the second stage of the machining process at the bottom of the machining is set to remove the machining surface roughness formed on the bottom of the machining hole by machining in the machining process immediately before or at the minimum. The feed amounts HD1 to HD4 in each processing stage are D, GD0~GD3, it is possible to determine the like RD1~RD3, it is possible to know the position of the electrode E tip.

そして、図5は、電極1、被加工体2間の加工深さ方向と直角な側面方向の揺動振幅HSの設定方法の一例について説明するための図で、前述図4の4段階の加工工程による加工のものに対応する。この図の場合、前記各加工工程の拡大揺動振幅HS2〜HS4は、各加工区間の加工中一定であるが、後述する場合のように、各加工工程中の深さ方向の送り込み位置に応じ、揺動の拡大幅を順次に連続的に増大変化させるようにすることもできるものである。 FIG. 5 is a diagram for explaining an example of a method of setting the oscillation amplitude HS in the side surface direction perpendicular to the machining depth direction between the electrode 1 and the workpiece 2, and the four-stage machining in FIG. 4 described above. Corresponds to processing by process. In the case of this figure, the enlarged swing amplitudes HS2 to HS4 of the respective machining steps are constant during the machining of each machining section, but according to the feed position in the depth direction during each machining step as will be described later. Further, the enlargement range of the swing can be successively increased continuously.

図において、E1〜E4は、前述4工程の各加工が終了したときの加工穴の側壁に対する電極の位置を示すものであり、GS1〜GS4は同じく各オーバカットの値、RS1〜RS4は同じく側壁面粗度、S0は側壁の仕上げ面及びその位置、LEは最初の加工工程の荒加工を揺動運動の振幅を0として加工したときの電極減寸値、HS2、HS3及びHS4は、第2加工工程以後の揺動運動の振幅の寸法を、前の加工工程のそれに対する増分として示す指標であって、この場合前述の如く最初の加工工程のHS1=0であるから、第2の加工工程における揺動の振幅は、その場合のHS2に等しく、又次の第3の加工工程における揺動の振幅はHS2+HS3、最終の加工工程における揺動の振幅はHS2+HS3+HS4と言うことになる。 In the figure, E1 to E4 indicate the positions of the electrodes with respect to the sidewalls of the processing holes when the above four processes are completed, GS1 to GS4 are also the values of the respective overcuts, and RS1 to RS4 are the same side Wall surface roughness, S0 is the finished surface of the side wall and its position, LE is an electrode reduction value when the rough machining of the first machining process is machined with the amplitude of the oscillating motion being 0, HS2, HS3 and HS4 are the second Since the amplitude dimension of the swinging motion after the machining process is an index indicating the increment relative to that of the previous machining process, and in this case, HS1 = 0 of the first machining process as described above, the second machining process is performed. In this case, the amplitude of oscillation is equal to HS2 in that case, the amplitude of oscillation in the next third machining step is HS2 + HS3, and the amplitude of oscillation in the final machining step is HS2 + HS3 + HS4. .

従って、前述加工深さ方向の送り込み量HDの決定の場合と同様に、加工工程の第2加工工程以後の加工を、実質上又は最小限、前の加工工程の加工によって加工穴の側壁に形成された加工面粗度部分を除去加工するものとすると、前記揺動加工の各加工工程における揺動振幅の増分HS2〜HS4は、前記面粗度RS1〜RS3とオーバカットの値GS1〜GS4とから計算により求めることができるものである。 Therefore, as in the case of determining the feed amount HD in the machining depth direction, the machining after the second machining process is substantially or minimally formed on the sidewall of the machining hole by the machining of the previous machining process. Assuming that the processed surface roughness portion is removed, the swing amplitude increments HS2 to HS4 in each processing step of the swing processing are the surface roughness RS1 to RS3 and overcut values GS1 to GS4. Can be obtained by calculation.

図6は、棒状電極1により被加工体2に深さDの穴2Hを、揺動放電加工により一気に穴堀り又は穿孔する場合の説明図で、図示の場合、非回転電極の軸中心が加工深さ方向により深く送り込まれて行くに従って側面方向により拡がって形成される揺動軌跡が、加工深さ方向のサーボ送り速度VSと、側面方向の設定またはサーボ制御による揺動送り速度VLにより、螺旋の揺動拡大角度Lθが最小揺動振幅から最大揺動振幅LMまで一定値の拡大揺動軌跡LLで、所定の深さDまで加工される場合を示している。勿論、前記拡大揺動の軌跡LLは、加工深さ方向と直角方向の電極1の断面の輪郭形状に応ずる種々の形状のものとすることができる。 FIG. 6 is an explanatory diagram in the case where a hole 2H having a depth D is drilled or drilled at once by swing electric discharge machining in the workpiece 2 by the rod-shaped electrode 1, and in the case shown, the axis center of the non-rotating electrode is The swing trajectory formed by expanding in the lateral direction as it is fed deeper in the machining depth direction is represented by the servo feed speed VS in the machining depth direction and the swing feed speed VL by setting or servo control in the lateral direction. A case is shown in which the spiral swing expansion angle Lθ is machined to a predetermined depth D with a constant swing swing locus LL from the minimum swing amplitude to the maximum swing amplitude LM. Of course, the locus LL of the enlarged swing can have various shapes according to the contour shape of the cross section of the electrode 1 in the direction perpendicular to the machining depth direction.

図6において、被加工体2の上表面から深さDの穴2Hは、電極1と図示しない加工槽中の加工液中に浸漬設置された被加工体2間に、例えば、荒加工、中加工、中仕上げ加工、及び仕上げ加工の何れかの電気的加工条件、及びその他の必要な加工条件を加工深さ方向の所定加工深さ位置において制御付与される加工プログラムにより、加工が進められ、前記深さDの穴2Hは、被加工体2の表面から、穴2Hの底面まで一気に加工されるものである。 In FIG. 6, a hole 2H having a depth D from the upper surface of the workpiece 2 is formed between the electrode 1 and the workpiece 2 immersed in a machining liquid in a machining tank (not shown). Processing is advanced by a processing program in which electrical processing conditions of processing, intermediate finishing processing, finishing processing, and other necessary processing conditions are controlled and given at a predetermined processing depth position in the processing depth direction, The hole 2H having the depth D is processed at a stretch from the surface of the workpiece 2 to the bottom surface of the hole 2H.

即ち、図6に示した加工穴2Hの一気の加工とは、前述図4及び図5に於いて説明した、揺動放電加工の4段の加工工程に於ける最初の第1段階の加工、第2段階の加工、第3段階の加工、又は最終の第4段階の加工の何れかの加工のことである。 That is, the one-step machining in the machining hole 2H shown in FIG. 6 is the first first-stage machining in the four-stage machining process of the swing electric discharge machining described in FIGS. This is any one of the second stage machining, the third stage machining, or the final fourth stage machining.

以上のように、穴掘りや輪郭創成加工などの形彫り放電加工は、その加工の開始から加工の終了迄の間に、主としてその電気的加工条件が、強い加工条件から弱い加工条件へと設定が前述4段階の如く複数段にわたり順次に切換えられて加工が進められるものであるが、各加工工程における加工の取り量が当該加工部位に対するものとして、適切となる加工条件から選定加工条件がずれていたりすると、加工の不安定状態などが生じ易く、加工面に面叢を生じたり、形状誤差を生じさせたりして、後の追加の修正加工に難儀させられるものである。 As described above, in electrical discharge machining such as drilling and contour creation, the electrical machining conditions are mainly set from strong machining conditions to weak machining conditions between the start of machining and the end of machining. However, the selected machining conditions deviate from the appropriate machining conditions as the amount of machining in each machining process corresponds to the machining site. If this happens, an unstable state of processing is likely to occur, and a plexus is generated on the processed surface or a shape error is caused, which makes it difficult to perform additional correction processing later.

また、例えば、前述図4及び図5の第2、又は第3段階の加工工程において、当該加工工程に設定されている加工条件により、当該加工工程での加工が予定されていた加工部位を最小限の取り量の加工をしないで、加工工程が次の段階の加工工程に切り換えられてしまうと、この以降の加工工程で行われる加工の加工条件は、前述のように、通常その直前以前の加工条件より弱い条件の設定であるから、仮に、切り換えられた第3、又は第4段階の加工工程の加工に移行したり、或いはさらに加工を進行させて加工を終了したとしても、取り残し、及び異形などの手直し、修正が必要となり、そして、その修正等の加工は前記の第3、又は第4段階などの弱い加工条件で行なわれなければならないので、時間が掛ったりするだけでなく、電極消耗の増大があったりして、後工程で必要となった修正作業などに種々の手間を要し、大きな負担を強いられると言う問題があった。 In addition, for example, in the second or third stage of the machining process of FIGS. 4 and 5 described above, the machining site where the machining in the machining process is scheduled is minimized according to the machining conditions set in the machining process. If the machining process is switched to the next process without performing a limited amount of machining, the machining conditions for the subsequent machining process are usually the same as before. Since the setting is weaker than the processing conditions, even if the processing is shifted to the switched third or fourth stage processing step or the processing is further advanced to finish the processing, It is necessary to rework and modify the irregular shape, and the processing such as the correction must be performed under weak processing conditions such as the third or fourth stage. With or there is an increase of Worn, to such modification work that became necessary in a post-process requires a variety of labor, there has been a problem that forced a heavy burden.

そして、このような問題は、穴掘りなどの形彫り加工を揺動放電加工をしている場合の、最初の、所謂荒加工の段階を除く中加工の加工条件領域以後に於いて生ずるもので、荒加工とか、寸法、形状成形の中加工等の加工の段階までには生じ難いと言うか、生じたとしても、比較的修正等が容易なことから、さほど問題とならなかったのである。 Such a problem occurs after the machining condition region of the intermediate machining except for the first so-called rough machining stage in the case of oscillating electric discharge machining such as drilling. It can be said that it does not easily occur until the stage of processing such as roughing, intermediate processing of dimension and shape forming, or even if it occurs, it is not so much a problem because it is relatively easy to correct.

