JP2010014023A - Governor weight and method for manufacturing the same - Google Patents

Governor weight and method for manufacturing the same Download PDF

Info

Publication number
JP2010014023A
JP2010014023A JP2008174734A JP2008174734A JP2010014023A JP 2010014023 A JP2010014023 A JP 2010014023A JP 2008174734 A JP2008174734 A JP 2008174734A JP 2008174734 A JP2008174734 A JP 2008174734A JP 2010014023 A JP2010014023 A JP 2010014023A
Authority
JP
Japan
Prior art keywords
amount
mass
powder
governor
governor weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008174734A
Other languages
Japanese (ja)
Other versions
JP5171440B2 (en
Inventor
Kazuo Maruyama
和夫 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2008174734A priority Critical patent/JP5171440B2/en
Publication of JP2010014023A publication Critical patent/JP2010014023A/en
Application granted granted Critical
Publication of JP5171440B2 publication Critical patent/JP5171440B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a governor weight having sufficient wear resistance even if expensive hard chromium plating is eliminated, and a method for manufacturing the same. <P>SOLUTION: The governor weight used for a governor device of a fuel injection pump is constituted of a sintered alloy with the whole composition composed of, by mass%, 1-5% Ni, 0.5-3% Cu, 0.6-4% Cr, 0.6-4% Mo, 0.2-1.5% V, 0.6-4% W, 0.02-0.5% Si, 0.7-1% C, and the balance Fe with inevitable impurities, and showing a metallographic structure that the 20-50 mass% of a hardened phase where a carbonized product of Cr, Mo, W and V is precipitated and dispersed in the shape of a cluster in an Fe-based alloy matrix is dispersed in a martensitic matrix where an Ni-rich austenite phase is dispersed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ディーゼルエンジンの燃料噴射ポンプの燃料噴射量を調節する調量機構を操作するガバナ装置に用いられるガバナウエイトおよびその製造方法に関する。   The present invention relates to a governor weight used in a governor device for operating a metering mechanism for adjusting a fuel injection amount of a fuel injection pump of a diesel engine, and a method for manufacturing the same.

ディーゼルエンジンは、燃料噴射量を調節することにより出力が制御される。したがって、アクセル開度が一定の下では、エンジンの回転速度の上昇に伴い燃料噴射量を減少させる必要があり、この制御を行う装置がガバナ装置である。図1は、このようなガバナ装置の一例を示しており、符号1は、図において上下方向に延びるポンプ駆動用のガバナシャフトである。このガバナシャフト1の先端部(下端部)には、鍔状のガバナウエイトホルダ2が固着されている。そしてこのガバナウエイトホルダ2の下面には、ピン3を介して、複数のガバナウエイト4が図1中矢印A−B方向に揺動自在に支持されている。また、ガバナウエイトホルダ2の下方には、上端部に鍔部5aが一体形成された円筒状のガバナスリーブ5が、ガバナウエイトホルダ2と同心状に、かつ軸方向に沿って移動可能に配設されている。   The output of the diesel engine is controlled by adjusting the fuel injection amount. Therefore, when the accelerator opening is constant, it is necessary to decrease the fuel injection amount as the engine speed increases, and the device that performs this control is the governor device. FIG. 1 shows an example of such a governor device. Reference numeral 1 denotes a pump drive governor shaft extending in the vertical direction in the figure. A hook-shaped governor weight holder 2 is fixed to the tip (lower end) of the governor shaft 1. A plurality of governor weights 4 are supported on the lower surface of the governor weight holder 2 via pins 3 so as to be swingable in the direction of arrows AB in FIG. Below the governor weight holder 2, a cylindrical governor sleeve 5 having a flange 5a integrally formed at the upper end is disposed concentrically with the governor weight holder 2 and movable in the axial direction. Has been.

ガバナウエイト4の揺動基端部には、内側に延びる爪部4aが一体形成されており、この爪部4aに、ガバナスリーブ5の鍔部5aが摺動回転可能に係合している。ガバナスリーブ5の先端部には、ガバナレバー7の一端部に設けられたシフタ6が当接している。ガバナレバー7は、長手方向中間部が、レバー軸8によって矢印C−D方向に回転自在に支持されており、なおかつ、スプリング9の矢印E方向への引っ張り力によって矢印D方向への回転力が与えられている。ガバナレバー7の、シフタ6が設けられた側とは反対側の他端部は、ガバナリンク10を介して、燃料噴射ポンプのコントロールラック11に連結されている。   A claw portion 4a extending inward is integrally formed at the swinging base end portion of the governor weight 4, and a flange portion 5a of the governor sleeve 5 is engaged with the claw portion 4a so as to be slidably rotatable. A shifter 6 provided at one end of the governor lever 7 is in contact with the tip of the governor sleeve 5. The governor lever 7 is supported at its middle portion in the longitudinal direction by the lever shaft 8 so as to be rotatable in the direction of the arrow CD, and is given a rotational force in the direction of the arrow D by the pulling force of the spring 9 in the direction of the arrow E. It has been. The other end of the governor lever 7 opposite to the side on which the shifter 6 is provided is connected to a control rack 11 of the fuel injection pump via a governor link 10.

このガバナ装置においては、図2(中心線Oの左側が非作動状態、右側が作動状態)に示すように、ガバナシャフト1の回転速度が増すと、ガバナウエイト4が遠心力を受け、リンク3を中心に外側(B方向)に揺動する。このガバナウエイト4の揺動によりガバナスリーブ5がガバナウエイト4の爪部4aにより押し下げられ、ガバナスリーブ5が下方に移動し、さらにこのガバナスリーブ6の動きにより、シフタ6の一端部が押し下げられる。この動作により、ガバナレバー7がスプリング9の引っ張り力に抗して図1のC方向に回転し、このガバナレバー7の回転動作がガバナリンク10を介してコントロールラック11に伝達されて、燃料噴射量が制御(減少)される。   In this governor device, as shown in FIG. 2 (the left side of the center line O is in an inoperative state and the right side is in an actuated state), the governor weight 4 receives a centrifugal force when the rotational speed of the governor shaft 1 increases, and the link 3 Oscillates outward (B direction) around the center. As the governor weight 4 swings, the governor sleeve 5 is pushed down by the claw portion 4a of the governor weight 4, the governor sleeve 5 moves downward, and the movement of the governor sleeve 6 pushes down one end of the shifter 6. By this operation, the governor lever 7 rotates in the direction C in FIG. 1 against the pulling force of the spring 9, and the rotation operation of the governor lever 7 is transmitted to the control rack 11 via the governor link 10, and the fuel injection amount is increased. Controlled (decreased).

さて、このようなガバナ装置に用いられるガバナウエイトやガバナスリーブは、粉末冶金法により製造される焼結部品が適用されているものがある(特許文献1)。粉末冶金法により製造される焼結部品は、原料粉末を、所望の形状の押型の型孔に充填し、その粉末を上下のパンチにより圧粉成形して成形体を得、次いでその成形体を焼結して原料粉末を相互に拡散させて結合させたものである。このような粉末冶金法による製品成形技術は、ニアネットシェイプに造形することができることに加え、一度押型を作製すれば同形状の製品を多量に生産可能であるという利点を有することから、各種作業用部品の製造に適用が進んでおり、複雑な形状を呈する上記ガバナウエイトの製造に好適な方法である。   Now, some governor weights and governor sleeves used in such governor apparatuses are applied with sintered parts manufactured by powder metallurgy (Patent Document 1). In sintered parts manufactured by powder metallurgy, raw material powder is filled into a mold cavity of a desired shape, and the powder is compacted by upper and lower punches to obtain a molded body. Sintering is performed by diffusing raw material powders to each other and bonding them. In addition to being able to form a near-net shape, this product molding technology by powder metallurgy has the advantage that once a stamping die is produced, it is possible to produce a large number of products of the same shape. This method is suitable for manufacturing the governor weight having a complicated shape.

特開2003−161169号公報JP 2003-161169 A

図1および図2に示したガバナウエイト4の爪部4aは、高速回転しながら揺動するといった2つの動作がいずれもガバナスリーブ5の鍔部5aに対して摺動する状態で発生するため、高い耐摩耗性が要求される。すなわち、ガバナウエイト4の爪部4aが摩耗するとガバナスリーブ5の移動量が減少し、コントロールラック11の移動量が減少することとなる結果、適切な燃料噴射量の制御が果たせなくなる。このため、ガバナウエイト4には硬質クロムめっき処理が施されたものが適用されている。ところが、硬質クロムめっき処理はコストが高いことから、ガバナウエイトの製品単価が高くなってしまう。このため、硬質クロムめっき処理を施さなくても済むような耐摩耗性の高い焼結合金からなるガバナウエイトが望まれている。   Since the claw portion 4a of the governor weight 4 shown in FIG. 1 and FIG. 2 slides with respect to the flange portion 5a of the governor sleeve 5, both of the two operations of swinging while rotating at high speed occur. High wear resistance is required. That is, when the claw portion 4a of the governor weight 4 is worn, the amount of movement of the governor sleeve 5 is reduced, and the amount of movement of the control rack 11 is reduced. As a result, the appropriate fuel injection amount cannot be controlled. For this reason, the governor weight 4 is applied with a hard chrome plating treatment. However, since the cost of the hard chrome plating process is high, the unit price of the governor weight is increased. For this reason, a governor weight made of a sintered alloy having a high wear resistance that does not require a hard chromium plating treatment is desired.

