JP2010018494A - Growing method of silicon single crystal - Google Patents

Growing method of silicon single crystal Download PDF

Info

Publication number
JP2010018494A
JP2010018494A JP2008181353A JP2008181353A JP2010018494A JP 2010018494 A JP2010018494 A JP 2010018494A JP 2008181353 A JP2008181353 A JP 2008181353A JP 2008181353 A JP2008181353 A JP 2008181353A JP 2010018494 A JP2010018494 A JP 2010018494A
Authority
JP
Japan
Prior art keywords
diameter
single crystal
seed
crucible
silicon single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008181353A
Other languages
Japanese (ja)
Other versions
JP5136252B2 (en
Inventor
Hiroaki Taguchi
裕章 田口
Takashi Atami
貴 熱海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2008181353A priority Critical patent/JP5136252B2/en
Publication of JP2010018494A publication Critical patent/JP2010018494A/en
Application granted granted Critical
Publication of JP5136252B2 publication Critical patent/JP5136252B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a growing method of a single crystal which can be suitably used for enhancing controllability of seed diameter in a necking process and controllability of single crystal diameter during the drawing-up in a diameter increasing process and a diameter fixing process. <P>SOLUTION: In the growing method of a silicon single crystal by CZ method, in the necking process where the seed diameter is reduced, rotation number of a crucible is set not higher than 0.1 rpm in the normal or reverse direction to the direction of the rotation of the seed crystal. In the necking process and the following diameter increasing process, the rotation number of the crucible is set similarly not higher than 0.1 rpm. It is desirable to adopt an embodiment in which the growth of silicon single crystal is carried out under a horizontal magnetic field of not lower than 0.1 T but not higher than 0.4 T. Since the target seed diameter can be set to the minimum diameter corresponding to the breaking limit at the weight of the drawing-up single crystal, dislocation is easy to come away and the dangerousness of the breaking at the neck part can be remarkably reduced. Variation in the drawing-up speed can be controlled by improving the controllability of the single crystal diameter and the yield of the product can also be enhanced. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、チョクラルスキー法(以下、「CZ法」と記す)によるシリコン単結晶の育成方法に関し、より詳しくは、絞り工程でのネック部径の変動を防止するためにルツボの回転数を制御するシリコン単結晶の育成方法に関する。   The present invention relates to a method for growing a silicon single crystal by the Czochralski method (hereinafter referred to as “CZ method”), and more specifically, to prevent the fluctuation of the neck diameter in the drawing step, the rotational speed of the crucible. The present invention relates to a method for growing a silicon single crystal to be controlled.

CZ法によるシリコン単結晶の育成方法は、ルツボ内に半導体用シリコン原料を投入して加熱、溶融し、その溶融液に浸漬した種結晶を回転させながら引き上げることにより、種結晶の下端にシリコン単結晶を成長させる方法であり、半導体基板に用いられるシリコン単結晶を製造する方法として広く採用されている。   A silicon single crystal growth method by the CZ method is a method in which a silicon raw material for semiconductor is put into a crucible, heated and melted, and the seed crystal immersed in the melt is pulled up while rotating, so that the silicon single crystal is formed at the lower end of the seed crystal. This is a method for growing a crystal and is widely used as a method for producing a silicon single crystal used for a semiconductor substrate.

図1は、CZ法によるシリコン単結晶の育成に適した単結晶引上げ装置の要部の構成例を模式的に示す縦断面図である。図1に示すように、この引上げ装置はルツボ2内に供給されるシリコン原料を加熱し、溶融状態に保持するためのヒーター1がルツボ2の外側に概ね同心円状に配設され、その外周近傍には断熱材3が取り付けられている。ルツボ2は二重構造で、有底円筒状をなす石英ルツボ2aと、その石英ルツボ2aを保持する黒鉛ルツボ2bとから構成されており、回転および昇降が可能な支持軸4の上端部に固定されている。   FIG. 1 is a longitudinal sectional view schematically showing a configuration example of a main part of a single crystal pulling apparatus suitable for growing a silicon single crystal by the CZ method. As shown in FIG. 1, in this pulling device, a heater 1 for heating the silicon raw material supplied into the crucible 2 and maintaining it in a molten state is disposed substantially concentrically outside the crucible 2, and the vicinity of the outer periphery thereof. The heat insulating material 3 is attached to. The crucible 2 is composed of a quartz crucible 2a having a bottomed cylindrical shape and a graphite crucible 2b that holds the quartz crucible 2a, and is fixed to the upper end of a support shaft 4 that can rotate and move up and down. Has been.

溶融液5が充填された前記ルツボ2の中心軸上には、支持軸4と同一軸上で逆方向または同方向に所定の速度で回転する引上げワイヤー6が配設されており、その下端には種結晶7が保持されている。   On the central axis of the crucible 2 filled with the molten liquid 5, a pulling wire 6 that rotates on the same axis as the support shaft 4 in the reverse direction or in the same direction at a predetermined speed is disposed. Holds the seed crystal 7.

このように構成された引上げ装置を用いてシリコン単結晶の引き上げを行う際には、ルツボ2内に所定量のシリコン原料(一般的には、塊状または粒状の多結晶シリコンを用いる)を投入し、減圧下の不活性ガス(通常はAr)雰囲気中でこの原料をルツボ2の周囲に配設したヒーター1により加熱、溶融した後、形成された溶融液5の表面近傍に引上げワイヤー6の下端に保持された種結晶7を浸漬する。続いて、ルツボ2および引上げワイヤー6を回転させつつワイヤー6を引き上げ、種結晶7の下端面に単結晶8を成長させる。   When pulling up a silicon single crystal using the pulling apparatus configured as described above, a predetermined amount of silicon raw material (generally using massive or granular polycrystalline silicon) is put into the crucible 2. The raw material is heated and melted by a heater 1 disposed around the crucible 2 in an inert gas (usually Ar) atmosphere under reduced pressure, and then the lower end of the pulling wire 6 is placed near the surface of the formed melt 5. The seed crystal 7 held in is immersed. Subsequently, the wire 6 is pulled up while rotating the crucible 2 and the pulling wire 6, and the single crystal 8 is grown on the lower end surface of the seed crystal 7.