そこで、本発明の目的は、電極と被加工体とで形成される加工間隙に所要の電極と被加工体とで形成される加工間隙に所要の加工電圧を間歇的に印加して放電を発生させ、前記電極と被加工体とを加工深さ方向と該加工深さ方向に垂直な加工穴の側面方向とに相対的に移動させて前記被加工体を加工するようにした形彫り放電加工であって、
前記加工深さ方向の送り込み位置が、予め設定した加工プログラムによる所定加工深さ方向の送り込み終了位置に達すると共に、側面方向の揺動拡大量が所定値に達すると、当該加工区間の加工を終了し、次いで加工深さ方向の送り長さと側面方向の揺動拡大量と電気的加工条件とを含む加工条件を、次段の加工工程の加工プログラムに設定してある加工条件に切り換えて加工する揺動放電加工方法において、前記加工条件が切換えられる加工深さ方向の送り込み終了の位置からその直前の所要領域に対し、被加工体の加工深さ方向と側面方向の放電加工クリアランス(寸法、形状精度)を、むらなく一定に、加工を設定加工プログラム通りに過不足なく精密に行なうことにより、前記加工条件が切換えられた後の加工に円滑に移行させることにある。
Accordingly, an object of the present invention is to generate a discharge by intermittently applying a required machining voltage to a machining gap formed by an electrode and a workpiece, in a machining gap formed by the electrode and the workpiece. Die-sinking electrical discharge machining, wherein the electrode and the workpiece are moved relative to the machining depth direction and the side surface direction of the machining hole perpendicular to the machining depth direction to machine the workpiece. Because
When the feed position in the machining depth direction reaches the feed end position in the predetermined machining depth direction according to a preset machining program, and the amount of fluctuation in the lateral direction reaches a predetermined value, the machining in the machining section is finished. Then, the machining conditions including the feed depth in the machining depth direction, the lateral swing fluctuation amount, and the electrical machining conditions are switched to the machining conditions set in the machining program of the next machining process. In the oscillating electric discharge machining method, the electric discharge machining clearance (dimensions and shape) in the machining depth direction and the side surface direction of the workpiece from the position at the end of feeding in the machining depth direction at which the machining conditions are switched to the required area immediately before that. (Accuracy) evenly and consistently and precisely according to the set machining program, so that the machining can be smoothly transferred to after the machining conditions have been switched. Located in.

前述の本発明の目的は、(1)電極と被加工体とで形成される加工間隙に所要の加工電圧を間歇的に印加して放電を発生させ、前記電極と被加工体とを加工深さ方向と該加工深さ方向に垂直な加工穴の側面方向とに相対的に移動させて前記被加工体を加工するようにした形彫り放電加工であって、
前記加工深さ方向の送り込み位置が、予め設定したNCプログラムによる所定加工深さ方向の送り込み終了位置に達すると共に、側面方向の揺動拡大量が所定値に達すると、当該加工工程の加工を終了し、次いで加工深さ方向の送り長さと側面方向の揺動拡大量と電気的加工条件とを含む加工条件を、次段の加工工程のNCプログラムに設定してある加工条件に切り換えて加工する揺動放電加工方法において、
所望加工工程の加工のNCプログラムに設定された加工深さ方向の送り込み終了位置から、予め選定した所定長さ手前の位置を設定し、この手前の位置から当該加工工程の前記送り込み終了位置までの加工送り込み長さと、当該加工工程の前記手前の位置における側面方向の揺動拡大の残りの揺動量とを、それぞれ、予め選定した分割数の微小の加工区間に分割し、
該微小の分割加工区間毎の加工深さ方向と揺動拡大方向の揺動による前記手前の位置からの揺動放電加工を、前記手前の位置までの加工の電気的加工条件を変更することなく、各微小の分割加工区間毎に加工の終了判定を行ないながら微小の加工区間の加工を順次に進行させ、当該加工のNCプログラムに設定された送り込み終了位置まで加工して加工の終了判定を行い、終了と判定されたとき次段の加工工程のNCプログラムの加工に切換え移行させる揺動放電加工方法とすることにより達成される。
The objects of the present invention are as follows: (1) A required machining voltage is intermittently applied to a machining gap formed by an electrode and a workpiece to generate an electric discharge, and the electrode and the workpiece are machined to a machining depth. Die-sinking electric discharge machining, which is configured to process the workpiece by moving relative to the side direction of the processing hole perpendicular to the vertical direction and the processing depth direction,
When the feed position in the machining depth direction reaches the feed end position in the predetermined machining depth direction according to a preset NC program and the amount of fluctuation in the lateral direction reaches a predetermined value, the machining in the machining process is finished. Then, the machining conditions including the feed length in the machining depth direction, the amount of fluctuation in the lateral direction, and the electrical machining conditions are switched to the machining conditions set in the NC program of the next machining process. In the swing electric discharge machining method,
From the feed end position in the machining depth direction set in the NC program for machining in the desired machining process, a position in front of a predetermined length selected in advance is set, and from this position to the feed end position of the machining process. The processing feed length and the remaining swing amount of the swing expansion in the lateral direction at the position in front of the processing step are each divided into a preselected division number of minute processing sections,
Oscillating electric discharge machining from the front position by swinging in the machining depth direction and swing enlargement direction for each minute divided machining section without changing the electrical machining conditions of the machining up to the front position , The end of the machining is sequentially progressed for each minute divided machining section, the machining in the minute machining section is sequentially advanced, and the machining end is determined by machining to the feed end position set in the NC program of the machining. This is achieved by using an oscillating electric discharge machining method that switches to NC program machining in the next machining step when it is determined to be finished.

また、前述の本発明の目的は、(2)前記所望加工工程のNCプログラムによる加工深さ方向の加工が、前記手前の位置に達したとき加工の終了判定を行い、所定の終了状態を確認して後、前記分割された微小の加工区間の部分の、前記手前の位置からの順次の加工に移行する前記(1)に記載の揺動放電加工方法とすることにより達成される。 In addition, the object of the present invention is as follows: (2) When the machining in the machining depth direction according to the NC program of the desired machining process reaches the previous position, the completion of the machining is determined and a predetermined completion state is confirmed After that, the swing electric discharge machining method according to the above (1) in which the portion of the divided minute machining section is shifted to the sequential machining from the previous position is achieved.

また、前述の本発明の目的は、(3)前記予め選定した分割数の微小の加工区間の分割が整数による等分割であるように調整されている前記(1)に記載の揺動放電加工方法とすることにより達成される。 Further, the object of the present invention is as follows: (3) The swing electric discharge machining according to (1), wherein the division of the minute machining section of the predetermined number of divisions is adjusted so as to be an equal division by an integer. This is achieved by a method.

また、前述の本発明の目的は、(4)前記加工の終了判定が、加工深さ方向と加工深さ方向と垂直な側面方向の電極と被加工体間の相対移動に伴う位置検出、または前記位置検出と電極被加工体間の所定基準位置に対する接触感知若しくはスパークアウト状態検知である前記(1)に記載の揺動放電加工方法とすることにより達成される。 Further, the object of the present invention described above is as follows: (4) The position determination associated with the relative movement between the electrode in the side direction perpendicular to the processing depth direction and the processing depth direction and the workpiece is determined. This is achieved by the swing electric discharge machining method according to (1), which is contact detection or spark-out state detection with respect to a predetermined reference position between the position detection and the electrode workpiece.

また、前述の本発明の目的は、(5)前記加工の終了判定が、加工深さ方向の加工面及び/又は側面方向の拡大面に対するラジアル方向に領域分割された領域に対する順次の判定である前記(1)に記載の揺動放電加工方法とすることにより達成される。 The object of the present invention described above is (5) sequential determination for the regions divided in the radial direction with respect to the processing surface in the processing depth direction and / or the enlarged surface in the side surface direction. This is achieved by the swing electric discharge machining method described in (1) above.

また、前述の本発明の目的は、(6)前記分割数と分割微小の加工区間の長さである分割送り量とが、加工のNCプログラムから独立して制御装置により直接入力して設定できるものである前記(1)に記載の揺動放電加工方法とすることにより達成される。 The object of the present invention is as follows: (6) The division number and the divided feed amount which is the length of the divided minute machining section can be directly input and set by the control device independently of the machining NC program. This is achieved by the swing electric discharge machining method described in (1) above.

また、前述の本発明の目的は、(7)前記微小の分割送り加工区間dに割り振られた分割幅が、加工の種類・目的、電極・ワークの種類・組合せ、及び設定される又は形成される加工条件などによって予め決定されたものである前記(1)に記載の揺動放電加工方法とすることにより達成される。 The above-mentioned object of the present invention is as follows: (7) The division width allocated to the minute division feed machining section d is set or formed with the type / purpose of machining, the type / combination of electrodes / workpieces, and the like. This is achieved by the swing electric discharge machining method described in (1) above, which is determined in advance according to the machining conditions and the like.

また、前述の本発明の目的は、(8)前記手前の位置が、前記予め選定された分割送り加工の分割送り量dと、予め設定される分割数Nとの積によって決定するように構成されているものである前記(1)に記載の揺動放電加工方法とすることにより達成される。 Further, the object of the present invention is as follows: (8) The front position is determined by a product of the division feed amount d of the preset division feed processing and a preset division number N. This is achieved by the swing electric discharge machining method described in (1) above.

