JP2010018684A - Production method of composite type microparticle - Google Patents

Production method of composite type microparticle Download PDF

Info

Publication number
JP2010018684A
JP2010018684A JP2008179447A JP2008179447A JP2010018684A JP 2010018684 A JP2010018684 A JP 2010018684A JP 2008179447 A JP2008179447 A JP 2008179447A JP 2008179447 A JP2008179447 A JP 2008179447A JP 2010018684 A JP2010018684 A JP 2010018684A
Authority
JP
Japan
Prior art keywords
polyamide
fine particles
solvent
nylon
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008179447A
Other languages
Japanese (ja)
Other versions
JP5358132B2 (en
Inventor
Yoshio Nakajima
祥雄 中島
Hiroshi Nakajima
弘 中島
Yoko Kondo
陽子 近藤
Yutaka Umeda
裕 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
METAL COLOR KK
Original Assignee
METAL COLOR KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by METAL COLOR KK filed Critical METAL COLOR KK
Priority to JP2008179447A priority Critical patent/JP5358132B2/en
Publication of JP2010018684A publication Critical patent/JP2010018684A/en
Application granted granted Critical
Publication of JP5358132B2 publication Critical patent/JP5358132B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production method of composite type microparticles which have a uniform particle diameter and shape and smoothness and are produced in a relatively simple manner by incorporating a fine powder in a step for forming polyamide microparticles. <P>SOLUTION: The production method of composite type microparticles composed of polyamide and fine powder comprises preparing a mixed liquid by mixing a crystalline polyamide, a solvent which acts as a solvent to the crystalline polyamide at a temperature not lower than the phase-separation temperature and acts as a nonsolvent at a temperature not higher than the phase-separation temperature, and a fine powder dispersible in the solvent, then preparing a polyamide solution by heating the mixed liquid until the polyamide is dissolved, and precipitating the polyamide by cooling the polyamide solution to a temperature of not higher than the phase-separation temperature. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、複合型微粒子の製造方法に関する。詳しくは、結晶性ポリアミドと微粉末とを含有する複合型微粒子の製造方法に関する。   The present invention relates to a method for producing composite fine particles. In detail, it is related with the manufacturing method of the composite type fine particle containing crystalline polyamide and a fine powder.

米国特許2639278US Pat. No. 2,639,278 特開昭52−107047号公報JP 52-107047 A 特開昭62−218421号公報Japanese Patent Laid-Open No. 62-218421 特開平5−32795号公報JP-A-5-32795 特開平8−12765号公報JP-A-8-12765 特開2006−169373号公報JP 2006-169373 A 特開2006−328173号公報JP 2006-328173 A 特開2008−88296号公報JP 2008-88296 A 「新化粧学」、南山堂、第2版、第109頁“New cosmetics”, Nanzan-do, 2nd edition, page 109

結晶性ポリアミドの微粒子は、粉体塗料用材料、成型用焼結剤、塗料用配合剤、潤滑油添加剤、化粧品用基材、吸着剤、接着剤用配合剤、樹脂改質剤、複合粒子基材等として有用である。   Fine particles of crystalline polyamide are powder coating materials, molding sintering agents, coating compounding agents, lubricant additives, cosmetic base materials, adsorbents, adhesive compounding agents, resin modifiers, composite particles Useful as a substrate.

このような結晶性ポリアミドの微粒子の製造方法として、結晶性ポリアミドのブロックやペレットをボールミル等により機械的に破砕する方法;結晶性ポリアミドの重合工程で製造する方法;結晶性ポリアミドを溶剤に溶解し、その溶液に非溶媒を加える方法、あるいは、温度によって結晶性ポリアミドの溶解性が変化する溶剤を用いて、その溶液に混合した結晶性ポリアミドを加熱して溶解し、その溶液を冷却析出させる方法(以下、溶媒法という)等が知られている。
このうち溶媒法は、生成される結晶性ポリアミド微粒子の粒径のバラツキが少なく、簡便にできるという長所を備えている。そのため、様々な研究が行われている(特許文献1〜7参照)。
As a method for producing such fine particles of crystalline polyamide, a method of mechanically crushing crystalline polyamide blocks and pellets with a ball mill or the like; a method of producing a crystalline polyamide in a polymerization process; and dissolving a crystalline polyamide in a solvent , A method of adding a non-solvent to the solution, or a method of heating and dissolving the crystalline polyamide mixed in the solution using a solvent in which the solubility of the crystalline polyamide changes depending on the temperature, and cooling and depositing the solution (Hereinafter referred to as solvent method) and the like are known.
Among these, the solvent method has the advantage that the produced crystalline polyamide fine particles have a small variation in particle size and can be easily performed. For this reason, various studies have been conducted (see Patent Documents 1 to 7).