引き上げに際しては、その速度およびシリコン溶融液の温度を調節し、種結晶7の直径を減少させてネック部9を形成する絞り工程を経た後、前記ネック部の直径(以下、「シード直径」、または「シード径」という)を徐々に増大させてコーン10、さらに肩部11を形成する増径工程に移行する。続いて、定径工程において、製品ウェーハの素材として利用される定径のボディ部(直胴部)12を形成する。ボディ部12が所定長さに達した後、その直径を徐々に減少させてテール部(図示せず)を形成し、最先端部を溶融液5から引き離すことにより所定形状のシリコン単結晶8が得られる。   When pulling up, after adjusting the speed and the temperature of the silicon melt and reducing the diameter of the seed crystal 7 to form the neck portion 9, the neck portion diameter (hereinafter referred to as "seed diameter", Alternatively, the process proceeds to a diameter increasing step in which the cone 10 and further the shoulder 11 are formed. Subsequently, in the constant diameter step, a constant diameter body portion (straight body portion) 12 used as a material for the product wafer is formed. After the body portion 12 reaches a predetermined length, its diameter is gradually reduced to form a tail portion (not shown), and the foremost portion is pulled away from the melt 5 to form a silicon single crystal 8 having a predetermined shape. can get.

なお、シリコン単結晶を育成する際、ルツボ内のシリコン溶融液に横磁場を印加することにより結晶成長界面近傍の温度変動が低減される結果、ドーパントやその他不純物の濃度分布が均一化され、さらに、結晶育成速度を高められるなどの利点があることから、近年、単結晶引き上げ時における横磁場の印加が普及している。通常、磁場の強さは、定径工程で0.3〜0.4T(テスラ)である。   In addition, when growing a silicon single crystal, a temperature distribution near the crystal growth interface is reduced by applying a transverse magnetic field to the silicon melt in the crucible, resulting in a uniform concentration distribution of dopants and other impurities. In recent years, the application of a transverse magnetic field at the time of pulling a single crystal has become widespread because of the advantage that the crystal growth rate can be increased. Usually, the strength of the magnetic field is 0.3 to 0.4 T (Tesla) in the constant diameter process.

前記の絞り工程は、種結晶をシリコン溶融液と接触させるときのヒートショックにより種結晶内に導入される高密度の転位を除去するために行われる必須の工程であり、この工程を経ることにより転位が除去される。   The drawing step is an essential step performed to remove high-density dislocations introduced into the seed crystal by heat shock when the seed crystal is brought into contact with the silicon melt. Dislocations are removed.

しかし、この絞り工程において、シリコン溶融液の対流による温度の変動(融液温度の変動)に伴いシード直径が変動し、部分的に細くなって育成された単結晶の保持が困難になる場合がある。この問題を解決するために、絞り工程、更にそれに続く増径工程において磁場を印加してシード直径の変動を防止する試みがなされてきた。   However, in this squeezing process, the seed diameter may vary with temperature fluctuations (melt temperature fluctuations) due to convection of the silicon melt, and it may be difficult to maintain a single crystal that is partially thinned and grown. is there. In order to solve this problem, attempts have been made to prevent variation in the seed diameter by applying a magnetic field in the throttling step and further in the subsequent diameter increasing step.

例えば、特許文献1では、絞り工程でルツボ回転数を1rpm以下とすると共に、0.1T以下の横磁場を印加し、絞り工程から増径工程に移行する段階でその磁場印加を停止するシリコン単結晶成長方法が提案されている。   For example, in Patent Document 1, a crucible rotation speed is set to 1 rpm or less in a drawing process, a lateral magnetic field of 0.1 T or less is applied, and the magnetic field application is stopped at the stage of shifting from a drawing process to a diameter increasing process. A crystal growth method has been proposed.

しかしながら、この特許文献1に記載される方法では、印加する横磁場の強度を調整することにより、絞り工程におけるシード直径の安定化を図るものであり、横磁場印加の下であっても長期的な(つまり、時間的に長いスパンでの)融液温度の揺らぎがあり、それによるシード直径の変動があるため、シード直径の制御性が十分なものではなかった。このため、シード直径の変動を考慮して目標シード直径を幾分大きくしなければならず、そのため転位が抜けにくくなって、結果的に歩留りが低下する。   However, in the method described in Patent Document 1, the strength of the applied lateral magnetic field is adjusted to stabilize the seed diameter in the squeezing process. Since there was a fluctuation in the melt temperature (that is, over a long span in time) and there was a variation in the seed diameter, the controllability of the seed diameter was not sufficient. For this reason, it is necessary to increase the target seed diameter somewhat in consideration of the variation of the seed diameter, which makes it difficult for the dislocation to fall out, resulting in a decrease in yield.

特に、近年における半導体デバイスの高集積化、低コスト化および生産性の向上に対応して、ウェーハも大口径化される傾向にあり、その素材としてのシリコン単結晶の直径および重量が増大していることから、シード直径の制御性をより向上させ、引き上げる単結晶の重量での破断限界に応じた最小径とすることが必要とされる。   In particular, in response to the recent trend toward higher integration, lower cost, and improved productivity of semiconductor devices, wafers are also becoming larger in diameter, and the diameter and weight of silicon single crystal as the material has increased. Therefore, it is necessary to further improve the controllability of the seed diameter and to set the minimum diameter according to the fracture limit with the weight of the single crystal to be pulled up.