また、特許文献1に記載のものは、耐摩耗性向上といった上記課題の解決策として、平均粒子径が170μm以下でビッカース硬さが1000HV以上の硬質粒子(フェロクロム粒子)を3〜11質量%含む鉄基焼結材によってガバナウエイトを構成することにより、硬質クロムめっき処理を行うことなく、摺動部品の耐摩耗性を高めるとともに、製造工程の簡略化を図ったものである。しかしながら、耐摩耗性向上が未だ十分なものではなく、より高い耐摩耗性を有するものが望まれている。   Moreover, the thing of patent document 1 contains 3-11 mass% of hard particles (ferrochrome particle | grains) whose average particle diameter is 170 micrometers or less and whose Vickers hardness is 1000 HV or more as a solution of the said subject of abrasion resistance improvement. By configuring the governor weight with the iron-based sintered material, the wear resistance of the sliding part is increased and the manufacturing process is simplified without performing hard chrome plating. However, the improvement in wear resistance is not yet sufficient, and one having higher wear resistance is desired.

よって本発明は、高い耐摩耗性を有するとともに安価に製造することができる焼結合金からなるガバナウエイトおよびその製造方法を提供することを目的とする。   Therefore, an object of this invention is to provide the governor weight which consists of a sintered alloy which has high abrasion resistance and can be manufactured cheaply, and its manufacturing method.

本発明のガバナウエイトは、燃料噴射ポンプのガバナ装置に用いられるガバナウエイトであって、全体組成が、質量比で、Ni:1〜5%、Cu:0.5〜3%、Cr:0.6〜4%、Mo:0.6〜4%、V:0.2〜1.5%、W:0.6〜4%、Si:0.02〜0.5%、C:0.7〜1%、および残部がFeと不可避不純物からなるとともに、Niリッチのオーステナイト相が分散するマルテンサイト基地中に、Fe基合金基地中にCr,Mo,W,Vの炭化物が群状に析出分散する硬質相が20〜50質量%分散する金属組織を呈する焼結合金からなることを特徴としている。   The governor weight of the present invention is a governor weight used in a governor device of a fuel injection pump, and the total composition is Ni: 1 to 5%, Cu: 0.5 to 3%, Cr: 0.00. 6-4%, Mo: 0.6-4%, V: 0.2-1.5%, W: 0.6-4%, Si: 0.02-0.5%, C: 0.7 ~ 1%, and the balance consists of Fe and inevitable impurities, and Ni, austenite phase is dispersed in the martensite matrix, and Cr, Mo, W, V carbides are precipitated and dispersed in groups in the Fe-based alloy matrix The hard phase is made of a sintered alloy exhibiting a metal structure in which 20 to 50% by mass is dispersed.

本発明によれば、優れた耐摩耗性を有するガバナウエイトを、硬質クロムめっき処理が不要であることから安価に製造することができるといった効果を奏する。   According to the present invention, there is an effect that a governor weight having excellent wear resistance can be manufactured at low cost since the hard chrome plating process is unnecessary.

本発明のガバナウエイトを構成する焼結合金は、図3の模式図に示すように、Fe−Ni−Cu−C系合金からなりNiリッチのオーステナイト相が分散するマルテンサイト基地中に、Fe−Cr−Mo−W−V系合金からなりFe基合金基地中にCr,Mo,W,Vの炭化物が群状に析出分散する硬質相が分散するものである。すなわち、上記特許文献1のように、微細な硬質粒子が基地中に均一に分散する場合には、基地の塑性流動を有効に抑制するためには多量の硬質粒子が必要となり、相手攻撃性が高まることとなるが、本発明のガバナウエイトを構成する焼結合金は、微細な硬質粒子が群としてスポット状に基地中に分散するため、群状に析出した硬質粒子が基地の塑性流動を有効に抑制するとともに、硬質相の分散しない基地部分が多いことから相手攻撃性も抑制されるという優れた効果を有するものである。   As shown in the schematic diagram of FIG. 3, the sintered alloy constituting the governor weight of the present invention is made of Fe—Ni—Cu—C-based alloy and a Fe—Ni—Cu—C-based alloy in which a Ni-rich austenite phase is dispersed. A hard phase in which carbides of Cr, Mo, W, and V are precipitated and dispersed in a group form is dispersed in a Fe-based alloy base made of a Cr—Mo—W—V alloy. That is, as in the above-mentioned Patent Document 1, when fine hard particles are uniformly dispersed in the base, a large amount of hard particles are required to effectively suppress the plastic flow of the base, and the opponent's aggressiveness is reduced. Although the sintered alloy constituting the governor weight according to the present invention is dispersed in the matrix in the form of spots in the form of fine hard particles, the hard particles deposited in the group are effective in plastic flow of the matrix. In addition, since there are many base portions where the hard phase does not disperse, there is an excellent effect that the opponent aggression is also suppressed.

以下、本発明のガバナウエイトを構成する合金が含有する各元素や硬質相の含有量の根拠を説明する。
(1)Cu
基地を構成するCuは、Fe基地に固溶して基地強化に働くとともに、基地の焼き入れ性を向上させて基地の強度および耐摩耗性の向上に寄与する。ここで、全体組成中のCu量が0.5質量%に満たないと基地強化の作用に乏しい。一方、5質量%を超えて与えると、過飽和なCuが軟質なCu相として析出する結果、基地強度が著しく低下する。このため、全体組成中のCu量を0.5〜3質量%とする。このCuはFe基地への拡散の速度が高いこと、および鉄粉末に固溶させて与えると、鉄粉末の硬さが高くなり成形性が低下することから、全量を銅粉末の形態で付与する。このため、本発明のガバナウエイトの製造方法においては、原料粉末として、鉄粉に0.5〜3質量%の銅粉末を添加することとする。
Hereinafter, the basis of the content of each element and the hard phase contained in the alloy constituting the governor weight of the present invention will be described.
(1) Cu
Cu constituting the base is dissolved in the Fe base and works to strengthen the base, and improves the hardenability of the base and contributes to the improvement of the strength and wear resistance of the base. Here, if the amount of Cu in the entire composition is less than 0.5% by mass, the effect of strengthening the base is poor. On the other hand, if the content exceeds 5% by mass, supersaturated Cu is precipitated as a soft Cu phase, and as a result, the base strength is significantly reduced. For this reason, the amount of Cu in the whole composition is 0.5-3 mass%. Since this Cu has a high diffusion rate to the Fe base, and when dissolved in iron powder, the hardness of the iron powder increases and the formability decreases, so the entire amount is applied in the form of copper powder. . For this reason, in the manufacturing method of the governor weight of this invention, suppose that 0.5-3 mass% copper powder is added to iron powder as raw material powder.

(2)Ni
基地を構成するNiは、Fe基地に固溶して基地強化に働くとともに、基地の焼き入れ性を向上させて基地の強度および耐摩耗性の向上に寄与する。また、Niリッチのオーステナイト相を形成して、焼結合金の衝撃値を向上させるとともに、相手攻撃性の緩和する作用を有する。ここで、全体組成中のNi量が1質量%に満たないと上記の効果が乏しくなる。一方、5質量%を超えて与えると、Niリッチのオーステナイト相の量が増大し、基地の強度が低下することとなる。このため、全体組成中のNi量を1〜5質量%とする。このNiはNiリッチのオーステナイト相を形成するため、全量をニッケル粉末の形態で付与する。このため、本発明のガバナウエイトの製造方法においては、原料粉末として、鉄粉に1〜5質量%のニッケル粉末を添加することとする。
(2) Ni
Ni constituting the base dissolves in the Fe base and works to strengthen the base, and improves the hardenability of the base and contributes to improvement of the strength and wear resistance of the base. In addition, the Ni-rich austenite phase is formed, and the impact value of the sintered alloy is improved, and the opponent aggression is alleviated. Here, if the amount of Ni in the overall composition is less than 1% by mass, the above effect is poor. On the other hand, if the content exceeds 5% by mass, the amount of Ni-rich austenite phase increases and the strength of the base decreases. For this reason, the amount of Ni in the entire composition is set to 1 to 5% by mass. Since this Ni forms a Ni-rich austenite phase, the entire amount is applied in the form of nickel powder. For this reason, in the manufacturing method of the governor weight of this invention, suppose that 1-5 mass% nickel powder is added to iron powder as raw material powder.

