JP2010017808A - Polisher and polishing method - Google Patents

Polisher and polishing method Download PDF

Info

Publication number
JP2010017808A
JP2010017808A JP2008180242A JP2008180242A JP2010017808A JP 2010017808 A JP2010017808 A JP 2010017808A JP 2008180242 A JP2008180242 A JP 2008180242A JP 2008180242 A JP2008180242 A JP 2008180242A JP 2010017808 A JP2010017808 A JP 2010017808A
Authority
JP
Japan
Prior art keywords
polishing
polished
abrasive grains
wafer
pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008180242A
Other languages
Japanese (ja)
Inventor
Akira Ishikawa
彰 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2008180242A priority Critical patent/JP2010017808A/en
Publication of JP2010017808A publication Critical patent/JP2010017808A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polisher and a polishing method, reducing a variation in polishing characteristics due to the uncertainty of fixing of abrasive grains by changing polishing conditions according to the measured results of the amount of the abrasive grains each time a predetermined quantity of sheets are polished. <P>SOLUTION: Since the measurement of the fixing distribution of abrasive grains by a polishing abrasive grain fixing amount measuring part 62, the calculation of the polishing conditions by a polishing condition calculation and setting part 53, and the feedback of the polishing conditions to a polishing unit are performed each time a predetermined quantity of sheets are polished, the polishing characteristics can be matched with high accuracy with a theoretical ones expressed by the Preston formula by reducing a variation in polishing characteristics which is produced during the polishing using abrasive grains due to the uncertainty of supply of the abrasive grains when the polishing is performed repeatedly. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、研磨装置および研磨方法に関する。   The present invention relates to a polishing apparatus and a polishing method.

基板表面を研磨する研磨加工の方法としてCMP(Chemical Mechanical Polishing)が例示される。CMPは基板表面を超精密に研磨加工する技術として、半導体ウェハやガラス基板等の基板の研磨加工に広く利用されている。このようなCMPによる研磨加工を行うCMP装置では、チャックに保持された基板に研磨ヘッドに装着された研磨パッド等の研磨部材を押接させ相対回転し、基板と研磨部材との当接部に研磨内容に応じ純水を主成分とし基板の研磨を行うための砥粒や調整剤等を含んでいるスラリー(Slurry)等の研磨液を供給して化学的・機械的な研磨作用を生じさせ、基板表面を所定の形状に研磨加工する(例えば、特許文献1を参照)。
特開2006−319249号公報
An example of a polishing method for polishing the substrate surface is CMP (Chemical Mechanical Polishing). CMP is widely used for polishing a substrate such as a semiconductor wafer or a glass substrate as a technique for polishing a substrate surface with ultra-precision. In such a CMP apparatus that performs polishing processing by CMP, a polishing member such as a polishing pad mounted on a polishing head is pressed against a substrate held by a chuck and is rotated relative to the substrate to a contact portion between the substrate and the polishing member. Depending on the polishing content, a polishing solution such as a slurry (Slurry) containing pure grains as the main component and polishing agents for polishing the substrate is provided to cause chemical and mechanical polishing action. Then, the substrate surface is polished into a predetermined shape (see, for example, Patent Document 1).
JP 2006-319249 A

しかしながら、研磨液を研磨部材に供給して研磨加工を行う際に、繰り返し研磨を行うと砥粒の定着と脱落が生じ、研磨部材に定着している砥粒の定着量が変動するため、この砥粒の定着量の変動に伴い研磨特性が研磨をする度に変化してしまう問題があった。   However, when polishing is performed by supplying the polishing liquid to the polishing member, if the polishing is repeated, the fixing and dropping of the abrasive grains occur, and the fixing amount of the abrasive grains fixed on the polishing member fluctuates. There has been a problem that the polishing characteristics change each time polishing is performed with a change in the fixing amount of the abrasive grains.

本発明は、このような問題に鑑みてなされたものであり、所定枚数研磨する毎に、砥粒の量の測定結果に応じ研磨条件を変更することで、砥粒の定着の不確実さによる研磨特性の変化を低減させる研磨装置および研磨方法を提供することを目的とする。   The present invention has been made in view of such problems, and changes the polishing conditions in accordance with the measurement result of the amount of abrasive grains every time a predetermined number of grains are polished, thereby resulting in uncertain fixation of abrasive grains. An object of the present invention is to provide a polishing apparatus and a polishing method that reduce changes in polishing characteristics.

このような目的達成のため、本発明に係る研磨装置は、研磨対象物を保持する保持機構と、研磨対象物を研磨する研磨部材と、研磨部材に、研磨を行うための砥粒を含んだ研磨液を供給する研磨液供給装置と、研磨部材の研磨面を保持部材に保持された研磨対象物の被研磨面に押圧させながら相対移動させる研磨駆動機構(例えば、実施形態におけるパッド回転機構20、ヘッド移動機構30)と、研磨液供給装置による研磨液の供給と、研磨駆動機構による研磨部材の研磨対象物に対する押圧と相対移動を制御する制御機構とを備えている。そして、研磨部材の研磨面に定着された砥粒の定着分布を測定する計測ユニットと、計測ユニットにより測定した砥粒の定着分布と、研磨部材を研磨対象物に押圧させながら相対移動させることによる研磨速度との関係から、研磨対象物を研磨するための研磨条件を算出する計算ユニットとを備えて構成され、制御機構が、計算ユニットで算出した研磨条件を基に研磨駆動機構による研磨部材の研磨対象物に対する押圧と相対移動を制御するよう構成される。   In order to achieve such an object, a polishing apparatus according to the present invention includes a holding mechanism that holds an object to be polished, a polishing member that polishes the object to be polished, and abrasive grains for polishing the polishing member. A polishing liquid supply device that supplies a polishing liquid, and a polishing driving mechanism that moves the polishing surface of the polishing member relative to the polishing target surface held by the holding member while pressing the polishing surface (for example, the pad rotation mechanism 20 in the embodiment). , A head moving mechanism 30), a polishing liquid supply by the polishing liquid supply device, and a control mechanism for controlling the pressing and relative movement of the polishing member against the object to be polished by the polishing driving mechanism. Then, by measuring the fixing distribution of the abrasive grains fixed on the polishing surface of the polishing member, the fixing distribution of the abrasive grains measured by the measuring unit, and by relatively moving the polishing member while pressing it against the object to be polished A calculation unit for calculating a polishing condition for polishing an object to be polished in relation to the polishing speed, and the control mechanism of the polishing member by the polishing driving mechanism based on the polishing condition calculated by the calculation unit. It is comprised so that the press with respect to a grinding | polishing target object and relative movement may be controlled.