また、増径工程、定径工程においては、融液温度の不安定さに起因して引き上げ途中の単結晶の直径が変動し、この直径の変動を矯正するために引き上げ速度を変更しなければならず、結果的に目標引上げ速度から逸脱することとなって、所定の品質の単結晶が得られない場合があった。
特開2004−83320号公報
Moreover, in the diameter increasing process and the constant diameter process, the diameter of the single crystal during the pulling fluctuates due to the instability of the melt temperature, and the pulling speed must be changed to correct the fluctuation of the diameter. In other words, as a result, the target pulling speed deviates, and a single crystal having a predetermined quality may not be obtained.
JP 2004-83320 A

本発明はこのような状況に鑑みてなされたもので、絞り工程においてシード直径の制御性をより向上させ、シード径を安定させることによって、特に大重量の単結晶引き上げ時においても、転位が抜け易いようにシード直径を極力細くすることができ、かつ、ネック部での破断の危険性を回避することができるシリコン単結晶の育成方法、また、更に、絞り工程に続く増径工程、定径工程においても引き上げ途中の単結晶径の制御性を向上させて引上げ速度の変動を抑制し、製品歩留りを向上させることができるシリコン単結晶の育成方法を提供することを目的としている。   The present invention has been made in view of such a situation, and by improving the controllability of the seed diameter in the squeezing process and stabilizing the seed diameter, dislocations are eliminated particularly when pulling up a large single crystal. A method for growing a silicon single crystal that can make the seed diameter as thin as possible and avoid the risk of breakage at the neck, and further, a diameter-increasing step following the drawing step, a constant diameter An object of the present invention is to provide a method for growing a silicon single crystal that can improve the controllability of the diameter of the single crystal during the pulling process, suppress the fluctuation of the pulling speed, and improve the product yield.

本発明者らは、上記の課題を解決するために検討を重ねる過程で、横磁場印加の下で単結晶の引き上げを行う場合、ルツボの回転数をゼロとしたときに融液温度の変動が最も小さくなり、シード直径の変動が最小となるという実験事実を得た。   In the course of repeated studies to solve the above problems, the present inventors have found that when the single crystal is pulled under application of a transverse magnetic field, the melt temperature fluctuates when the rotational speed of the crucible is zero. The experimental fact was obtained that it was the smallest and the seed diameter variation was minimized.

ルツボの回転は、速すぎると融液温度の変動が大きく、一方、石英ルツボへの局所加熱を避ける意味もあって、通常、2rpm〜0.1rpmの範囲内とすることが多いが、本発明者らは、前記の実験事実に注目して、この慣用されている範囲から外れる範囲を含め、種々の回転数でルツボを回転させ、詳細に検討した。その結果、ルツボの回転数を0.1rpm以下(ゼロ、すなわち静止状態を含む)としたときにシード直径の変動が最小となることを知見した。回転の方向は、種結晶の回転方向に対して正方向、逆方向のいずれでもよいことが判った。   When the crucible rotates too quickly, the melt temperature fluctuates greatly. On the other hand, there is also a meaning of avoiding local heating to the quartz crucible, and usually within the range of 2 rpm to 0.1 rpm. The inventors paid attention to the experimental facts described above, and examined the details by rotating the crucible at various rotational speeds, including the range outside the conventional range. As a result, it has been found that the variation in the seed diameter is minimized when the rotational speed of the crucible is 0.1 rpm or less (zero, that is, including a stationary state). It was found that the direction of rotation may be either the forward direction or the reverse direction with respect to the rotation direction of the seed crystal.

さらに、同じルツボ回転数範囲(すなわち、0.1rpm以下)で、絞り工程から増径工程を実施した後、定径工程へと移行することにより、引き上げ途中の単結晶の直径制御性が向上し、その結果、単結晶の引き上げ速度を所定の範囲内に維持することができるので、所定の品質の単結晶が得られ、製品歩留りを向上させ得ることも判明した。   Furthermore, the diameter controllability of the single crystal during the pulling is improved by performing the diameter increasing process from the drawing process in the same crucible rotation speed range (that is, 0.1 rpm or less) and then shifting to the constant diameter process. As a result, it was also found that the single crystal pulling rate can be maintained within a predetermined range, so that a single crystal having a predetermined quality can be obtained and the product yield can be improved.

本発明はこのような知見に基づきなされたもので、その要旨は、下記のシリコン単結晶の育成方法にある。   The present invention has been made based on such knowledge, and the gist thereof is the following method for growing a silicon single crystal.

すなわち、ルツボ内のシリコン溶融液に浸漬した種結晶を回転させながら引き上げることにより、種結晶の下端にシリコン単結晶を成長させるCZ法によるシリコン単結晶の育成方法において、種結晶を引き上げつつシード直径を減少させる絞り工程で、ルツボ回転数を、前記種結晶の回転方向に対して正方向または逆方向に0.1rpm以下とすることを特徴とする育成方法である。なお、前記の「0.1rpm以下」には、ルツボの回転数がゼロ、すなわちルツボを回転させず、種結晶のみを回転させる場合も含まれる。   That is, in a method for growing a silicon single crystal by the CZ method in which a silicon single crystal is grown on the lower end of the seed crystal by rotating the seed crystal immersed in the silicon melt in the crucible while rotating the seed crystal, In the growing process, the crucible rotation speed is set to 0.1 rpm or less in the forward or reverse direction with respect to the rotation direction of the seed crystal. The above “0.1 rpm or less” includes the case where the crucible rotation speed is zero, that is, the case where only the seed crystal is rotated without rotating the crucible.