一方、ポリアミド微粒子の表面に無機物を担持あるいは付着させた複合型微粒子が知られている。この複合型微粒子は、ポリアミド微粒子および無機物の長所を複合化させたものであり、新しい化粧品の材料として注目されている。非特許文献1には、球状ナイロン紛体に二酸化チタンを乾式ボールミルで処理することにより、球状ナイロン紛体の表面に二酸化チタンを均一に付着させた複合型微粒子が開示されている。また、特許文献8には、ポリアミド微粒子を分散させた溶液に、金属種を含むイオンおよび還元剤を混合して、金属種をポリアミド微粒子の表面に還元させた複合型微粒子が開示されている。   On the other hand, composite type fine particles in which an inorganic substance is supported or adhered on the surface of polyamide fine particles are known. These composite fine particles are obtained by combining the advantages of polyamide fine particles and inorganic substances, and are attracting attention as a new cosmetic material. Non-Patent Document 1 discloses composite fine particles in which titanium dioxide is uniformly adhered to the surface of the spherical nylon powder by treating the spherical nylon powder with titanium dioxide using a dry ball mill. Patent Document 8 discloses composite type fine particles in which ions containing metal species and a reducing agent are mixed in a solution in which polyamide fine particles are dispersed to reduce the metal species to the surface of the polyamide fine particles.

しかし、非特許文献1および特許文献8の複合型微粒子は、一度ポリアミド微粒子を製造し、その後、その微粒子の表面に打ち込みあるいは還元により付着、担持させたものである。
本発明は、ポリアミド微粒子の成形段階で微粉末を含有させることにより、粒径および形状が均一で滑らかであり、かつ、その生産が比較的簡易な複合型微粒子の製造方法を提供することを目的としている。
However, the composite type fine particles of Non-Patent Document 1 and Patent Document 8 are obtained by once producing polyamide fine particles, and then depositing and supporting them on the surface of the fine particles by implantation or reduction.
An object of the present invention is to provide a method for producing composite-type fine particles having a uniform and smooth particle size and shape and relatively simple production by incorporating fine powder in the polyamide fine particle forming step. It is said.

本発明の複合型微粒子の製造方法は、結晶性ポリアミドと、その結晶性ポリアミドに対して相分離温度以上では溶媒として作用し、相分離温度以下では非溶媒として作用する溶剤と、その溶剤に分散する微粉末とを混合して混合液を調製し、この混合液を相分離温度以上に加熱してポリアミド溶液を調製し、そのポリアミド溶液を相分離温度以下に冷却してポリアミドを析出させることによりポリアミドと微粉末からなる複合型微粒子を得ることを特徴としている。
本発明において、溶剤に分散する微粉末とは、溶剤には不溶で、かつ、不活性である無機・有機の固体微粉末を指す。
The method for producing composite fine particles according to the present invention comprises a crystalline polyamide, a solvent that acts as a solvent above the crystalline polyamide at a phase separation temperature or higher and a non-solvent at a temperature below the phase separation temperature, and is dispersed in the solvent. The mixture is mixed with fine powder to prepare a mixed solution, the mixed solution is heated to a temperature above the phase separation temperature to prepare a polyamide solution, and the polyamide solution is cooled to a temperature below the phase separation temperature to precipitate the polyamide. It is characterized by obtaining composite-type fine particles made of polyamide and fine powder.
In the present invention, the fine powder dispersed in the solvent refers to an inorganic / organic solid fine powder that is insoluble in the solvent and inactive.

このような製造方法において、ポリアミド溶液を静止させた状態で冷却してもよく、攪拌しながら冷却してもよい。
また、前記微粉末としては顔料を用いるのが好ましい。
In such a production method, the polyamide solution may be cooled in a stationary state or may be cooled while stirring.
Moreover, it is preferable to use a pigment as the fine powder.

本発明の複合型微粒子の製造方法は、溶媒法を用いているため、その形状が均一であり、粒径のばらつきが小さい微粒子が製造される。そして、本製造方法によって得られた複合型微粒子は、微粉末をポリアミドが取り込んでいるため、微粉末がポリアミドに安定して固定される。本発明の製造方法によりポリアミドおよび微粒子の効果を備えた複合型微粒子を得ることができる。   Since the method for producing composite-type fine particles of the present invention uses a solvent method, fine particles having a uniform shape and small variation in particle diameter are produced. And since the composite type | mold fine particle obtained by this manufacturing method has taken in the fine powder in the polyamide, the fine powder is stably fixed to the polyamide. By the production method of the present invention, composite fine particles having the effects of polyamide and fine particles can be obtained.

本発明において、ポリアミド溶液を静止させた状態で冷却する場合(静置法)、または、ポリアミド溶液を攪拌しながら冷却する場合(攪拌法)、均一な複合型微粒子を工業的に生産することができる。   In the present invention, when the polyamide solution is cooled in a stationary state (stationary method) or when the polyamide solution is cooled with stirring (stirring method), uniform composite fine particles can be produced industrially. it can.

本発明において、前記微粉末が顔料である場合、用途に応じて様々な色に着色させた複合型微粒子が製造される。   In the present invention, when the fine powder is a pigment, composite fine particles colored in various colors according to the application are produced.

本発明の製造方法では、初めにポリアミドと、そのポリアミドに対し相分離温度以上では溶媒として作用し、相分離温度以下では非溶媒として作用する溶剤と、その溶媒に分散する微粉末とを混合して混合液を調製する。その後、その混合液を加熱させ、ポリアミドを完全に溶解させてポリアミド溶液を調製する。得られたポリアミド溶液を分離温度以下に冷却することによりポリアミドと溶媒とを相分離させ、析出させる。このときポリアミドが分散している微粉末を取り込んでポリアミドと微粉末からなる複合型微粒子が生成される。   In the production method of the present invention, first, a polyamide, a solvent that acts as a solvent at a temperature above the phase separation temperature and acts as a non-solvent at a temperature below the phase separation temperature, and a fine powder dispersed in the solvent are mixed. To prepare a mixture. Thereafter, the mixed solution is heated to completely dissolve the polyamide to prepare a polyamide solution. By cooling the obtained polyamide solution below the separation temperature, the polyamide and the solvent are phase-separated and precipitated. At this time, fine powder in which polyamide is dispersed is taken in, and composite type fine particles composed of polyamide and fine powder are generated.