また、本発明に係る研磨方法は、研磨を行うための砥粒を含んだ研磨液を供給するとともに、研磨部材の研磨面を研磨対象物の被研磨面に押圧させながら相対移動させて被研磨面の研磨を行う研磨方法であって、研磨部材の研磨面に定着された砥粒の定着分布を測定する計測ステップと、計測ステップで測定した砥粒の定着分布と、研磨部材の研磨面を研磨対象物の被研磨面に押圧させながら相対移動させることによる研磨速度との関係から、研磨対象物を研磨するための研磨条件を算出する計算ステップと、計算ステップで算出した研磨条件を基に研磨部材の研磨対象物に対する押圧と相対移動を制御する研磨ステップとを有する。   In addition, the polishing method according to the present invention supplies a polishing liquid containing abrasive grains for polishing, and moves the polishing surface of the polishing member while pressing the polishing surface of the polishing member against the surface to be polished. A polishing method for polishing a surface, comprising: a measuring step for measuring a fixing distribution of abrasive grains fixed on a polishing surface of a polishing member; a fixing distribution of abrasive grains measured in the measuring step; and a polishing surface of the polishing member. Based on the calculation step for calculating the polishing condition for polishing the polishing object, based on the polishing condition calculated in the calculation step, from the relationship with the polishing speed by moving it relative to the surface to be polished while being pressed against the surface to be polished A polishing step for controlling the pressing and relative movement of the polishing member against the object to be polished;

本発明による研磨装置および研磨方法においては、計測ユニットによる砥粒の定着分布の測定と、計算ユニットによる研磨条件の算出、また、その研磨条件の研磨ユニットへのフィードバックが所定枚数研磨する毎に実施されるため、砥粒を用いた研磨加工において生じる、繰り返し研磨を行った際の砥粒の供給の不確実さによる研磨特性の変化を軽減させ、プレストンの式で表わされる理論との一致性を高くすることができる。   In the polishing apparatus and the polishing method according to the present invention, the measurement of the fixing distribution of abrasive grains by the measurement unit, the calculation of the polishing conditions by the calculation unit, and the feedback of the polishing conditions to the polishing unit are performed each time a predetermined number of polishings are performed. Therefore, it is possible to reduce the change in the polishing characteristics due to the uncertain supply of the abrasive grains when repeatedly polishing, which occurs in the polishing process using the abrasive grains, and to agree with the theory represented by the Preston equation. Can be high.

以下、図面を参照して本発明の好ましい実施形態について説明する。本発明を適用した研磨装置1の概略構成を図1に示す。研磨装置1は、半導体等のウェハWを回転可能に保持する保持機構10と、研磨パッド23が装着された研磨ヘッド21を回転させるパッド回転機構20と、ウェハWに対して研磨パッド23を昇降および相対揺動させるヘッド移動機構30と、研磨パッド23の研磨面(表面)に、純水を主成分としウェハWの研磨を行うための研磨砥粒や調整剤等を含んでいるスラリーを供給するスラリー供給装置40と、ウェハWや研磨パッド23の回転、ウェハWに対する研磨パッド23の昇降および揺動、研磨加工部へのスラリーの供給等、研磨装置1の作動を制御する制御装置50、研磨パッド23の研磨面に分布する研磨砥粒の定着量を測定する測定ユニット60等で構成される。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. A schematic configuration of a polishing apparatus 1 to which the present invention is applied is shown in FIG. The polishing apparatus 1 includes a holding mechanism 10 that rotatably holds a wafer W such as a semiconductor, a pad rotating mechanism 20 that rotates a polishing head 21 on which the polishing pad 23 is mounted, and a polishing pad 23 that moves up and down relative to the wafer W. Further, a head moving mechanism 30 that relatively swings, and a polishing surface (surface) of the polishing pad 23 is supplied with a slurry containing polishing abrasives, a conditioner, etc. for polishing the wafer W mainly containing pure water. A slurry supply device 40 that controls the operation of the polishing device 1, such as rotation of the wafer W and the polishing pad 23, raising and lowering and swinging of the polishing pad 23 relative to the wafer W, and supply of slurry to the polishing processing unit, The measuring unit 60 is configured to measure the fixing amount of the abrasive grains distributed on the polishing surface of the polishing pad 23.

保持機構10は、円盤状のチャック11と、このチャック11の下部から鉛直下方に延びるスピンドル14と、スピンドル14に回転駆動力を伝達してチャック11を水平面内で回転させるチャック駆動モータ15等を有して構成される。チャック11は、セラミック等の高剛性材料を用いて平面度の高い円盤状に形成されたチャックプレート12と、このチャックプレート12の上面に貼られた吸着パッド13とを有して構成される。チャックプレート12の内部にウェハWの下面を真空吸着する真空チャック構造が設けられてウェハWを着脱可能に構成されるとともに、チャック上部が加工テーブルTから露出して配設されており、チャック11に吸着保持されたウェハWの研磨対象面(すなわち被研磨面)が上向きの水平姿勢で保持される。   The holding mechanism 10 includes a disc-shaped chuck 11, a spindle 14 extending vertically downward from the lower portion of the chuck 11, a chuck driving motor 15 that transmits a rotational driving force to the spindle 14 and rotates the chuck 11 in a horizontal plane, and the like. It is configured. The chuck 11 includes a chuck plate 12 formed in a disk shape with high flatness using a highly rigid material such as ceramic, and a suction pad 13 attached to the upper surface of the chuck plate 12. The chuck plate 12 is provided with a vacuum chuck structure for vacuum-sucking the lower surface of the wafer W so that the wafer W can be attached and detached. The chuck upper portion is exposed from the processing table T. The surface to be polished (that is, the surface to be polished) of the wafer W held by suction is held in an upward horizontal posture.

保持機構10と隣接して、ヘッド移動機構30が設けられており、ヘッド移動機構30を構成する研磨アーム32の先端にパッド回転機構20が設けられる。パッド回転機構20は、円盤状の研磨ヘッド21と、研磨ヘッド21の上部から鉛直上方に延びるスピンドル24と、スピンドル24に回転駆動力を伝達して研磨ヘッド21を水平面内で回転させるパッド駆動モータ25等を有して構成される。   A head moving mechanism 30 is provided adjacent to the holding mechanism 10, and the pad rotating mechanism 20 is provided at the tip of the polishing arm 32 constituting the head moving mechanism 30. The pad rotating mechanism 20 includes a disk-shaped polishing head 21, a spindle 24 extending vertically upward from the upper portion of the polishing head 21, and a pad driving motor that transmits the rotational driving force to the spindle 24 to rotate the polishing head 21 in a horizontal plane. 25 or the like.

研磨ヘッド21は、チャック11と同様の高剛性材料を用いて平面度の高い円盤状に形成されたポリッシングブレード22と、このポリッシングプレート22の下面に貼られた研磨パッド23とを有して構成される。研磨パッド23は、外径が研磨対象であるウェハWの直径よりも幾分小さい(80〜95%程度の)円環状に形成されており、例えば、独立発砲構造を有する硬質ポリウレタンのシートを用いて構成され、ポリッシングプレート22の下面に貼り付けられて研磨面が下向きの水平姿勢で保持される。   The polishing head 21 includes a polishing blade 22 formed in a disk shape with high flatness using the same high-rigidity material as the chuck 11 and a polishing pad 23 attached to the lower surface of the polishing plate 22. Is done. The polishing pad 23 is formed in an annular shape whose outer diameter is somewhat smaller (about 80 to 95%) than the diameter of the wafer W to be polished. For example, a hard polyurethane sheet having an independent firing structure is used. The polishing surface is attached to the lower surface of the polishing plate 22 and the polishing surface is held in a downward horizontal posture.

