JP2010022999A - Charging apparatus for electric dust collection - Google Patents

Charging apparatus for electric dust collection Download PDF

Info

Publication number
JP2010022999A
JP2010022999A JP2008190754A JP2008190754A JP2010022999A JP 2010022999 A JP2010022999 A JP 2010022999A JP 2008190754 A JP2008190754 A JP 2008190754A JP 2008190754 A JP2008190754 A JP 2008190754A JP 2010022999 A JP2010022999 A JP 2010022999A
Authority
JP
Japan
Prior art keywords
electrode
discharge electrode
discharge
charging device
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008190754A
Other languages
Japanese (ja)
Other versions
JP5213568B2 (en
Inventor
Takuya Furuhashi
拓也 古橋
Kaku Kan
カク 韓
Shiro Takeuchi
史朗 竹内
Toyoki Kondo
豊樹 近藤
Koji Fujii
浩二 藤井
Koji Furuta
浩二 古田
Keiji Hara
慶次 原
Takashi Yasunaga
隆司 安永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Nippon Tungsten Co Ltd
Original Assignee
Mitsubishi Electric Corp
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Nippon Tungsten Co Ltd filed Critical Mitsubishi Electric Corp
Priority to JP2008190754A priority Critical patent/JP5213568B2/en
Publication of JP2010022999A publication Critical patent/JP2010022999A/en
Application granted granted Critical
Publication of JP5213568B2 publication Critical patent/JP5213568B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charging apparatus for electric dust collection excellent in charging efficiency. <P>SOLUTION: The charging apparatus 10 comprises discharge electrodes 1 and a charge part 10a for charging the dust in the air by corona discharge between the discharge electrodes and opposite electrodes 2 facing the discharge electrodes 1 wherein the discharge electrodes 1 are platy, disposed between the opposite electrodes with a distance from the opposite electrodes 2, and impressed with a voltage depending on the distance. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は電気集塵用荷電装置、特に、板状電極を利用した電気集塵用の荷電装置に関するものである。   The present invention relates to a charging device for electrostatic dust collection, and more particularly to a charging device for electrostatic dust collection using a plate electrode.

一般的に空気清浄機の電気集塵装置は二つの電極間でコロナ放電を発生させて塵埃を帯電させる荷電部と、この荷電部で帯電された塵埃を集塵する集塵部とから構成される。荷電部は、平板状の対向電極、長手方向に対して複数の針状突起が一定間隔で形成される放電電極が配設される。そして、平板状の対向電極の面に放電電極に形成する複数の針状突起が対向し、かつ放電電極は空気流に対して直行するように配置される。次に、対向電極と放電電極との間に直流の高電圧を印加することにより、この電極間でコロナ放電が発生する。これにより、この電極間を通過する塵埃は正に帯電され、この後で集塵部によって補足され、清浄な空気となる(特許文献1参照)。   Generally, an electric dust collector of an air cleaner is composed of a charging unit that generates corona discharge between two electrodes to charge the dust, and a dust collecting unit that collects the dust charged by the charging unit. The The charging portion is provided with a flat counter electrode and a discharge electrode in which a plurality of needle-like protrusions are formed at regular intervals in the longitudinal direction. A plurality of needle-like protrusions formed on the discharge electrode are opposed to the surface of the flat counter electrode, and the discharge electrode is disposed so as to be orthogonal to the air flow. Next, by applying a high DC voltage between the counter electrode and the discharge electrode, corona discharge is generated between the electrodes. As a result, the dust passing between the electrodes is positively charged, and thereafter is captured by the dust collecting portion to become clean air (see Patent Document 1).

特開平5−184969号公報(第2−3頁、図1)JP-A-5-184969 (page 2-3, FIG. 1)