製造される複合型微粒子の粒径は、3〜100μm、特に、5〜70μmが好ましい。5〜40μmの微粒子は滑らかな触感を与え、化粧品として優れている。また、そのとき、複合型微粒子中の微粉末の含有量は、0.1〜70重量%、特に0.1〜50重量%が好ましい。   The composite fine particles to be produced preferably have a particle size of 3 to 100 μm, particularly 5 to 70 μm. Fine particles of 5 to 40 μm give a smooth feel and are excellent as cosmetics. At that time, the content of the fine powder in the composite type fine particles is preferably 0.1 to 70% by weight, particularly preferably 0.1 to 50% by weight.

本発明の製造方法を使用することができるポリアミドとしては、ポリマー主鎖に酸アミド結合(−CONH−)を有するもの、例えば、ナイロン6、ナイロン11、ナイロン12、ナイロン66、ナイロン610等が挙げられる。しかし、これらは特に限定されるものではない。   Polyamides that can be used in the production method of the present invention include those having an acid amide bond (—CONH—) in the polymer main chain, such as nylon 6, nylon 11, nylon 12, nylon 66, nylon 610, and the like. It is done. However, these are not particularly limited.

また、そのポリアミドに対し相分離温度以上では溶媒として作用し、相分離温度以下では非溶媒として作用する溶剤としては、それぞれポリアミドの種類によっても異なるが一般的に一種以上のアルコール類からなる溶剤系が適当である。例えば、エチレングリコール、プロピレングリコール、グリセリン、ジエチレングリコール、ジプロピレングリコール、1,3−ブチレングリコール、ヘキシレングリコール等の一種以上の多価アルコール類が挙げられる。また溶解槽ないし相分離槽が耐圧装置である場合には、低沸点の一価アルコール類、例えばメタノール、エタノール、イソプロパノール、ブタノールの他、水や液化炭酸ガス等も選択が可能である。混合溶剤として使用する場合は、その混合比はポリアミドによって随時決めることができる。   In addition, the solvent which acts as a solvent above the phase separation temperature and acts as a non-solvent below the phase separation temperature for the polyamide is generally a solvent system consisting of one or more alcohols, although it varies depending on the type of polyamide. Is appropriate. Examples thereof include one or more polyhydric alcohols such as ethylene glycol, propylene glycol, glycerin, diethylene glycol, dipropylene glycol, 1,3-butylene glycol, hexylene glycol and the like. When the dissolution tank or the phase separation tank is a pressure-resistant device, low boiling point monohydric alcohols such as methanol, ethanol, isopropanol, and butanol, water, liquefied carbon dioxide, and the like can be selected. When used as a mixed solvent, the mixing ratio can be determined at any time depending on the polyamide.

ポリアミドとしてナイロン6を用いる場合、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコールが好ましく挙げられ、特に、エチレングリコールが好ましい。また、ポリアミドとしてナイロン12を用いる場合、ジプロピレングリコールが好ましく挙げられる。   When nylon 6 is used as the polyamide, ethylene glycol, diethylene glycol, propylene glycol, and dipropylene glycol are preferable, and ethylene glycol is particularly preferable. Moreover, when using nylon 12 as a polyamide, a dipropylene glycol is mentioned preferably.

ポリアミドの樹脂濃度は、低いほど生成するポリアミド微粒子の平均粒子径が小さくなるので、目的とする粒子径によって任意に設定すればよい。ただし、高濃度では相分離が不安定で溶液が凝集しやすくなり、またあまり低濃度では生産効率が低くなる。
たとえば、ポリアミドとしてナイロン6を用い、溶媒としてエチレングリコールを用いる場合、ナイロン6の樹脂濃度が1〜25重量%、特に、3〜20重量%とするのが好ましい。
また、ポリアミドとしてナイロン12を用い、溶媒としてジプロピレングリコールを用いる場合、ナイロン12の樹脂濃度が1〜25重量%、特に、3〜15重量%とするのが好ましい。
The lower the polyamide resin concentration, the smaller the average particle size of the polyamide fine particles produced, so it may be arbitrarily set depending on the intended particle size. However, when the concentration is high, the phase separation is unstable and the solution tends to aggregate, and when the concentration is too low, the production efficiency is low.
For example, when nylon 6 is used as the polyamide and ethylene glycol is used as the solvent, the resin concentration of nylon 6 is preferably 1 to 25% by weight, particularly 3 to 20% by weight.
When nylon 12 is used as the polyamide and dipropylene glycol is used as the solvent, the resin concentration of the nylon 12 is preferably 1 to 25% by weight, particularly 3 to 15% by weight.