研磨ヘッド21の中心部に、スラリー供給装置40により供給されるスラリーを研磨パッド23の中心部に供給するためのスラリー供給構造が、ポリッシングプレート22の中心を上下に貫通して設けられている。また、研磨ヘッド21の内部に形成された加圧室にエアの供給を受けてポリッシングプレート22を下向きに加圧する、いわゆるエアバッグ式のパッド加圧機構が設けられており、研磨パッド23の研磨面をウェハWの被研磨面に当接させた状態で加圧室の圧力を制御することにより、ウェハWと研磨パッド23との当接圧力、すなわち研磨圧力を制御可能になっている。   A slurry supply structure for supplying the slurry supplied by the slurry supply device 40 to the center of the polishing pad 23 is provided in the center of the polishing head 21 so as to penetrate the center of the polishing plate 22 vertically. In addition, a so-called airbag-type pad pressurizing mechanism is provided in which air is supplied to a pressurization chamber formed inside the polishing head 21 to pressurize the polishing plate 22 downward. By controlling the pressure in the pressurizing chamber with the surface in contact with the surface to be polished of the wafer W, the contact pressure between the wafer W and the polishing pad 23, that is, the polishing pressure can be controlled.

ヘッド移動機構30は、加工テーブルTから上方に突出する基部31と、この基部31から水平に延びる研磨アーム32と、基部31を通って上下に延びる揺動軸を中心として研磨アーム32を水平揺動させるアーム揺動機構35と、研磨アーム32全体を垂直昇降させるアーム昇降機構(図示せず)等を有して構成され、上述したパッド回転機構20が研磨アーム32の先端部に設けられている。ヘッド移動機構30は、アーム揺動機構35により研磨アーム32を水平揺動させたときの研磨ヘッド21の揺動軌跡上に保持機構10が位置するように構成されており、研磨ヘッド21をチャック11と対向させた状態で研磨アーム32全体を昇降させ、研磨パッド23の研磨面をウェハWの被研磨面に当接させた状態でウェハWに対して研磨パッド23を水平揺動可能に構成される。   The head moving mechanism 30 horizontally swings the polishing arm 32 around a base 31 protruding upward from the processing table T, a polishing arm 32 extending horizontally from the base 31, and a swinging shaft extending vertically through the base 31. An arm swinging mechanism 35 to be moved and an arm lifting / lowering mechanism (not shown) for vertically moving the entire polishing arm 32 are configured. The pad rotation mechanism 20 described above is provided at the tip of the polishing arm 32. Yes. The head moving mechanism 30 is configured such that the holding mechanism 10 is positioned on the swing locus of the polishing head 21 when the polishing arm 32 is horizontally swinged by the arm swing mechanism 35. The entire polishing arm 32 is moved up and down in a state of being opposed to the wafer 11, and the polishing pad 23 can be horizontally swung with respect to the wafer W while the polishing surface of the polishing pad 23 is in contact with the surface to be polished of the wafer W. Is done.

スラリー供給装置40は、研磨ヘッド21のスラリー供給構造を介して、研磨パッド23の中心部に研磨液であるスラリーを供給する。スラリーは、純水を主成分とし、ウェハWの研磨を行うための研磨砥粒(図示せず)や、調整剤等を含んでいる。また、研磨砥粒の材料として、例えばセリア(CeO)が使用される。 The slurry supply device 40 supplies slurry, which is a polishing liquid, to the center of the polishing pad 23 via the slurry supply structure of the polishing head 21. The slurry contains pure water as a main component, and includes polishing abrasive grains (not shown) for polishing the wafer W, a regulator, and the like. Further, as the polishing abrasive materials, for example, ceria (CeO 2) is used.

制御装置50は、保持機構10、パッド回転機構20、ヘッド移動機構30およびスラリー供給装置40にそれぞれ制御信号を出力して、ウェハWや研磨パッド23の回転、ウェハWに対する研磨パッド23の昇降および揺動等の作動を制御するよう構成される。   The control device 50 outputs control signals to the holding mechanism 10, the pad rotation mechanism 20, the head moving mechanism 30, and the slurry supply device 40, respectively, to rotate the wafer W and the polishing pad 23, and to move the polishing pad 23 up and down relative to the wafer W. It is configured to control operation such as swinging.

また、測定ユニット60は、検出器61、研磨砥粒定着量測定部62で構成され、検出器61は、研磨パッド23の研磨面に近接して設置され、研磨パッド23に定着している研磨砥粒の定着量を測定する。なお、研磨砥粒の定着量を測定する測定方法としては、蛍光X線分析を用いる(後に詳述)。研磨砥粒定着量測定部62は、検出器61に電気的に接続され、検出器61で検出された蛍光X線のデータを基に研磨パッド23の研磨砥粒定着分布を測定するよう構成される。   The measurement unit 60 includes a detector 61 and a polishing abrasive grain fixing amount measuring unit 62. The detector 61 is installed in the vicinity of the polishing surface of the polishing pad 23 and is fixed to the polishing pad 23. Measure the fixed amount of abrasive grains. As a measuring method for measuring the fixed amount of the abrasive grains, fluorescent X-ray analysis is used (detailed later). The abrasive grain fixing amount measuring unit 62 is electrically connected to the detector 61 and configured to measure the abrasive grain fixing distribution of the polishing pad 23 based on the fluorescent X-ray data detected by the detector 61. The

また、制御装置50には、研磨条件計算設定部53、入力部54が電気的に接続され、研磨条件計算設定部53は、前述した研磨砥粒定着量測定部62による研磨砥粒定着分布の測定結果を基に研磨条件を算出する(後に詳述)。そして、入力部54では、各種の指令やデータの入力操作等が行われる。   Further, the control device 50 is electrically connected with a polishing condition calculation setting unit 53 and an input unit 54, and the polishing condition calculation setting unit 53 determines the distribution of polishing abrasive grain fixing distribution by the abrasive grain fixing amount measuring unit 62 described above. Polishing conditions are calculated based on the measurement results (detailed later). In the input unit 54, various commands and data input operations are performed.

以上のように構成される研磨装置1を用いたウェハWの研磨方法について、図2に示すフローチャートを参照しながら以下で説明する。まず、スラリー供給装置40により、研磨パッド23へのスラリーの供給が開始される(ステップS101)。このスラリー供給工程において、スラリー供給装置40は、研磨ヘッド21のスラリー供給構造を介して研磨パッド23の中心部へスラリーの供給を開始する。   A method of polishing the wafer W using the polishing apparatus 1 configured as described above will be described below with reference to the flowchart shown in FIG. First, the slurry supply device 40 starts supplying the slurry to the polishing pad 23 (step S101). In this slurry supply step, the slurry supply device 40 starts supplying the slurry to the central portion of the polishing pad 23 via the slurry supply structure of the polishing head 21.