また、前述の本発明の目的は、(9)電極と被加工体とで形成される加工間隙に所要の加工電圧を間歇的に印加して放電を発生させ、前記電極と被加工体とを加工深さ方向と該加工深さ方向に垂直な加工穴の側面方向とに相対的に移動させて前記被加工体を加工するようにした形彫り放電加工であって、
前記加工深さ方向の送り込み位置が、予め設定したNCプログラムによる所定加工深さ方向の送り込み終了位置に達すると共に、側面方向の揺動拡大量が所定値に達すると、当該加工工程の加工を終了し、次いで加工深さ方向の送り長さと側面方向の揺動拡大量と電気的加工条件とを含む加工条件を、次段の加工工程のNCプログラムに設定してある加工条件に切り換えて加工する揺動放電加工装置において、
所望加工工程の加工のNCプログラムに設定された加工深さ方向の送り込み終了位置から、予め選定した所定微小長さ手前の位置までの間を分割送り加工区間として設定する分割送り加工区間の設定制御手段と、この分割送り加工区間を予め選定した分割数Nと、
前記手前の位置から当該加工工程の送り込み終了位置までの長さと、前記手前の位置における側面方向の揺動拡大の残りの揺動量を、前記分割数で分割した微小長さの加工送り量dとの積により形成する分割送り加工区間の形成制御手段と、
この分割送り加工区間の前記手前の位置側からの加工を、前記手前の位置までの加工の電気的加工条件を変更することなく、分割送り量毎に順次に加工させる分割送り加工の加工制御手段と、
を備えた揺動放電加工装置とすることにより達成される。
The above-mentioned object of the present invention is to (9) generate a discharge by intermittently applying a required machining voltage to a machining gap formed by an electrode and a workpiece, and to connect the electrode and the workpiece. Die-sinking electric discharge machining, which is configured to process the workpiece by moving relatively to a machining depth direction and a side direction of a machining hole perpendicular to the machining depth direction,
When the feed position in the machining depth direction reaches the feed end position in the predetermined machining depth direction according to a preset NC program and the amount of fluctuation in the lateral direction reaches a predetermined value, the machining in the machining process is finished. Then, the machining conditions including the feed length in the machining depth direction, the amount of fluctuation in the lateral direction, and the electrical machining conditions are switched to the machining conditions set in the NC program of the next machining process. In the swing electric discharge machine
Division feed machining section setting control for setting a section from the feed end position in the machining depth direction set in the NC program for machining in the desired machining process to a position in front of a predetermined minute length selected as a divided feed machining section. Means, and a division number N for which the division feed machining section is selected in advance,
The length from the previous position to the feed end position of the machining step and the remaining amount of swing expansion in the lateral direction at the front position are a minute length of the process feed amount d divided by the number of divisions, and Forming control means for the divided feed machining section formed by the product of
Machining control means for split feed machining, in which machining from the front position side of the divided feed machining section is sequentially performed for each divided feed amount without changing the electrical machining conditions for machining up to the previous position. When,
This is achieved by using an oscillating electric discharge machining apparatus equipped with

また、前述の本発明の目的は、(10)前記分割送り加工の制御手段が、前記分割送り量毎の順次の加工作動を加工の終了判定を行ないながら進行させる加工終了判定の制御手段を有する前記(9)に記載の揺動放電加工装置とすることにより達成される。 The above-mentioned object of the present invention is as follows. (10) The processing means for determining the end of machining in which the control means for the divided feed machining advances the sequential machining operation for each of the divided feed amounts while judging the completion of the machining. This is achieved by using the swing electric discharge machining apparatus as described in (9) above.

また、前述の本発明の目的は、(11)前記分割数と分割微小の加工区間の長さである分割送り量とが、加工のNCプログラムに対して独立して制御装置に入力設定可能に構成されているものである前記(9)に記載の揺動放電加工装置とすることにより達成される。 Further, the object of the present invention described above is that (11) the number of divisions and the divided feed amount which is the length of the divided minute machining section can be set and input to the control device independently of the machining NC program. This is achieved by using the swing electric discharge machining apparatus according to the above (9).

本発明によれば、荒加工から最終仕上げ加工の段階まで、通常3乃至8段程度まで複数段ある加工の工程中、後に来る加工の段階の加工に対し、その前の加工の段階の加工において、放電クリアランス(加工面と被加工面間の所定の位置における嵌合状態で、各点におけるギャップの全体的な均一度に関すること)が悪化した状態で引き継ぐことがないように、前記前の加工の段階の揺動放電加工の方法を、加工深さ方向の加工送り込み長さと側面方向の揺動拡大量とを各2以上のN個の各微小の加工部分(分割送り量)に分割し、電気的加工条件は変更することなく、前記分割した数の加工区分毎に分けて、分割部分ごとに送りを刻み、少しづつ順に加工して行くことにより、放電クリアランスが微細な状態で全体的に均一で一定に近づき、面むらがなく、寸法・形状が一定に近づき、結果として電極消耗が減少し、所要の加工時間も短縮されるなどの効果がある。 According to the present invention, from the roughing process to the final finishing process, usually in the process of multiple stages of about 3 to 8 stages, in the process of the previous process stage with respect to the process of the subsequent process stage, The previous machining so that the discharge clearance (in relation to the overall uniformity of the gap at each point in the fitted state at a predetermined position between the machining surface and the work surface) is not taken over. The step of swing electric discharge machining in this stage is divided into a machining feed length in the machining depth direction and a swing enlargement amount in the side direction into each of two or more N minute machining portions (divided feed amount), Without changing the electrical machining conditions, the number of divisions is divided into the number of divisions, the feed is divided into divided parts, and the parts are processed in order, so that the overall discharge clearance is fine. Approach uniform and constant No surface unevenness approaches the constant size and shape, results electrode wear is reduced as an effect such as it is also shortened the required machining time.

本発明によれば、NCプログラムにより多段の加工条件を組み合わせた穴掘り、穴明け等の加工を、プログラムに手を加えたり、変更したりすることなく、分割数と分割送り量の入力、設定だけで、電気的加工条件の選定などの必要がなく、目的とする加工条件が得られる加工をすることが出来るので、実用上の利益は甚大なものである。 According to the present invention, it is possible to input and set the number of divisions and the divided feed amount without modifying or modifying the drilling, drilling and the like combining multi-stage machining conditions by the NC program. As a result, there is no need to select electrical machining conditions and the like, and machining that can achieve the desired machining conditions can be performed, so the practical advantage is enormous.

図1は、本発明の一実施例を説明するためにの被加工体2に加工形成される加工穴2Dについて説明するための加工穴部分の側断面説明図で、前述従来例の図4及び図5と対比すると、
加工穴の深さ方向の態様としては、電極Eが、第2、第3、又は第4段階の加工が終了する各電極位置E2、E3、又はE4から予め設定した微小の所定長さ手前の位置にある状態、
従って、前述加工穴の深さ方向と直角方向の揺動拡大方向の態様としては、電極Eが、第2、第3、又は第4段階の加工が終了する電極位置E2、E3、又はE4から予め設定した微小の所定長さ手前の位置にある状態を示しているもので、
この所定の手前の位置に、一旦停止状態から、当該各加工の段階の前記加工終了位置までの微小の加工区間を、所望複数の、さらに微小の分割加工区間(図示実施例の場合、分割数N=4で、加工穴の深さ方向は長さ又は幅d、直角方向は幅s)に分割(通常等分分割)して、この微小の分割加工部毎に、加工穴の浅い方の部位から加工の終了判定を各微小の加工区間毎に行いながら順次に加工して行く態様を説明しようとするものである。
FIG. 1 is a side cross-sectional explanatory view of a processed hole portion for explaining a processed hole 2D formed in a workpiece 2 for explaining an embodiment of the present invention. In contrast to FIG.
As an aspect in the depth direction of the processing hole, the electrode E is a small predetermined length before the predetermined electrode position E2, E3, or E4 where the processing of the second, third, or fourth stage ends. In position,
Therefore, as an aspect of the swing expansion direction perpendicular to the depth direction of the above-described machining hole, the electrode E is from the electrode position E2, E3, or E4 where the machining of the second, third, or fourth stage is completed. It shows a state that is in a position in front of a predetermined small predetermined length,
At this predetermined position, a desired small machining section from a temporarily stopped state to the machining end position at each machining stage is divided into a desired plurality of further divided machining sections (in the case of the illustrated embodiment, the number of divisions). N = 4, the depth direction of the machining hole is divided into length or width d, and the perpendicular direction is divided into width s) (usually equally divided). It is intended to describe a mode in which machining is sequentially performed from the part while performing machining end determination for each minute machining section.

即ち、本発明は、加工深さ方向の送り込み長さ位置が、予め設定した加工プログラムによる所定加工深さ方向の送り込み終了位置に達すると共に、側面方向の揺動拡大の揺動量が加工プログラムに設定の所定値に達すると、当該加工工程の加工を終了し、次いで加工深さ方向の送り長さと側面方向の揺動拡大の揺動量と電気的加工条件とを含む加工条件を、次段の加工工程のNCの加工プログラムに設定してある加工条件に切り換えて加工すると言うように、放電パルスなどの電気的加工条件が、それまでよりも弱い条件に切り換えられる直前の加工部分の加工を、加工送り方向に微細複数段に分割し、この分割した微小の加工区画を一個一個順に刻んで加工して行くことにより仕上げると言うように、丁寧に手を掛けて加工することにより、予定していた放電クリアランスの精度に確実に仕上げ、本発明を採用せずに後工程での修正作業をした場合などに比較して、結果として、所要の作業時間などを減少させ得ると言うもので、その、揺動放電加工の態様は、以下の通りである。 That is, according to the present invention, the feed length position in the machining depth direction reaches the feed end position in the predetermined machining depth direction by a preset machining program, and the swing amount of the lateral swing enlargement is set in the machining program. When the predetermined value is reached, the machining of the machining process is finished, and then the machining conditions including the feed length in the machining depth direction, the amount of fluctuation in the oscillation in the side surface direction, and the electrical machining conditions are set to the next machining level. Machining of the machining part immediately before the electrical machining conditions such as the discharge pulse are switched to a weaker condition, such as switching to the machining conditions set in the NC machining program of the process. By dividing it into fine multiple stages in the feed direction and finishing by dividing the divided minute processing sections one by one in order, and processing with careful hands It is said that the required work time etc. can be reduced as a result compared with the case where it finishes to the accuracy of the planned discharge clearance surely and the correction work in the post process is done without adopting the present invention. The aspect of the swing electric discharge machining is as follows.

図1は、NCプログラムによる揺動放電加工の加工工程が、例えば、第3加工工程の加工である加工深さ方向の送り込み長さ(図4のHD3)と直角方向の揺動振幅の増大量(図5のHS3)の大部分の加工を終え、電極が当該加工工程の加工の終了位置(図4及び図5の各E3)に近づいたところで、夫々が「予め選定した所定の位置」に達すると、本発明の揺動放電加工の態様に切換え移行するものであるが、前記「予め選定した所定の位置」とは、請求項1によれば、「所望加工工程の加工NCプログラムに設定された加工深さ方向の送り込み終了位置から、予め選定した所定長さ手前の位置を設定し」たと言う「手前の位置」のことである。 FIG. 1 shows that the machining process of the oscillating electric discharge machining by the NC program is, for example, the amount of increase in the oscillating amplitude in the direction perpendicular to the feed length in the machining depth direction (HD3 in FIG. 4), which is machining in the third machining process. When most of the machining (HS3 in FIG. 5) has been completed and the electrode has approached the machining end position (E3 in FIGS. 4 and 5) of each of the machining steps, each becomes a “predetermined predetermined position”. When it reaches, it is switched to the swing electric discharge machining mode of the present invention. According to claim 1, the “predetermined predetermined position” is set in the machining NC program of the desired machining process. This means a “front position” in which “a position in front of a predetermined length selected in advance is set from the feed end position in the machining depth direction”.