溶媒に分散する微粉末としては、たとえば顔料が挙げられる。特に、無機顔料は、有機溶媒に溶けにくいため好ましい。このような無機顔料として、マイカ、タルク、カオリン、炭酸カルシウム、炭酸マグネシウム、無水ケイ酸、酸化アルミニウム、硫酸バリウム、ベンガラ、黄酸化鉄、黒酸化鉄、酸化クロム、群青、紺青、カーボンブラック、二酸化チタン、酸化亜鉛などが挙げられる。
顔料を加えることにより製造された複合型微粒子は、顔料の種類にもよるが紫外線防止、あるいは、着色効果が得られ、化粧品の材料として好ましい。特に、白色顔料である二酸化チタン、酸化亜鉛は、紫外線防止効果が高い。さらに、パール顔料を用いることにより虹色を呈する微粒子が得られる。
Examples of the fine powder dispersed in the solvent include pigments. In particular, inorganic pigments are preferred because they are hardly soluble in organic solvents. Such inorganic pigments include mica, talc, kaolin, calcium carbonate, magnesium carbonate, silicic anhydride, aluminum oxide, barium sulfate, bengara, yellow iron oxide, black iron oxide, chromium oxide, ultramarine, bitumen, carbon black, carbon dioxide Examples include titanium and zinc oxide.
The composite fine particles produced by adding a pigment are preferable as a cosmetic material because they can prevent ultraviolet rays or have a coloring effect depending on the type of pigment. Particularly, titanium dioxide and zinc oxide, which are white pigments, have a high effect of preventing ultraviolet rays. Furthermore, rainbow-colored fine particles can be obtained by using a pearl pigment.

このような微粉末の粒径は、0.01〜10μm、特に0.01〜5μmであるものが好ましい。特にポリアミドとしてナイロン6を用いる場合は、微粉末の粒径が0.01〜3μmとするのが好ましく、ポリアミドとしてナイロン12を用いる場合は、微粉末の粒径が0.01〜5μmとするのが好ましい。
さらに、微粉末の混合量はポリアミドに対して0.1〜100重量%、特に0.1〜50重量%とするのが好ましい。特にポリアミドとしてナイロン6を用いる場合は、微粉末の混合量が0.1〜30重量%とするのが好ましく、ポリアミドとしてナイロン12を用いる場合は、微粉末の混合量が0.1〜50重量%とするのが好ましい。ナイロン6およびナイロン12に対する微粉末の混合量をそれぞれ0.1〜30重量%および0.1〜50重量%とすることにより、きれいで揃った粒子が特に得られる。
The particle size of such a fine powder is preferably 0.01 to 10 μm, particularly 0.01 to 5 μm. In particular, when nylon 6 is used as the polyamide, the particle size of the fine powder is preferably 0.01 to 3 μm, and when nylon 12 is used as the polyamide, the particle size of the fine powder is 0.01 to 5 μm. Is preferred.
Further, the mixing amount of the fine powder is preferably 0.1 to 100% by weight, particularly 0.1 to 50% by weight, based on the polyamide. In particular, when nylon 6 is used as the polyamide, the mixing amount of fine powder is preferably 0.1 to 30% by weight. When nylon 12 is used as the polyamide, the mixing amount of fine powder is 0.1 to 50% by weight. % Is preferable. By making the amount of fine powder mixed with nylon 6 and nylon 12 0.1 to 30% by weight and 0.1 to 50% by weight, clean and uniform particles can be obtained.

ポリアミド溶液の冷却は、相分離温度よりいくらか高い温度までは強制冷却してもよいが、相分離及びポリアミドの析出が完了するまでは放冷あるいはさらに遅い冷却速度で冷却を行うのが好ましい。ポリアミドの析出が完了した後は、適時強制冷却して作業効率を上げても良い。   The polyamide solution may be forcibly cooled to a temperature somewhat higher than the phase separation temperature, but it is preferable to cool at a slower cooling rate until the phase separation and polyamide precipitation are completed. After the precipitation of the polyamide is completed, the work efficiency may be increased by timely forced cooling.

また、ポリアミド溶液を相分離温度以下まで冷却させるとき、得られたポリアミド溶液を溶解槽の器壁近辺にポリアミドの堆積が生じないように攪拌しながら冷却するのが好ましい(攪拌法)。特に、液面が激しく動揺したり、撥ねたりする現象が発生しない範囲で強力な攪拌を続けながら冷却するのが好ましい。これにより、均一な微粒子が簡易に得られる。
攪拌に用いる攪拌装置は、従来から使用されているものでよく、攪拌方法は、樹脂の析出温度付近で溶解槽の器壁に樹脂が析出して付着せず、かつ、溶液の液面状態が安定である限り、特に限定されるものではない。
Further, when the polyamide solution is cooled to a temperature lower than the phase separation temperature, it is preferable to cool the obtained polyamide solution while stirring so that polyamide is not deposited near the wall of the dissolution tank (stirring method). In particular, it is preferable to cool while continuing strong stirring within a range in which the liquid level does not violently shake or repel. Thereby, uniform fine particles can be easily obtained.
The stirring device used for stirring may be a conventionally used stirring method, and the stirring method is such that the resin does not deposit and adhere to the wall of the dissolution tank near the resin precipitation temperature, and the liquid level of the solution is As long as it is stable, it is not particularly limited.