スラリー供給装置40による研磨パッド23へのスラリーの供給を開始した後、スラリーに含まれる研磨砥粒を研磨パッド23の研磨面に定着させる(ステップS102)。このスラリー定着化工程において、制御装置50は、ヘッド移動機構30により研磨アーム32を揺動させて研磨ヘッド21をチャック11の上方に対向して位置させ、チャック11および研磨ヘッド21をともに回転させながら、研磨ヘッド21を研磨位置に下降させる。このとき、ウェハWの形状を模して形成した石英からなるスラリー定着板Wdをチャック11上に吸着させておき、当該スラリー定着板Wdの表面に研磨パッド23の研磨面を当接させて摺動させる。これにより、研磨パッド23の中心部から研磨パッド23の研磨面とスラリー定着板Wdとの間にスラリーが供給される。   After starting the supply of the slurry to the polishing pad 23 by the slurry supply device 40, the abrasive grains contained in the slurry are fixed on the polishing surface of the polishing pad 23 (step S102). In this slurry fixing step, the control device 50 swings the polishing arm 32 by the head moving mechanism 30 so that the polishing head 21 is positioned above the chuck 11 and rotates both the chuck 11 and the polishing head 21. Then, the polishing head 21 is lowered to the polishing position. At this time, a slurry fixing plate Wd made of quartz simulating the shape of the wafer W is adsorbed on the chuck 11, and the polishing surface of the polishing pad 23 is brought into contact with the surface of the slurry fixing plate Wd for sliding. Move. As a result, the slurry is supplied from the center of the polishing pad 23 between the polishing surface of the polishing pad 23 and the slurry fixing plate Wd.

このようにしてスラリーに含まれる研磨砥粒を研磨パッド23の研磨面に定着させた後、研磨パッド23の研磨面に定着した研磨砥粒の量をCeの蛍光X線強度により測定する(ステップS103)。   After fixing the abrasive grains contained in the slurry on the polishing surface of the polishing pad 23 in this way, the amount of the abrasive grains fixed on the polishing surface of the polishing pad 23 is measured by the fluorescent X-ray intensity of Ce (step) S103).

上記、ステップS103の研磨砥粒付着量測定工程における、研磨パッド23の研磨面に定着した研磨砥粒の分布を測定する方法について以下で説明する。まず、X線源から研磨パッド23の研磨面に向けてX線を照射すると、研磨砥粒から蛍光X線が放射される。この放射された蛍光X線が検出器61により検出され、1秒間当たりに蛍光X線を検出した回数(単位はcount/sec)として、研磨砥粒定着量測定部62に定着砥粒量が測定される。研磨ヘッド21及び研磨アーム32を回転旋回することにより研磨パッド23の各点における研磨砥粒定着量を測定し、砥粒の定着量分布が測定される。このように研磨面の研磨砥粒の定着量を測定した後、研磨条件算出工程に入る(ステップS104)。研磨条件の算出は以下に示す方法にて行う。   A method for measuring the distribution of the abrasive grains fixed on the polishing surface of the polishing pad 23 in the above-described abrasive grain adhesion amount measuring step in step S103 will be described below. First, when X-rays are irradiated from the X-ray source toward the polishing surface of the polishing pad 23, fluorescent X-rays are emitted from the abrasive grains. The emitted fluorescent X-rays are detected by the detector 61, and the number of times the fluorescent X-rays are detected per second (unit: count / sec) is measured by the polishing abrasive-fixing-amount measuring unit 62 to determine the fixing abrasive amount. Is done. By rotating and turning the polishing head 21 and the polishing arm 32, the fixed amount of abrasive grains at each point of the polishing pad 23 is measured, and the fixed amount distribution of the abrasive grains is measured. After measuring the fixing amount of the abrasive grains on the polished surface in this way, the polishing condition calculating step is started (step S104). The polishing conditions are calculated by the following method.

まず、ウェハW上の点iにおける研磨量は、プレストンの式により式(1)で示される。   First, the polishing amount at the point i on the wafer W is expressed by Expression (1) by Preston's expression.

Figure 2010017808
Figure 2010017808

ここで、Vi、ki、Pi、vi、tiは、それぞれ、ウェハW上の点iにおける、研磨量、プレストン定数、研磨荷重、相対線速度、摺動時間である。 Here, V i, k i, P i, v i, t i, respectively, in the i point on the wafer W, the polishing amount, Preston constant, polishing load, relative linear velocity is sliding time.

プレストン定数kiは、使用するスラリーや研磨パッド23等に依存する定数であるが、本発明者は、研磨パッドの研磨砥粒定着量もプレストン定数に影響を及ぼす因子であると考え、式(1)を式(2)のように書き換えた。 The Preston constant k i is a constant that depends on the slurry to be used, the polishing pad 23, and the like. However, the present inventor considers that the amount of polishing abrasive grains fixed on the polishing pad is also a factor that affects the Preston constant. 1) was rewritten as equation (2).

Figure 2010017808
Figure 2010017808

ここで、k’iは、新たなプレストン定数、CiはウェハW上の点iを摺動する研磨パッド上の研磨砥粒定着量である。 Here, k ′ i is a new Preston constant, and C i is the fixed amount of abrasive grains on the polishing pad sliding on the point i on the wafer W.

繰り返し研磨を実行した場合等において、研磨パッド23とウェハWの摺動界面の状況は変化し、それに伴いウェハW上の点iを摺動する研磨パッド23上の研磨砥粒定着量Ciも変化する。そこで、研磨条件算出工程(ステップS104)においては、研磨特性(研磨量、研磨均一性等)を安定させるために、研磨の連続実行等における研磨砥粒定着量Ciの増減に対し、ウェハ上の点iにおける研磨量Viのパラメータである研磨荷重Pi、相対線速度vi、摺動時間tiを増減させることで、研磨量Viを一定に保つパラメータPi、vi、tiを研磨条件として算出する。 For example, when the polishing is repeatedly performed, the state of the sliding interface between the polishing pad 23 and the wafer W changes, and accordingly, the abrasive grain fixing amount C i on the polishing pad 23 sliding on the point i on the wafer W is also changed. Change. Therefore, in the polishing condition calculation step (step S104), in order to stabilize the polishing characteristics (polishing amount, polishing uniformity, etc.), the increase or decrease of the polishing abrasive grain fixing amount C i in continuous execution of polishing or the like is increased on the wafer. The parameters P i , v i , t for keeping the polishing amount V i constant by increasing / decreasing the polishing load P i , the relative linear velocity v i , and the sliding time t i , which are parameters of the polishing amount V i at point i in FIG. i is calculated as a polishing condition.