前記特許文献1に開示された空気清浄機に搭載する電気集塵装置の荷電部は、放電電極に形成する複数の針状突起を空気の流れ方向に対して直交するように配置され、複数の針状突起と平板状の対向電極との第1空間でコロナ放電が集中して発生することになる。このために、第1空間を通過する塵埃粒子の殆どは帯電され易い状態と言える。
(あ)しかし、複数の針状突起間の第2空間ではコロナ放電が殆ど発生せず、この第2空間を通過する塵埃は帯電されない状態にある。このために、荷電部の荷電効率は比較的低いという問題点があった。
(い)また、複数の針状突起同士の間隔を狭くした場合、突起から対向電極に流れるコロナ放電電流が複数の針状突起同士で互いに干渉し合う。これにより、コロナ放電電流に脈動が生じて安定した電流が得られなくなるので、コロナ放電量は変動して帯電効率が低下するという問題点があった。
(う)さらに、前述のコロナ放電電流の脈動により雑音が発生すると同時にオゾン量が増え、人間に対して違和感を与えるという問題点があった。
The charging part of the electrostatic precipitator mounted on the air cleaner disclosed in Patent Document 1 is arranged so that a plurality of needle-like protrusions formed on the discharge electrode are orthogonal to the air flow direction. Corona discharge is concentrated and generated in the first space between the needle-like protrusion and the flat counter electrode. For this reason, it can be said that most of the dust particles passing through the first space are easily charged.
(A) However, the corona discharge hardly occurs in the second space between the plurality of needle-like protrusions, and the dust passing through the second space is not charged. For this reason, there has been a problem that the charging efficiency of the charged portion is relatively low.
(Ii) When the interval between the plurality of needle-like projections is narrowed, the corona discharge currents flowing from the projection to the counter electrode interfere with each other between the plurality of needle-like projections. As a result, pulsation occurs in the corona discharge current, and a stable current cannot be obtained. Therefore, there is a problem that the corona discharge amount fluctuates and the charging efficiency is lowered.
(Iii) Furthermore, there is a problem that noise is generated due to the pulsation of the corona discharge current described above, and at the same time, the amount of ozone is increased, giving a sense of incongruity to humans.

本発明は、前記問題点に鑑み、荷電効率をよくすることができる電気集塵用荷電装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a charging device for electrostatic dust collection that can improve charging efficiency.

本発明に係る電気集塵用荷電装置は、放電電極と、該放電電極に対峙する対向電極との間でコロナ放電を生じさせて空気中の塵埃を帯電させる荷電部と、該荷電部において帯電された塵埃を集塵する集塵部とを備え、前記放電電極は、板状で前記対向電極の間に間隔を設けて配置され、該間隔の距離に応じて電圧が印加されることを特徴とする。   An electrostatic precipitator charging device according to the present invention includes a charging unit that generates corona discharge between a discharge electrode and a counter electrode facing the discharge electrode to charge dust in the air, and charging in the charging unit. A dust collecting section for collecting the collected dust, wherein the discharge electrode is plate-shaped and arranged with a gap between the counter electrodes, and a voltage is applied according to the distance of the gap. And

本発明に係る電気集塵用荷電装置は、荷電装置を構成する放電電極が板状であるから、放電電極と対向電極との間に電圧を印加することによって、放電電極と対向電極との間の間隔を通過する空気中の粒子に対し高効率の荷電をすることができる。   In the electrostatic precipitator charging device according to the present invention, since the discharge electrode constituting the charging device is plate-shaped, by applying a voltage between the discharge electrode and the counter electrode, It is possible to charge the particles in the air passing through the intervals with high efficiency.

[実施の形態1:平行設置]
図1および図2は本発明の実施の形態1に係る電気集塵用荷電装置に設置された放電電極の構成を説明するものであって、図1は模式的に表した斜視図、図2は模式的に表した断面図である。
図1および図2に示す電気集塵用荷電装置(以下、「荷電装置」と称す)10において、荷電部10aは、放電電極1と、その対向電極2と、両者間に所定の電圧を付与する電源(図示しない)と、から形成され、粒子及び粉塵は両者の間を通過する際、帯電する。放電電極1は、板状で、タングステン、銅、ニッケル、ステンレス、亜鉛、鉄などの金属、あるいはこれらの金属を主成分とする合金、もしくはこれらの金属に、銀、金、白金などの貴金属を表面にメッキしたもので形成されている。
対向電極2は、板状で、同様の金属あるいはカーボン、金属フィラー等を練り込んだ導電性樹脂で形成されている。
[Embodiment 1: Parallel installation]
1 and 2 illustrate the configuration of the discharge electrode installed in the electrostatic precipitator charging device according to Embodiment 1 of the present invention. FIG. 1 is a perspective view schematically illustrating the structure of FIG. Is a schematic cross-sectional view.
In the electrostatic precipitator charging device (hereinafter referred to as “charging device”) 10 shown in FIG. 1 and FIG. Power source (not shown), and particles and dust are charged when passing between them. The discharge electrode 1 is plate-shaped and is made of a metal such as tungsten, copper, nickel, stainless steel, zinc, or iron, an alloy containing these metals as a main component, or a noble metal such as silver, gold, or platinum. It is formed by plating on the surface.
The counter electrode 2 has a plate shape and is formed of a conductive resin in which a similar metal, carbon, metal filler, or the like is kneaded.