一方、ポリアミド溶液を相分離温度以下まで冷却させるとき、得られたポリアミド溶液を静止させた状態で冷却してもよい(静置法)。この場合、溶解槽からバットに移し変えて冷却する。また、このときポリアミド溶液の深さが7mm以下、好ましくは3mm以下、特に好ましくは約2mmにする。ポリアミド溶液の深さが7mmより深くなると微粉末が沈降し、微粉末がポリアミドにうまく取り込まれなくなる。一方、浅すぎると生産性が落ちる。また、生産性を向上させるため、溶解槽からコンベア上に移し変えて順次冷却したり、仕切り棚にバットを並べて冷却したりしてもよい。   On the other hand, when the polyamide solution is cooled to the phase separation temperature or lower, the obtained polyamide solution may be cooled in a stationary state (stationary method). In this case, it is transferred from the dissolution tank to the vat and cooled. At this time, the depth of the polyamide solution is 7 mm or less, preferably 3 mm or less, particularly preferably about 2 mm. When the depth of the polyamide solution becomes deeper than 7 mm, the fine powder settles and the fine powder is not taken into the polyamide well. On the other hand, if it is too shallow, productivity will drop. Moreover, in order to improve productivity, you may transfer to a conveyor from a dissolution tank, and may cool sequentially, or may arrange | position a bat on a partition shelf and may cool.

以下、実施例により本発明をより具体的に説明する。しかし、この実施例は本発明の代表的態様を例示するものであり、本発明はこれらの範囲に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, this example illustrates typical embodiments of the present invention, and the present invention is not limited to these ranges.

[実施例1]攪拌法による酸化チタンとナイロン12含有の複合型微粒子の製造
60gのポリマーのナイロン12(エムス・ジャパン株式会社製)に対して30gの酸化チタン(平均粒径10nm)(テイカ株式会社製MT−05)を混合した混合物(酸化チタン33重量%)を用意した。ついで、溶媒のヘキシレングリコール540gと、この混合物90gを溶解型攪拌翼を備えた溶解槽に投入して混合液を調製した。溶解槽内の空気を窒素置換し、190℃に昇温し、60分間、300rpmで攪拌して白濁状のナイロン12溶液を得た。得られたナイロン12溶液を1200rpmで攪拌しながら放冷したところ、不透明な分散体が生成した。
[Example 1] Production of composite fine particles containing titanium oxide and nylon 12 by stirring method 30 g of titanium oxide (average particle size 10 nm) (Taika Co., Ltd.) with respect to 60 g of polymer nylon 12 (manufactured by MMS Japan Co., Ltd.) A mixture (33% by weight of titanium oxide) in which MT-05) manufactured by company was mixed was prepared. Next, 540 g of hexylene glycol as a solvent and 90 g of the mixture were charged into a dissolution tank equipped with a dissolution type stirring blade to prepare a mixed solution. The air in the dissolution tank was purged with nitrogen, heated to 190 ° C., and stirred at 300 rpm for 60 minutes to obtain a cloudy nylon 12 solution. When the obtained nylon 12 solution was allowed to cool while stirring at 1200 rpm, an opaque dispersion was produced.

この分散体を含んだ溶液を、直径110mmのヌッチェを用いて目開き6μmのろ紙上で減圧濾過した。ヌッチェ上の生成物を蒸留水100重量%に分散させ、攪拌機で5分間攪拌し減圧濾過することで洗浄処理を行い、乾燥させて白色粒子状物からなるナイロン12と酸化チタンからなる複合型微粒子を得た。   The solution containing this dispersion was filtered under reduced pressure on a filter paper having an opening of 6 μm using a Nutsche having a diameter of 110 mm. The product on Nutsche is dispersed in 100% by weight of distilled water, stirred for 5 minutes with a stirrer and filtered under reduced pressure, washed, dried, and composite type fine particles composed of nylon 12 and white titanium oxide. Got.

[実施例2]静置法による酸化チタンとナイロン6含有の複合型微粒子の製造
60gのポリマーのナイロン6(東レ株式会社製)に対して3gの酸化チタン(平均粒径10nm)(テイカ株式会社製MT−05)を混合した混合物(酸化チタン4.8重量%)を用意した。ついで、溶媒のエチレングリコール540gと、この混合物63gとを溶解型攪拌翼を備えた溶解槽に投入して混合液を調製した。溶解槽内の空気を窒素置換し、190℃に昇温し、60分間、300rpmで攪拌して白濁状のナイロン6溶液を得た。得られたナイロン6溶液を深さが約2mmとなるようにバットに移し替え、静置させた状態で、5℃/分の速度で冷却したところ、不透明な分散体が生成した。
Example 2 Production of Composite Fine Particles Containing Titanium Oxide and Nylon 6 by Standing Method 3 g of titanium oxide (average particle size 10 nm) (60% of Teikai Co., Ltd.) for 60 g of polymer nylon 6 (manufactured by Toray Industries, Inc.) A mixture (4.8% by weight of titanium oxide) prepared by mixing MT-05) was prepared. Next, 540 g of the solvent ethylene glycol and 63 g of the mixture were charged into a dissolution tank equipped with a dissolution type stirring blade to prepare a mixed solution. The air in the dissolution tank was purged with nitrogen, heated to 190 ° C., and stirred at 300 rpm for 60 minutes to obtain a cloudy nylon 6 solution. The obtained nylon 6 solution was transferred to a vat so that the depth was about 2 mm, and allowed to cool at a rate of 5 ° C./minute, and an opaque dispersion was formed.

この分散体を含む溶液を、実施例1と同様に濾過し、洗浄処理し、乾燥することにより白色粒子状物からなるナイロン6と酸化チタンからなる複合型微粒子を得た。   The solution containing this dispersion was filtered, washed, and dried in the same manner as in Example 1 to obtain composite-type fine particles composed of nylon 6 composed of white particulate matter and titanium oxide.