上記のように研磨条件計算設定部53にて算出した研磨条件のパラメータを基に、制御装置50は、以下のように研磨加工を実行する(ステップS105)。例えば、上記3つのパラメータPi、vi、tiのうち研磨荷重Piと、摺動時間tiを一定(所定研磨荷重P、所定摺動時間t)にした場合、研磨パッド23とウェハWの回転数比のみを変更し、相対線速度viを変化させることにより研磨を実行する。この場合、相対線速度がviとなるように、ヘッド移動機構30により研磨アーム32を揺動させて研磨ヘッド21をチャック11の上方に対向して位置させ、チャック11および研磨ヘッド21をともに回転させながら、研磨ヘッド21を研磨位置に下降させて研磨パッド23の研磨面をウェハWの被研磨面に当接させる。そして、研磨ヘッド21に設けられた加圧機構により研磨パッド23を所定の研磨荷重PでウェハWに押圧させる。またこのときスラリー供給機構40を用いて、スラリーを研磨パッド23の中心部からウェハWと研磨パッド23の当接部(研磨パッド23の表面)に供給し、算出したパラメータを基に研磨加工を実行する。 Based on the parameters of the polishing conditions calculated by the polishing condition calculation setting unit 53 as described above, the control device 50 executes the polishing process as follows (step S105). For example, when the polishing load P i and the sliding time t i are constant (predetermined polishing load P, predetermined sliding time t) among the above three parameters P i , v i and t i , the polishing pad 23 and the wafer Polishing is performed by changing only the rotation speed ratio of W and changing the relative linear velocity v i . In this case, the polishing arm 32 is swung by the head moving mechanism 30 so that the relative linear velocity is v i so that the polishing head 21 is positioned above the chuck 11, and both the chuck 11 and the polishing head 21 are moved. While rotating, the polishing head 21 is lowered to the polishing position to bring the polishing surface of the polishing pad 23 into contact with the surface to be polished of the wafer W. Then, the polishing pad 23 is pressed against the wafer W with a predetermined polishing load P by a pressurizing mechanism provided in the polishing head 21. At this time, the slurry supply mechanism 40 is used to supply the slurry from the center of the polishing pad 23 to the contact portion of the wafer W and the polishing pad 23 (the surface of the polishing pad 23), and polishing is performed based on the calculated parameters. Execute.

上記のようにしてウェハWの研磨加工を行った後、次のステップS106において、所定枚数分の研磨を実行し研磨を終了するか否かが判定される。判定がNoの場合にはステップS103〜ステップS105までの処理が再び行われ、判定がYesの場合にはステップS107へ進み、研磨砥粒を研磨パッド23の研磨面から離脱させて処理を終了する。   After polishing the wafer W as described above, in the next step S106, it is determined whether or not a predetermined number of polishings are performed and the polishing is to be ended. If the determination is No, the processing from Step S103 to Step S105 is performed again. If the determination is Yes, the processing proceeds to Step S107, where the abrasive grains are detached from the polishing surface of the polishing pad 23, and the processing ends. .

以上のように、本実施形態では、研磨毎(所定枚数毎)に研磨砥粒の定着量の測定(ステップS103)と、研磨条件の算出(ステップS104)を行い、その後に研磨を行う(ステップS105)ため、研磨砥粒を用いた研磨加工において生じる、砥粒供給の不確実さによる研磨特性変動が軽減され、プレストンの式で表わされる理論との一致性を高くすることができる。   As described above, in this embodiment, for each polishing (every predetermined number), the fixed amount of abrasive grains is measured (step S103) and the polishing conditions are calculated (step S104), and then polishing is performed (step). Therefore, the variation in the polishing characteristics due to the uncertain supply of the abrasive grains, which occurs in the polishing process using the abrasive grains, is reduced, and the consistency with the theory expressed by the Preston equation can be increased.

なお、本願の発明者は、研磨パッド23の研磨面における研磨砥粒の定着量の変化に応じ、所定枚数研磨を実行する度に、研磨条件計算設定部53により研磨条件を変更し、実際に研磨均一性の変化を低減させた実験を行っている。以下にその実験の内容を示す。   The inventor of the present application changes the polishing condition by the polishing condition calculation setting unit 53 every time a predetermined number of polishings are performed in accordance with the change in the fixed amount of polishing abrasive grains on the polishing surface of the polishing pad 23, Experiments are performed to reduce the change in polishing uniformity. The contents of the experiment are shown below.

第1の実験では、研磨対象のウェハWの枚数を45枚とし、8枚毎に研磨パッド23に定着している研磨砥粒の定着量を計測し、研磨砥粒の定着量と研磨パッド23との研磨速度との関係より所定の研磨量Vが得られるように研磨条件を最適化し研磨を繰り返した。   In the first experiment, the number of wafers W to be polished is 45, and the fixed amount of abrasive grains fixed on the polishing pad 23 is measured every eight wafers. The fixed amount of abrasive grains and the polishing pad 23 are measured. The polishing conditions were optimized so that a predetermined polishing amount V was obtained from the relationship with the polishing rate, and polishing was repeated.

上記のような実験を行った結果、図3のグラフが得られた。ここで、図3の丸印は8枚毎に研磨条件を算出し研磨加工を実施した場合、図3の三角印は研磨条件を算出せず研磨加工を実施した場合の結果であり、黒色印は研磨速度、白色印は均一性を表している。この図3より、研磨条件を算出せず研磨を実行した三角印の結果については、回数を重ねるごとに研磨速度、均一性共にばらつきが生じているが、丸印の結果については、回数を重ねも研磨速度、均一性共にばらつきが生じていないことがわかる。なお、図4は、このときの研磨砥粒の定着量と研磨速度の関係を表したグラフで、研磨砥粒の定着量と研磨速度は、ほぼ線形の関係にあることがわかる。   As a result of the above experiment, the graph of FIG. 3 was obtained. Here, the circles in FIG. 3 indicate the results when the polishing conditions are calculated for every 8 sheets and the polishing process is performed, and the triangles in FIG. 3 indicate the results when the polishing processes are performed without calculating the polishing conditions. Represents the polishing rate, and the white mark represents uniformity. From FIG. 3, regarding the result of the triangle mark in which the polishing was performed without calculating the polishing condition, the polishing speed and the uniformity varied each time the number of times was repeated, but for the result of the circle mark, the number of times was repeated. It can also be seen that there is no variation in polishing rate and uniformity. FIG. 4 is a graph showing the relationship between the fixed amount of polishing abrasive grains and the polishing rate at this time. It can be seen that the fixed amount of polishing abrasive grains and the polishing rate are in a substantially linear relationship.

第2の実験では、研磨荷重Piと摺動時間tiを一定にし(所定研磨荷重P、所定摺動時間t)、また研磨条件の変更前後において、ウェハW上の点iを摺動する研磨パッド23の領域が変化しないように揺動条件を一定とし、研磨パッド23とウェハWの回転数比のみを変更し、相対線速度viによる研磨量の制御を行った例を示す。また、本実験では、Φ300のシリコンウェハ上に成膜されたp-TEOS膜の研磨を行い、ウェハ上Φ200以下の領域の研磨速度に着目した。 In the second experiment, the polishing load P i and the sliding time t i are made constant (predetermined polishing load P, predetermined sliding time t), and the point i on the wafer W is slid before and after changing the polishing conditions. An example is shown in which the rocking conditions are constant so that the region of the polishing pad 23 does not change, only the rotation speed ratio between the polishing pad 23 and the wafer W is changed, and the polishing amount is controlled by the relative linear velocity v i . In this experiment, the p-TEOS film formed on the Φ300 silicon wafer was polished, and attention was paid to the polishing rate in the region of Φ200 or less on the wafer.

最初に、スラリー定着化処理を施した研磨パッド23を用い、以下に示す研磨条件でシリコンウェハ上に成膜されたp-TEOS膜の研磨(参照研磨)を行った。研磨前後の膜厚変化より、同一円周上の研磨量(研磨速度)を求めた。このときの研磨条件を以下に示す(研磨条件Aとする)。   First, using the polishing pad 23 subjected to the slurry fixing treatment, the p-TEOS film formed on the silicon wafer was polished (reference polishing) under the following polishing conditions. The amount of polishing (polishing rate) on the same circumference was determined from the change in film thickness before and after polishing. The polishing conditions at this time are shown below (referred to as polishing conditions A).