図1および図2に示す荷電部10aにおいて、放電電極1は対向電極2と平行に設置されている。つまり、板状の放電電極1の断面形状は短辺と長辺とを備えた矩形形状で、板状の対向電極2の断面形状も同じく短辺と長辺とを備えた矩形形状で、両電極の短辺同士・長辺同士が平行になるように設置されている。そして、放電電極1と対向電極2の間に数μA/cmの電流を流して、通過する粒子及び粉塵を帯電させる。
なお、荷電部10aの下流側に図示していないが集塵部が配置される。
In the charging unit 10 a shown in FIGS. 1 and 2, the discharge electrode 1 is installed in parallel with the counter electrode 2. That is, the cross-sectional shape of the plate-like discharge electrode 1 is a rectangular shape having short sides and long sides, and the cross-sectional shape of the plate-like counter electrode 2 is also a rectangular shape having short sides and long sides. It is installed so that the short sides and the long sides of the electrodes are parallel to each other. Then, a current of several μA / cm is passed between the discharge electrode 1 and the counter electrode 2 to charge the passing particles and dust.
Although not shown, a dust collection unit is disposed on the downstream side of the charging unit 10a.

[実施の形態2:垂直設置]
図3および図4は本発明の実施の形態2に係る電気集塵用荷電装置に設置された放電電極の構成を説明するものであって、図3は模式的に表した斜視図、図4は模式的に表した断面図である。
図3および図4に示す電気集塵用荷電装置(以下、「荷電装置」と称す)20において、荷電部10cには、放電電極1cが対向電極2に対して垂直に設置されている。なお、放電電極1cは放電電極1と同じものである。すなわち、荷電装置10(実施の形態1)と荷電装置20(実施の形態2)との相違は、対向電極2に対する放電電極の設置形態であって、前者では平行に設置され、後者では垂直に設置されるものである。
[Embodiment 2: Vertical installation]
3 and 4 illustrate the configuration of the discharge electrode installed in the electrostatic precipitator charging device according to Embodiment 2 of the present invention. FIG. 3 is a perspective view schematically illustrating the configuration of FIG. Is a schematic cross-sectional view.
In the electrostatic precipitator charging device (hereinafter referred to as “charging device”) 20 shown in FIG. 3 and FIG. The discharge electrode 1c is the same as the discharge electrode 1. That is, the difference between the charging apparatus 10 (Embodiment 1) and the charging apparatus 20 (Embodiment 2) is the installation form of the discharge electrode with respect to the counter electrode 2, which is installed in parallel in the former and vertically in the latter. It will be installed.

[放電状況]
次に、実施の形態1に説明した荷電装置10と実施の形態2に説明した荷電装置20とにおける放電状況を、互いに比較しながら説明する。
図5および図6は本発明の実施の形態1および実施の形態2に説明した電気集塵用荷電装置における放電状況を模式的に表したものであって、図5は前者(平行設置の場合)の断面図、図6は後者(垂直配置の場合)の断面図である。
図7および図8は、放電状況を比較するためのものであって、図7の(a)はワイヤ電極の構成を模式的に表した斜視図、図7の(b)はワイヤ電極の場合の放電状況を模式的に表した断面図、図8の(a)は突起電極の構成を模式的に表した斜視図、図8の(b)は突起電極の場合の放電状況を模式的に表した断面図である。
[Discharge status]
Next, the discharge state in the charging device 10 described in the first embodiment and the charging device 20 described in the second embodiment will be described while comparing with each other.
5 and 6 schematically show the discharge state in the electrostatic precipitator charging device described in the first and second embodiments of the present invention. FIG. 5 shows the former (in the case of parallel installation). 6 is a cross-sectional view of the latter (in the case of vertical arrangement).
FIGS. 7 and 8 are for comparison of discharge conditions. FIG. 7A is a perspective view schematically showing the configuration of a wire electrode, and FIG. 7B is a case of a wire electrode. FIG. 8A is a perspective view schematically showing the configuration of the protruding electrode, and FIG. 8B is a schematic drawing showing the discharging situation in the case of the protruding electrode. It is sectional drawing represented.