また、前記「手前の位置」から「送り込み終了位置」までの領域を複数の工程に分けて順次に加工を行なうようにすると言う加工工程の「分割数N」の点も、「手前の位置から当該加工工程の前記送り込み終了位置までの加工送り込み長さと、当該加工工程の前記手前の位置における側面方向の揺動拡大の残りの揺動量とを、それぞれ、予め選定した分割数の微小の加工区間に分割し、」とあるので、少なくとも2以上の複数で、多くて数10分割程度以内とするものである。 In addition, the “division number N” point of the machining process in which the region from the “front position” to the “feed end position” is divided into a plurality of processes and sequentially processed is also “from the previous position”. A machining feed length up to the feed end position of the machining step and a remaining swing amount of the swinging expansion in the lateral direction at the front position of the machining step are each a minute machining section of a predetermined number of divisions. Therefore, at least two or more and at most about several tens of divisions are used.

そうしてみると、後述と照合すると明らかとなるが、前記「手前の位置から当該加工工程の前記送り込み終了位置までの加工送り込み長さ」を「予め選定した分割数の微小の加工区間に分割し、」と言うことは、加工深さ方向の「微小の加工区間」dは、微小の加工区間の変更設定可能な加工深さ方向の分割の単位と言うことになり、同様に、「手前の位置における側面方向の揺動拡大の残りの揺動量」を「予め選定した分割数の微小の加工区間に分割し、」とは、加工深さ方向と直角方向の「微小の加工区間」sは、微小の加工区間の変更設定が可能な加工深さ方向に直角な側面方向の残りの揺動量の分割の単位と言うことになる。 As a result, it becomes clear when collating with the following, but the “machining feed length from the previous position to the feed end position of the machining process” is divided into “preliminarily selected number of small machining sections”. "The minute machining section" d in the machining depth direction is a unit of division in the machining depth direction in which the minute machining section can be changed and set. “The remaining amount of oscillation in the lateral expansion at the position of“ is divided into minute machining sections of a predetermined number of divisions ”means“ minute machining section ”s perpendicular to the machining depth direction. Is a unit of division of the remaining oscillation amount in the side surface direction perpendicular to the machining depth direction in which a minute machining section can be changed.

しかして、本発明は、プログラム化された複数の加工工程から成る穴掘りなどの揺動放電加工の加工条件、特に放電パルスなどの電気的加工条件が、それまでよりも弱い条件に切り換えられる直前の領域部分の加工を所定の寸法、形状、精度に確実に仕上げられるようにするものである。 Thus, the present invention provides a condition immediately before the machining conditions for swing electric discharge machining such as digging consisting of a plurality of programmed machining steps, particularly electrical machining conditions such as electric discharge pulses, are switched to weaker conditions than before. This is to ensure that the processing of the area portion is finished with a predetermined size, shape and accuracy.

そこで、本発明は、形彫り揺動放電加工のNCプログラムに設定された所望の加工工程における加工工程の加工深さ方向の送り込み終了位置から、予め設定した所定長さ手前の位置を設定し、
この手前の位置と当該加工工程の前記送り込み終了位置までの加工送り込み長さと、
当該加工工程の前記手前の位置における側面方向の揺動拡大の残りの揺動量とを、
それぞれ、予め選定した分割数の微小の加工区間に分割し、
該微小の分割加工区間毎の加工深さ方向と揺動拡大方向の移動による前記手前の位置からの揺動放電加工を、前記手前の位置までの加工の電気的加工条件を変更することなく、各微小の分割加工区間毎に加工の終了判定を行ないながら微小の加工区間の加工を順次に進行させ、
当該加工のNCプログラムに設定された前記送り込み終了位置まで順次に加工して加工の終了判定を行ない、終了と判定されたとき、次段のNCプログラムの加工工程の加工に切換え移行させるものである。
Therefore, the present invention sets a position in front of a predetermined length from the feed end position in the machining depth direction of the machining process in the desired machining process set in the NC program of the sculpture swing electric discharge machining,
The processing feed length to the previous position and the feeding end position of the processing step,
The remaining swing amount of the swing expansion in the lateral direction at the position in front of the processing step,
Each is divided into minute machining sections of a preselected number of divisions,
Without changing the electrical machining conditions for machining up to the front position, the swing electric discharge machining from the front position by the movement in the machining depth direction and the swing enlargement direction for each minute divided machining section, While performing the end of machining for each minute divided machining section, the machining of the minute machining section is sequentially advanced,
Machining is sequentially performed up to the feed end position set in the NC program for the machining, and the machining end determination is made. When it is determined that the machining has been completed, the process is shifted to machining in the machining process of the next NC program. .

即ち、従来の揺動放電加工では、NCプログラムにプログラムされているある段階の加工工程での加工は、その加工工程の加工開始位置から、加工の目標位置である加工深さ方向の送り込み終了位置まで、1つの加工区間として、全区間を一気に加工していたのに対し、本発明では、上記加工深さ方向の送り込み終了位置、即ち、NCプログラムに設定されている次の加工区間の加工に切換えを行なう位置の外に、
前記1つの加工区間を加工工程の開始位置から一気に加工して行く前半部分の加工と、特に電気的加工条件が切り換えられる前記送り込み終了位置から所定の長さ手前の位置の間の後半の最終部分の加工とに分け、この後半の最終部分の加工を本発明の手法によって加工を行なうものである。
That is, in the conventional oscillating electric discharge machining, machining at a certain machining step programmed in the NC program is performed from the machining start position of the machining step to the feed end position in the machining depth direction, which is the machining target position. Up to this point, all the sections were processed at once as one processing section, but in the present invention, the feed end position in the processing depth direction, that is, the processing of the next processing section set in the NC program is performed. Outside the position to switch,
The first half of the machining section is processed at a stroke from the start position of the machining process, and the final portion of the latter half between the feed end position where the electrical machining conditions are switched, and a position before a predetermined length. The latter half of the last part is processed by the method of the present invention.

ここで、一部前述したように、前記加工深さ方向の加工目標位置である送り込み終了位置を2B、
予め選定した分割数をN,加工深さ方向の分割された、1つの微小の加工区間の深さ又は長さ(分割送り量と言う)をd:加工深さ方向の分割送り量で、1.0mmとか、1.1mmなどと言う加工する深さ又は長さの数値が設定されている。
加工深さ方向と直角方向の分割された1つの微小の拡大揺動量をs:揺動拡大量又は振幅の分割揺動量ステップで、0.1mmとか、0.15mmなどと言う加工する揺動拡大量の幅が設定される。
そうしてみると、加工深さ方向の加工目標位置である送り込み最終位置である2Bは、予め設定した前記手前の位置から、予め設定した所定長さ:dNの位置にあり、又揺動拡大の最終目標である最大揺動量はステップsNと言うことになる。
Here, as partially described above, the feed end position which is the machining target position in the machining depth direction is 2B,
The number of divisions selected in advance is N, and the depth or length of one minute machining section divided in the machining depth direction (referred to as a divided feed amount) is d: the divided feed amount in the machining depth direction is 1 A numerical value of depth or length to be processed such as 0.0 mm or 1.1 mm is set.
One minute enlarged swing amount divided in the direction perpendicular to the machining depth direction is s: a swing enlarged amount to be processed, such as 0.1 mm or 0.15 mm, in a step of swing swing amount or amplitude divided swing amount step. The amount width is set.
As a result, the feed final position 2B, which is the machining target position in the machining depth direction, is located at a position of a predetermined length: dN set in advance from the previously set position, and the swing enlargement is performed. The maximum swing amount, which is the final target, is step sN.

そして、以上の設定により、n番目の目標位置までの加工距離又は加工長さは、nd、目標ステップはnsで、夫々
dn=dN−d×(N−n)
sn=sN−s×(N−S)
として表すことができる。
そして、前述図1は、前述分割数Nが、N=4の場合で、前述手前の位置で、切換え、又は必要に応じ一時停止した加工は、電気的加工条件を変更することなく、最初の加工が、ステップs1を使って、即ち、加工深さ方向の分割送り量d1はサーボ制御送りにより送り込み加工するのに対し、側面方向の分割揺動量ステップs1は前記サーボ送り制御の送りに同期して移動させて加工し、
d1までの加工が終わったら、次のステップs2を使ってd2まで加工すると言うように、微小の加工区間の複数個の分割揺動量の各領域d(=d2−d1=d3−d2=・・・・=dn−dn−1=・・・・)を順次に加工して行き、最終的に、ステップsNを使った分割送り量dNの加工が終わったら、加工は終了となる。
With the above settings, the machining distance or machining length to the nth target position is nd, the target step is ns, and dn = dN−d × (N−n), respectively.
sn = sN−s × (N−S)
Can be expressed as
In FIG. 1, when the division number N is N = 4, the machining that is switched or temporarily stopped at the previous position is performed without changing the electrical machining conditions. Machining is performed using step s1, that is, the divided feed amount d1 in the machining depth direction is fed by servo-controlled feed, whereas the divided swing amount step s1 in the side surface direction is synchronized with the feed of the servo feed control. Move and process,
When the processing up to d1 is finished, each of the regions d (= d2-d1 = d3-d2 = ...) of a plurality of divided swing amounts in a minute processing section is used so that processing up to d2 is performed using the next step s2. .. = Dn−dn−1 =...) Are sequentially processed, and finally, when the processing of the divided feed amount dN using the step sN is completed, the processing ends.