研磨パッド回転数 :101rpm
ウエハ回転数 :100rpm
揺動開始位置 :研磨パッド/ウェハの中心間距離0mm
揺動幅 :25mm
揺動速度 :10mm/sec
荷重 :3.0psi
研磨スラリー :CeO研磨スラリー
研磨スラリー流量 :200ml/min
研磨時間 :60sec
Polishing pad rotation speed: 101 rpm
Wafer rotation speed: 100 rpm
Oscillation start position: polishing pad / wafer center distance 0 mm
Swing width: 25mm
Swing speed: 10mm / sec
Load: 3.0 psi
Polishing slurry: CeO 2 polishing slurry Polishing slurry flow rate: 200 ml / min
Polishing time: 60 sec

上記の条件にて研磨を実行すると、ウェハWの累積摺動時間と研磨パッド半径の関係について、図5のような結果が得られた。本結果よりウェハWの半径上の各点は、研磨パッド23半径上の特定の点により摺動されていることがわかる。また、例えばある領域で研磨パッド23上の研磨砥粒定着量が低下した場合、その低下量に対して研磨量Vを一定にするため、その領域が摺動する部分の相対線速度viを増加させる。 When polishing was performed under the above conditions, the results shown in FIG. 5 were obtained for the relationship between the cumulative sliding time of the wafer W and the polishing pad radius. From this result, it can be seen that each point on the radius of the wafer W is slid by a specific point on the radius of the polishing pad 23. For example, when the fixed amount of abrasive grains on the polishing pad 23 is reduced in a certain region, the relative linear velocity v i of the portion in which the region slides is set to make the polishing amount V constant with respect to the decreased amount. increase.

図6は、参照研磨における研磨速度のウェハWの面内分布を示している。ウェハWの面内の平均研磨速度は64.9nm/min、研磨均一性(1σ%)は4.17%であった。また、この際のCeの蛍光X線強度による研磨パッド上のスラリー定着量を図7(a)、また、研磨条件Aにおける研磨パッド23とウェハWの相対線速度の関係を図7(b)に示す。   FIG. 6 shows the in-plane distribution of the wafer W at the polishing rate in the reference polishing. The average polishing rate within the surface of the wafer W was 64.9 nm / min, and the polishing uniformity (1σ%) was 4.17%. Further, the amount of slurry fixed on the polishing pad by Ce fluorescent X-ray intensity at this time is shown in FIG. 7A, and the relationship between the relative linear velocity of the polishing pad 23 and the wafer W under the polishing condition A is shown in FIG. Shown in

次に、研磨パッドの一部を純水リンスすることにより意図的にスラリー定着量と低減させた研磨パッド23を用い、シリコンウェハ上に成膜されたp-TEOS膜の研磨(サンプル研磨)を行う。   Next, the polishing (sample polishing) of the p-TEOS film formed on the silicon wafer is performed using the polishing pad 23 which is intentionally reduced in the slurry fixing amount by rinsing a part of the polishing pad with pure water. Do.

純水リンス後の研磨パッド23上のスラリー定着量を図8(a)に示す。この研磨パッド23を用い、参照研磨と同等の研磨特性(研磨速度、均一性)を得るためには、定着したスラリーの量の低下に応じ、相対線速度をvi増加させる必要がある。即ち、参照研磨とサンプル研磨のウェハ上の点iにおける研磨量は前述した式(2)を応用した以下の式(3)、式(4)を用いて得ることができる。 FIG. 8A shows the amount of slurry fixed on the polishing pad 23 after rinsing with pure water. In order to obtain polishing characteristics (polishing rate and uniformity) equivalent to the reference polishing using this polishing pad 23, it is necessary to increase the relative linear velocity v i in accordance with a decrease in the amount of the fixed slurry. That is, the polishing amount at the point i on the wafer for reference polishing and sample polishing can be obtained by using the following formulas (3) and (4) to which the above formula (2) is applied.

Figure 2010017808
Figure 2010017808

Figure 2010017808
Figure 2010017808

上述した式(3)、式(4)において、添字rは参照研磨、sはサンプル研磨を示す。Vri=Vsiとするためには、kr’i=ks’iであると仮定すると、以下の式(5)を満たすように、サンプル研磨における相対線速度vsiを変更すればよい。 In the above formulas (3) and (4), the subscript r indicates reference polishing, and s indicates sample polishing. In order to set Vr i = Vs i , assuming that kr ′ i = ks ′ i , the relative linear velocity vs i in sample polishing may be changed so as to satisfy the following equation (5).

Figure 2010017808
Figure 2010017808

図8(b)は、ウェハW上の各点において±25%の範囲で式(5)を満足するように求めた、研磨パッド23の回転数が89rpm、ウェハWの回転数が80rpmの場合における、研磨パッド23とウェハWの相対線速度の関係を示している。参照研磨の場合と比較して、純水リンスによりスラリー定着量が低下した研磨パッド外周部分の相対線速度が増大している。   FIG. 8B shows a case where the number of rotations of the polishing pad 23 is 89 rpm and the number of rotations of the wafer W is 80 rpm, which is obtained so as to satisfy Equation (5) in a range of ± 25% at each point on the wafer W. The relationship between the relative linear velocity of the polishing pad 23 and the wafer W is shown. Compared with the case of reference polishing, the relative linear velocity of the outer peripheral portion of the polishing pad where the slurry fixing amount is decreased by pure water rinsing is increased.

図9は、相対線速度(研磨パッド23とウェハWの回転数)を変更した研磨条件を適用し、シリコンウェハ上に成膜されたp-TEOS膜の研磨(サンプル研磨)を行った際の研磨速度のウェハ面内分布を示している。ウェハ面内の平均研磨速度は62.4nm/min、研磨均一性(1σ%)は5.30%であり、スラリー定着量の変動の影響を受けることなく、参照研磨とほぼ同等の研磨特性が得られ、プレストンの式との乖離を小さくすることができる。   FIG. 9 shows a case where polishing (sample polishing) of a p-TEOS film formed on a silicon wafer is performed by applying polishing conditions in which the relative linear velocity (the number of rotations of the polishing pad 23 and the wafer W) is changed. The distribution of the polishing rate within the wafer surface is shown. The average polishing rate in the wafer surface is 62.4 nm / min, the polishing uniformity (1σ%) is 5.30%, and the polishing characteristics are almost the same as the reference polishing without being affected by the fluctuation of the slurry fixing amount. As a result, the deviation from the Preston equation can be reduced.