(3)硬質相
Cr,Mo,WおよびVは、硬質相中に金属炭化物として群状に析出して焼結合金の耐摩耗性の向上に寄与する。また、Cr,Mo,WおよびVの金属炭化物を群状に析出させるため、Cr,Mo,WおよびVは合金粉末の形態で付与される必要があるが、基地との固着性を考慮して硬質相の基地部分をFeとし、鉄合金粉末の形態で原料粉末に添加することとする。このような金属炭化物が群状に析出する硬質相は、20質量%に満たないと耐摩耗性向上の効果が乏しくなる。一方、50質量%を超えると硬質な鉄合金粉末の量が過多となる結果、原料粉末の成形性が著しく損なわれるともに、相手攻撃性が高くなる。このため、基地中に分散する硬質相の量を20〜50質量%とする。
(3) Hard phase Cr, Mo, W, and V precipitate in the form of metal carbides in the hard phase as a group, and contribute to improving the wear resistance of the sintered alloy. In addition, Cr, Mo, W, and V metal carbides are precipitated in groups, so Cr, Mo, W, and V need to be applied in the form of alloy powder. The base portion of the hard phase is Fe and is added to the raw material powder in the form of an iron alloy powder. If the hard phase in which such metal carbide precipitates in a group is less than 20% by mass, the effect of improving the wear resistance is poor. On the other hand, if it exceeds 50% by mass, the amount of the hard iron alloy powder becomes excessive. As a result, the formability of the raw material powder is remarkably impaired, and the opponent attack is increased. For this reason, the quantity of the hard phase disperse | distributed in a base shall be 20-50 mass%.

ここで鉄合金粉末中のCrが3質量%、Moが3質量%、Vが1質量%、Wが3質量%にそれぞれ満たないと、析出する金属炭化物の量が乏しくなり、耐摩耗性向上の効果が乏しくなる。一方、鉄合金粉末中のCrが8質量%、Moが8質量%、Vが3質量%、Wが8質量%をそれぞれ超えると、これらの元素を固溶する鉄合金粉末の硬さが増大する結果、原料粉末の成形性が著しく損なわれることとなる。このため、鉄合金粉末中のCr量を3〜8質量%、Mo量を3〜8質量%、V量を1〜3質量%、W量を3〜8質量%とする。したがって、全体組成中のCr量は0.6〜4質量%、Mo量は0.6〜4質量%、V量は0.2〜1.5質量%、W量は0.6〜4質量%となる。   Here, if the amount of Cr in the iron alloy powder is less than 3% by mass, Mo is 3% by mass, V is less than 1% by mass, and W is less than 3% by mass, the amount of precipitated metal carbide is reduced and the wear resistance is improved. The effect of becomes poor. On the other hand, if the Cr content in the iron alloy powder exceeds 8 mass%, Mo exceeds 8 mass%, V exceeds 3 mass%, and W exceeds 8 mass%, the hardness of the iron alloy powder that dissolves these elements increases. As a result, the formability of the raw material powder is significantly impaired. For this reason, the amount of Cr in the iron alloy powder is 3 to 8 mass%, the amount of Mo is 3 to 8 mass%, the amount of V is 1 to 3 mass%, and the amount of W is 3 to 8 mass%. Therefore, the Cr amount in the whole composition is 0.6 to 4% by mass, the Mo amount is 0.6 to 4% by mass, the V amount is 0.2 to 1.5% by mass, and the W amount is 0.6 to 4% by mass. %.

(4)Si
鉄合金粉末には、酸化し易いCrを含むため鉄合金粉末の製造時に脱酸剤として使用されるSiを含有するが、このSiは、硬質相のFe基地のCを排出して上記の金属炭化物の析出を促進するとともに、硬質相のFe基地を強化するという働きをする。鉄合金粉末中のSi量が0.1質量%に満たないと上記の効果が乏しく、1質量%を超えると硬質相のFe基地の脆化が著しくなる。このため、鉄合金粉末中のSi量を0.1〜1質量%とする。したがって、全体組成中のSi量は0.02〜0.5質量%となる。
(4) Si
Since the iron alloy powder contains Cr that is easily oxidized, it contains Si that is used as a deoxidizer during the production of the iron alloy powder. While promoting the precipitation of carbides, it works to strengthen the Fe base of the hard phase. If the amount of Si in the iron alloy powder is less than 0.1% by mass, the above effect is poor, and if it exceeds 1% by mass, the Fe base of the hard phase becomes brittle. For this reason, the amount of Si in iron alloy powder shall be 0.1-1 mass%. Therefore, the amount of Si in the entire composition is 0.02 to 0.5% by mass.

(5)C
Cは、Fe基地に固溶して基地強化に働くとともに、Feとともにマルテンサイトを形成して基地の強度および耐摩耗性の向上に寄与する。また、Cは、上記のようにCr,Mo,W,Vと炭化物を形成して金属炭化物が群状に析出する硬質相を形成し、焼結合金の耐摩耗性の向上に寄与する。ここで、全体組成中のC量が0.7質量%に満たないと基地強化および基地の耐摩耗性向上の作用に乏しくなるとともに、硬質相中に析出する金属炭化物の量が乏しくなって耐摩耗性向上の作用が乏しくなる。一方、1質量%を超えて与えると、基地のマルテンサイトが硬くなり過ぎたり、硬質相中に析出する金属炭化物の量が多くなり過ぎたりして、相手攻撃性が著しく増大するとともに、基地が脆く摩耗し易くなる。このため、全体組成中のC量を0.7〜1質量%とする。
(5) C
C dissolves in the Fe base and works to strengthen the base, and also forms martensite with Fe and contributes to the improvement of the strength and wear resistance of the base. In addition, C forms carbides with Cr, Mo, W, and V as described above to form a hard phase in which metal carbides precipitate in groups, and contributes to improvement in wear resistance of the sintered alloy. Here, if the amount of C in the entire composition is less than 0.7% by mass, the effect of strengthening the base and improving the wear resistance of the base becomes poor, and the amount of metal carbides precipitated in the hard phase becomes poor and the resistance is increased. The effect of improving wear is poor. On the other hand, if the amount exceeds 1% by mass, the base martensite becomes too hard, or the amount of metal carbides precipitated in the hard phase increases too much. Brittle and easy to wear. For this reason, C amount in the whole composition shall be 0.7-1 mass%.

このCは、鉄粉末に固溶して与えると、鉄合金粉末の硬さが高くなり成形性が低下することとなる。しかしながら、全量を黒鉛粉末の形態で付与すると、原料粉末の流動性や成形性が低下するとともに、偏析が生じ易くなることから得策ではない。一方、Cの全量を熱処理時の浸炭性ガス雰囲気により供給しようとすると、浸炭時間が長くなることから生産が低下して製造コストが増加することとなる。このため、Cは、一部を黒鉛粉末の形態で原料粉末に添加するとともに、不足分のCを熱処理時の浸炭性ガス雰囲気により供給することとした。   When this C is given as a solid solution in the iron powder, the hardness of the iron alloy powder is increased and the formability is lowered. However, if the total amount is applied in the form of graphite powder, the fluidity and formability of the raw material powder are lowered, and segregation is likely to occur, which is not a good idea. On the other hand, if an attempt is made to supply the entire amount of C in the carburizing gas atmosphere at the time of heat treatment, the carburizing time becomes longer, so the production is reduced and the manufacturing cost is increased. Therefore, a part of C is added to the raw material powder in the form of graphite powder, and a shortage of C is supplied in a carburizing gas atmosphere during heat treatment.

また、硬質相を形成するための鉄合金粉末中においては、鉄合金粉末中にCr,Mo,W,Vを固溶していることから鉄合金粉末の硬さが著しく増大する。そこで、鉄合金粉末中にCを固溶させて鉄合金粉末中にCr,Mo,W,Vの金属炭化物を析出させることにより、鉄合金粉末の基地中に固溶されるCr,Mo,W,Vの量を低減して鉄合金粉末の硬さを低減することができる。したがって、鉄合金粉末の組成において0.8〜1.4質量%に相当する量(全体組成中のC量で0.16〜0.56質量%)のCを鉄合金粉末に固溶させて与える必要がある。以上より、Cは、黒鉛粉末の形態で原料粉末に0.3〜1質量%添加するとともに、鉄合金粉末の組成において0.8〜1.4質量%に相当するC量を鉄合金粉末に固溶させて与え、不足分のC量を浸炭性ガス雰囲気により与えることとした。   Further, in the iron alloy powder for forming the hard phase, the hardness of the iron alloy powder is remarkably increased because Cr, Mo, W, V are dissolved in the iron alloy powder. Therefore, by dissolving C in the iron alloy powder and precipitating Cr, Mo, W, V metal carbides in the iron alloy powder, Cr, Mo, W dissolved in the base of the iron alloy powder. , V can be reduced to reduce the hardness of the iron alloy powder. Therefore, in the composition of the iron alloy powder, an amount of C corresponding to 0.8 to 1.4% by mass (0.16 to 0.56% by mass in the total composition) is dissolved in the iron alloy powder. Need to give. From the above, C is added in an amount of 0.3 to 1% by mass to the raw material powder in the form of graphite powder, and the amount of C corresponding to 0.8 to 1.4% by mass in the composition of the iron alloy powder is added to the iron alloy powder. It was decided to give the solution in a solid solution, and to give the amount of C in a short amount in a carburizing gas atmosphere.