そして、本発明における各分割送り変化量又は揺動量d1、s1;d2、s2;・・・・の区域に対する加工は、前記「・・・・加工し、d1までの加工が終わったら、・・・・」と言うのは、例えば、当該目標位置までの送りが、送り込み位置検出等により検知されたら、当該加工条件での、当該加工位置に於ける加工の取り残しはないか、前述の放電クリアランス又は全体的に所定の精度で均一に仕上がっているか否かを、相対位置移動や接触検知、スパークアウト判別などにより測定、検査を1〜2度ならず多数回行なって次のステップs2を使っての分割送り量d2の加工に移行させ、このようにして、加工の仕上げ精度を十分に高める手直し加工を行なって後、分割送り量dNの加工終了後、加工条件や位置などをNCプログラムにプログラムされている次段の加工工程の加工条件に切換え移行することを許容するようにするものである。そして、その意味においては、前記手前の位置において、先ず当該位置における加工の終了判定を行なうように構成しておくことが好ましいものである。 In the present invention, the processing for each divided feed change amount or swing amount d1, s1; d2, s2;... "..." means that, for example, if the feed to the target position is detected by the feed position detection or the like, there is no leftover of machining at the machining position under the machining conditions. Alternatively, whether or not the finish is uniform with a predetermined accuracy as a whole is measured by relative position movement, contact detection, spark-out determination, etc., and is performed many times instead of once or twice, and the next step s2 is used. After the machining of the divided feed amount d2 is performed, and the rework processing is performed to sufficiently improve the finishing accuracy of the machining in this way, the machining conditions and positions are processed by the NC program after the machining of the divided feed amount dN is completed. And it is to permit the processing condition to the switching transition programmed to have next processing step. In that sense, it is preferable that the end of processing at the position is first determined at the front position.

図2は、前述図1の第1実施例の一部を変更した変更実施例で、前述図6の如く、加工深さ方向の送り込み長さの増大に応じ、揺動拡大の揺動量が一定の割合で増大するように揺動軸の加工深さ方向に対する角度が、所望に応じ傾斜設定された揺動放電加工の場合の加工底面と側壁面における電極の位置の線図説明図である。そして、Nは前述分割数、mddvは加工深さ方向の微小の1分割送り込み長さの分割送り量、mdsvは側面方向の揺動拡大の揺動量の微小の1分割振幅のステップとすると、n番目の目標位置までの距離dnとステップsNは、
dn=D(=dN)−〔mddv×(N−n)〕
sn=STEP(=sN)−〔mdsv×(N−n)〕
で求められる。
FIG. 2 is a modified embodiment in which a part of the first embodiment of FIG. 1 is changed. As shown in FIG. 6, the swing amount of swing enlargement is constant according to the increase of the feed length in the machining depth direction. FIG. 6 is an explanatory diagram of the positions of electrodes on the machining bottom surface and the side wall surface in the case of oscillating electric discharge machining in which the angle of the oscillating shaft with respect to the machining depth direction is set to be inclined as desired. N is the number of divisions, mddv is a minute feed amount with a minute one-piece feed length in the machining depth direction, and mdsv is a minute one-divided amplitude step with a rocking amount for swing expansion in the side direction. The distance dn to the target position and the step sN are
dn = D (= dN) − [mddv × (N−n)]
sn = STEP (= sN) − [mdsv × (N−n)]
Is required.

そして、最初の加工で、d1までステップs1を使って加工した後、分割戻り点Rまで戻り、この加工を複数回繰り返した後加工の終了判定を行ない、これを複数回繰り返しているうちに終了と判定され、d1迄の加工を終わるものである。
次の加工で、d2までステップs2を使って加工した後、分割戻り点Rまで戻り、これを複数回繰り返す。最後の加工では、加工終了位置までSTEPを使って加工した後、その地点で加工が終了となる。そして、それぞれの分割部分の加工に於いて、加工作動は通常複数回又は必要な回数行い、加工の終了判定の検知、測定を行なうことが重要となる。
Then, in the first processing, after processing up to d1 using step s1, the processing returns to the division return point R, and this processing is repeated a plurality of times, and then the end of processing is determined, and the processing ends while it is repeated a plurality of times. It is determined that the processing up to d1 is finished.
In the next processing, after processing up to d2 using step s2, the processing returns to the division return point R and this is repeated a plurality of times. In the last processing, after processing using STEP to the processing end position, the processing ends at that point. In the processing of each divided portion, it is important to perform the processing operation a plurality of times or a necessary number of times, and to detect and measure the end of processing.

そして、前記微小に等分割された微小の加工区間の深さ方向の分割送り量d及び側面方向の揺動拡大の揺動量sは、通常の金型用鋼材等の加工において本発明を適用すると、前者dが約1.0mm前後とすると、後者sを約0.1mm前後の設定とするもので、之に対し前記加工深さ方向及び側面方向の各相対的な揺動の送り制御の設定、指令、及び駆動の最小単位は、通常0.1μmまたはそれ以下であるから、揺動の移動制御は、なお余裕をもって行えるものである。 Then, the divided feed amount d in the depth direction and the swing amount s of the swing expansion in the side surface direction of the minute machining section divided into the minute parts are applied to the processing of the steel material for metal molds or the like. If the former d is about 1.0 mm, the latter s is set to about 0.1 mm, and the relative oscillating feed control in the processing depth direction and the side surface direction is set. Since the minimum unit of command and drive is usually 0.1 μm or less, the swing movement control can be performed with a sufficient margin.

図3は、前述本発明の揺動放電加工方法の実施に使用する実施例制御装置のブロックダイアグラム説明図で、該制御装置は、内蔵記憶装置10、外部記憶装置20、記憶媒体読取装置30、表示装置40、入力装置50、中央演算処理装置60、一時記憶装置70、及び入出力装置80等を有しており、さらに前記中央演算処理装置60は、前記入出力装置80を介して、モータ制御装置90及び放電加工電源装置100などに接続されている。 FIG. 3 is a block diagram explanatory diagram of an embodiment control device used in the implementation of the swing electric discharge machining method of the present invention. The control device includes an internal storage device 10, an external storage device 20, a storage medium reader 30, A display device 40, an input device 50, a central processing unit 60, a temporary storage device 70, an input / output device 80, and the like are provided. The central processing unit 60 is further connected to a motor via the input / output device 80. The control device 90 and the electric discharge machining power supply device 100 are connected.

内蔵記憶装置10は、形彫放電加工装置本機に付属する数値制御装置の電子計算機ユニットに設けられるハードディスクドライブのような主記憶装置であって、この内蔵記憶装置は、データの読み書きが自在で、数値制御装置の電源が遮断されているときでも記憶したデータを保持しており、従って該記憶装置は、NCプログラムを記憶して保存しておく手段の1つである。 The built-in storage device 10 is a main storage device such as a hard disk drive provided in an electronic computer unit of a numerical controller attached to the die-sinking electric discharge machine, and this built-in storage device can freely read and write data. The stored data is held even when the power supply of the numerical control device is cut off. Therefore, the storage device is one of means for storing and storing the NC program.

外部記憶装置20は、例えば、USBフラッシュメモリ(USB Memory,Universal Serial Bus)ような、電子計算機ユニットに設けられる出力ポートを通してデータを記憶することができる補助記憶装置であって、この記憶装置は、データの読み書きが自在であり、出力ポートに装着して電子計算機ユニットとの間で、データのやり取りを行ない、出力ポートから取り外して、データを記憶させたまま持ち運びすることができる。従って、この外部記憶装置も、NCプログラムを記憶して保持しておく手段の1つとすることができる。 The external storage device 20 is an auxiliary storage device that can store data through an output port provided in an electronic computer unit, such as a USB flash memory (USB Memory, Universal Serial Bus), for example. Data can be freely read and written, and it can be attached to an output port to exchange data with an electronic computer unit, removed from the output port, and carried with data stored. Therefore, this external storage device can also be one of means for storing and holding the NC program.

記憶媒体読取装置30は、電子計算機ユニットに設けられ、本体から取り外すことができる記憶媒体(メディア)と記憶媒体にデータを読み書きする駆動装置を含む補助記憶装置であって、この記憶媒体読取装置は、具体的には、例えば、DVDドライブ(DVD,Digital Video Disc)やCDドライブ(CD,Compact Disc)のような光ディスクドライブ、もしくはFDドライブ(FD,Floppy (登録商標)Disk)のような磁気ディスクドライブであり、従って、該記憶媒体読取装置は、NCプログラムを記憶媒体に記憶させて保持させておく手段である。 The storage medium reader 30 is an auxiliary storage device that is provided in the electronic computer unit and includes a storage medium (medium) that can be removed from the main body and a drive device that reads and writes data from and to the storage medium. Specifically, for example, an optical disk drive such as a DVD drive (DVD, Digital Video Disc) or a CD drive (CD, Compact Disc), or a magnetic disk such as an FD drive (FD, Floppy (registered trademark) Disk) Therefore, the storage medium reading device is means for storing and holding the NC program in the storage medium.

表示装置40は、例えば、数値制御装置に付属する液晶表示装置(LCD,Liquid Crystal Display)のようなカラーディスプレイ(モニタ)であって、該表示装置は、電子計算機ユニットに、オプションでグラフィックアダプタ(ビデオカード)が設けられるときは、グラフィックアダプタを含む。 The display device 40 is, for example, a color display (monitor) such as a liquid crystal display (LCD) attached to the numerical control device, and the display device is optionally connected to an electronic computer unit with a graphic adapter ( When a video card is provided, it includes a graphics adapter.

入力装置50は、数値制御装置に付属する操作盤のスイッチ、キーボード、またはマウスなどであって、さらに液晶表示装置に設けられるタッチセンサなどをも含み、機能としては、オペレータが数値や文字のような操作データを電子計算機ユニットに与える手段である。 The input device 50 is a switch, keyboard, mouse or the like of an operation panel attached to the numerical control device, and further includes a touch sensor provided on the liquid crystal display device. This is a means for giving various operation data to the electronic computer unit.

一時記憶装置70は、電子計算機ユニットに設けられる随時アクセスメモリ(RAM,Random Access Memory)であって、中央演算装置60が演算を行なうときに、演算に必要なデータを記憶し、また演算結果を保持するものである。 The temporary storage device 70 is a random access memory (RAM) provided in the electronic computer unit. The temporary storage device 70 stores data necessary for the operation when the central processing unit 60 performs the operation, and stores the operation result. It is to hold.

演算装置60は、電子計算機ユニットに設けられている中央演算処理装置(CPU,Central Processing Unit)で構成させる数値制御装置のメインプロセッサで、前述の各種の記憶装置から各種のプログラム及びデータ等を入力装置50の入力データ、指令等に応じて取り込み、演算し、入出力装置80を介して放電加工機のモータ制御装置90や加工電源装置100に作動指令を与えて、所要の揺動放電加工を実行し、必要に応じ加工の状態や結果を検出フィードバックして制御を行なうものである。 The arithmetic unit 60 is a main processor of a numerical control unit configured by a central processing unit (CPU) provided in the electronic computer unit, and inputs various programs, data, and the like from the various storage units described above. According to the input data, commands, etc. of the device 50, it is taken in and calculated, and an operation command is given to the motor control device 90 and the machining power supply device 100 of the electric discharge machine via the input / output device 80 to perform the required swing electric discharge machining. The control is performed by detecting and feeding back the processing state and result as required.