[比較例1]攪拌法によるナイロン12微粒子粉末の製造
溶媒のヘキシレングリコール540gと、ナイロン12 60gを溶解型攪拌翼を備えた溶解槽に投入して混合液を調製した。その後、実施例1と同条件でナイロン12を溶解し、放冷して白色粒子状物からなるナイロン12の微粒子を得た。
Comparative Example 1 Production of Nylon 12 Fine Particle Powder by Stirring Method A mixture was prepared by charging 540 g of hexylene glycol as a solvent and 60 g of nylon 12 into a dissolving tank equipped with a dissolving type stirring blade. Thereafter, nylon 12 was dissolved under the same conditions as in Example 1 and allowed to cool to obtain nylon 12 fine particles composed of white particles.

[比較例2]ナイロン12微粒子と酸化チタンの混合物の製造
比較例1の方法で得られたナイロン12の微粒子に対する酸化チタン(テイカ株式会社製MT−05)の量が33重量%となるように調製し、ヘンシェルミキサーを用いて混合してナイロン12と酸化チタンの混合物を得た。
Comparative Example 2 Production of Mixture of Nylon 12 Fine Particles and Titanium Oxide The amount of titanium oxide (MT-05 manufactured by Teika Co., Ltd.) relative to the nylon 12 fine particles obtained by the method of Comparative Example 1 was 33% by weight. The mixture was prepared and mixed using a Henschel mixer to obtain a mixture of nylon 12 and titanium oxide.

[比較例3]静置法によるナイロン6微粒子の製造
溶媒のエチレングリコール540gと、ナイロン6 60gを溶解型攪拌翼を備えた溶解槽に投入して混合液を調製した。その後、実施例2と同条件でナイロン6を溶解し、放冷して白色粒子状物からなるナイロン6の微粒子を得た。
Comparative Example 3 Production of Nylon 6 Fine Particles by Standing Method A mixture was prepared by charging 540 g of the solvent ethylene glycol and 60 g of nylon 6 into a dissolution tank equipped with a dissolution type stirring blade. Thereafter, nylon 6 was dissolved under the same conditions as in Example 2 and allowed to cool to obtain nylon 6 fine particles composed of white particles.

[比較例4]ナイロン6微粒子と酸化チタンの混合物の製造
比較例3の方法で得られたナイロン6の微粒子に対する酸化チタン(テイカ株式会社製MT−05)の量が5重量%となるように調製し、ヘンシェルミキサーを用いて混合してナイロン6と酸化チタンの混合物を得た。
Comparative Example 4 Production of Mixture of Nylon 6 Fine Particles and Titanium Oxide The amount of titanium oxide (MT-05 manufactured by Teika Co., Ltd.) with respect to the nylon 6 fine particles obtained by the method of Comparative Example 3 was 5% by weight. The mixture was prepared and mixed using a Henschel mixer to obtain a mixture of nylon 6 and titanium oxide.

上記実施例1および2、比較例1〜4で得られた微粒子について、下記の測定または試験を行った。その結果を法1に示す。   The fine particles obtained in Examples 1 and 2 and Comparative Examples 1 to 4 were subjected to the following measurements or tests. The result is shown in Method 1.

(1)平均粒径
得られた微粒子を、分散媒として水またはエタノールを使用して粒度分布測定装置MT−3000(マイクロトラック社)で測定した。そして、50%メジアン径(累積中位径)を平均粒径(単位:μm)とした。
(1) Average particle size The obtained fine particles were measured with a particle size distribution analyzer MT-3000 (Microtrack) using water or ethanol as a dispersion medium. The 50% median diameter (cumulative median diameter) was defined as the average particle diameter (unit: μm).

(2)無機化合物含有率(灰分)の測定
微粒子に含まれる無機化合物(酸化チタン)の含有率の測定は次の通りである。微粒子を空気中550℃で5時間加熱し、有機ポリマー成分(ナイロン6あるいはナイロン12)を完全に燃焼させ、焼結後の重量を測定し灰分重量(=無機化合物重量)とした。下式により無機化合物の含有率を算出した。
無機化合物前含有率(重量%)=(灰分重量/微粒子重量)×100
(2) Measurement of inorganic compound content (ash content) The content of the inorganic compound (titanium oxide) contained in the fine particles is measured as follows. The fine particles were heated in air at 550 ° C. for 5 hours to completely burn the organic polymer component (nylon 6 or nylon 12), and the weight after sintering was measured to obtain the ash weight (= inorganic compound weight). The content of the inorganic compound was calculated from the following formula.
Content before inorganic compound (% by weight) = (weight of ash / weight of fine particles) × 100

(3)滑り性試験
10名の女性パネラーに実施例1、2、比較例1〜4の微粒子を肌に塗ってもらい、滑り感をアンケート形式で回答してもらった。評価が悪い場合を0点、評価が良い場合を5点とし、パネラーの平均点数を以って評価とした。従って、点数が高いほど評価が優れていることを示す。
(3) Sliding property test Ten female panelists applied the fine particles of Examples 1 and 2 and Comparative Examples 1 to 4 to their skin, and asked them to answer the slipping feeling in a questionnaire format. The evaluation was 0 points when the evaluation was bad, and 5 points when the evaluation was good, and the evaluation was based on the average score of the panelists. Therefore, the higher the score, the better the evaluation.