以上より、本発明のガバナウエイトは、全体組成が、質量比で、Ni:1〜5%、Cu:0.5〜3%、Cr:0.6〜4%、Mo:0.6〜4%、V:0.2〜1.5%、W:0.6〜4%、Si:0.02〜0.5%、C:0.7〜1%、および残部がFeと不可避不純物からなるとともに、Niリッチのオーステナイト相が分散するマルテンサイト基地中に、Fe基合金基地中にCr,Mo,W,Vの炭化物が群状に析出分散する硬質相が20〜50質量%分散する金属組織を呈する焼結合金により構成したものとなる。ここで、硬質相の組成としては、質量比で、Cr:3〜8%、Mo:3〜8%、V:1〜3%、W:3〜8%、Si:0.1〜1%を含むものとする。   From the above, the overall composition of the governor weight of the present invention is Ni: 1 to 5%, Cu: 0.5 to 3%, Cr: 0.6 to 4%, Mo: 0.6 to 4 in mass ratio. %, V: 0.2 to 1.5%, W: 0.6 to 4%, Si: 0.02 to 0.5%, C: 0.7 to 1%, and the balance from Fe and inevitable impurities In addition, in the martensite matrix in which the Ni-rich austenite phase is dispersed, the hard phase in which the carbides of Cr, Mo, W, and V are precipitated and dispersed in a group form in the Fe-based alloy matrix is dispersed in 20 to 50% by mass. It is constituted by a sintered alloy exhibiting a structure. Here, the composition of the hard phase is, by mass ratio, Cr: 3-8%, Mo: 3-8%, V: 1-3%, W: 3-8%, Si: 0.1-1% Shall be included.

また、本発明のガバナウエイトの原料粉末は、鉄粉に、組成が、質量比で、Cr:3〜8%、Mo:3〜8%、V:1〜3%、W:3〜8%、Si:0.1〜1%、C:0.8〜1.4%、および残部がFeと不可避不純物からなる鉄合金粉末を20〜40質量%と、ニッケル粉末を1〜5質量%と、銅粉末を0.5〜3質量%と、黒鉛粉末を0.3〜1質量%とを添加し、混合したものとする。   Moreover, the raw material powder of the governor weight of the present invention is composed of iron powder in a mass ratio of Cr: 3 to 8%, Mo: 3 to 8%, V: 1 to 3%, W: 3 to 8%. , Si: 0.1 to 1%, C: 0.8 to 1.4%, and iron alloy powder composed of Fe and inevitable impurities in the balance, 20 to 40% by mass, and nickel powder, 1 to 5% by mass In addition, 0.5 to 3% by mass of copper powder and 0.3 to 1% by mass of graphite powder are added and mixed.

上記の原料粉末は、通常の粉末冶金法で製造される焼結部品と同様に、ガバナウエイトの形状を有する押型の型孔に充填され、上下のパンチにより、成形体密度6.8〜7.2Mg/mに圧粉成形されてガバナウエイト形状の成形体とされる。次いで、得られた成形体は1050〜1200℃で焼結され、原料粉末が相互に拡散させられ、結合させられる。このようにして得られたガバナウエイト形状の焼結体は、カーボンポテンシャル(Cp値)が0.7〜1.1の浸炭性ガス雰囲気中で800〜1000℃に加熱され、浸炭された後、油中に投入されて焼き入れされる。さらに、焼き入れされたガバナウエイトは、160〜200℃に加熱されて焼き戻される。このようにして作製されたガバナウエイトは、上記の金属組織を呈するとともに、密度比が85〜95%(気孔率が5〜15%)となり、この気孔に油が保持され、良好な耐摩耗性を示す。 The raw material powder is filled in a die hole of a die having a shape of a governor weight in the same manner as a sintered part manufactured by a normal powder metallurgy method, and a green body density of 6.8 to 7. It is compacted to 2Mg / m 3 to form a governor-weight shaped product. Subsequently, the obtained molded body is sintered at 1050 to 1200 ° C., and the raw material powders are diffused and bonded to each other. The governor-weight shaped sintered body thus obtained was heated to 800 to 1000 ° C. in a carburizing gas atmosphere having a carbon potential (Cp value) of 0.7 to 1.1 and carburized. It is put into oil and quenched. Further, the quenched governor weight is heated to 160 to 200 ° C. and tempered. The governor weight thus produced exhibits the above-described metal structure and a density ratio of 85 to 95% (porosity of 5 to 15%), oil is retained in the pores, and good wear resistance. Indicates.

本発明のガバナウエイトの製造方法は上記過程に基づくもので、上記の原料粉末を、所望の形状に圧粉成形し、次いで、得られた成形体を焼結し、次いで、得られた焼結体を浸炭焼き入れした後、焼き戻しを行うことを特徴としている。   The manufacturing method of the governor weight of the present invention is based on the above process, and the above raw material powder is compacted into a desired shape, and then the obtained molded body is sintered, and then the obtained sintered product is sintered. It is characterized by tempering after carburizing and quenching the body.

本発明のガバナウエイトは、特に、摺動する相手部材であるガバナスリーブとして、全体組成が、質量比で、Ni:2〜3%、Mn:0.1〜1%、C:0.2〜0.5%、および残部がFeと不可避不純物からなる焼結合金からなるものを用いた場合、従来の硬質クロムめっきを施したものよりも優れた耐摩耗性を示すとともに、相手攻撃性が小さくなるため、好適である。   In particular, the governor weight of the present invention, as a governor sleeve which is a sliding counterpart member, has an overall composition of Ni: 2-3%, Mn: 0.1-1%, C: 0.2- When using a sintered alloy consisting of 0.5% and the balance of Fe and inevitable impurities, the wear resistance is superior to that of conventional hard chrome plating, and the opponent attack is small. Therefore, it is preferable.

次いで、本発明の実施例を説明して本発明の効果を実証する。
[第1実施例]
鉄粉末、ニッケル粉末、銅粉末、黒鉛粉末、および組成が、質量比で、Cr:4.2%、Mo:5%、W:6%、V:1.8%、Si:0.6%、C:1.1%であり残部がFeと不可避不純物からなる鉄合金粉末を用意した。これらの粉末を用いて、表1に示す配合比で鉄合金粉末の添加量を変えて添加、混合し、原料粉末を得た。次に、これら原料粉末を、成形圧力830MPaで外径7.98mm、高さ20mmの柱体形状に圧粉成形し、得られた成形体を、ブタン変性ガス雰囲気中において1120℃で焼結し、焼結体を得た。次に、得られた焼結体を、Cp値が0.9の浸炭性ガス雰囲気中において850℃に加熱した後、油中に焼き入れし、180℃で焼き戻して、表1に示す試料番号02〜08の柱体試料(ピン)を作製した。また、従来例として、焼き戻し後に硬質クロムめっき処理を施したものを試料番号01として作製した。
Next, examples of the present invention will be described to demonstrate the effects of the present invention.
[First embodiment]
Iron powder, nickel powder, copper powder, graphite powder, and composition are, by mass ratio, Cr: 4.2%, Mo: 5%, W: 6%, V: 1.8%, Si: 0.6% , C: 1.1%, and an iron alloy powder comprising the balance Fe and inevitable impurities was prepared. Using these powders, the addition ratio of the iron alloy powder was changed and added and mixed at the compounding ratio shown in Table 1 to obtain a raw material powder. Next, these raw material powders are compacted into a columnar shape having an outer diameter of 7.98 mm and a height of 20 mm at a molding pressure of 830 MPa, and the obtained compact is sintered at 1120 ° C. in a butane-modified gas atmosphere. A sintered body was obtained. Next, the obtained sintered body was heated to 850 ° C. in a carburizing gas atmosphere having a Cp value of 0.9, then quenched in oil, tempered at 180 ° C., and the samples shown in Table 1 Column body samples (pins) numbered 02 to 08 were prepared. In addition, as a conventional example, a sample obtained by applying hard chrome plating after tempering was prepared as sample number 01.

また、摺動の相手材となるディスク試料を、以下のようにして作製した。組成が、質量比で、Ni:2.6%、Mn:0.5%であり、残部がFeと不可避不純物からなる鉄合金粉末に、黒鉛粉末を0.3質量%添加し混合した原料粉末を、成形圧力700MPaでφ400mm、高さ5mmの円板形状に圧粉成形し、得られた成形体を、ブタン変性ガス雰囲気中において1120℃で焼結して得た。得られた焼結体を、Cp値が0.9の浸炭性ガス雰囲気中において850℃に加熱した後、油中に焼き入れし、180℃で焼き戻して相手材となるディスク試料を作製した。   Further, a disk sample as a sliding counterpart was produced as follows. Raw material powder in which 0.3% by mass of graphite powder is added to and mixed with an iron alloy powder having a composition by mass ratio of Ni: 2.6% and Mn: 0.5% and the balance being Fe and inevitable impurities. Was molded into a disc shape having a molding pressure of 700 MPa and a diameter of 400 mm and a height of 5 mm, and the obtained molded body was obtained by sintering at 1120 ° C. in a butane-modified gas atmosphere. The obtained sintered body was heated to 850 ° C. in a carburizing gas atmosphere having a Cp value of 0.9, then quenched in oil and tempered at 180 ° C. to produce a disk sample as a counterpart material. .