本発明のシリコン単結晶の育成方法において、絞り工程およびこれに続く増径工程で、ルツボ回転数を、種結晶の回転方向に対して正方向または逆方向に0.1rpm以下とする形態(これを、「実施形態1」と記す)を採ることができる。   In the silicon single crystal growth method of the present invention, the crucible rotation speed is set to 0.1 rpm or less in the forward or reverse direction with respect to the rotation direction of the seed crystal in the drawing step and the subsequent diameter increasing step (this) Can be referred to as “Embodiment 1”).

本発明のシリコン単結晶の育成方法(実施形態1を含む)においては、シリコン単結晶の育成を、0.1T以上0.4T以下の横磁場印加の下で行うこととする実施形態を採用することが望ましい。   In the silicon single crystal growth method (including the first embodiment) of the present invention, an embodiment is adopted in which the silicon single crystal is grown under application of a transverse magnetic field of 0.1 T or more and 0.4 T or less. It is desirable.

本発明のシリコン単結晶の育成方法(実施形態1を含む)によれば、シード直径を減少させる絞り工程において、シード直径の制御性を向上させ、シード径を安定させることができる。これにより目標シード直径を各引上げ単結晶の重量での破断限界に応じた最小径とすることができ、転位を抜け易くし、かつ、ネック部での破断の危険性を回避することが可能となる。必要にして最小のシード直径とすることができるので、この育成方法は、特に、大重量の単結晶の引き上げにおいて有効である。また、本発明の育成方法によれば、絞り工程およびこれに続く増径工程において、直径の制御性を向上させることができ、引上げ速度の変動を抑制して、製品歩留りを向上させることができる。   According to the method for growing a silicon single crystal of the present invention (including the first embodiment), in the drawing step for reducing the seed diameter, controllability of the seed diameter can be improved and the seed diameter can be stabilized. As a result, the target seed diameter can be set to the minimum diameter according to the breaking limit in terms of the weight of each pulled single crystal, and it is possible to easily escape dislocations and avoid the risk of breaking at the neck portion. Become. Since the seed diameter can be minimized as required, this growing method is particularly effective for pulling a large weight single crystal. Further, according to the growing method of the present invention, the controllability of the diameter can be improved in the drawing step and the subsequent diameter increasing step, and the yield of the product can be improved by suppressing fluctuations in the pulling speed. .

本発明のシリコン単結晶の育成方法は、前記のとおり、CZ法によるシリコン単結晶の育成方法において、シリコン溶融液に浸漬した種結晶を引き上げてシード直径を減少させる絞り工程で、ルツボ回転数を、前記種結晶の回転方向に対して正方向または逆方向に0.1rpm以下とすることを特徴とする方法である。なお、シリコン単結晶の育成では、一般に横磁場印加が行われているので、以下、本発明の望ましい実施の形態である、0.1T以上0.4T以下の横磁場印加の下での単結晶育成を前提として、本発明のシリコン単結晶の育成方法について説明する。   As described above, the method for growing a silicon single crystal according to the present invention is a squeezing step in which the seed crystal immersed in a silicon melt is pulled down to reduce the seed diameter in the method for growing a silicon single crystal by the CZ method. The method is characterized in that the speed is 0.1 rpm or less in the forward or reverse direction with respect to the rotation direction of the seed crystal. In the growth of a silicon single crystal, since a transverse magnetic field is generally applied, a single crystal under a transverse magnetic field application of 0.1 T or more and 0.4 T or less, which is a preferred embodiment of the present invention, will be described below. On the premise of growth, the method for growing a silicon single crystal of the present invention will be described.

本発明のシリコン単結晶の育成方法において、絞り工程で、ルツボの回転数を0.1rpm以下とするのは、シード直径の制御性を向上させてその変動を抑制し、シード直径を、引上げ単結晶ごとにその重量での破断限界に応じて最小とするためである。後述する実施例に示すように、ルツボの回転数が0.1rpmを超える場合は、融液温度の揺らぎの影響を受けて、シード直径に変動が生じるが、0.1rpm以下のときはシード直径の変動は認められない。すなわち、本発明の育成方法では、ルツボの回転数を制御することによりシード直径を制御することが可能である。   In the silicon single crystal growth method of the present invention, the crucible rotation speed is set to 0.1 rpm or less in the squeezing step to improve the controllability of the seed diameter to suppress the variation, and to increase the seed diameter. This is because each crystal is minimized according to the breaking limit of its weight. As shown in the examples described later, when the crucible rotation speed exceeds 0.1 rpm, the seed diameter varies due to the influence of the fluctuation of the melt temperature, but when the rotation speed is 0.1 rpm or less, the seed diameter is changed. No change is allowed. That is, in the growing method of the present invention, the seed diameter can be controlled by controlling the number of rotations of the crucible.