図5において、放電電極1を対向電極2と平行に設置した場合、荷電電極である放電電極1を凹凸が少なく平たい扁平形状にしたことで、放電は、放電電極1の断面からみて矩形状の四角の四箇所から起こっている。更に、放電電極の全体は均一に対向電極に向けて放電している。   In FIG. 5, when the discharge electrode 1 is installed in parallel with the counter electrode 2, the discharge is a rectangular shape as viewed from the cross section of the discharge electrode 1 by making the discharge electrode 1, which is a charge electrode, flat with few irregularities. It happens from four places in the square. Further, the entire discharge electrode is uniformly discharged toward the counter electrode.

図6において、放電電極1cを対向電極2と垂直に設置した場合、放電電極1が平行である時よりも放電領域が狭く、放電領域が重なる部分もある。それによって、より高い電界強度が得られる。
また、荷電装置20の用途により、放電電極1cは垂直に設置されるため、圧損が僅かに上昇する。荷電部10cに通過する空気が放電電極1cにぶつかることによって、乱流が発生し、通過する粒子が効率よく荷電されることになる。
In FIG. 6, when the discharge electrode 1c is installed perpendicularly to the counter electrode 2, the discharge region is narrower and the discharge region overlaps than when the discharge electrode 1 is parallel. Thereby, a higher electric field strength can be obtained.
Moreover, since the discharge electrode 1c is installed vertically depending on the application of the charging device 20, the pressure loss slightly increases. When the air passing through the charging unit 10c hits the discharge electrode 1c, a turbulent flow is generated, and the passing particles are efficiently charged.

図7において、比較する荷電部10wには、対向電極2に挟まれて、それぞれ平行にワイヤ電極1wが設置されている。そして、荷電領域はワイヤ電極1wの対向する側面(二箇所)に形成されている。
図8において、比較する荷電部10xには、対向電極2に挟まれて、それぞれ平行に突起電極1xが設置されている。そして、荷電領域は突起電極1xの突起先端に形成されている(基本的に二箇所に形成されている)。
In FIG. 7, wire electrodes 1 w are provided in parallel to each other between the counter electrodes 2 in the charging unit 10 w to be compared. And the charge area | region is formed in the side surface (two places) which the wire electrode 1w opposes.
In FIG. 8, the charged part 10x to be compared is provided with a protruding electrode 1x in parallel with the counter electrode 2 interposed therebetween. The charged region is formed at the projection tip of the projection electrode 1x (basically formed at two locations).

ここで、図5および図6と、図7の(b)および図8の(b)とを比較すると、放電電極1および放電電極1cの場合に、これらと対向電極2との間に生じる荷電領域は、ワイヤ電極1wまたは突起電極1xと、対向電極2との間に生じる荷電領域の何れよりも広いことが分かる。
すなわち、放電電極1および放電電極1cは設置形態にかかわらず、荷電領域が広く、この領域を通過する粒子や大気塵(粒子径0.3μm程度)に対して、効率よく荷電することができる。
Here, when FIG. 5 and FIG. 6 are compared with FIG. 7B and FIG. 8B, the charge generated between the discharge electrode 1 and the discharge electrode 1c and the counter electrode 2 is obtained. It can be seen that the region is wider than any of the charged regions generated between the wire electrode 1w or the protruding electrode 1x and the counter electrode 2.
That is, the discharge electrode 1 and the discharge electrode 1c have a wide charged area regardless of the installation form, and can efficiently charge particles and atmospheric dust (particle diameter of about 0.3 μm) passing through this area.

(実施例)
図9は図1に示された荷電装置の実施例の詳細寸法を示す模式図である。
図1に示す荷電部10aは、荷電装置10について、最大の荷電効率を出すため、最適化したものである。
すなわち、対向電極2は、幅A(長辺)が15〜20mm、厚みB(短辺)が0.1〜0.5mmである。放電電極1は、幅C(長辺)が0.5〜1.0mm、厚みD(短辺)が0.05〜0.1mmである。そして、対向電極2が平行に配置され、放電電極1と対向電極2との距離Eは10〜12mmである。このとき、荷電装置10の性能は、最も良い状態である。
なお、荷電部10cのように、放電電極が垂直に設置されている場合は、放電電極1cと対向電極2との距離は、9〜12mmが良い。
(Example)
FIG. 9 is a schematic view showing the detailed dimensions of the embodiment of the charging device shown in FIG.
The charging unit 10a shown in FIG. 1 is an optimized one for the charging device 10 in order to obtain the maximum charging efficiency.
That is, the counter electrode 2 has a width A (long side) of 15 to 20 mm and a thickness B (short side) of 0.1 to 0.5 mm. The discharge electrode 1 has a width C (long side) of 0.5 to 1.0 mm and a thickness D (short side) of 0.05 to 0.1 mm. And the counter electrode 2 is arrange | positioned in parallel and the distance E of the discharge electrode 1 and the counter electrode 2 is 10-12 mm. At this time, the performance of the charging device 10 is in the best state.
In addition, when the discharge electrode is installed vertically as in the charging unit 10c, the distance between the discharge electrode 1c and the counter electrode 2 is preferably 9 to 12 mm.