各柱体試料2個をピンとし、一方、上記ディスク試料をピンの摺動相手材とし、荷重5kgf/cmのもと、周速150m/分で60分間摺動させて、ピン・オン・ディスク摩擦摩耗試験を行い、試験後の摩耗量を測定した。このときの試験結果を、表1に併記する。なお、ピン摩耗量は2個のピンの平均値である。 Two columnar samples are used as pins, while the above disk sample is used as a sliding member for the pins, and is slid for 60 minutes at a peripheral speed of 150 m / min under a load of 5 kgf / cm 2. A disc frictional wear test was performed, and the amount of wear after the test was measured. The test results at this time are also shown in Table 1. The pin wear amount is an average value of two pins.

Figure 2010014023
Figure 2010014023

表1の試料番号01の試料は、鉄合金粉末が添加されておらず硬質相が分散しないものであり、かつ硬質クロムめっきを施したものであるといった点で、本発明のものとは異なる従来例である。この試料番号01の試料は、合計摩耗量が31μmであるが、以下の実施例においては、試料番号01の従来例よりも合計摩耗量が少ないものを目標とし、この目標を達成したものについて表の備考欄に“発明例”と記す。また、試料番号01の従来例よりも合計摩耗量が多いものを本発明外のものとし、表の備考欄に“比較例”と記す。   The sample of sample number 01 in Table 1 is different from that of the present invention in that the iron alloy powder is not added, the hard phase is not dispersed, and a hard chromium plating is applied. It is an example. The sample No. 01 has a total wear amount of 31 μm. However, in the following examples, a sample having a total wear amount smaller than that of the conventional example No. 01 is set as a target, and a table showing the achievement of this target is shown below. In the remarks column of “Invention example”. Further, a sample having a total wear amount larger than that of the conventional example of Sample No. 01 is regarded as one outside the present invention, and “Comparative Example” is described in the remarks column of the table.

表1より、原料粉末への鉄合金粉末の添加量(焼結合金基地中の硬質粒子の分散量)の影響を調べることができる。すなわち、鉄合金粉末を添加せず、硬質クロムめっきを施さない試料番号02の試料は、合計摩耗量が62μmと大きい値を示している。また、鉄合金粉末を10質量%添加すると硬質相により焼結合金基地の流動が抑制され、ピン摩耗量が6割程度低減できるものの、まだ、硬質相の効果が乏しく、目標(30μm以下)は達成できていない。しかしながら、鉄合金粉末の添加量が20〜50質量%の試料番号03〜07の試料では、硬質相の効果が発揮されて、ピン摩耗量が0.5〜6.5μmと小さい値に抑制され、目標(合計摩耗量30μm以下)が達成されている。   From Table 1, the influence of the amount of iron alloy powder added to the raw material powder (the amount of hard particles dispersed in the sintered alloy matrix) can be examined. That is, the sample No. 02 to which the iron alloy powder is not added and the hard chrome plating is not applied shows a large total wear amount of 62 μm. Moreover, when iron alloy powder is added at 10% by mass, the flow of the sintered alloy base is suppressed by the hard phase, and the amount of pin wear can be reduced by about 60%, but the effect of the hard phase is still poor, and the target (30 μm or less) is Not achieved. However, in the samples of sample numbers 03 to 07 where the added amount of iron alloy powder is 20 to 50% by mass, the effect of the hard phase is exhibited and the pin wear amount is suppressed to a small value of 0.5 to 6.5 μm. The target (total wear amount of 30 μm or less) has been achieved.

一方、鉄合金粉末の添加量が50質量%を超える試料番号08の試料は、硬質な鉄合金粉末が過多となって原料粉末の圧縮性が低下し、成形体密度の低下を招く結果、焼結体密度が低下し、焼結体の強度が低下することにより、ピン摩耗量が増大するとともに、ピンの摩耗粉が研磨粒子として作用してディスク摩耗量も増大している。この結果より、原料粉末への鉄合金粉末の添加量(焼結合金基地中の硬質粒子の分散量)は20〜50質量%とすべきことが確認された。   On the other hand, the sample of sample number 08 in which the added amount of the iron alloy powder exceeds 50% by mass is excessively hard iron alloy powder and the compressibility of the raw material powder is reduced, resulting in a decrease in the density of the compact. As the density of the sintered body decreases and the strength of the sintered body decreases, the amount of pin wear increases, and the pin wear powder acts as abrasive particles, increasing the amount of disk wear. From this result, it was confirmed that the addition amount of iron alloy powder to the raw material powder (dispersion amount of hard particles in the sintered alloy matrix) should be 20 to 50% by mass.

また、試料番号03〜07の試料について金属組織を観察したところ、Niリッチのオーステナイト相が分散するマルテンサイト基地中に、Fe基合金基地中にCr,Mo,W,Vの炭化物が群状に析出分散する硬質相が分散していることが確認された。また、この硬質相は鉄合金粉末の添加量に応じて分散量が異なっており、鉄合金粉末により形成されたものであることが確認された。   Further, when the metal structures of the samples Nos. 03 to 07 were observed, the carbides of Cr, Mo, W, and V were grouped in the martensite matrix in which the Ni-rich austenite phase was dispersed and in the Fe-based alloy matrix. It was confirmed that the hard phase that precipitates and disperses is dispersed. Further, it was confirmed that the hard phase had a dispersion amount depending on the amount of iron alloy powder added, and was formed from the iron alloy powder.

[第2実施例]
上記第1実施例の鉄粉末、ニッケル粉末、銅粉末、鉄合金粉末および黒鉛粉末を用いるとともに、鉄合金粉末の添加量を30質量%とし、表2に示すようにニッケル粉末の添加量を変えて配合、混合して、原料粉末を得た。次いで、これら原料粉末を、第1実施例と同様に成形、焼結、浸炭焼き入れ、焼き戻しを行って、試料番号09〜12の柱状試料(ピン)を作製した。これらの試料につき、第1実施例と同じ相手材を用い、かつ第1実施例と同じ条件でピン・オン・ディスク摩擦摩耗試験を行い、試験後の摩耗量を測定した。このときの試験結果を、表2に併記する。なお、表2には、第1実施例の試料番号05の値を併せて示している。
[Second Embodiment]
While using the iron powder, nickel powder, copper powder, iron alloy powder and graphite powder of the first embodiment, the addition amount of the iron alloy powder is 30% by mass, and the addition amount of the nickel powder is changed as shown in Table 2. Were mixed and mixed to obtain a raw material powder. Subsequently, these raw material powders were molded, sintered, carburized and quenched, and tempered in the same manner as in the first example to prepare columnar samples (pins) of sample numbers 09 to 12. These samples were subjected to a pin-on-disk friction and wear test using the same mating material as in the first example and under the same conditions as in the first example, and the amount of wear after the test was measured. The test results at this time are also shown in Table 2. Table 2 also shows the value of sample number 05 of the first embodiment.

Figure 2010014023
Figure 2010014023

表2より、原料粉末へのニッケル粉末添加量(全体組成中のNi量)の影響を調べることができる。すなわち、ニッケル粉末を添加せず、焼結合金基地にNiを含有しない試料番号09の試料は、焼結合金基地の強化および焼き入れ性の改善がなされず、ピン摩耗量が増大している。一方、ニッケル粉末を1〜5質量%添加した試料番号10,05,11の試料は、焼結合金基地の強化および焼き入れ性の改善がなされ、ピン摩耗量が半分以上抑制され、合計摩耗量も目標を達成している。   From Table 2, the influence of the amount of nickel powder added to the raw material powder (the amount of Ni in the overall composition) can be examined. That is, the sample No. 09 in which nickel powder is not added and Ni is not contained in the sintered alloy matrix does not strengthen the sintered alloy matrix and improve the hardenability, and the pin wear amount is increased. On the other hand, the samples Nos. 10, 05 and 11 to which 1 to 5% by mass of nickel powder is added have the sintered alloy base strengthened and improved hardenability, the pin wear amount is suppressed by more than half, and the total wear amount. Has also achieved the goal.

しかしながら、ニッケル粉末の添加量が5質量%を超える試料番号12の試料では、ニッケル粉末の添加量が過多となって軟質なNiリッチのオーステナイト相が増加する結果、ピン摩耗量が増大している。また、焼結合金基地の焼き入れ性が向上し過ぎて焼結合金基地のマルテンサイトが硬く、かつ脆くなり、ディスクへの攻撃性が増加してディスク摩耗量も増大している。これらのことから、原料粉末へのニッケル粉末添加量(全体組成中のNi量)は1〜5質量%とすべきことが確認された。   However, in the sample of Sample No. 12 in which the amount of nickel powder added exceeds 5% by mass, the amount of nickel powder added is excessive and the amount of soft Ni-rich austenite increases, resulting in an increase in pin wear. . Further, the hardenability of the sintered alloy base is improved too much, the martensite of the sintered alloy base becomes hard and brittle, the aggressiveness to the disk is increased, and the amount of wear of the disk is also increased. From these facts, it was confirmed that the amount of nickel powder added to the raw material powder (the amount of Ni in the overall composition) should be 1 to 5% by mass.