本実験例では、研磨荷重と摺動時間を一定にし、また、研磨条件の変更前後において、ウェハ上の点iを摺動する研磨パッドの領域が変化しないように揺動条件を一定とし、研磨パッドとウェハの回転数比のみを変更し、相対線速度viによる研磨量の制御を行った例を示すが、実際の適用においては、ウェハ上の点iを摺動する研磨パッドの領域を計算することにより揺動条件も変更することができる。 In this experimental example, the polishing load and sliding time are made constant, and the oscillation conditions are made constant so that the region of the polishing pad sliding on the point i on the wafer does not change before and after changing the polishing conditions. In this example, only the pad / wafer rotational speed ratio is changed and the polishing amount is controlled by the relative linear velocity v i .In actual application, the polishing pad area sliding on the point i on the wafer is shown. The rocking condition can also be changed by calculation.

以上、本実施形態において、プレストンの式の研磨量Vを一定とさせるために調整するパラメータを相対線速度viのみとしているが、これに限られるものではなく、研磨荷重P、摺動時間tiを調整するようにしてもよい。 As described above, in this embodiment, only the relative linear velocity v i is set as a parameter to adjust the polishing amount V in the Preston equation, but the present invention is not limited to this, and the polishing load P i , the sliding time is not limited thereto. t i may be adjusted.

なお、上述の実施形態において、研磨砥粒の材料としてセリア(CeO2)を使用しているが、これに限られるものではなく、例えば、前述のようにシリカ(SiO2)、アルミナ(Al2O3)及びジルコニア(ZrO2)を使用するようにしてもよい。 In the above-described embodiment, ceria (CeO 2 ) is used as a material for the abrasive grains. However, the present invention is not limited to this. For example, as described above, silica (SiO 2 ), alumina (Al 2 O 3 ) and zirconia (ZrO 2 ) may be used.

また、上述の実施形態において、石英を用いてスラリー定着板Wdを作成しているが、これに限られるものではなく、シリコンウェハ、またはアルミナやジルコニア等のセラミックスプレートを用いるようにしてもよい。   In the above-described embodiment, the slurry fixing plate Wd is prepared using quartz. However, the present invention is not limited to this, and a silicon wafer or a ceramic plate such as alumina or zirconia may be used.

本発明に係る研磨装置の概略図である。1 is a schematic view of a polishing apparatus according to the present invention. 本発明に係る研磨方法のフローチャートである。3 is a flowchart of a polishing method according to the present invention. 45枚の連続研磨において、研磨条件を最適化し研磨を繰り返した実施例と最適化せず研磨を繰り返した比較例の結果を示したグラフである。It is the graph which showed the result of the comparative example which repeated grinding | polishing without optimizing, and the Example which optimized grinding | polishing conditions and repeated grinding | polishing in 45 continuous grinding | polishing. 研磨パッドに定着している研磨砥粒量と被研磨物の研磨速度との関係を示したグラフである。3 is a graph showing the relationship between the amount of abrasive grains fixed on a polishing pad and the polishing rate of an object to be polished. 揺動開始位置0mm、振動幅25mm、振動速度10mm/sec、研磨速度60secにおける、ウェハ上の累積摺動時間と研磨パッド半径の関係を示したグラフである。6 is a graph showing the relationship between the accumulated sliding time on the wafer and the radius of the polishing pad at an oscillation start position of 0 mm, a vibration width of 25 mm, a vibration speed of 10 mm / sec, and a polishing speed of 60 sec. 参照研磨における研磨速度のウェハ面内分布を示したグラフである。It is the graph which showed distribution within a wafer surface of polish speed in reference polish. 研磨条件Aにおける、Ceの蛍光X線強度により測定した研磨パッド上のスラリー定着量、また平均相対線速度の関係を示したグラフである。5 is a graph showing the relationship between the amount of slurry fixed on a polishing pad and the average relative linear velocity measured by the fluorescent X-ray intensity of Ce under polishing conditions A. 純水リンス後の研磨パッド上のスラリー定着量、またウェハ上の各点において±25%の範囲で式(5)を満足するように求めた研磨パッド回転数89rpm、ウェハ回転数80rpmにおける、研磨パッドとウェハの相対線速度の関係を示したグラフである。Polishing amount at a polishing pad rotational speed of 89 rpm and wafer rotational speed of 80 rpm determined so as to satisfy the formula (5) in a range of ± 25% at each point on the wafer after rinsing with pure water It is the graph which showed the relationship between the relative linear velocity of a pad and a wafer. 相対線速度(研磨パッドとウェハの回転数)を変更した研磨条件を適用し、シリコンウェハ上に成膜されたp-TEOS膜の研磨(サンプル研磨)を行った際の研磨速度のウェハ面内分布と示したグラフである。Applying polishing conditions with different relative linear velocities (the number of rotations of the polishing pad and wafer) and polishing the p-TEOS film deposited on the silicon wafer (sample polishing) within the wafer surface It is the graph shown as distribution.

符号の説明Explanation of symbols

W ウェハ
1 研磨装置 10 保持機構
21 研磨ヘッド 23 研磨パッド(研磨部材)
40 スラリー供給装置(研磨液供給装置)50 制御装置
53 研磨条件計算設定部 60 測定ユニット
62 研磨砥粒定着量測定部
W Wafer 1 Polishing device 10 Holding mechanism 21 Polishing head 23 Polishing pad (polishing member)
40 Slurry supply device (polishing liquid supply device) 50 Control device 53 Polishing condition calculation setting unit 60 Measuring unit 62 Abrasive grain fixing amount measuring unit

Claims (5)