(荷電効率)
次に、図2を参照して、荷電装置10の荷電効率について説明する。
荷電装置10の電源は用途により、荷電する電極をプラス荷電あるいはマイナス荷電に選択することができる。
例えば、荷電装置10の下流側に集塵部を配置した場合、荷電部10aの荷電電極極性と集塵部の電極極性を一致にした場合、良い集塵効率が得られる。荷電部10aの電源はプラスあるいはマイナスの荷電をすると、荷電部10aを通過する際、空気中の粒子及び大気塵がプラスあるいはマイナスの電荷に帯電され、気流とともに下流の集塵部に入る。
(Charging efficiency)
Next, the charging efficiency of the charging apparatus 10 will be described with reference to FIG.
The power source of the charging device 10 can select the positively charged electrode or the negatively charged electrode depending on the application.
For example, when the dust collecting part is arranged on the downstream side of the charging device 10, good dust collecting efficiency can be obtained when the charged electrode polarity of the charging part 10a is matched with the electrode polarity of the dust collecting part. When the power source of the charging unit 10a is positively or negatively charged, particles and atmospheric dust in the air are charged with positive or negative charge when passing through the charging unit 10a, and enter the downstream dust collecting unit together with the air flow.

(電流/電圧特性)
図10および図11は、図1に示された荷電装置における印加電圧と電流との関係を示す電気特性図であって、図10はプラス荷電時、図11はマイナス荷電時である。なお、放電電極1の短辺は0.05〜0.1mm、長辺は0.6〜1mmの範囲で、放電電極1は表面加工が有るかないかをパラメータにしている。たとえば、図中、中抜きひし形である「0.093−0.97」は短辺が0.093mmで長辺が0.97mmで表面加工なしを示し、黒丸である「0.057−0.65(Gold)」は、短辺が0.057mmで長辺が0.65mmで表面に金メッキを施していることを示している。
図10より、荷電装置10は、荷電部10aにプラスの荷電を印加する場合の電圧は、6〜9.5kVであることを特徴としている。
図11より、荷電装置10は、荷電部10aにマイナスの荷電を印加する場合、その電圧は4〜9kVであることを特徴としている。
(Current / voltage characteristics)
10 and 11 are electrical characteristic diagrams showing the relationship between the applied voltage and the current in the charging device shown in FIG. 1, wherein FIG. 10 is positively charged and FIG. 11 is negatively charged. In addition, the short side of the discharge electrode 1 is 0.05 to 0.1 mm, the long side is in the range of 0.6 to 1 mm, and whether the discharge electrode 1 has surface processing or not is a parameter. For example, in the drawing, “0.093-0.97”, which is a hollow diamond, has a short side of 0.093 mm and a long side of 0.97 mm, indicating no surface processing, and a black circle “0.057-0. "65 (Gold)" indicates that the short side is 0.057 mm and the long side is 0.65 mm, and the surface is gold-plated.
From FIG. 10, the charging device 10 is characterized in that the voltage when applying positive charge to the charging unit 10 a is 6 to 9.5 kV.
From FIG. 11, the charging device 10 is characterized in that when a negative charge is applied to the charging unit 10 a, the voltage is 4 to 9 kV.

(荷電効率)
図12は、図1に示された荷電装置の荷電効率を説明する荷電効率特性図である。
図12において、荷電部10aの放電電極を板状にしたことによって、図10に示すワイヤ電極1wや突起電極1xの場合に比較して、大幅な荷電効率向上が認められる。たとえば、荷電電流を約160μA付加すると、板状の放電電極では100%に近い荷電効率であるのに対し、ワイヤ電極1wや突起電極1xでは約80%程度でしかない。また、荷電電流を約80μA付加した場合でも、板状の放電電極では90%以上の荷電効率であるのに対し、ワイヤ電極1wや突起電極1xでは80%未満でしかない。
よって、荷電装置10は、板状の放電電極1の効果によって、荷電効率が約20%向上したことが分かる。
(Charging efficiency)
FIG. 12 is a charge efficiency characteristic diagram illustrating the charge efficiency of the charging device shown in FIG.
In FIG. 12, by making the discharge electrode of the charging portion 10a into a plate shape, a significant improvement in charging efficiency is recognized compared to the case of the wire electrode 1w and the protruding electrode 1x shown in FIG. For example, when a charging current of about 160 μA is applied, the charging efficiency is close to 100% for the plate-like discharge electrode, but only about 80% for the wire electrode 1w and the protruding electrode 1x. Even when a charging current of about 80 μA is applied, the charging efficiency is 90% or more for the plate-like discharge electrode, but less than 80% for the wire electrode 1w and the protruding electrode 1x.
Therefore, it can be seen that the charging efficiency of the charging device 10 is improved by about 20% due to the effect of the plate-like discharge electrode 1.