[第3実施例]
上記第1実施例の鉄粉末、ニッケル粉末、銅粉末、鉄合金粉末および黒鉛粉末を用いるとともに、表3に示すように銅粉末の添加量を変えて配合、混合して、原料粉末を得た。次いで、これら原料粉末を、第1実施例と同様に成形、焼結、浸炭焼き入れ、焼き戻しを行って、試料番号13〜16の柱状試料(ピン)を作製した。これらの試料につき、第1実施例と同じ相手材を用い、かつ第1実施例と同じ条件でピン・オン・ディスク摩擦摩耗試験を行い、試験後の摩耗量を測定した。このときの試験結果を、表3に併記する。なお、表3には、第1実施例の試料番号05の値を併せて示している。
[Third embodiment]
While using the iron powder, nickel powder, copper powder, iron alloy powder, and graphite powder of the first example, the addition amount of the copper powder was changed and blended and mixed as shown in Table 3 to obtain a raw material powder. . Subsequently, these raw material powders were molded, sintered, carburized and quenched and tempered in the same manner as in the first example to prepare columnar samples (pins) of sample numbers 13 to 16. These samples were subjected to a pin-on-disk friction and wear test using the same mating material as in the first example and under the same conditions as in the first example, and the amount of wear after the test was measured. The test results at this time are also shown in Table 3. Table 3 also shows the value of sample number 05 of the first example.

Figure 2010014023
Figure 2010014023

表3より、原料粉末への銅粉末添加量(全体組成中のCu量)の影響を調べることができる。すなわち、銅粉末を添加せず、焼結合金基地にCuを含有しない試料番号13の試料は、焼結合金基地の強化および焼き入れ性の改善がなされず、ピン摩耗量が増大している。一方、銅粉末を0.5〜3質量%添加した試料番号14,05,15の試料は、焼結合金基地の強化および焼き入れ性の改善がなされ、ピン摩耗量が半分以上抑制され、合計摩耗量も目標を達成している。   From Table 3, the influence of the amount of copper powder added to the raw material powder (the amount of Cu in the overall composition) can be examined. That is, the sample No. 13 in which the copper powder is not added and the sintered alloy matrix does not contain Cu is not strengthened and hardened, and the pin wear amount is increased. On the other hand, the samples Nos. 14, 05 and 15 to which copper powder is added in an amount of 0.5 to 3% by mass are strengthened in the sintered alloy base and improved in hardenability, and the amount of pin wear is suppressed by more than half. The amount of wear has also reached the target.

しかしながら、銅粉末の添加量が3質量%を超える試料番号16の試料では、銅粉末の添加量が過多となり、焼結合金基地中に過飽和のCuが遊離銅相として析出するようになって焼結合金の強度が低下し、ピン摩耗量が増大している。また、焼結合金基地の焼き入れ性が向上し過ぎて焼結合金基地のマルテンサイトが硬く、かつ脆くなり、ディスクへの攻撃性が増加してディスク摩耗量も増大している。これらのことから、原料粉末への銅粉末添加量(全体組成中のCu量)は0.5〜3質量%とすべきことが確認された。   However, in the sample of Sample No. 16 in which the amount of copper powder added exceeds 3% by mass, the amount of copper powder added is excessive, and supersaturated Cu is precipitated as a free copper phase in the sintered alloy matrix. The strength of the bond gold is reduced and the amount of pin wear is increased. Further, the hardenability of the sintered alloy base is improved too much, the martensite of the sintered alloy base becomes hard and brittle, the aggressiveness to the disk is increased, and the amount of wear of the disk is also increased. From these things, it was confirmed that the amount of copper powder added to the raw material powder (the amount of Cu in the overall composition) should be 0.5 to 3% by mass.

[第4実施例]
上記第1実施例の鉄粉末、ニッケル粉末、銅粉末、および黒鉛粉末を用いるとともに、表4に示す組成の鉄合金粉末を配合、混合して、原料粉末を得た。次いで、これら原料粉末を、第1実施例と同様に成形、焼結、浸炭焼き入れ、焼き戻しを行って、試料番号17〜29の柱状試料(ピン)を作製した。これらの試料につき、第1実施例と同じ相手材を用い、かつ第1実施例と同じ条件でピン・オン・ディスク摩擦摩耗試験を行い、試験後の摩耗量を測定した。このときの試験結果を、表4に併記する。なお、表4には、第1実施例の試料番号05の値を併せて示している。
[Fourth embodiment]
While using the iron powder of the said 1st Example, nickel powder, copper powder, and graphite powder, the iron alloy powder of the composition shown in Table 4 was mix | blended and mixed, and raw material powder was obtained. Subsequently, these raw material powders were molded, sintered, carburized and quenched, and tempered in the same manner as in the first example to prepare columnar samples (pins) of sample numbers 17 to 29. These samples were subjected to a pin-on-disk friction and wear test using the same mating material as in the first example and under the same conditions as in the first example, and the amount of wear after the test was measured. The test results at this time are also shown in Table 4. Table 4 also shows the value of sample number 05 of the first embodiment.

Figure 2010014023
Figure 2010014023

表4の試料番号05および17〜21の試料より、鉄合金粉末中のCr,Mo,WおよびVの量(硬質相中のCr,Mo,WおよびVの量)の影響を調べることができる。すなわち、鉄合金粉末中のCr量が1質量%、Mo量が1質量%、W量が1質量%およびV量が0.5質量%の試料番号17の試料は、炭化物の析出量が不十分でピン摩耗量が増大している。一方、鉄合金粉末中のCr量が3〜8質量%、Mo量が3〜8質量%、W量が3〜8質量%およびV量が1〜3質量%の試料番号18,05,19,20の試料は、十分な炭化物が析出してピン摩耗量が低減している。   From the samples Nos. 05 and 17 to 21 in Table 4, the influence of the amount of Cr, Mo, W and V in the iron alloy powder (the amount of Cr, Mo, W and V in the hard phase) can be examined. . That is, in the sample of Sample No. 17 in which the amount of Cr in the iron alloy powder is 1% by mass, the amount of Mo is 1% by mass, the amount of W is 1% by mass, and the amount of V is 0.5% by mass, the precipitation amount of carbide is not high. Sufficient pin wear is increasing. On the other hand, the sample number 18,05,19 whose Cr amount in iron alloy powder is 3-8 mass%, Mo amount is 3-8 mass%, W amount is 3-8 mass%, and V amount is 1-3 mass%. , 20 has a sufficient amount of carbides deposited to reduce pin wear.

しかしながら、鉄合金粉末中のCr量が10質量%、Mo量が10質量%、W量が10質量%およびV量が5質量%の試料番号21の試料では、鉄合金粉末中の合金元素が過多となって鉄合金粉末が硬くなり、原料粉末の圧縮性が低下し、成形体密度の低下を招く結果、焼結体密度が低下して焼結体の強度が低下することにより、ピン摩耗量が増大している。また、ピンの摩耗粉が研磨粒子として作用することにより、ディスク摩耗量も増大している。これらのことから、鉄合金粉末中のCr量(硬質相中のCr量)は3〜8質量%、鉄合金粉末中のMo量(硬質相中のMo量)は3〜8質量%、鉄合金粉末中のW量(硬質相中のW量)は3〜8質量%、および鉄合金粉末中のV量(硬質相中のV量)は1〜3質量%とすべきことが確認された。   However, in the sample No. 21 in which the amount of Cr in the iron alloy powder is 10% by mass, the amount of Mo is 10% by mass, the amount of W is 10% by mass, and the amount of V is 5% by mass, the alloy elements in the iron alloy powder are As a result of excess, the iron alloy powder becomes hard, the compressibility of the raw material powder decreases, and the density of the compact is reduced. As a result, the density of the sintered body decreases and the strength of the sintered body decreases. The amount is increasing. Further, the amount of wear of the disk is increased due to the abrasion powder of the pins acting as abrasive particles. From these, the amount of Cr in the iron alloy powder (the amount of Cr in the hard phase) is 3 to 8% by mass, the amount of Mo in the iron alloy powder (the amount of Mo in the hard phase) is 3 to 8% by mass, iron It was confirmed that the W amount in the alloy powder (W amount in the hard phase) should be 3-8% by mass, and the V amount in the iron alloy powder (V amount in the hard phase) should be 1-3% by mass. It was.

また、表4の試料番号05および22〜25の試料より、鉄合金粉末中のSi量(硬質相中のSi量)の影響を調べることができる。すなわち、鉄合金粉末中のSi量が0.1質量%に満たない試料番号22の試料は、鉄合金粉末の脱酸が不十分であり、強固な酸化被膜によって焼結が進行し難く、そのためピン摩耗量が増大している。一方、鉄合金粉末中のSi量が0.1〜1質量%の試料番号23、05、24の試料は、鉄合金粉末の脱酸が十分で焼結が進行し易く、かつ硬質相のFe基地の強化作用および金属炭化物の生成作用により摩耗量が低減している。   Moreover, the influence of the Si amount in the iron alloy powder (the Si amount in the hard phase) can be examined from the samples Nos. 05 and 22 to 25 in Table 4. That is, in the sample of sample number 22 in which the amount of Si in the iron alloy powder is less than 0.1% by mass, deoxidation of the iron alloy powder is insufficient, and sintering is difficult to proceed due to a strong oxide film. Pin wear has increased. On the other hand, the samples Nos. 23, 05, and 24 having the Si amount in the iron alloy powder of 0.1 to 1% by mass were sufficiently deoxidized and easily progressed in sintering, and the hard phase Fe The amount of wear is reduced by the strengthening action of the base and the production action of metal carbide.