本発明の揺動放電加工方法、特に前記微小の分割区間(分割送り量)に対する加工深さの送りと側面方向の揺動とによる、電気的加工条件変更なしでの前記手前の位置から送り込み終了位置迄の加工(分割送り加工又は分割送り加工工程と言う。)を実行するためには、制御装置の中央演算処理装置60に前述分割数Nと分割送り量dとの各数値データを入力させることが必要となるが、それには普通に考えて以下の3通りの手法がある。 The oscillating electric discharge machining method of the present invention, in particular, the feeding end from the front position without changing the electrical machining conditions by feeding the machining depth to the minute divided section (divided feed amount) and swinging in the lateral direction. In order to execute processing up to a position (referred to as a division feed processing or a division feed processing step), the central processing unit 60 of the control device inputs numerical data of the division number N and the division feed amount d. However, there are the following three methods in general.

先ず、第一番目のやり方として、入力装置50から、分割数Nと分割送り量dを設定値として数値データとして与えるやり方で、入力された分割数と分割送り量dは、一時記憶装置70に記憶される。 First, as a first method, the division number N and the divided feed amount d are given as numerical data as set values from the input device 50, and the input division number and the divided feed amount d are stored in the temporary storage device 70. Remembered.

次に、または、別のやり方として、内蔵記憶装置10、外部記憶装置20、または記憶媒体読取装置30から、所望の加工におけるNCプログラムを読み込み、NCプログラムを液晶表示装置40の画面上に表示させておいて、入力装置50から特定のNCコードと分割数および分割送り量をNCプログラムに追記して与えるものである。そして、書き換えられたNCプログラムは、一時記憶装置70に記憶され、必要であるときは、内蔵記憶装置10、外部記憶装置20、または、記憶媒体読取装置30にあるNCプログラムのファイルデータを上書きして記憶させるものである。 Next, or as another method, the NC program in the desired processing is read from the internal storage device 10, the external storage device 20, or the storage medium reader 30, and the NC program is displayed on the screen of the liquid crystal display device 40. In this case, a specific NC code, the number of divisions, and the divided feed amount are additionally written to the NC program from the input device 50. The rewritten NC program is stored in the temporary storage device 70. When necessary, the NC program file data in the internal storage device 10, the external storage device 20, or the storage medium reader 30 is overwritten. To remember.

また、別のやり方として、加工電源装置100の加工条件設定システムにある設定画面のメニュに従って分割加工を選択的に指定し、演算装置60には、加工条件設定システムに従って得られた加工条件と送り量を含む加工形状とに基づいて予め定められたプロセスで、分割数と分割送り量とを自動的に決定させるようにする。そうすると決定された分割数と分割送り量は、NCプログラムにNCコードとともに追記するか、または設定値として一時記憶装置70に記憶される。 As another method, the division processing is selectively designated according to the menu of the setting screen in the processing condition setting system of the processing power supply apparatus 100, and the processing conditions and feed obtained according to the processing condition setting system are sent to the arithmetic unit 60. The number of divisions and the divided feed amount are automatically determined by a predetermined process based on the machining shape including the amount. Then, the determined division number and division feed amount are added to the NC program together with the NC code, or are stored in the temporary storage device 70 as set values.

なお、加工条件と送り量を含む加工形状とに基づいて、分割数と分割送り量を決定する簡単な方法は、加工条件と送り量を含む加工形状に対応するデータテーブルを準備しておき(既存のデータベースを利用できる)、最適値を読み出して決定することができるが如くである。 A simple method for determining the division number and the divided feed amount based on the machining conditions and the machining shape including the feed amount is to prepare a data table corresponding to the machining shape including the machining conditions and the feed amount ( An existing database can be used), and the optimum value can be read and determined.

なお、分割数と分割送り量は、加工深さ方向と揺動方向とで通常、前者が同一で、後者が別値で与えられるが、同一であっても良く、加工の目的等に応じて種々選定される。以下加工深さ方向について説明する。 The number of divisions and the division feed amount are usually the same in the machining depth direction and the rocking direction, and the latter is given as a different value, but may be the same, depending on the purpose of machining, etc. Various selections are made. The processing depth direction will be described below.

前述分割数と分割送り量の第一番目の設定の仕方は、入力装置50から数値データを直接入力設定すれば良いのであるから、実現が容易であるが、設定した分割数と分割送り量のデータを保存しておけないので、加工毎に設定値を入力して設定し直す必要があると言う問題がある。 The first method of setting the number of divisions and the division feed amount is easy to realize because it is only necessary to directly input and set numerical data from the input device 50. Since the data cannot be saved, there is a problem that it is necessary to input and reset the set value for each processing.

これに対し、第2のNCプログラムにNCコードで追記する方法は、NCプログラムとともに分割数と分割送り量を保存しておけるが、オペレータに比較的専門的な知識が要求され作業者の負担が大きい。即ち、例えば、分割数と分割送り量を誤って設定するおそれなどがあるだけでなく、この分割送り加工を行なわないときには、再びNCプログラムを書き換える必要があるからである。 On the other hand, the method of adding the NC code to the second NC program can save the number of divisions and the divided feed amount together with the NC program, but requires a relatively specialized knowledge from the operator, and the burden on the operator is reduced. large. That is, for example, there is a possibility that the number of divisions and the division feed amount may be set incorrectly, and it is necessary to rewrite the NC program again when this division feed machining is not performed.

また、前述加工条件設定システムによる方法は、オペレータの負担が比較的軽微である利点があるが、加工条件設定システムのアプリケーションプログラムを大掛かりに変更することが要求されると言う問題がある。このように入力設定の手法の違いによる利害得失を対比すると、上述の場合は、一般的には、前記入力装置10から数値データを入力する方法の採用が推奨されるものである。以下この手法を採用した場合の分割送り加工について説明する。 In addition, the method using the machining condition setting system has an advantage that the burden on the operator is relatively small, but there is a problem that it is required to change the application program of the machining condition setting system on a large scale. In this way, in the above case, it is generally recommended to use a method of inputting numerical data from the input device 10 when comparing the advantages and disadvantages due to the difference in the input setting method. Hereinafter, the split feed processing when this method is employed will be described.

オペレータが放電加工をスタートさせると、数値制御装置内の数値制御装置は、NCプログラムを解読しながら、順次移動指令値(位置データ等)をモータ制御装置に出力し、該モータ制御装置90は各軸サーボモータをサーボ制御また、加工電源装置100に加工条件データを出力し、パルス制御装置を含む加工電源装置100は、回路部品を操作して加工条件に合う電圧パルスを加工間隙に印加して所要の加工電流を断続的に供給する。 When the operator starts electric discharge machining, the numerical controller in the numerical controller sequentially outputs movement command values (position data, etc.) to the motor controller while decoding the NC program. Servo control of the axis servo motor and output of machining condition data to the machining power supply apparatus 100. The machining power supply apparatus 100 including the pulse control apparatus operates circuit components to apply voltage pulses that meet the machining conditions to the machining gap. The required machining current is supplied intermittently.

数値制御装置は、出力した移動指令値を入力するカウンタを備えており、現在移動量(加工が終了していないある時点における加工開始位置からの累積移動量)を得ている。
演算装置60は、加工開始位置が判っているので、現在移動量から現在位置を得ることができる(当該方法は安全であるので一般的である)。または、モータに付随して設けられる位置検出器からの位置検出信号が数値制御装置に入力して、現在位置データを得ることができる。
演算装置60は、加工開始位置が判っているので、現在位置から現在移動量を得ることができる。
The numerical control device includes a counter for inputting the output movement command value, and obtains a current movement amount (cumulative movement amount from a machining start position at a certain time when machining is not finished).
Since the processing start position is known, the arithmetic device 60 can obtain the current position from the current movement amount (this method is general because the method is safe). Alternatively, the current position data can be obtained by inputting a position detection signal from a position detector attached to the motor to the numerical controller.
Since the processing start position is known, the arithmetic device 60 can obtain the current movement amount from the current position.

NCプログラムに、各加工工程における分割送り量と揺動量が記述されており、演算装置60は、NCプログラムを解読して得られたNCデータから、分割数と分割送り量を得て、分割送り加工の各加工工程の分割送り量の加工開始位置(開始位置到達送り量)を計算する。計算された前記各分割加工工程の開始位置到達送り量は、一時記憶装置70に記憶される。 The NC program describes the divided feed amount and the swing amount in each machining step. The arithmetic unit 60 obtains the number of divisions and the divided feed amount from the NC data obtained by decoding the NC program, and the divided feed. The machining start position (start position arrival feed amount) of the divided feed amount of each machining process is calculated. The calculated starting position reaching feed amount for each of the divided machining steps is stored in the temporary storage device 70.

分割数は、分割送り加工のために全体の加工工程の送り量を分割する回数であり、全体の加工工程の送り量を含む。分割送り量は、分割送り加工において予め設定された数に分割された一分割部分における送り量であり、該分割送り量は、加工工程毎の分割送り量を別々の値に設定することができるが、その値を違える自由度が小さく、加工結果に影響を殆んど与えないから、通常は、各分割送り量の値は同一に設定される。 The number of divisions is the number of times of dividing the feed amount of the entire machining process for the division feed processing, and includes the feed amount of the whole machining process. The divided feed amount is a feed amount in one divided portion divided into a preset number in the divided feed processing, and the divided feed amount can set the divided feed amount for each machining process to different values. However, since the degree of freedom for changing the value is small and the machining result is hardly affected, the values of the divided feed amounts are usually set to be the same.