この場合、絞り工程で印加する横磁場の強さは0.1T〜0.4Tの範囲内とすることが望ましい。この範囲内であれば、ドーパントやその他不純物の濃度分布が均一化され、結晶育成速度を高められるなど、横磁場印加の効果が得られる上に、絞り工程において、転位を抜け易くし、かつネック部での破断の危険性を回避することが可能となるという本発明の効果も充分発揮される。実操業においては、通常、横磁場の強さを0.3T〜0.4Tとしているので、実操業でのレベル、またはそのレベルに近い範囲の横磁場を印加すればよく、磁場印加に関しては、通常の製造条件に合わせればよいといえる。   In this case, it is desirable that the strength of the transverse magnetic field applied in the drawing process be in the range of 0.1T to 0.4T. Within this range, the concentration distribution of dopants and other impurities can be made uniform, the crystal growth rate can be increased, and the effect of applying a transverse magnetic field can be obtained. The effect of the present invention that it is possible to avoid the risk of breakage at the portion is also sufficiently exhibited. In actual operation, the strength of the transverse magnetic field is normally set to 0.3T to 0.4T. Therefore, it is sufficient to apply a transverse magnetic field at the level of actual operation or a range close to that level. It can be said that it may be adapted to the normal manufacturing conditions.

ルツボの回転方向は、種結晶の回転方向に対して正方向、逆方向のいずれでもよい。回転方向が正、逆いずれであっても同等の効果が得られる。   The rotation direction of the crucible may be either the forward direction or the reverse direction with respect to the rotation direction of the seed crystal. The same effect can be obtained regardless of whether the rotation direction is normal or reverse.

なお、本発明の育成方法において行う0.1rpm以下というルツボ回転数の低速での制御は、既存の変速装置を使用することにより問題なく実施できる。   Note that the low speed control of the crucible rotation speed of 0.1 rpm or less performed in the growing method of the present invention can be carried out without problems by using an existing transmission.

本発明のシリコン単結晶の育成方法において、絞り工程およびこれに続く増径工程で、ルツボ回転数を、種結晶の回転方向に対して正方向または逆方向に0.1rpm以下とする形態を採ることができる。前記の実施形態1の育成方法である。   In the silicon single crystal growth method of the present invention, the crucible rotation speed is set to 0.1 rpm or less in the forward direction or the reverse direction with respect to the rotation direction of the seed crystal in the drawing step and the subsequent diameter increasing step. be able to. This is the growing method of the first embodiment.

絞り工程から増径工程において、ルツボの回転数を変えずに、0.1rpm以下とするのは、ルツボ回転数の変更に伴う対流の変化を防止するためであり、これにより、引き上げ途中の単結晶の直径制御性をさらに向上させることができる。   The reason why the rotation speed of the crucible is set to 0.1 rpm or less without changing the crucible rotation speed in the expansion process to the diameter increasing process is to prevent a change in convection due to the change in the crucible rotation speed. The crystal diameter controllability can be further improved.

従来は、融液温度が安定せず、引き上げ途中の単結晶の直径が変動するので引き上げ速度を変更せざるを得なかったが、この実施形態1の育成方法によれば、引き上げ途中の単結晶の直径制御性が向上するので、単結晶の引き上げ速度を変更する必要がなく、所定の品質の単結晶が得られるので、製品歩留りを向上させることができる。   Conventionally, the melt temperature was not stable, and the diameter of the single crystal during the pulling was changed, so the pulling speed had to be changed. However, according to the growing method of this embodiment 1, the single crystal during the pulling was changed. Therefore, it is not necessary to change the pulling rate of the single crystal, and a single crystal having a predetermined quality can be obtained, so that the product yield can be improved.

この場合も、印加する横磁場の強さは、実操業でのレベル(0.3T〜0.4T)、またはそのレベルに近い0.1T〜0.4Tの範囲内とすることが望ましい。これにより、横磁場印加の効果が得られるとともに、前記の単結晶の直径制御性の向上効果も充分に発揮される。   Also in this case, the strength of the applied transverse magnetic field is desirably set to a level (0.3T to 0.4T) in actual operation or within a range of 0.1T to 0.4T close to the level. Thereby, the effect of applying a transverse magnetic field is obtained, and the effect of improving the diameter controllability of the single crystal is sufficiently exhibited.

以上述べたように、実施形態1も含めて本発明のシリコン単結晶の育成方法においては、ルツボの回転数を制御することにより、絞り工程においてシード直径を制御し、また、絞り工程およびこれに続く増径工程において引き上げ途中の単結晶の直径を制御して、シード直径または単結晶の直径の変動を抑制し、安定化させている。   As described above, in the method for growing a silicon single crystal of the present invention including the first embodiment, the seed diameter is controlled in the drawing process by controlling the number of revolutions of the crucible. In the subsequent diameter increasing step, the diameter of the single crystal being pulled is controlled to suppress and stabilize the variation of the seed diameter or the diameter of the single crystal.

これに対し、前掲の特許文献1に記載されるシリコン単結晶成長方法をはじめとして、従来提案されてきた方法では、いずれも、印加する磁場の強さを種々変更することを基本としている。特許文献1に記載の方法では、ルツボの回転数もシード直径の変動抑制に対して重要であり、その回転数をできるだけ小さく抑えることが必要であるとして、前述のとおり、絞り工程で、0.1T以下の横磁場を印加する際に、ルツボ回転数を1rpm以下としているが、シード直径の変動を抑制する主体は横磁場の印加であるという考え方には変わりはない。   On the other hand, all of the conventionally proposed methods including the silicon single crystal growth method described in the above-mentioned Patent Document 1 are based on various changes in the strength of the applied magnetic field. In the method described in Patent Document 1, the rotational speed of the crucible is also important for suppressing variation in seed diameter, and it is necessary to keep the rotational speed as small as possible. When a transverse magnetic field of 1 T or less is applied, the rotational speed of the crucible is set to 1 rpm or less, but there is no change in the idea that the main body that suppresses the variation in seed diameter is the application of a transverse magnetic field.