しかしながら、鉄合金粉末中のSi量が1質量%を超える試料番号25の試料では、鉄合金粉末中のSiが過多となって鉄合金粉末が硬くなり、原料粉末の圧縮性が低下し、成形体密度の低下を招く結果、焼結体密度が低下して焼結体の強度が低下することにより、ピン摩耗量が増大している。また、ピンの摩耗粉が研磨粒子として作用することにより、ディスク摩耗量も増大している。これらのことから、鉄合金粉末中のSi量(硬質相中のSi量)は0.1〜1質量%とすべきことが確認された。   However, in the sample of sample number 25 in which the amount of Si in the iron alloy powder exceeds 1% by mass, the amount of Si in the iron alloy powder becomes excessive, the iron alloy powder becomes hard, the compressibility of the raw material powder decreases, and molding is performed. As a result of the decrease in the body density, the sintered body density is decreased and the strength of the sintered body is decreased, so that the pin wear amount is increased. Further, the amount of wear of the disk is increased due to the abrasion powder of the pins acting as abrasive particles. From these facts, it was confirmed that the amount of Si in the iron alloy powder (the amount of Si in the hard phase) should be 0.1 to 1% by mass.

また、表4の試料番号05および26〜29の試料より、鉄合金粉末中のC量の影響を調べることができる。すなわち、鉄合金粉末中のC量が0.8質量%に満たない試料番号26の試料は、鉄合金粉末中に固溶する合金元素が過多となって鉄合金粉末が硬くなり、原料粉末の圧縮性を損なう結果、成形体密度の低下に伴い焼結体密度が低下し、焼結体の強度が低下するためピン摩耗量が増大するとともに、ピンの摩耗粉が研磨粒子として作用してディスク摩耗量も増大している。一方、鉄合金粉末中のC量が0.8〜1.4質量%の試料番号27、05、28の試料は、鉄合金粉末中のCと合金元素が結合して鉄合金粉末中に既に金属炭化物として析出し、鉄合金粉末中に固溶する合金元素量が低下する結果、鉄合金粉末の硬さが低下して原料粉末の圧縮性が改善され、摩耗量が低減している。   Moreover, the influence of the amount of C in iron alloy powder can be investigated from the sample numbers 05 and 26-29 of Table 4. That is, in the sample No. 26 in which the amount of C in the iron alloy powder is less than 0.8% by mass, the alloy element dissolved in the iron alloy powder becomes excessive, and the iron alloy powder becomes harder. As a result of the loss of compressibility, the density of the sintered body decreases with a decrease in the density of the molded body, and the strength of the sintered body decreases, so that the amount of pin wear increases and the pin wear powder acts as abrasive particles. The amount of wear is also increasing. On the other hand, samples Nos. 27, 05, and 28 in which the amount of C in the iron alloy powder is 0.8 to 1.4% by mass are already in the iron alloy powder due to the combination of C in the iron alloy powder and the alloy element. As a result of a decrease in the amount of alloying elements precipitated as metal carbide and dissolved in the iron alloy powder, the hardness of the iron alloy powder is reduced, the compressibility of the raw material powder is improved, and the amount of wear is reduced.

しかしながら、鉄合金粉末中のC量が1.4質量%を超える試料番号29の試料では、鉄合金粉末中に析出する金属炭化物の量が過多となって鉄合金粉末が硬くなり、原料粉末の圧縮性を損なう結果、ピン摩耗量およびディスク摩耗量ともに増大する。これらのことから、鉄合金粉末中のC量は、0.1〜1.4質量%とすべきことが確認された。   However, in the sample of Sample No. 29 in which the amount of C in the iron alloy powder exceeds 1.4% by mass, the amount of metal carbide precipitated in the iron alloy powder becomes excessive, and the iron alloy powder becomes hard, As a result of impairing compressibility, both pin wear and disk wear increase. From these facts, it was confirmed that the amount of C in the iron alloy powder should be 0.1 to 1.4% by mass.

[第5実施例]
上記第1実施例の鉄粉末、ニッケル粉末、銅粉末、鉄合金粉末および黒鉛粉末を用いるとともに、表5に示すように黒鉛粉末の添加量を変えて配合、混合して、原料粉末を得た。次いで、これら原料粉末を、第1実施例と同様に成形、焼結、浸炭焼き入れ、焼き戻しを行って、試料番号30〜34の柱状試料(ピン)を作製した。これらの試料につき、第1実施例と同じ相手材を用い、かつ第1実施例と同じ条件でピン・オン・ディスク摩擦摩耗試験を行い、試験後の摩耗量を測定した。このときの試験結果を、表5に併記する。なお、表5には、第1実施例の試料番号05の値を併せて示している。また、この第5実施例では、上記の試料番号30〜34の試料および第1実施例の試料番号05につき、炭素分析を併せて行って結合炭素量を測定した。その結果を表5に併せて示す。
[Fifth embodiment]
While using the iron powder, nickel powder, copper powder, iron alloy powder, and graphite powder of the first example, the raw material powder was obtained by mixing and mixing with the addition amount of the graphite powder as shown in Table 5 . Subsequently, these raw material powders were molded, sintered, carburized and quenched and tempered in the same manner as in the first example to prepare columnar samples (pins) of sample numbers 30 to 34. These samples were subjected to a pin-on-disk friction and wear test using the same mating material as in the first example and under the same conditions as in the first example, and the amount of wear after the test was measured. The test results at this time are also shown in Table 5. Table 5 also shows the value of sample number 05 of the first example. Moreover, in this 5th Example, carbon analysis was performed collectively about the sample of the said sample numbers 30-34, and the sample number 05 of 1st Example, and the amount of bond carbon was measured. The results are also shown in Table 5.

Figure 2010014023
Figure 2010014023

表5より、原料粉末への黒鉛粉末添加量および全体組成中のC量の影響を調べることができる。すなわち、原料粉末への黒鉛粉末添加量が0.3質量%に満たない試料番号30の試料は、焼結体のC量が乏しい結果、浸炭焼き入れによっても十分なC量が得られず、基地が低炭素のマルテンサイトとなって強度が不十分となりピン摩耗量が増加している。一方、原料粉末への黒鉛粉末添加量が0.3質量%の試料番号31の試料は、浸炭焼き入れ後十分なC量が得られ、ピン摩耗量が低減している。このときの結合C量(全体組成中のC量)は0.7質量%である。そして、原料粉末への黒鉛粉末添加量が0.5〜1質量%の試料番号32、05、33の試料は、結合C量(全体組成中のC量)が0.8〜1質量%となり、さらにピン摩耗量が低減している。   From Table 5, the influence of the amount of graphite powder added to the raw material powder and the amount of C in the overall composition can be examined. That is, the sample of sample number 30 in which the amount of graphite powder added to the raw material powder is less than 0.3% by mass, the C amount of the sintered body is poor, so a sufficient amount of C cannot be obtained even by carburizing and quenching. The base becomes low-carbon martensite and the strength is insufficient and the amount of pin wear increases. On the other hand, the sample No. 31 in which the amount of graphite powder added to the raw material powder is 0.3% by mass has a sufficient amount of C after carburizing and quenching, and the amount of pin wear is reduced. The amount of bonded C (the amount of C in the entire composition) at this time is 0.7% by mass. And the sample numbers 32, 05, and 33 in which the amount of graphite powder added to the raw material powder is 0.5 to 1% by mass, the bonded C amount (C amount in the entire composition) is 0.8 to 1% by mass. Further, the amount of pin wear is reduced.

しかしながら、原料粉末への黒鉛粉末添加量が1質量%を超える試料番号34の試料では、結合C量(全体組成中のC量)が1質量%を超えているため、基地が硬く、かつ脆くなるとともに、相手材への攻撃性が増加して、ピン摩耗量およびディスク摩耗量ともに増加している。これらのことから、原料粉末への黒鉛粉末添加量は0.3〜1質量%とすべきであり、かつ全体組成中のC量は0.7〜1質量%とすべきことが確認された。   However, in the sample of Sample No. 34 in which the amount of graphite powder added to the raw material powder exceeds 1% by mass, the bond C amount (C amount in the entire composition) exceeds 1% by mass, so the base is hard and brittle. At the same time, the aggressiveness against the mating material has increased, and both the pin wear amount and the disk wear amount have increased. From these facts, it was confirmed that the amount of graphite powder added to the raw material powder should be 0.3 to 1% by mass, and the amount of C in the overall composition should be 0.7 to 1% by mass. .

燃料噴射ポンプのガバナ装置の一例を模式的に示す側面図である。It is a side view which shows typically an example of the governor apparatus of a fuel injection pump. 図1のガバナ装置におけるガバナウエイトの動作を示す側面図である。It is a side view which shows the operation | movement of the governor weight in the governor apparatus of FIG. 本発明のガバナウエイトを構成する焼結合金の金属組織の模式図である。It is a schematic diagram of the metal structure of the sintered alloy which comprises the governor weight of this invention.