例えば、NCプログラムによる揺動放電加工の工程が、前述第3工工程とか第4加工工程とかで、例えば、第3加工工程の加工穴の深さ方向の送り込み長さ(又は量)の全長が、50mm(50000μm)のとき、分割数Nが4で、分割送り量dが10μmに設定されている場合、
分割数は加工目標位置まで到達するときの送り量を含むから、
加工工程の送り量50mmから30μm(10μm×3)減算した送り量49.970mm(49970μm)が、分割送り加工における第1番目の分割送り加工の開始位置(前記予め選定した所定長さ手前の位置)到達送り量であり、このときの位置が開始位置である(図1参照)。
同様に、第2番目の分割送り加工の加工送り量に対する加工開始位置到達送り量は49.980mm、第3番目の開始位置到達送り量は49.990mmである。
For example, the swing electric discharge machining process by the NC program is the above-mentioned third machining process or the fourth machining process. For example, the total length of the feed length (or amount) in the depth direction of the machining hole in the third machining process is When the number of divisions N is 4 and the division feed amount d is set to 10 μm at 50 mm (50000 μm),
Since the number of divisions includes the feed amount when reaching the machining target position,
The feed amount 49.970 mm (49970 μm) obtained by subtracting 30 μm (10 μm × 3) from the feed amount 50 mm in the machining step is the start position of the first divided feed machining in the divided feed machining (position before the predetermined length previously selected) ) The reached feed amount, and the position at this time is the start position (see FIG. 1).
Similarly, the machining start position arrival feed amount with respect to the machining feed amount of the second divided feed machining is 49.980 mm, and the third start position arrival feed amount is 49.990 mm.

演算装置60は、移動指令値を出力しながら所定のサイクルで現在位置を取得するとともに、一時記憶装置70から第1番目の分割送り加工の分割送り量に対する加工開始位置到達送り量を読み込んで、開始位置到達送り量と現在移動量とを比較している。 The computing device 60 acquires the current position in a predetermined cycle while outputting the movement command value, and reads the machining start position arrival feed amount with respect to the divided feed amount of the first divided feed machining from the temporary storage device 70, The starting position arrival feed amount is compared with the current movement amount.

演算装置60は、現在移動量が分割送り量に対する加工開始位置到達送り量に到達したら、その位置が分割送り加工の分割送り量に対する加工開始位置であるので、一時的に移動指令値の出力を停止して開始位置を越えて電極を送らないようにしながら、いわゆる加工の終了判定を行なう。なお、加工の終了判定については、先に詳述したので、ここでは詳述しない。 When the current movement amount reaches the machining start position arrival feed amount with respect to the divided feed amount, the arithmetic device 60 temporarily outputs the movement command value because the position is the machining start position with respect to the divided feed amount of the divided feed processing. While stopping and not feeding the electrode beyond the start position, the so-called end of machining is determined. Since the end of processing is described in detail above, it will not be described in detail here.

演算装置60は、加工の終了判定のプロセスを実行して1つの分割送り量に対する分割送り加工の工程が終了と判定されたら、再び移動指令値を出力しながら所定のサイクルで現在移動量を取得するとともに、一時記憶装置70から第2番目の分割送り量の部分に対する分割送り加工の開始位置到達送り量を読み込んで、開始位置到達送り量と現在移動量とを比較する。
演算装置60は、NCプログラムの加工が、例えば、前述第5番目の揺動放電加工の加工工程の送り込み終了位置に到達したときは、同様に加工の終了判定のプロセスを実行して加工を終了させ、次段のNCプログラムのための移動指令を出力させる。
The arithmetic unit 60 executes the process of determining the end of machining and, when it is determined that the process of split feed processing for one split feed amount is finished, obtains the current travel distance in a predetermined cycle while outputting the movement command value again. At the same time, the start position arrival feed amount of the divided feed processing for the second divided feed amount portion is read from the temporary storage device 70, and the start position arrival feed amount and the current movement amount are compared.
When the machining of the NC program reaches, for example, the feed end position of the machining process of the fifth oscillating electric discharge machining, the arithmetic device 60 similarly performs the machining end determination process and finishes the machining. The movement command for the NC program at the next stage is output.

本発明の揺動放電加工方法は、形彫り放電加工の放電加工に適用して有用である。 The swing electric discharge machining method of the present invention is useful when applied to electric discharge machining of die-sinking electric discharge machining.

本発明の一実施例を加工の段階を、線図として示した説明図。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing which showed the step of the process of one Example of this invention as a diagram. 同じく、一部を変更した実施例の説明図。Similarly, explanatory drawing of the Example which changed a part. 本発明方法の実施に使用する実施例制御装置のブロックダイアグラム説明図。The block diagram explanatory drawing of the Example control apparatus used for implementation of the method of this invention. 従来例の揺動放電加工における加工深さ方向の複数の加工の段階の説明図。Explanatory drawing of the step of the some process of the machining depth direction in the swing electric discharge machining of a prior art example. 同じく、加工深さ方向と直角な側面方向の複数の加工の段階の説明図。Similarly, explanatory drawing of the stage of the some process of the side surface direction orthogonal to a process depth direction. 同じく、他の従来例の揺動放電加工の説明図。Similarly, explanatory drawing of the swing electric discharge machining of another conventional example.

符号の説明Explanation of symbols

1、E、電極
2、被加工体
2F、被加工体の表面
2D、加工穴(の側壁)
2B、加工穴の底面
N、分割数
d、加工深さ方向の微小の分割送り長さ
dn、分割変化量
s、加工深さ方向と直角方向側面の微小の分割揺動拡大振幅
sn、ステップ
10、内蔵記憶装置
20、外部記憶装置
30、記憶媒体読取装置
40、表示装置
50、入力装置
60、中央演算処理装置
70、一時記憶装置
80、出力装置
90、モータ制御装置
100、放電加工電源装置
1, E, electrode 2, workpiece 2F, surface 2D of workpiece, machining hole (side wall thereof)
2B, bottom surface N of machining hole, number of divisions d, minute divided feed length dn in the machining depth direction, division variation s, minute divided oscillation expansion amplitude sn on the side surface perpendicular to the machining depth direction, step 10 , Built-in storage device 20, external storage device 30, storage medium reading device 40, display device 50, input device 60, central processing unit 70, temporary storage device 80, output device 90, motor control device 100, electric discharge machining power supply device

Claims (11)