表1は、特許文献1に記載される方法と本発明の育成方法について、課題の解決手段を対比したものである。望ましいとされる条件は、括弧でくくり記載している。なお、課題については、両者とも、絞り工程でのシード直径の安定化、および、増径工程での単結晶径の制御性の向上をあげており、実質的に同じである。   Table 1 compares the problem solving means for the method described in Patent Document 1 and the growing method of the present invention. Desired conditions are listed in parentheses. As for the problems, both of them are substantially the same, stabilizing the seed diameter in the drawing process and improving the controllability of the single crystal diameter in the diameter increasing process.

Figure 2010018494
Figure 2010018494

表1に示すように、特許文献1に記載の方法では、課題の解決手段の主体が横磁場印加であり、絞り、増径、定径の各工程で、磁場強度をそれぞれ0.1T以下、ゼロ、再び磁場を印加(望ましくは、0.1T〜0.4T)と、各工程ごとに変更し、それに伴いルツボの回転数も各工程ごとに変えている。これに対し、本発明の育成方法では、絞り工程および増径工程において、ルツボの回転数を±0.1rpm以下と規定し、望ましい磁場強度についても0.1T〜0.4Tの範囲内で一定である。なお、本発明の育成方法におけるルツボの回転数の「±」は、種結晶の回転方向に対して「正方向(+)または逆方向(−)」であることを意味する。   As shown in Table 1, in the method described in Patent Document 1, the main means for solving the problem is the application of a transverse magnetic field, and the magnetic field strength is 0.1 T or less in each step of drawing, diameter increasing, and constant diameter, Zero and re-applying a magnetic field (preferably 0.1T to 0.4T) are changed for each step, and accordingly, the number of rotations of the crucible is changed for each step. On the other hand, in the growing method of the present invention, the crucible rotation speed is defined as ± 0.1 rpm or less in the drawing step and the diameter increasing step, and the desirable magnetic field strength is also constant within the range of 0.1T to 0.4T. It is. In the growth method of the present invention, “±” of the number of rotations of the crucible means “forward direction (+) or reverse direction (−)” with respect to the rotation direction of the seed crystal.

この表1(対比表)から明らかなように、本発明の育成方法は、特許文献1に記載される方法とは、課題の解決手段が明白に相違している。さらに、本発明の育成方法では、単結晶育成の絞り工程および増径工程において、ルツボの回転数の制御範囲は±0.1rpm以下で、不変である。定径工程にあっては目標とする結晶品質に適したルツボ回転速度を適宜採用することができる。また、印加する磁場の強さも実操業でのレベル(0.3T〜0.4T)を含む0.1T〜0.4Tで一定とすればよく、工程が進むたびに磁場の印加条件を変更する必要がないので操業し易いという利点もある。   As is clear from Table 1 (contrast table), the method for solving the problems of the growing method of the present invention is clearly different from the method described in Patent Document 1. Furthermore, in the growing method of the present invention, the control range of the number of revolutions of the crucible is ± 0.1 rpm or less in the drawing process and the diameter increasing process for growing a single crystal and is unchanged. In the constant diameter process, a crucible rotation speed suitable for the target crystal quality can be appropriately employed. Further, the strength of the magnetic field to be applied may be constant between 0.1T and 0.4T including the level (0.3T to 0.4T) in actual operation, and the application condition of the magnetic field is changed every time the process proceeds. There is also an advantage that it is easy to operate because it is not necessary.

以上説明したように、本発明のシリコン単結晶の育成方法(実施形態1を含む)によれば、絞り工程において、ルツボの回転数を制御することにより、シード直径を制御してその変動を抑え、シード直径を、引上げ単結晶ごとにその重量での破断限界に応じた最小の径とすることができる。それにより、転位を抜け易くするとともに、ネック部での破断の危険性を著しく低減することが可能となり、製品歩留りを向上させることができる。   As described above, according to the method for growing a silicon single crystal of the present invention (including the first embodiment), in the drawing process, by controlling the number of revolutions of the crucible, the seed diameter is controlled and the fluctuation is suppressed. The seed diameter can be set to the minimum diameter corresponding to the breaking limit in terms of weight for each pulled single crystal. As a result, dislocation can be easily removed, and the risk of breakage at the neck portion can be remarkably reduced, so that the product yield can be improved.

また、絞り工程およびこれに続く増径工程において、引き上げ途中の単結晶の直径を制御して、引上げ単結晶の直径の変動を抑制することができるので、単結晶の引上げ速度を所定範囲内に維持して所定品質の単結晶を得ることが可能となり、高い製品歩留りでシリコン単結晶を製造することができる。   Further, in the drawing step and the subsequent diameter increasing step, the diameter of the single crystal being pulled can be controlled to suppress fluctuations in the diameter of the single crystal being pulled, so that the single crystal pulling speed can be kept within a predetermined range. It becomes possible to obtain a single crystal having a predetermined quality while maintaining it, and a silicon single crystal can be manufactured with a high product yield.

前記図1に示した概略構成を有する単結晶育成装置により、直径300mmで、重量が約300kgのシリコン単結晶を育成した。   A silicon single crystal having a diameter of 300 mm and a weight of about 300 kg was grown using the single crystal growth apparatus having the schematic configuration shown in FIG.

引き上げに際しては、絞り工程で、目標シ−ド直径を5.0mmとし、絞り工程および増径工程を通してルツボの回転数を、種結晶の回転方向に対して正方向に、0rpm(静止)、0.1rpm、0.2rpmまたは0.5rpmと変更して、シード直径の目標値からのズレ(目標値との差)を調査した。なお、印加する磁場の強さは、通常の製造条件に合わせ、絞り、増径および定径の各工程を通して0.3Tとした。   At the time of pulling up, the target seed diameter is set to 5.0 mm in the drawing process, and the rotation speed of the crucible is set to 0 rpm (stationary), 0 in the positive direction with respect to the rotation direction of the seed crystal through the drawing process and the diameter increasing process. .1 rpm, 0.2 rpm or 0.5 rpm was changed, and the deviation of the seed diameter from the target value (difference from the target value) was investigated. The strength of the magnetic field to be applied was set to 0.3 T through the drawing, diameter increasing and constant diameter processes in accordance with normal manufacturing conditions.