(4)紫外線カット試験
実施例1および比較例1、2の微粒子の紫外線遮断効果を次の方法で測定した。
ナイロン12複合体微粒子1.35gをパラロイドB−66(アクリルポリマー4.5重量%、トルエン/メチルエチルケント(1/1)溶媒)に添加した混合液を調製し、PETフィルム25μmの片面にバーコーダー#36を用いて30g/mを塗工し、180℃10秒間乾燥させ試料とし、デジタル紫外線強度計UV−340(株式会社エムケー・サイエンティフィック製)を用いて紫外線透過度を測定した。
(4) Ultraviolet cut test The ultraviolet blocking effect of the fine particles of Example 1 and Comparative Examples 1 and 2 was measured by the following method.
A mixture of 1.35 g of nylon 12 composite fine particles added to paraloid B-66 (acrylic polymer 4.5% by weight, toluene / methyl ethyl kent (1/1) solvent) was prepared, and a bar was placed on one side of a PET film 25 μm. 30 g / m 2 was applied using a coder # 36, dried at 180 ° C. for 10 seconds to prepare a sample, and the ultraviolet transmittance was measured using a digital ultraviolet intensity meter UV-340 (manufactured by MK Scientific). .

実施例1、2の滑り性が、比較例1〜4より良かった。特に、ナイロン12あるいはナイロン6と酸化チタンの混合物(比較例2、4)よりも良い結果が得られていることから、複合型微粒子による滑り性の向上が認められた。
実施例1、2の粒径は、それぞれ比較例1、2あるいは比較例3、4よりもそれぞれ小さかった。
実施例1、2の充填材含有率は、それぞれ比較例2、4よりも小さかった。しかし、実施例1、2の微粒子に充填材(酸化チタン)が十分含まれていることがわかる。
The slipperiness of Examples 1 and 2 was better than Comparative Examples 1 to 4. In particular, since better results were obtained than nylon 12 or a mixture of nylon 6 and titanium oxide (Comparative Examples 2 and 4), improvement in slipperiness due to the composite type fine particles was observed.
The particle diameters of Examples 1 and 2 were smaller than those of Comparative Examples 1 and 2 or Comparative Examples 3 and 4, respectively.
The filler contents in Examples 1 and 2 were smaller than those in Comparative Examples 2 and 4, respectively. However, it can be seen that the fine particles of Examples 1 and 2 sufficiently contain the filler (titanium oxide).

Claims (4)

結晶性ポリアミドと、その結晶性ポリアミドに対して相分離温度以上では溶媒として作用し、相分離温度以下では非溶媒として作用する溶剤と、その溶剤に分散する微粉末とを混合して混合液を調製し、
この混合液を相分離温度以上に加熱してポリアミド溶液を調製し、
そのポリアミド溶液を相分離温度以下に冷却してポリアミドを析出させることによりポリアミドと微粉末からなる複合型微粒子を得る、
複合型微粒子の製造方法。
A crystalline polyamide, a solvent that acts as a solvent above the phase separation temperature on the crystalline polyamide, and acts as a non-solvent below the phase separation temperature, and a fine powder dispersed in the solvent are mixed to obtain a mixed liquid. Prepared,
A polyamide solution is prepared by heating the mixture to a temperature above the phase separation temperature,
By cooling the polyamide solution below the phase separation temperature and precipitating polyamide, composite type fine particles composed of polyamide and fine powder are obtained,
A method for producing composite fine particles.
前記ポリアミド溶液を静止させた状態で冷却する、請求項1記載の複合型微粒子の製造方法。 The method for producing composite fine particles according to claim 1, wherein the polyamide solution is cooled in a stationary state. 前記ポリアミド溶液を攪拌しながら冷却する、請求項1記載の複合型微粒子の製造方法。 The method for producing composite microparticles according to claim 1, wherein the polyamide solution is cooled while stirring. 前記微粉末が顔料である、請求項1記載の複合型微粒子の製造方法。
The method for producing composite fine particles according to claim 1, wherein the fine powder is a pigment.
JP2008179447A 2008-07-09 2008-07-09 Method for producing composite fine particles Expired - Fee Related JP5358132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008179447A JP5358132B2 (en) 2008-07-09 2008-07-09 Method for producing composite fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008179447A JP5358132B2 (en) 2008-07-09 2008-07-09 Method for producing composite fine particles

Publications (2)

Publication Number Publication Date
JP2010018684A true JP2010018684A (en) 2010-01-28
JP5358132B2 JP5358132B2 (en) 2013-12-04

Family

ID=41703908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008179447A Expired - Fee Related JP5358132B2 (en) 2008-07-09 2008-07-09 Method for producing composite fine particles

Country Status (1)

Country Link
JP (1) JP5358132B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063759A (en) * 2009-09-18 2011-03-31 Sekisui Plastics Co Ltd Composite particle production method, composite particle, and cosmetic
WO2013122008A1 (en) 2012-02-15 2013-08-22 東レ株式会社 Composite polyamide particles and method for producing same
JP2014231559A (en) * 2013-05-29 2014-12-11 宇部興産株式会社 Method for manufacturing composite particle, and cosmetic