符号の説明Explanation of symbols

1…ガバナシャフト
2…ガバナウエイトホルダ
3…ピン
4…ガバナウエイト
4a…ガバナウエイトの爪部
5…ガバナスリーブ
5a…ガバナスリーブの鍔部
6…シフタ
7…ガバナレバー
8…レバー軸
9…スプリング
10…ガバナリンク
11…コントロールラック
1 ... governor shaft 2 ... governor weight holder 3 ... pin 4 ... governor weight 4a ... governor weight claw part 5 ... governor sleeve 5a ... governor sleeve collar 6 ... shifter 7 ... governor lever 8 ... lever shaft 9 ... spring 10 ... governor Link 11 ... Control rack

Claims (4)

燃料噴射ポンプのガバナ装置に用いられるガバナウエイトであって、
全体組成が、質量比で、Ni:1〜5%、Cu:0.5〜3%、Cr:0.6〜4%、Mo:0.6〜4%、V:0.2〜1.5%、W:0.6〜4%、Si:0.02〜0.5%、C:0.7〜1%、および残部がFeと不可避不純物からなるとともに、
Niリッチのオーステナイト相が分散するマルテンサイト基地中に、Fe基合金基地中にCr,Mo,W,Vの炭化物が群状に析出分散する硬質相が20〜50質量%分散する金属組織を呈する焼結合金からなること
を特徴とするガバナウエイト。
A governor weight used in a governor device of a fuel injection pump,
The overall composition is, by mass ratio, Ni: 1 to 5%, Cu: 0.5 to 3%, Cr: 0.6 to 4%, Mo: 0.6 to 4%, V: 0.2 to 1. 5%, W: 0.6-4%, Si: 0.02-0.5%, C: 0.7-1%, and the balance consists of Fe and inevitable impurities,
In the martensite matrix in which the Ni-rich austenite phase is dispersed, a hard phase in which carbides of Cr, Mo, W, and V are precipitated and dispersed in a group form in the Fe-based alloy matrix has a metal structure dispersed in an amount of 20 to 50% by mass. A governor weight comprising a sintered alloy.
前記硬質相が、質量比で、Cr:3〜8%、Mo:3〜8%、V:1〜3%、W:3〜8%、Si:0.1〜1%を含むことを特徴とする請求項1に記載のガバナウエイト。   The hard phase contains, by mass ratio, Cr: 3-8%, Mo: 3-8%, V: 1-3%, W: 3-8%, Si: 0.1-1% The governor weight according to claim 1. 全体組成が、質量比で、Ni:2〜3%、Mn:0.1〜1%、C:0.2〜0.5%、および残部がFeと不可避不純物からなる焼結合金製のガバナスリーブと摺動することを特徴とする請求項1または2に記載のガバナウエイト。   A governor made of a sintered alloy having a total composition of Ni: 2-3%, Mn: 0.1-1%, C: 0.2-0.5%, and the balance of Fe and inevitable impurities. The governor weight according to claim 1 or 2, wherein the governor weight slides with a sleeve. 鉄粉に、
組成が、質量比で、Cr:3〜8%、Mo:3〜8%、V:1〜3%、W:3〜8%、Si:0.1〜1%、C:0.8〜1.4%、および残部がFeと不可避不純物からなる鉄合金粉末を20〜50質量%と、
ニッケル粉末を1〜5質量%と、
銅粉末を0.5〜3質量%と、
黒鉛粉末を0.3〜1質量%と
を添加し、混合して原料粉末を得、
該原料粉末を、所望の形状に圧粉成形し、次いで、得られた成形体を焼結し、次いで、得られた焼結体を浸炭焼き入れした後、焼き戻しを行うこと
を特徴とする燃料噴射ポンプのガバナ装置に用いられるガバナウエイトの製造方法。
Iron powder,
Composition is mass ratio, Cr: 3-8%, Mo: 3-8%, V: 1-3%, W: 3-8%, Si: 0.1-1%, C: 0.8- 1.4-50%, and the iron alloy powder consisting of Fe and inevitable impurities in the balance, 20-50% by mass,
1 to 5% by mass of nickel powder,
0.5-3 mass% copper powder,
Add 0.3-1 mass% of graphite powder and mix to obtain raw material powder,
The raw material powder is compacted into a desired shape, then the obtained molded body is sintered, and then the obtained sintered body is carburized and quenched, and then tempered. A governor weight manufacturing method used in a governor device of a fuel injection pump.
JP2008174734A 2008-07-03 2008-07-03 Governor weight and manufacturing method thereof Expired - Fee Related JP5171440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008174734A JP5171440B2 (en) 2008-07-03 2008-07-03 Governor weight and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008174734A JP5171440B2 (en) 2008-07-03 2008-07-03 Governor weight and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010014023A true JP2010014023A (en) 2010-01-21
JP5171440B2 JP5171440B2 (en) 2013-03-27

Family

ID=41700343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008174734A Expired - Fee Related JP5171440B2 (en) 2008-07-03 2008-07-03 Governor weight and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5171440B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1046298A (en) * 1996-08-05 1998-02-17 Hitachi Powdered Metals Co Ltd Wear resistant sintered alloy for valve seat of internal combustion engine excellent in corrosion resistance and its production
JP2000064003A (en) * 1998-08-19 2000-02-29 Hitachi Powdered Metals Co Ltd Wear resistant sintered alloy and its production
JP2003161169A (en) * 2001-11-29 2003-06-06 Yanmar Co Ltd Sliding members for fuel injection pumps
JP2003253406A (en) * 2002-03-01 2003-09-10 Jfe Steel Kk Highly wear-resistant and high strength sintered parts, and production method thereof
JP2005154796A (en) * 2003-11-21 2005-06-16 Hitachi Powdered Metals Co Ltd Wear-resistant sintered alloy and its production method
JP2008063663A (en) * 2007-09-14 2008-03-21 Komatsu Ltd Copper sintered sliding material and sintered sliding member using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1046298A (en) * 1996-08-05 1998-02-17 Hitachi Powdered Metals Co Ltd Wear resistant sintered alloy for valve seat of internal combustion engine excellent in corrosion resistance and its production
JP2000064003A (en) * 1998-08-19 2000-02-29 Hitachi Powdered Metals Co Ltd Wear resistant sintered alloy and its production
JP2003161169A (en) * 2001-11-29 2003-06-06 Yanmar Co Ltd Sliding members for fuel injection pumps
JP2003253406A (en) * 2002-03-01 2003-09-10 Jfe Steel Kk Highly wear-resistant and high strength sintered parts, and production method thereof
JP2005154796A (en) * 2003-11-21 2005-06-16 Hitachi Powdered Metals Co Ltd Wear-resistant sintered alloy and its production method
JP2008063663A (en) * 2007-09-14 2008-03-21 Komatsu Ltd Copper sintered sliding material and sintered sliding member using the same

Also Published As

Publication number Publication date
JP5171440B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
JP4183346B2 (en) Mixed powder for powder metallurgy, iron-based sintered body and method for producing the same
JP2648519B2 (en) Method of manufacturing synchronizer hub
JP4368245B2 (en) Hard particle dispersion type iron-based sintered alloy
JP5992402B2 (en) Manufacturing method of nitrided sintered component
TW201107495A (en) High strength low alloyed sintered steel
CN103031499A (en) Iron-based sintered sliding member and production method therefor
EP2778243B1 (en) Iron based sintered sliding member and method for producing the same
KR101607744B1 (en) Iron base sintered alloy for sliding member and method for manufacturing the same
CN103361576A (en) Sintered alloy for valve seat and manufacturing method of exhaust valve seat using the same
JP5100487B2 (en) Manufacturing method of sintered machine parts
CN105980590B (en) Steel alloy and the component for including such steel alloy
JP6229281B2 (en) Iron-based sintered alloy and method for producing the same
JP2004307950A (en) Iron-based sintered alloy, valve seat ring, raw material powder for producing iron-based sintered alloy and method of producing iron-based sintered alloy
JP6515955B2 (en) Method of manufacturing mixed powder for powder metallurgy and iron-based sintered body
US20180080104A1 (en) Manufacturing method of wear-resistant iron-based sintered alloy and wear-resistant iron-based sintered alloy
JP5171440B2 (en) Governor weight and manufacturing method thereof
JP6528899B2 (en) Method of manufacturing mixed powder and sintered body for powder metallurgy
JP4069506B2 (en) Alloy steel powder and mixed powder for high strength sintered parts
JPH05202451A (en) Sintered alloy for valve seat
JP2005330573A (en) Alloy steel powder for powder metallurgy
JP4702803B2 (en) Manufacturing method of sintered machine parts
JP4005189B2 (en) High strength sintered steel and method for producing the same
JPH0959740A (en) Powder mixture for powder metallurgy and its sintered compact
JP5253132B2 (en) Wear-resistant sintered alloy and method for producing the same
JP6627856B2 (en) Method for producing powder mixture for powder metallurgy and sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121225

R150 Certificate of patent or registration of utility model

Ref document number: 5171440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

LAPS Cancellation because of no payment of annual fees