本発明に係る電気集塵用荷電装置は、高い荷電効率が得られると共に、装置を小型にすることができるから、各種電気集塵用荷電装置として広く利用することができる。   The electrostatic precipitator charging device according to the present invention can be widely used as various electrostatic precipitator charging devices because high charging efficiency can be obtained and the device can be miniaturized.

本発明の実施の形態1に係る荷電装置の放電電極の構成を模式的に表した構成図。The block diagram which represented typically the structure of the discharge electrode of the charging device which concerns on Embodiment 1 of this invention. 図1に示す荷電装置の放電電極の断面図。Sectional drawing of the discharge electrode of the charging device shown in FIG. 本発明の実施の形態2に係る荷電装置の放電電極の構成を模式的に表した構成図。The block diagram which represented typically the structure of the discharge electrode of the charging device which concerns on Embodiment 2 of this invention. 図3に示す荷電装置の放電電極の断面図。Sectional drawing of the discharge electrode of the charging device shown in FIG. 図1に示す荷電装置の放電電極の放電状態を模式的に表した断面図。Sectional drawing which represented typically the discharge state of the discharge electrode of the charging device shown in FIG. 図3に示す荷電装置の放電電極の放電状態を模式的に表した断面図。Sectional drawing which represented typically the discharge state of the discharge electrode of the charging device shown in FIG. 比較するためのワイヤ電極を表した斜視図及びその放電状態を模式的に表した断面図。The perspective view showing the wire electrode for comparison, and sectional drawing showing typically the discharge state. 比較するための突起電極を表した斜視図及びその放電状態を模式的に表した断面図。The perspective view showing the projection electrode for comparison, and sectional drawing showing typically the discharge state. 図1に示された荷電装置の荷電部の実施例の詳細寸法を示す模式図。The schematic diagram which shows the detailed dimension of the Example of the charge part of the charging device shown by FIG. 図1に示された荷電装置の荷電部におけるプラス荷電時の電気特性図。FIG. 3 is an electrical characteristic diagram at the time of positive charging in the charging unit of the charging device shown in FIG. 1. 図1に示された荷電装置の荷電部におけるマイナス荷電時の電気特性図。FIG. 3 is an electrical characteristic diagram at the time of negative charging in the charging unit of the charging device shown in FIG. 1. 図1に示された荷電装置の荷電効率を説明する荷電効率特性図。FIG. 2 is a charge efficiency characteristic diagram illustrating the charge efficiency of the charging device shown in FIG. 1.

符号の説明Explanation of symbols

1:放電電極(平行状態)、1c:放電電極(垂直状態)、1w:ワイヤ電極、1x:突起電極、2:対向電極、10:荷電装置、10a:荷電部、10c:荷電部(垂直状態)、10w:荷電部(ワイヤ電極)、10x:荷電部(突起電極)、A:対向電極幅、B:対向電極厚さ、C:放電電極幅、D:放電電極厚み、E:放電電極と対向電極の距離。   1: discharge electrode (parallel state), 1c: discharge electrode (vertical state), 1w: wire electrode, 1x: protruding electrode, 2: counter electrode, 10: charging device, 10a: charging unit, 10c: charging unit (vertical state) ), 10w: charged part (wire electrode), 10x: charged part (projection electrode), A: counter electrode width, B: counter electrode thickness, C: discharge electrode width, D: discharge electrode thickness, E: discharge electrode The distance of the counter electrode.