電極と被加工体とで形成される加工間隙に所要の加工電圧を間歇的に印加して放電を発生させ、前記電極と被加工体とを加工深さ方向と該加工深さ方向に垂直な加工穴の側面方向とに相対的に移動させて前記被加工体を加工するようにした形彫り放電加工であって、
前記加工深さ方向の送り込み位置が、予め設定したNCプログラムによる所定加工深さ方向の送り込み終了位置に達すると共に、側面方向の揺動拡大量が所定値に達すると、当該加工工程の加工を終了し、次いで加工深さ方向の送り長さと側面方向の揺動拡大量と電気的加工条件とを含む加工条件を、次段の加工工程のNCプログラムに設定してある加工条件に切り換えて加工する揺動放電加工方法において、
所望加工工程の加工のNCプログラムに設定された加工深さ方向の送り込み終了位置から、予め選定した所定長さ手前の位置を設定し、この手前の位置から当該加工工程の前記送り込み終了位置までの加工送り込み長さと、当該加工工程の前記手前の位置における側面方向の揺動拡大の残りの揺動量とを、それぞれ、予め選定した分割数の微小の加工区間に分割し、
該微小の分割加工区間毎の加工深さ方向と揺動拡大方向の揺動による前記手前の位置からの揺動放電加工を、前記手前の位置までの加工の電気的加工条件を変更することなく、各微小の分割加工区間毎に加工の終了判定を行ないながら微小の加工区間の加工を順次に進行させ、当該加工のNCプログラムに設定された送り込み終了位置まで加工して加工の終了判定を行い、終了と判定されたとき次段の加工工程のNCプログラムの加工に切換え移行させることを特徴とする揺動放電加工方法。
A required machining voltage is intermittently applied to a machining gap formed by the electrode and the workpiece to generate a discharge, and the electrode and the workpiece are placed in a machining depth direction and perpendicular to the machining depth direction. Die-sinking electric discharge machining that moves relative to the side surface direction of the machining hole to machine the workpiece,
When the feed position in the machining depth direction reaches the feed end position in the predetermined machining depth direction according to a preset NC program and the amount of fluctuation in the lateral direction reaches a predetermined value, the machining in the machining process is finished. Then, the machining conditions including the feed length in the machining depth direction, the amount of fluctuation in the lateral direction, and the electrical machining conditions are switched to the machining conditions set in the NC program of the next machining process. In the swing electric discharge machining method,
From the feed end position in the machining depth direction set in the NC program for machining in the desired machining process, a position in front of a predetermined length selected in advance is set, and from this position to the feed end position of the machining process. The processing feed length and the remaining swing amount of the swing expansion in the lateral direction at the position in front of the processing step are each divided into a preselected division number of minute processing sections,
Oscillating electric discharge machining from the front position by swinging in the machining depth direction and swing enlargement direction for each minute divided machining section without changing the electrical machining conditions of the machining up to the front position , The end of the machining is sequentially progressed for each minute divided machining section, the machining in the minute machining section is sequentially advanced, and the machining end is determined by machining to the feed end position set in the NC program of the machining. An oscillation electric discharge machining method characterized by switching to NC program machining in the next machining step when it is determined that the process is finished.
前記所望加工工程のNCプログラムによる加工深さ方向の加工が、前記手前の位置に達したとき加工の終了判定を行い、所定の終了状態を確認して後、前記分割された微小の加工区間の部分の、前記手前の位置からの順次の加工に移行させることを特徴とする請求項1に記載の揺動放電加工方法。 When the machining in the machining depth direction by the NC program of the desired machining process reaches the previous position, the machining end determination is performed, and after confirming a predetermined end state, the divided minute machining section The swing electric discharge machining method according to claim 1, wherein the portion is shifted to sequential machining from the previous position. 前記予め選定した分割数の微小の加工区間の分割が整数による等分割であるように調整されていることを特徴とする請求項1に記載の揺動放電加工方法。 The swing electric discharge machining method according to claim 1, wherein the division of the minute machining section of the predetermined number of divisions is adjusted so as to be an equal division by an integer. 前記加工の終了判定が、加工深さ方向と加工深さ方向と垂直な側面方向の電極と被加工体間の相対移動に伴う位置検出、または前記位置検出と電極被加工体間の所定基準位置に対する接触感知若しくはスパークアウト状態検知であることを特徴とする請求項1に記載の揺動放電加工方法。 Whether the end of the machining is determined is a position detection associated with a relative movement between the electrode in the side direction perpendicular to the machining depth direction and the machining depth direction, or a predetermined reference position between the position detection and the electrode workpiece. The swing electric discharge machining method according to claim 1, wherein the method is contact detection or spark-out state detection. 前記加工の終了判定が、加工深さ方向の加工面及び/又は側面方向の拡大面に対するラジアル方向に領域分割された領域に対する順次の判定であることを特徴とする請求項4に記載の揺動放電加工方法。 5. The oscillation according to claim 4, wherein the end determination of the processing is sequential determination for a region divided in a radial direction with respect to a processing surface in a processing depth direction and / or an enlarged surface in a side surface direction. Electric discharge machining method. 前記分割数と分割微小の加工区間の長さである分割送り量とが、加工のNCプログラムから独立して制御装置により直接入力して設定できるものであることを特徴とする請求項1に記載の揺動放電加工方法。 2. The division number and the division feed amount which is the length of a divided minute machining section can be set by directly inputting by a control device independently of a machining NC program. Swing electric discharge machining method. 前記微小の分割送り加工区間dに割り振られた分割送り量が、加工の種類・目的、電極・ワークの種類・材質組合せ、及び設定される又は形成される加工条件などによって予め決定されたものであることを特徴とする請求項1に記載の揺動放電加工方法。 The divided feed amount allocated to the minute divided feed machining section d is determined in advance according to the type / purpose of machining, the type / material combination of the electrode / workpiece, and the machining conditions to be set or formed. The swing electric discharge machining method according to claim 1, wherein: 前記手前の位置が、前記予め選定された分割送り加工の分割送り量dと、予め設定される分割数Nとの積によって決定するように構成されているものであることを特徴とする請求項1に記載の揺動放電加工方法。 The front position is configured to be determined by a product of a pre-selected division feed amount d of the division feed processing and a preset division number N. 2. The swing electric discharge machining method according to 1. 電極と被加工体とで形成される加工間隙に所要の加工電圧を間歇的に印加して放電を発生させ、前記電極と被加工体とを加工深さ方向と該加工深さ方向に垂直な加工穴の側面方向とに相対的に移動させて前記被加工体を加工するようにした形彫り放電加工であって、
前記加工深さ方向の送り込み位置が、予め設定したNCプログラムによる所定加工深さ方向の送り込み終了位置に達すると共に、側面方向の揺動拡大量が所定値に達すると、当該加工工程の加工を終了し、次いで加工深さ方向の送り長さと側面方向の揺動拡大量と電気的加工条件とを含む加工条件を、次段の加工工程のNCプログラムに設定してある加工条件に切り換えて加工する揺動放電加工装置において、
所望加工工程の加工のNCプログラムに設定された加工深さ方向の送り込み終了位置から、予め選定した所定微小長さ手前の位置までの間を分割送り加工区間として設定する分割送り加工区間の設定制御手段と、
この分割送り加工区間を予め選定した分割数Nと、
前記手前の位置から当該加工工程の送り込み終了位置までの長さと、前記手前の位置における側面方向の揺動拡大の残りの揺動量を、前記分割数で分割した微小長さの加工送り量dとの積により形成する分割送り加工区間の形成制御手段と、
この分割送り加工区間の前記手前の位置側からの加工を、前記手前の位置までの加工の電気的加工条件を変更することなく、分割送り量毎に順次に加工させる分割送り加工の加工制御手段と、
を備えたことを特徴とする揺動放電加工装置。
A required machining voltage is intermittently applied to a machining gap formed by the electrode and the workpiece to generate a discharge, and the electrode and the workpiece are placed in a machining depth direction and perpendicular to the machining depth direction. Die-sinking electric discharge machining that moves relative to the side surface direction of the machining hole to machine the workpiece,
When the feed position in the machining depth direction reaches the feed end position in the predetermined machining depth direction according to a preset NC program and the amount of fluctuation in the lateral direction reaches a predetermined value, the machining in the machining process is finished. Then, the machining conditions including the feed length in the machining depth direction, the amount of fluctuation in the lateral direction, and the electrical machining conditions are switched to the machining conditions set in the NC program of the next machining process. In the swing electric discharge machine
Division feed machining section setting control for setting a section from the feed end position in the machining depth direction set in the NC program for machining in the desired machining process to a position in front of a predetermined minute length selected as a divided feed machining section. Means,
The division number N for which this division feed machining section is selected in advance,
The length from the previous position to the feed end position of the machining step and the remaining amount of swing expansion in the lateral direction at the front position are a minute length of the process feed amount d divided by the number of divisions, and Forming control means for the divided feed machining section formed by the product of
Machining control means for split feed machining in which machining from the previous position side of this divided feed machining section is sequentially processed for each divided feed amount without changing the electrical machining conditions for machining up to the previous position. When,
An oscillating electric discharge machining apparatus comprising:
前記分割送り加工の制御手段が、前記分割送り量毎の順次の加工作動を加工の終了判定を行ないながら進行させる加工終了判定の制御手段を有することを特徴とする請求項9に記載の揺動放電加工装置。 10. The oscillation according to claim 9, wherein the division feed machining control unit includes a machining end determination control unit that advances a sequential machining operation for each divided feed amount while performing a machining end determination. Electric discharge machine. 前記分割数と分割微小の加工区間の長さである分割送り量とが、加工のNCプログラムに対して独立して制御装置に入力設定可能に構成されているものであることを特徴とする請求項9に記載の揺動放電加工装置。
The division number and the divided feed amount that is the length of a divided minute machining section are configured to be input-set to a control device independently of a machining NC program. Item 10. The swing electric discharge machining apparatus according to Item 9.
JP2008187828A 2008-07-18 2008-07-18 Oscillation electric discharge machining method and oscillation electric discharge machining apparatus in sculpture electric discharge machining Active JP5084650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008187828A JP5084650B2 (en) 2008-07-18 2008-07-18 Oscillation electric discharge machining method and oscillation electric discharge machining apparatus in sculpture electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008187828A JP5084650B2 (en) 2008-07-18 2008-07-18 Oscillation electric discharge machining method and oscillation electric discharge machining apparatus in sculpture electric discharge machining

Publications (2)

Publication Number Publication Date
JP2010023188A true JP2010023188A (en) 2010-02-04
JP5084650B2 JP5084650B2 (en) 2012-11-28

Family

ID=41729506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008187828A Active JP5084650B2 (en) 2008-07-18 2008-07-18 Oscillation electric discharge machining method and oscillation electric discharge machining apparatus in sculpture electric discharge machining

Country Status (1)

Country Link
JP (1) JP5084650B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021111530A1 (en) * 2019-12-03 2021-06-10 三菱電機株式会社 Control device, electric discharge machine, and machine learning device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255324A (en) * 1984-05-30 1985-12-17 Mitsubishi Electric Corp Method and device of electric discharge machining
JPH01289624A (en) * 1988-05-11 1989-11-21 Hoden Seimitsu Kako Kenkyusho Ltd Finishing controller for electrospark machining
JPH03270825A (en) * 1990-03-20 1991-12-03 Mitsubishi Electric Corp Electric discharge machining
JPH0852619A (en) * 1994-08-08 1996-02-27 Mitsubishi Electric Corp Device and method for electric discharge machining
JPH10156630A (en) * 1996-12-03 1998-06-16 Sodick Co Ltd Electrical discharge machining method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255324A (en) * 1984-05-30 1985-12-17 Mitsubishi Electric Corp Method and device of electric discharge machining
JPH01289624A (en) * 1988-05-11 1989-11-21 Hoden Seimitsu Kako Kenkyusho Ltd Finishing controller for electrospark machining
JPH03270825A (en) * 1990-03-20 1991-12-03 Mitsubishi Electric Corp Electric discharge machining
JPH0852619A (en) * 1994-08-08 1996-02-27 Mitsubishi Electric Corp Device and method for electric discharge machining
JPH10156630A (en) * 1996-12-03 1998-06-16 Sodick Co Ltd Electrical discharge machining method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021111530A1 (en) * 2019-12-03 2021-06-10 三菱電機株式会社 Control device, electric discharge machine, and machine learning device
CN114746203A (en) * 2019-12-03 2022-07-12 三菱电机株式会社 Control device, electric discharge machine, and machine learning device
CN114746203B (en) * 2019-12-03 2023-08-18 三菱电机株式会社 Control device, electric discharge machine, and machine learning device

Also Published As

Publication number Publication date
JP5084650B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP6335925B2 (en) Machine tool controller
EP0352635B1 (en) Numerically controlled grinding machine
JP5271549B2 (en) Control method of movable tool, input device and machine tool
CN102033511B (en) Processing-control device, laser processing device and laser processing system
JP6195659B2 (en) Machining program generation method, path generation device, and electric discharge machine
JP2015150628A (en) Numerical value controlling device having function for suppressing generation of chatter during thread cutting
US20150293522A1 (en) Machine tool control device and machine tool
US8525065B2 (en) Electric discharge machining apparatus and programming device
US10376977B2 (en) Control device, wire electrical discharge machine, program editing apparatus, and control method
JP5084650B2 (en) Oscillation electric discharge machining method and oscillation electric discharge machining apparatus in sculpture electric discharge machining
JP2012164200A (en) Numerical controller making in-position check on rotating shaft
EP3270244A1 (en) Tool path generating method and tool path generating apparatus
CN116157220A (en) Numerical control device and numerical control method
CN108693831B (en) Simulation device, program generation device, control device, and computer display method
JP5252753B1 (en) Machining condition setting support device for die-sinking EDM
CN116745709A (en) Display device and computer program
JP6808868B1 (en) Wire electric discharge machining method and wire electric discharge machining equipment
JP2000126937A (en) Setting device of programming device in electric discharge machining
JP4157258B2 (en) Electric discharge machining apparatus and electric discharge machining method
JP2002373009A (en) Moving position setting method for machine tool
KR930011213B1 (en) Wire-type edm method and apparatus
JP3516597B2 (en) Setting device of programming device in electric discharge machining
JP2003291032A (en) Method for establishing machining conditions in die sinking electrical discharge machining and numerical control power source device for die sinking electrical discharge machining device
JP2001162448A (en) Device and method for electric discharge machining
KR100221564B1 (en) Method and device to determine an optimal making condition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120904

R150 Certificate of patent or registration of utility model

Ref document number: 5084650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250