研磨対象物を保持する保持機構と、
前記研磨対象物を研磨する研磨部材と、
前記研磨部材に、研磨を行うための砥粒を含んだ研磨液を供給する研磨液供給装置と、
前記研磨部材の研磨面を前記保持部材に保持された前記研磨対象物の被研磨面に押圧させながら相対移動させる研磨駆動機構と、
前記研磨液供給装置による研磨液の供給と、前記研磨駆動機構による前記研磨部材の前記研磨対象物に対する押圧と相対移動を制御する制御機構とを備えた研磨装置において、
前記研磨部材の研磨面に定着された前記砥粒の定着分布を測定する計測ユニットと、
前記計測ユニットにより測定した前記砥粒の定着分布と、前記研磨部材を前記研磨対象物に押圧させながら相対移動させることによる研磨速度との関係から、前記研磨対象物を研磨するための研磨条件を算出する計算ユニットとを備えて構成され、
前記制御機構が、前記計算ユニットで算出した研磨条件を基に前記研磨駆動機構による前記研磨部材の前記研磨対象物に対する押圧と相対移動を制御することを特徴とする研磨装置。
A holding mechanism for holding an object to be polished;
A polishing member for polishing the polishing object;
A polishing liquid supply device for supplying a polishing liquid containing abrasive grains for polishing to the polishing member;
A polishing drive mechanism for relatively moving the polishing surface of the polishing member while pressing the polishing surface of the object to be polished held by the holding member;
In a polishing apparatus comprising: a polishing liquid supply by the polishing liquid supply apparatus; and a control mechanism for controlling the pressing and relative movement of the polishing member by the polishing driving mechanism with respect to the object to be polished;
A measurement unit for measuring a fixed distribution of the abrasive grains fixed on the polishing surface of the polishing member;
From the relationship between the distribution of fixing of the abrasive grains measured by the measurement unit and the polishing speed by moving the polishing member against the object to be polished, the polishing conditions for polishing the object to be polished are: A calculation unit for calculating,
The polishing apparatus, wherein the control mechanism controls pressing and relative movement of the polishing member with respect to the object to be polished by the polishing driving mechanism based on polishing conditions calculated by the calculation unit.
前記計測ユニットは、蛍光X線測定により、前記研磨部材の研磨面に定着された前記砥粒の定着分布を測定することを特徴とする請求項1に記載の研磨装置。   The polishing apparatus according to claim 1, wherein the measurement unit measures a fixed distribution of the abrasive grains fixed on the polishing surface of the polishing member by fluorescent X-ray measurement. 前記計測ユニットによる前記研磨部材の研磨面に定着された前記砥粒の定着分布の測定と、前記計算ユニットによる前記研磨条件の算出が、研磨対象物を所定枚数研磨する毎に実施されることを特徴とする請求項1または2に記載の研磨装置。   The measurement of the fixing distribution of the abrasive grains fixed on the polishing surface of the polishing member by the measurement unit and the calculation of the polishing condition by the calculation unit are performed every time a predetermined number of polishing objects are polished. The polishing apparatus according to claim 1, wherein the polishing apparatus is characterized. 前記制御機構は、前記計算ユニットで算出した前記研磨条件を基に、前記研磨速度と、前記研磨部材の研磨面を前記研磨対象物の被研磨面に押圧させる研磨圧力と、前記研磨部材の研磨面を前記研磨対象物の被研磨面に押圧させながら相対移動させる摺動長さを設定変更することを特徴とする請求項1〜3のいずれかに記載の研磨装置。   The control mechanism includes, based on the polishing conditions calculated by the calculation unit, the polishing speed, a polishing pressure that presses the polishing surface of the polishing member against the surface to be polished of the polishing object, and polishing of the polishing member The polishing apparatus according to any one of claims 1 to 3, wherein a setting is made to change a sliding length of the relative movement while pressing a surface against a surface to be polished of the object to be polished. 研磨を行うための砥粒を含んだ研磨液を供給するとともに、研磨部材の研磨面を前記研磨対象物の被研磨面に押圧させながら相対移動させて前記被研磨面の研磨を行う研磨方法において、
前記研磨部材の研磨面に定着された前記砥粒の定着分布を測定する計測ステップと、
前記計測ステップで測定した前記砥粒の定着分布と、前記研磨部材の研磨面を前記研磨対象物の被研磨面に押圧させながら相対移動させることによる研磨速度との関係から、前記研磨対象物を研磨するための研磨条件を算出する計算ステップと、
前記計算ステップで算出した研磨条件を基に前記研磨部材の前記研磨対象物に対する押圧と相対移動を制御する研磨ステップとを有することを特徴とする研磨方法。
In a polishing method for supplying a polishing liquid containing abrasive grains for polishing and polishing the surface to be polished by relatively moving the polishing surface of the polishing member while pressing the surface to be polished of the object to be polished ,
A measuring step for measuring a fixing distribution of the abrasive grains fixed on the polishing surface of the polishing member;
From the relationship between the fixing distribution of the abrasive grains measured in the measurement step and the polishing rate by moving the polishing surface of the polishing member while pressing the polishing surface of the polishing object against the surface to be polished, the polishing object is A calculation step for calculating polishing conditions for polishing;
A polishing method comprising: a polishing step of controlling the pressing and relative movement of the polishing member to the object to be polished based on the polishing conditions calculated in the calculation step.
JP2008180242A 2008-07-10 2008-07-10 Polisher and polishing method Pending JP2010017808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008180242A JP2010017808A (en) 2008-07-10 2008-07-10 Polisher and polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008180242A JP2010017808A (en) 2008-07-10 2008-07-10 Polisher and polishing method

Publications (1)

Publication Number Publication Date
JP2010017808A true JP2010017808A (en) 2010-01-28

Family

ID=41703187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008180242A Pending JP2010017808A (en) 2008-07-10 2008-07-10 Polisher and polishing method

Country Status (1)

Country Link
JP (1) JP2010017808A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112846977A (en) * 2021-01-04 2021-05-28 大连理工大学 Method for reducing flatness error of double-side grinding workpiece
JP2022545477A (en) * 2019-08-20 2022-10-27 ジィァンスー ジトリ ジンカイ ハイ バリュー マニュファクチャリング カンパニー リミテッド Displacement measurement and protection device for horizontal slide table
CN116276407A (en) * 2023-05-23 2023-06-23 北京特思迪半导体设备有限公司 Method and equipment for determining uncertainty of wafer thickness measurement of thinning machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022545477A (en) * 2019-08-20 2022-10-27 ジィァンスー ジトリ ジンカイ ハイ バリュー マニュファクチャリング カンパニー リミテッド Displacement measurement and protection device for horizontal slide table
JP7349761B2 (en) 2019-08-20 2023-09-25 ジィァンスー ジトリ ジンカイ ハイ バリュー マニュファクチャリング カンパニー リミテッド Displacement measurement and protection device for horizontal sliding table
CN112846977A (en) * 2021-01-04 2021-05-28 大连理工大学 Method for reducing flatness error of double-side grinding workpiece
CN112846977B (en) * 2021-01-04 2022-05-20 大连理工大学 Method for reducing flatness error of double-sided grinding workpiece
CN116276407A (en) * 2023-05-23 2023-06-23 北京特思迪半导体设备有限公司 Method and equipment for determining uncertainty of wafer thickness measurement of thinning machine

Similar Documents

Publication Publication Date Title
US8870625B2 (en) Method and apparatus for dressing polishing pad, profile measuring method, substrate polishing apparatus, and substrate polishing method
TWI458589B (en) Profile measuring method
KR101297931B1 (en) Polishing apparatus, semiconductor device manufacturing method using such polishing apparatus and semiconductor device manufactured by such semiconductor device manufacturing method
KR20180097136A (en) Polishing apparatus and polishing method of substrate
US20110256811A1 (en) Polishing method
US6220936B1 (en) In-site roller dresser
JP2001129755A (en) Grinding device and dressing method
JP2018001325A (en) Head height adjustment device and substrate processing apparatus including head height adjustment device
JP2010017808A (en) Polisher and polishing method
JP7315332B2 (en) Surface height measurement method using dummy disk and dummy disk
JPWO2009035073A1 (en) Polishing apparatus, polishing method, and substrate manufacturing method for polishing a substrate using the polishing method
JPH10315131A (en) Polishing method of semiconductor wafer and device therefor
JP5273524B2 (en) Polishing apparatus and polishing method
JP5433954B2 (en) Polishing equipment
JP2013255994A (en) Polishing apparatus
JP2003282506A (en) Substrate polishing equipment and conditioning method
JP2012222123A (en) Method for grinding semiconductor wafer
JP2003282493A (en) Polishing machine and polishing method
JP2003165048A (en) Polishing tool shaping method and polishing device
JPH10303155A (en) Polishing method and polishing device
KR20010040249A (en) Polishing apparatus and method for producing semiconductors using the apparatus
JP2000288908A (en) Device and method for polishing
JP3427670B2 (en) Polishing apparatus and polishing method
JP3214467B2 (en) Abrasive dressing method and apparatus
JP2003019657A (en) Dressing method and polishing apparatus