表2に調査結果を示す。「シード直径」の欄の数値は、それぞれネック部全体にわたって測定したシード直径と目標シード直径との差(絶対値)の最大値を採り、それに「±」の符号を付して示した。例えば、ルツボ回転数0.2rpmでは、シード直径が5.0±0.1(mm)や、5.0±0.2(mm)の場合もあったが、目標シード直径との差(絶対値)の最大値が0.5(mm)だったので、5.0±0.5(mm)としている。   Table 2 shows the survey results. The numerical value in the column of “seed diameter” is the maximum value of the difference (absolute value) between the seed diameter measured over the entire neck portion and the target seed diameter, and is indicated by the sign “±”. For example, when the crucible rotation speed is 0.2 rpm, the seed diameter may be 5.0 ± 0.1 (mm) or 5.0 ± 0.2 (mm), but the difference from the target seed diameter (absolute Value) is 0.5 (mm), so it is 5.0 ± 0.5 (mm).

Figure 2010018494
Figure 2010018494

表2に示すように、ルツボの回転数が0.2rpmまたは0.5rpmのときは、シード直径の変動が認められたが、0rpm(静止)および0.1rpmのときは、シード直径の変動は認められず、目標のシ−ド直径に制御することができた。なお、表示していないが、ルツボの回転方向が種結晶の回転方向に対して正方向、逆方向のいずれであっても調査結果に差が生じないことを確認した。また、ルツボの回転数が0.2rpmまたは0.5rpmのときは、増径工程においても直径の変動が認められたが、0rpm(静止)および0.1rpmのときは、増径工程において目標直径通りに制御することができた。   As shown in Table 2, when the rotation speed of the crucible was 0.2 rpm or 0.5 rpm, a variation in the seed diameter was observed, but when the rotation speed was 0 rpm (stationary) and 0.1 rpm, the variation in the seed diameter was It was not recognized and could be controlled to the target seed diameter. Although not shown, it was confirmed that there was no difference in the survey results even if the crucible rotation direction was either the forward direction or the reverse direction with respect to the seed crystal rotation direction. In addition, when the crucible rotation speed was 0.2 rpm or 0.5 rpm, a change in diameter was observed in the diameter increasing process, but when the rotation speed was 0 rpm (stationary) and 0.1 rpm, the target diameter was increased in the diameter increasing process. Could be controlled on the street.

本発明のシリコン単結晶の育成方法は、CZ法によるシリコン単結晶の育成方法において、シード直径を減少させる絞り工程で、ルツボの回転数を0.1rpm以下とする育成方法であり、シード直径の制御性を向上させることができる。これにより目標シード直径を各引上げ単結晶の重量での破断限界に応じた最小径とすることができ、転位を抜け易くし、かつ、ネック部での破断の危険性を著しく低減することが可能となる。この育成方法は、特に、大重量の単結晶の引き上げにおいて有効である。   The method for growing a silicon single crystal according to the present invention is a growth method in which the number of rotations of the crucible is set to 0.1 rpm or less in a drawing step for reducing the seed diameter in the method for growing a silicon single crystal by the CZ method. Controllability can be improved. This makes it possible to set the target seed diameter to the minimum diameter according to the breaking limit at the weight of each pulled single crystal, making it easy to escape dislocations and significantly reducing the risk of breaking at the neck. It becomes. This growing method is particularly effective in pulling a large single crystal.

また、本発明の育成方法によれば、絞り工程およびこれに続く増径工程において、直径の制御性を向上させることができ、引上げ速度を所定範囲に維持して所定の品質の単結晶を得ることができるので、製品歩留りを向上させることができる。   Moreover, according to the growing method of the present invention, the controllability of the diameter can be improved in the drawing step and the subsequent diameter increasing step, and a single crystal having a predetermined quality can be obtained while maintaining the pulling speed within a predetermined range. Product yield can be improved.

したがって、本発明のシリコン単結晶の育成方法は、半導体デバイス製造分野において、シリコン単結晶の製造に有効に利用することができる。   Therefore, the method for growing a silicon single crystal of the present invention can be effectively used for manufacturing a silicon single crystal in the field of semiconductor device manufacturing.

CZ法によるシリコン単結晶の育成に適した単結晶引上げ装置の要部の構成例を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the structural example of the principal part of the single crystal pulling apparatus suitable for the growth of the silicon single crystal by CZ method.