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828778B1 (en) * 1970-12-26 1973-09-04
JPS61223059A (en) * 1985-03-23 1986-10-03 ヒユールス・アクチエンゲゼルシヤフト Production of powdery coating agent having substantially uniform particle size based on polyamide having 10 or more aliphatic bonded carbon atoms per carbonamide group
JPH01242626A (en) * 1988-03-23 1989-09-27 Shigeru Murayama Preparation of resin powder containing inorganic substance
JP2001114901A (en) * 1999-10-22 2001-04-24 Technology Resources Incorporated:Kk Method for manufacturing spherical composite powder
JP2004137503A (en) * 2002-10-17 2004-05-13 Degussa Ag Powder for selective laser sintering, method for producing the powder, method for producing shaped article and shaped article produced by the method
JP2006169373A (en) * 2004-12-15 2006-06-29 Metal Color:Kk Method for producing nylon 12 spherical particle powder
WO2006126563A1 (en) * 2005-05-25 2006-11-30 Toray Industries, Inc. Polyamide resin fine particles and process for production thereof
JP2006328173A (en) * 2005-05-25 2006-12-07 Metal Color:Kk Method for producing polyamide spherical particle powder

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828778B1 (en) * 1970-12-26 1973-09-04
JPS61223059A (en) * 1985-03-23 1986-10-03 ヒユールス・アクチエンゲゼルシヤフト Production of powdery coating agent having substantially uniform particle size based on polyamide having 10 or more aliphatic bonded carbon atoms per carbonamide group
JPH01242626A (en) * 1988-03-23 1989-09-27 Shigeru Murayama Preparation of resin powder containing inorganic substance
JP2001114901A (en) * 1999-10-22 2001-04-24 Technology Resources Incorporated:Kk Method for manufacturing spherical composite powder
JP2004137503A (en) * 2002-10-17 2004-05-13 Degussa Ag Powder for selective laser sintering, method for producing the powder, method for producing shaped article and shaped article produced by the method
JP2006169373A (en) * 2004-12-15 2006-06-29 Metal Color:Kk Method for producing nylon 12 spherical particle powder
WO2006126563A1 (en) * 2005-05-25 2006-11-30 Toray Industries, Inc. Polyamide resin fine particles and process for production thereof
JP2006328173A (en) * 2005-05-25 2006-12-07 Metal Color:Kk Method for producing polyamide spherical particle powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063759A (en) * 2009-09-18 2011-03-31 Sekisui Plastics Co Ltd Composite particle production method, composite particle, and cosmetic
WO2013122008A1 (en) 2012-02-15 2013-08-22 東レ株式会社 Composite polyamide particles and method for producing same
US9416233B2 (en) 2012-02-15 2016-08-16 Toray Industries, Inc. Composite polyamide fine particles and method of producing same
JP2014231559A (en) * 2013-05-29 2014-12-11 宇部興産株式会社 Method for manufacturing composite particle, and cosmetic

Also Published As

Publication number Publication date
JP5358132B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
TWI412559B (en) Method for preparing polylactic acid-based resin particles, polylactic acid-based resin particles, and cosmetics using the same
TWI417330B (en) Novel nanoparticles
Chen et al. Studies of chitosan: II. Preparation and characterization of chitosan/poly (vinyl alcohol)/gelatin ternary blend films
Guillemet et al. Nanosized amorphous calcium carbonate stabilized by poly (ethylene oxide)-b-poly (acrylic acid) block copolymers
JP5896257B2 (en) Powder comprising inorganic compound-supported polyamide porous particles
CN108602687B (en) Coated alkaline earth metal compound fine particles, organic solvent dispersion liquid, resin composition, and image display device
TW201210947A (en) Sheet-shaped cerium oxide and petal-shaped cerium oxide powder which is aggregate of the sheet-shaped cerium oxide, process for production of the sheet-shaped cerium oxide and the petal-shaped cerium oxide powder, coated sheet-shaped cerium oxide and
TW201139546A (en) Alkoxysilyl group-containing block copolymer, method for producing the same, resin-treated pigment, and pigment dispersion
TW200844164A (en) Cellulose fine particle, dispersion liquid thereof and dispersion body thereof
JP5446172B2 (en) COMPOSITE POLYAMIDE POROUS FINE PARTICLES HAVING ULTRAVIOLET CONTROL FUNCTION AND METHOD FOR PRODUCING THE SAME
WO2017195705A1 (en) Polyamide fine particles, method for producing same, and polyamide fine particle composition
Lan et al. Influence of the surface properties of nano-silica on the dispersion and isothermal crystallization kinetics of PHB/silica nanocomposites
JP2010018684A (en) Production method of composite type microparticle
JP6352813B2 (en) Method for producing aluminum flake paste
Uchman et al. CdS-containing nano-assemblies of double hydrophilic block copolymers in water
TWI276669B (en) Process for production of titanium dioxide pigment and resin compositions containing the pigment
JPWO2019167749A1 (en) Pigment-containing aliphatic polyester fine particles, their manufacturing methods and cosmetics
WO2024032316A1 (en) Degradable microsphere, preparation method therefor, and use thereof
WO2012161084A1 (en) Cosmetic product and spf booster used therein
Cheng et al. Rapid preparation and characterization of chitosan nanoparticles for oligonucleotide
JP2012211090A (en) Porous polyamide microparticles for cosmetic composition, and cosmetic composition containing the same
JP2006160874A (en) Method for producing resin particle
JP2014105259A (en) Method of manufacturing polyamide porous particle, polyamide porous particle and cosmetic
JP2004244461A (en) Colored pigment
JP7359813B2 (en) Resin beads, methods for manufacturing resin beads, and products using resin beads

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees