JPH1046298A - Wear resistant sintered alloy for valve seat of internal combustion engine excellent in corrosion resistance and its production - Google Patents

Wear resistant sintered alloy for valve seat of internal combustion engine excellent in corrosion resistance and its production

Info

Publication number
JPH1046298A
JPH1046298A JP22076896A JP22076896A JPH1046298A JP H1046298 A JPH1046298 A JP H1046298A JP 22076896 A JP22076896 A JP 22076896A JP 22076896 A JP22076896 A JP 22076896A JP H1046298 A JPH1046298 A JP H1046298A
Authority
JP
Japan
Prior art keywords
wear
alloy
powder
corrosion resistance
valve seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22076896A
Other languages
Japanese (ja)
Other versions
JP3354401B2 (en
Inventor
Koichi Aonuma
浩一 青沼
Norimasa Aoki
徳眞 青木
Hiroshi Ishii
啓 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP22076896A priority Critical patent/JP3354401B2/en
Publication of JPH1046298A publication Critical patent/JPH1046298A/en
Application granted granted Critical
Publication of JP3354401B2 publication Critical patent/JP3354401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a valve seat material for an internal combustion engine having corrosion resistance to scavenger and lead compounds and suitable wear resistance and more inexpensive than the conventional one. SOLUTION: This wear resistant sintered alloy is the one in which the compsn. of the whole body is composed of, by weight, 2.75 to 5.79% W, 1.58 to 13.5% Ni, 0.75 to 7.0% Cr, 0.21 to 2.2% No, 0.015 to 0.3% Si, 0.55 to 2.0% C, and the balance Fe with inevitable impurities. Then, its metallic structure shows the structure composed of (1) to (3) of (1) baintic phases or mixed phases of bainite and sorbite, (2) austenitic phases or mixed phases of austenite and ferrite having the nuclei of hard phase mainly composed of Cr carbides and high in the concns. of Ni and Cr surrounding the nuclei and (3) martensitic phases furthermore surrounding the environs of (2), and on which fine W carbides are uniformly dispersed into the matrix excepting the hard phases.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、特に、内燃機関のバル
ブシートに好適な耐摩耗性焼結合金およびその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wear-resistant sintered alloy particularly suitable for a valve seat of an internal combustion engine and a method for producing the same.

【0002】[0002]

【従来の技術】自動車エンジンの高性能化、高出力化に
対応するためバルブシート用焼結合金は高温耐摩耗性、
高温強度を求められ、本出願人も特許第1043124
号で登録された製法によるバルブシート用焼結合金等を
提供してきた。さらに、近年のより一層の高性能化、高
出力化、特に、希薄燃焼化による燃焼温度の高温化に対
応し、より高温耐摩耗性、高温強度に優れた特開昭62
−10244号や特開平7−233454号等に開示さ
れた焼結合金を開発してきた。しかし、これらの材料は
高温時の性能を向上させるため、基材成分中にCo等の
高価な元素を多用したため高価な材料となっている。
2. Description of the Related Art Sintered alloys for valve seats are required to have high-temperature abrasion resistance in order to cope with higher performance and higher output of automobile engines.
High temperature strength is required, and the present applicant has patent No. 1043124.
Has provided sintered alloys for valve seats, etc., by the manufacturing method registered under No. Furthermore, in response to higher performance and higher output in recent years, and especially to higher combustion temperatures due to lean burn, Japanese Patent Application Laid-Open No.
-10244, JP-A-7-233454, and the like. However, these materials are expensive materials because expensive elements such as Co are frequently used in the base material components in order to improve the performance at high temperatures.

【0003】また、高温環境下の高性能内燃機関で有鉛
ガソリンを対象とした地区では酸化鉛のみならず、有鉛
ガソリン中に含まれる掃鉛剤(鉛成分を排気ガス中に効
果的に排出することを助ける成分および硫酸鉛、臭化
鉛、塩化鉛等の鉛化合物)のバルブおよびバルブシート
への付着による腐食摩耗が生じ、極端な耐久性の低下を
示す傾向が見られ、掃鉛剤や鉛化合物に対する耐食性も
求められている。
[0003] In areas where high-performance internal combustion engines are used for leaded gasoline in high-temperature environments, not only lead oxide, but also lead scavengers contained in leaded gasoline (lead components can be effectively contained in exhaust gas). Adhesion of components that help discharge and lead compounds such as lead sulfate, lead bromide, and lead chloride) to valves and valve seats causes corrosion and abrasion, which tends to show an extreme decrease in durability. Corrosion resistance to chemicals and lead compounds is also required.

【0004】[0004]

【発明が解決しようとする課題】しかし、最近では、エ
ンジン設計技術の向上により特開昭62−10244号
や特開平7−233454号等に開示された材料等の如
く高性能かつ高価な材料でなくてもバルブシートとして
使用できるようになっている。特に、インテーク側のバ
ルブシートは環境温度がエギゾースト側よりも低いた
め、特開昭62−10244号や特開平7−23345
4号等に開示された材料等では品質過剰となっている。
また、最近の自動車開発は、より一層の高性能化を目指
す性能重視の自動車開発から、コストパフォーマンスの
高い、安価な自動車を開発する経済性重視の方向に変化
している。したがって、これからのバルブシート用焼結
合金としては、従来の過度の耐摩耗性を有するものでは
なく、適度な耐摩耗性を有し、かつ、安価であることが
求められるようになってきている。
However, recently, due to improvements in engine design technology, high-performance and expensive materials such as those disclosed in Japanese Patent Application Laid-Open Nos. 62-10244 and 7-233454 have been developed. Even without it, it can be used as a valve seat. In particular, since the ambient temperature of the valve seat on the intake side is lower than that of the exhaust side, Japanese Patent Application Laid-Open Nos. 62-10244 and 7-23345.
The materials disclosed in No. 4 and the like have excessive quality.
In recent years, automobile development has shifted from performance-oriented automobile development aiming at even higher performance to economic emphasis of developing cost-effective and inexpensive automobiles. Therefore, as a sintered alloy for valve seats in the future, it is required not to have the conventional excessive wear resistance, but to have appropriate wear resistance and to be inexpensive. .

【0005】また、内燃機関の燃料事情別にバルブシー
トの材料を使い分けることは生産ラインを煩雑にし、コ
ストアップの原因になるため、現在の自動車の国際商品
の性格上、仕向け地毎に異なる諸条件に対しても広範囲
に対応できるバルブシート材料が望まれる。
[0005] In addition, the use of different materials for the valve seat according to the fuel conditions of the internal combustion engine complicates the production line and causes an increase in cost. Therefore, due to the characteristics of current international automobile products, various conditions differ depending on the destination. Therefore, a valve seat material that can cope with a wide range is desired.

【0006】本発明は、上記の問題点を解決すべく、掃
鉛剤、鉛化合物への耐食性、適当な耐摩耗性を有し、従
来より安価な内燃機関用バルブシート用焼結合金および
その製造方法を提供することを目的としている。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a sintered alloy for a valve seat for an internal combustion engine, which has a corrosion resistance to a lead scavenger and a lead compound, a suitable abrasion resistance, and is less expensive than a conventional one. It is intended to provide a manufacturing method.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
本発明の内、第1発明の耐摩耗性焼結合金は、全体組成
が、重量比で、W:2.75〜5.79%、Ni:1.
58〜13.5%、Cr:0.75〜7.0%、Mo:
0.21〜2.2%、Si:0.015〜0.3%、
C:0.55〜2.0%、および残部Feおよび不可避
不純物からなり、その金属組織が、図1に示す金属組織
の模式図の如く、 ベイナイト相もしくはベイナイト
とソルバイトの混合相と、 主としてCr炭化物より
なる硬質相の核を有し、その核を取り囲むNi、Cr濃
度の高いオーステナイト相もしくはオーステナイトとフ
ェライトの混合相と、 前記の周囲をさらに取り囲
むマルテンサイト相、の上記〜からなると共に、微
細なW炭化物が上記硬質相をのぞく基地中に均一に分散
する組織を呈している。第2発明の焼結合金は、上記第
1発明合金に、さらに、重量比で、V:2.12%以下
を含み、微細なV炭化物が硬質相をのぞく基地中に、さ
らに、均一に分散する組織を呈している。具体的には、
重量比で、W:2.75〜5.79%、V:2.123
%以下、Ni:1.58〜13.5%、Cr:0.75
〜7.0%、Mo:0.21〜2.2%、Si:0.0
15〜0.3%、C:0.55〜2.0%、および残部
Feおよび不可避不純物からなり、その金属組織が、図
1の模式図の如く、 ベイナイト相もしくはベイナイ
トとソルバイトの混合相と、 主としてCr炭化物よ
りなる硬質相の核を有し、その核を取り囲むNi、Cr
濃度の高いオーステナイト相もしくはオーステナイトと
フェライトの混合相、 前記の周囲をさらに取り囲
むマルテンサイト相、の上記〜からなると共に、微
細なW炭化物およびV炭化物が上記硬質相をのぞく基地
中に均一に分散する組織を呈している。
Means for Solving the Problems In order to achieve the above object, among the present invention, the wear-resistant sintered alloy of the first invention has a total composition of W: 2.75 to 5.79% by weight. , Ni: 1.
58-13.5%, Cr: 0.75-7.0%, Mo:
0.21-2.2%, Si: 0.015-0.3%,
C: 0.55 to 2.0%, the balance being Fe and unavoidable impurities, and its metal structure is, as shown in the schematic diagram of the metal structure shown in FIG. 1, a bainite phase or a mixed phase of bainite and sorbite; It has a hard phase nucleus made of carbide, Ni, which surrounds the nucleus, an austenitic phase having a high Cr concentration or a mixed phase of austenite and ferrite, and a martensite phase which further surrounds the periphery, and a fine phase. The structure shows that the W carbides are uniformly dispersed in the matrix except for the hard phase. The sintered alloy of the second invention further contains V: 2.12% or less by weight in the first invention alloy, and fine V carbides are more uniformly dispersed in the matrix excluding the hard phase. Presenting organization. In particular,
By weight ratio, W: 2.75 to 5.79%, V: 2.123
% Or less, Ni: 1.58 to 13.5%, Cr: 0.75
To 7.0%, Mo: 0.21 to 2.2%, Si: 0.0
15 to 0.3%, C: 0.55 to 2.0%, and the balance being Fe and unavoidable impurities, the metal structure of which is a bainite phase or a mixed phase of bainite and sorbite as shown in the schematic diagram of FIG. Ni, Cr having a hard phase nucleus mainly composed of Cr carbide and surrounding the nucleus
A high-concentration austenite phase or a mixed phase of austenite and ferrite, and the above-mentioned martensite phase further surrounding the periphery, and fine W carbide and V carbide are uniformly dispersed in the matrix except for the hard phase. Presenting organization.

【0008】第3発明の焼結合金は、上記第1もしくは
第2発明の全体組成中に、さらに、重量比で、Mn:
0.762%以下およびS:0.438%以下を含み、
前記硬質相をのぞく基地中に、1.2%以下のMnS粒
子が分散している組織を呈する。第4発明の焼結合金
は、上記第1もしくは第2発明の耐摩耗性焼結合金にお
いて、前記焼結合金の気孔中に、アクリル樹脂、鉛また
は鉛合金、銅または銅合金の何れかが分散している。
The sintered alloy according to the third aspect of the present invention further comprises Mn:
0.762% or less and S: 0.438% or less,
A structure in which 1.2% or less of MnS particles are dispersed in the matrix excluding the hard phase. A sintered alloy according to a fourth aspect of the present invention is the wear-resistant sintered alloy according to the first or second aspect, wherein any of acrylic resin, lead or a lead alloy, copper or a copper alloy is contained in pores of the sintered alloy. Distributed.

【0009】また、上記第1発明の焼結合金の製造方法
としては、重量比で、W:3.5〜6.0%、および残
部Feおよび不可避不純物からなるFe基合金粉末に、
Cr:25〜35%、Mo:7〜11%、Si:0.5
〜1.5%、C:1.5〜3.0%、および残部Niお
よび不可避不純物よりなるNi基合金粉末:3〜20
%、および黒鉛粉末:0.5〜1.4%を配合した混合
粉末を用いることを要部としている。上記第2発明の焼
結合金の製造方法としては、上記第1発明の製造方法に
おけるFe基合金粉末中に、さらに、重量比で、V:
2.2%以下を含むことを要部としている。
The method for producing a sintered alloy according to the first aspect of the present invention is described as follows: W: 3.5 to 6.0% by weight, and Fe-based alloy powder comprising the balance of Fe and unavoidable impurities.
Cr: 25 to 35%, Mo: 7 to 11%, Si: 0.5
-1.5%, C: 1.5-3.0%, and Ni-based alloy powder consisting of the balance Ni and unavoidable impurities: 3-20
% And a graphite powder: 0.5 to 1.4%. As a method for producing the sintered alloy of the second invention, the Fe-based alloy powder in the production method of the first invention may further contain V:
The main part is to include 2.2% or less.

【0010】上記第3発明の焼結合金の製造方法として
は、上記第1もしくは第2発明の製造方法におけるFe
基合金粉末中に、さらに、重量比で、Mn:0.790
%以下、S:0.454%以下を含むことを要部として
いる。また、上記第3発明の焼結合金の他の製造方法と
しては、上記第1もしくは第2発明の製造方法における
混合粉末中に、さらに、重量比で1.2%以下のMnS
粉末を添加することを要部としている。上記第4発明の
焼結合金の製造方法としては、上記第1〜3発明の製造
方法における混合粉末を用いて成形し、焼結した焼結体
の気孔中に、アクリル樹脂、鉛または鉛合金、もしくは
銅または銅合金の何れかを含浸もしくは溶浸することを
要部としている。
The method for producing the sintered alloy according to the third aspect of the present invention includes the Fe method according to the first or second aspect of the present invention.
In the base alloy powder, Mn: 0.790 by weight ratio
%, And S: 0.454% or less. Further, as another method for producing the sintered alloy of the third invention, the mixed powder in the production method of the first or second invention further comprises MnS having a weight ratio of 1.2% or less.
The main part is to add powder. As a method for producing the sintered alloy according to the fourth invention, an acrylic resin, lead or a lead alloy is formed in the pores of a sintered body molded and sintered using the mixed powder according to the production method according to the first to third inventions. Or infiltrating or infiltrating any of copper or a copper alloy.

【0011】[0011]

【発明の実施の形態】以下に本発明の金属組織および各
成分について説明する。まず、耐食性を考えた場合、ス
テンレス鋼等のように耐食成分を多量に含有させること
が有効ではあるが、粉末の圧縮性を考えた場合、高合金
化は粉末が硬くなるため悪化し、そのため、機械的特性
および耐摩耗性が低下する。一方、合金成分を単味粉で
添加した場合、圧縮性の低下は生じないが、合金元素の
拡散が不均一となり耐食性の弱い部分から腐食が進行す
ることとなり、有効ではない。さらに、高合金化は経済
性の面においても好ましくない。そこで、本発明では少
量の合金成分で、有鉛ガソリン中の掃鉛剤成分に対する
耐食性を得るため、Fe−WまたはFe−W−VのFe
基合金粉末をベースとして採用した。同時に、WやV
は、優れた炭化物生成元素であるため、これらの微細な
炭化物を基地中に分散することで、基地の耐摩耗性の向
上を図るようにした。
BEST MODE FOR CARRYING OUT THE INVENTION The metal structure and each component of the present invention will be described below. First, when considering corrosion resistance, it is effective to contain a large amount of corrosion-resistant components such as stainless steel.However, when considering the compressibility of powder, high alloying deteriorates because the powder becomes harder. , Mechanical properties and wear resistance are reduced. On the other hand, when the alloy component is added as a simple powder, the compressibility does not decrease, but the diffusion of the alloy element becomes non-uniform, and corrosion proceeds from a portion having low corrosion resistance, which is not effective. Further, high alloying is not preferable in terms of economy. Therefore, in the present invention, in order to obtain the corrosion resistance to the scavenger component in the leaded gasoline with a small amount of the alloy component, Fe-W or Fe-W-V
A base alloy powder was used as a base. At the same time, W and V
Is an excellent carbide-generating element, so that these fine carbides are dispersed in the matrix to improve the wear resistance of the matrix.