符号の説明Explanation of symbols

1:ヒーター、 2:ルツボ、 2a:石英ルツボ、 2b:黒鉛ルツボ、
3:断熱材、 4:支持軸、 5:溶融液、
6:引上げワイヤー、 7:種結晶、 8:単結晶、
9:ネック部、 10:コーン、
11:肩部、 12:ボディ部
1: heater, 2: crucible, 2a: quartz crucible, 2b: graphite crucible,
3: insulation material, 4: support shaft, 5: melt,
6: Pull-up wire, 7: Seed crystal, 8: Single crystal,
9: Neck part, 10: Cone,
11: Shoulder, 12: Body

Claims (3)

ルツボ内のシリコン溶融液に浸漬した種結晶を回転させながら引き上げることにより、種結晶の下端にシリコン単結晶を成長させるチョクラルスキー法によるシリコン単結晶の育成方法において、
種結晶を引き上げつつシード直径を減少させる絞り工程で、ルツボ回転数を、前記種結晶の回転方向に対して正方向または逆方向に0.1rpm以下とすることを特徴とするシリコン単結晶の育成方法。
In the method of growing a silicon single crystal by the Czochralski method of growing a silicon single crystal on the lower end of the seed crystal by pulling up the seed crystal immersed in the silicon melt in the crucible while rotating,
Growing a silicon single crystal characterized in that, in the drawing step of reducing the seed diameter while pulling up the seed crystal, the rotational speed of the crucible is set to 0.1 rpm or less in the forward or reverse direction with respect to the rotation direction of the seed crystal. Method.
前記絞り工程およびこれに続く増径工程で、ルツボ回転数を、種結晶の回転方向に対して正方向または逆方向に0.1rpm以下とすることを特徴とする請求項1に記載のシリコン単結晶の育成方法。   2. The silicon single unit according to claim 1, wherein in the drawing step and the subsequent diameter increasing step, the crucible rotation speed is set to 0.1 rpm or less in the forward direction or the reverse direction with respect to the rotation direction of the seed crystal. Crystal growth method. 前記シリコン単結晶の育成を、0.1T以上0.4T以下の横磁場印加の下で行うことを特徴とする請求項1または2に記載のシリコン単結晶の育成方法。   The method for growing a silicon single crystal according to claim 1, wherein the silicon single crystal is grown under application of a transverse magnetic field of 0.1 T or more and 0.4 T or less.
JP2008181353A 2008-07-11 2008-07-11 Method for growing silicon single crystal Active JP5136252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008181353A JP5136252B2 (en) 2008-07-11 2008-07-11 Method for growing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008181353A JP5136252B2 (en) 2008-07-11 2008-07-11 Method for growing silicon single crystal

Publications (2)

Publication Number Publication Date
JP2010018494A true JP2010018494A (en) 2010-01-28
JP5136252B2 JP5136252B2 (en) 2013-02-06

Family

ID=41703771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008181353A Active JP5136252B2 (en) 2008-07-11 2008-07-11 Method for growing silicon single crystal

Country Status (1)

Country Link
JP (1) JP5136252B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072590A (en) * 1998-08-24 2000-03-07 Sumitomo Metal Ind Ltd Growth of high quality single silicon crystal
WO2001063027A1 (en) * 2000-02-28 2001-08-30 Shin-Etsu Handotai Co., Ltd Method for preparing silicon single crystal and silicon single crystal
JP2004083320A (en) * 2002-08-26 2004-03-18 Sumitomo Mitsubishi Silicon Corp Silicon single crystal growth method
JP2005015314A (en) * 2003-06-27 2005-01-20 Shin Etsu Handotai Co Ltd Method for manufacturing single crystal, and single crystal
JP2005231944A (en) * 2004-02-19 2005-09-02 Komatsu Electronic Metals Co Ltd Method for manufacturing single crystal semiconductor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072590A (en) * 1998-08-24 2000-03-07 Sumitomo Metal Ind Ltd Growth of high quality single silicon crystal
WO2001063027A1 (en) * 2000-02-28 2001-08-30 Shin-Etsu Handotai Co., Ltd Method for preparing silicon single crystal and silicon single crystal
JP2004083320A (en) * 2002-08-26 2004-03-18 Sumitomo Mitsubishi Silicon Corp Silicon single crystal growth method
JP2005015314A (en) * 2003-06-27 2005-01-20 Shin Etsu Handotai Co Ltd Method for manufacturing single crystal, and single crystal
JP2005231944A (en) * 2004-02-19 2005-09-02 Komatsu Electronic Metals Co Ltd Method for manufacturing single crystal semiconductor

Also Published As

Publication number Publication date
JP5136252B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP2009114054A (en) Method for producing semiconductor single crystal having improved oxygen concentration characteristics
US20090293804A1 (en) Method of shoulder formation in growing silicon single crystals
KR20180101586A (en) Manufacturing method of silicon single crystal
US6607594B2 (en) Method for producing silicon single crystal
JP2009057270A (en) Method of raising silicon single crystal
WO2017217104A1 (en) Method for producing silicon single crystal
JP2010024120A (en) Silicon single crystal and its growing method
JP2011093770A (en) Resistivity calculation program and method for producing single crystal
US20090293803A1 (en) Method of growing silicon single crystals
JP4894848B2 (en) Method for producing silicon single crystal
JP4013324B2 (en) Single crystal growth method
US20090293802A1 (en) Method of growing silicon single crystals
JP5034247B2 (en) Method for producing silicon single crystal
JP4314974B2 (en) Silicon single crystal manufacturing method and silicon single crystal
JP5136252B2 (en) Method for growing silicon single crystal
JP4640796B2 (en) Method for producing silicon single crystal
JP4899608B2 (en) Semiconductor single crystal manufacturing apparatus and manufacturing method
JP2007284324A (en) Manufacturing device and manufacturing method for semiconductor single crystal
WO1999037833A1 (en) Single crystal pull-up apparatus
KR100946558B1 (en) Apparatus for manufacturing semiconductor single crystal using CUSP magnetic field and Method using the same
JP2007210820A (en) Method of manufacturing silicon single crystal
JP6488975B2 (en) Pulling method of silicon single crystal
WO2022254885A1 (en) Method for producing silicon monocrystal
WO2021162046A1 (en) Method for producing silicon single crystal
JP4341379B2 (en) Single crystal manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

R150 Certificate of patent or registration of utility model

Ref document number: 5136252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250