Claims (5)

放電電極に対峙する対向電極との間でコロナ放電を生じさせて空気中の塵埃を帯電させる荷電装置において、
前記放電電極は、板状であり、前記対向電極の間に間隔を設けて配置され、該間隔の距離に応じて電圧が印加されることを特徴とする電気集塵用荷電装置。
In the charging device for charging the dust in the air by causing a corona discharge between the counter electrode facing the discharge electrode,
The discharging electrode according to claim 1, wherein the discharge electrode has a plate shape, is disposed with a gap between the counter electrodes, and a voltage is applied according to the distance of the gap.
前記放電電極は、タングステン、銅、ニッケル、ステンレス、亜鉛、鉄などの金属または該金属を主成分とする合金、もしくは該金属または該合金に、銀、金、白金などの貴金属を表面にメッキしたものによって形成され、
前記対向電極は、前記金属または前記合金、あるいはカーボン、金属フィラーを練り込んだ導電性樹脂によって形成されてなることを特徴とする請求項1記載の電気集塵用荷電装置。
The discharge electrode is made of a metal such as tungsten, copper, nickel, stainless steel, zinc, or iron, or an alloy containing the metal as a main component, or a noble metal such as silver, gold, or platinum is plated on the metal or the alloy. Formed by things
2. The electrostatic precipitator according to claim 1, wherein the counter electrode is formed of a conductive resin in which the metal or the alloy, carbon, or a metal filler is kneaded.
前記放電電極および対向電極は、その断面形状が長辺と短辺とを備えた矩形状とし、前記放電電極の短辺と前記対向電極の短辺を平行または垂直に設置し、前記放電電極と前記対向電極との距離を、前記放電電極と対向電極の短辺同士を平行に設置した時は10〜12mmに、前記放電電極と対向電極の短辺同士を垂直に設置した時は9〜12mmにしたことを特徴とする請求項1または2記載の電気集塵用荷電装置。   The discharge electrode and the counter electrode have a rectangular shape having a long side and a short side in cross-sectional shape, and the short side of the discharge electrode and the short side of the counter electrode are installed in parallel or vertically, The distance from the counter electrode is 10 to 12 mm when the short sides of the discharge electrode and the counter electrode are installed in parallel, and 9 to 12 mm when the short sides of the discharge electrode and the counter electrode are installed vertically. The charging device for electrostatic precipitator according to claim 1 or 2, wherein the charging device is an electrostatic precipitator. 前記放電電極に印加する電圧は、プラス6〜9.5kV、またはマイナス4〜9kVであることを特徴とする請求項1乃至3の何れかに記載の電気集塵用荷電装置。   4. The electrostatic precipitator charging device according to claim 1, wherein a voltage applied to the discharge electrode is plus 6 to 9.5 kV or minus 4 to 9 kV. 5. 前記対向電極の長辺の幅を15〜20mm、短辺を0.1〜0.5mmとし、前記放電電極の短辺を0.05〜0.1mm、長辺を0.6〜1.0mmとしたことを特徴とする請求項1乃至4の何れかに記載の電気集塵用荷電装置。   The width of the long side of the counter electrode is 15 to 20 mm, the short side is 0.1 to 0.5 mm, the short side of the discharge electrode is 0.05 to 0.1 mm, and the long side is 0.6 to 1.0 mm. The charging device for electrostatic precipitator according to claim 1, wherein
JP2008190754A 2008-07-24 2008-07-24 Electric dust collector Active JP5213568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008190754A JP5213568B2 (en) 2008-07-24 2008-07-24 Electric dust collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008190754A JP5213568B2 (en) 2008-07-24 2008-07-24 Electric dust collector

Publications (2)

Publication Number Publication Date
JP2010022999A true JP2010022999A (en) 2010-02-04
JP5213568B2 JP5213568B2 (en) 2013-06-19

Family

ID=41729340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008190754A Active JP5213568B2 (en) 2008-07-24 2008-07-24 Electric dust collector

Country Status (1)

Country Link
JP (1) JP5213568B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012115798A (en) * 2010-12-03 2012-06-21 Mitsubishi Electric Corp Air cleaning device
JP2012223739A (en) * 2011-04-22 2012-11-15 Panasonic Corp Electrostatic precipitator
CN103380552A (en) * 2011-10-14 2013-10-30 三菱电机株式会社 Apparatus for generating electric field and electric discharge
US9457118B2 (en) 2012-04-23 2016-10-04 Mitsubishi Electric Corporation Corona discharge device and air-conditioning apparatus
WO2017090086A1 (en) * 2015-11-24 2017-06-01 三菱電機株式会社 Discharge device and air-conditioning device equipped with same
KR20190079496A (en) 2017-12-27 2019-07-05 삼성전자주식회사 Charging device and dust collecting device
US11331678B2 (en) 2017-12-27 2022-05-17 Samsung Electronics Co., Ltd. Charging apparatus and precipitator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188542A (en) * 1988-01-22 1989-07-27 Nippon Steel Chem Co Ltd Electrically conductive polypropylene composition
JPH0533847U (en) * 1991-10-01 1993-05-07 松下電器産業株式会社 Air cleaner
JPH0780350A (en) * 1993-09-16 1995-03-28 Toshiba Chem Corp Production of atmospheric discharge electrode
JPH11239738A (en) * 1998-02-24 1999-09-07 Kawasaki Heavy Ind Ltd Electric precipitator
JP2000051735A (en) * 1998-08-06 2000-02-22 Mitsubishi Electric Corp Air purifier
JP2001025683A (en) * 1999-07-15 2001-01-30 Sumitomo Heavy Ind Ltd Electric precipitator
JP2006224054A (en) * 2005-02-21 2006-08-31 Matsushita Electric Ind Co Ltd Electric dust collecting unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188542A (en) * 1988-01-22 1989-07-27 Nippon Steel Chem Co Ltd Electrically conductive polypropylene composition
JPH0533847U (en) * 1991-10-01 1993-05-07 松下電器産業株式会社 Air cleaner
JPH0780350A (en) * 1993-09-16 1995-03-28 Toshiba Chem Corp Production of atmospheric discharge electrode
JPH11239738A (en) * 1998-02-24 1999-09-07 Kawasaki Heavy Ind Ltd Electric precipitator
JP2000051735A (en) * 1998-08-06 2000-02-22 Mitsubishi Electric Corp Air purifier
JP2001025683A (en) * 1999-07-15 2001-01-30 Sumitomo Heavy Ind Ltd Electric precipitator
JP2006224054A (en) * 2005-02-21 2006-08-31 Matsushita Electric Ind Co Ltd Electric dust collecting unit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012115798A (en) * 2010-12-03 2012-06-21 Mitsubishi Electric Corp Air cleaning device
JP2012223739A (en) * 2011-04-22 2012-11-15 Panasonic Corp Electrostatic precipitator
KR20140017621A (en) * 2011-04-22 2014-02-11 파나소닉 주식회사 Electrostatic precipitator
KR101984321B1 (en) 2011-04-22 2019-05-30 파나소닉 아이피 매니지먼트 가부시키가이샤 Electrostatic precipitator
CN103380552A (en) * 2011-10-14 2013-10-30 三菱电机株式会社 Apparatus for generating electric field and electric discharge
US9457118B2 (en) 2012-04-23 2016-10-04 Mitsubishi Electric Corporation Corona discharge device and air-conditioning apparatus
WO2017090086A1 (en) * 2015-11-24 2017-06-01 三菱電機株式会社 Discharge device and air-conditioning device equipped with same
JPWO2017090086A1 (en) * 2015-11-24 2018-03-01 三菱電機株式会社 Discharge device and air conditioner equipped with the same
KR20190079496A (en) 2017-12-27 2019-07-05 삼성전자주식회사 Charging device and dust collecting device
US11331678B2 (en) 2017-12-27 2022-05-17 Samsung Electronics Co., Ltd. Charging apparatus and precipitator

Also Published As

Publication number Publication date
JP5213568B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP5213568B2 (en) Electric dust collector
JP5774212B2 (en) Corona discharge device and air conditioner
EP2468411B1 (en) Electric precipitator
US4689056A (en) Air cleaner using ionic wind
JP4957923B2 (en) Electric dust collector
JP2007007589A (en) Electric dust collection device and air cleaning apparatus incorporating the same
JP2009178626A (en) Electrostatic dust collector
JP3254134B2 (en) Electric dust collector
JP5181902B2 (en) Electric dust collector
CN112512695B (en) Electric dust collector
JP2012096127A (en) Electric dust collector
JP5125790B2 (en) Electric dust collector
US20220161273A1 (en) Electrostatic charger and electrostatic precipitator
KR20220113718A (en) electric dust collector
JP3702726B2 (en) Electric dust collector
CN218222908U (en) Electrostatic air filter
CN112566727A (en) Electric dust collector
JPH09262498A (en) Discharging electrode structure in air cleaner
JP2009248008A (en) Dust collector
KR102062286B1 (en) Window screen with narrow plain channels for dust collection and insect-proof
JP7300298B2 (en) Charging device and dust collector
JP3648679B2 (en) Electric dust collector
JP5816807B2 (en) Electric dust collector
JPH11216388A (en) Ionization part of electric precipitator
JP6562836B2 (en) Electric dust collector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130226

R150 Certificate of patent or registration of utility model

Ref document number: 5213568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250