【0012】(Fe基合金粉末)以上の混合組織を得る
場合、Fe基合金粉末中に固溶されて与えられるWは、
添加された黒鉛と反応し基地中にW炭化物を形成する。
形成された炭化物は基地中に微細かつ均一に分散してい
るため基地の耐摩耗性向上に寄与する。また、炭化物を
形成しなかったWは基地中に拡散し、有鉛ガソリン中に
存在する掃鉛剤成分(H2SO4、HCl)に対する耐食
性を向上させる。このとき、W量が3.5%以下である
とほとんどが基地中に固溶し、炭化物が析出せず、耐摩
耗性が低下する。また、6.0%を超えると、Fe基合
金粉末が硬くなり、圧縮性、流動度等の粉末特性に悪影
響を及ぼし、ひいては機械的強度および耐摩耗性の低下
を生じる。このため、本発明(第5,第6発明)ではF
e基合金粉末中のW量を3.5〜6.0%に限定した。
When a mixed structure of (Fe-based alloy powder) or more is obtained, W given as a solid solution in the Fe-based alloy powder is:
Reacts with added graphite to form W carbide in the matrix.
Since the formed carbide is finely and uniformly dispersed in the matrix, it contributes to improving the wear resistance of the matrix. In addition, W that does not form carbides diffuses into the base and improves the corrosion resistance to the lead-cleaning components (H2SO4, HCl) present in the leaded gasoline. At this time, if the W content is 3.5% or less, most of the solid solution forms in the matrix, carbides do not precipitate, and the wear resistance decreases. On the other hand, if the content exceeds 6.0%, the Fe-based alloy powder becomes hard, adversely affecting the powder properties such as compressibility and fluidity, and eventually lowers the mechanical strength and wear resistance. Therefore, in the present invention (the fifth and sixth inventions), F
The amount of W in the e-base alloy powder was limited to 3.5 to 6.0%.

【0013】また、Vは、Wと共にFe基合金粉末中に
固溶されて与えられ、添加された黒鉛と反応し基地中に
V炭化物を形成する。形成されたV炭化物は基地中に分
散して基地の耐摩耗性向上に寄与する。また、炭化物を
形成しなかったVは基地中に拡散し、有鉛ガソリン中に
存在する掃鉛剤成分(H2SO4、HCl)に対する耐食
性を向上させる。このとき、V量が2.2%を超える
と、Fe基合金粉末が硬くなり、圧縮性、流動度等の粉
末特性に悪影響を及ぼし、ひいては機械的強度および耐
摩耗性の低下を生じる。このため、本発明(第6発明)
ではFe基合金粉末中のV量を2.2%以下に限定し
た。
V is provided as a solid solution together with W in an Fe-based alloy powder, and reacts with the added graphite to form V carbide in the matrix. The formed V carbide is dispersed in the matrix and contributes to improving the wear resistance of the matrix. In addition, V that does not form carbides diffuses into the base and improves the corrosion resistance to the lead-cleaning components (H2SO4, HCl) present in the leaded gasoline. At this time, if the V content exceeds 2.2%, the Fe-based alloy powder becomes hard, which has an adverse effect on powder characteristics such as compressibility and fluidity, resulting in a decrease in mechanical strength and wear resistance. Therefore, the present invention (sixth invention)
In this example, the V content in the Fe-based alloy powder was limited to 2.2% or less.

【0014】以上のFe−WまたはFe−W−VのFe
基合金粉末に、0.1〜1%のCを含有させると、Fe
基合金粉末中のWまたはVが炭化物を形成し、粉末の基
地中の合金成分量が低下し粉末の圧縮性が向上するので
好ましい。なお、Fe基合金粉末中のC量が0.1%に
満たないとFe合金粉末中に形成される炭化物の量が乏
しく、圧縮性の向上に寄与せず、1%を超えると形成さ
れる炭化物の量が多くなりすぎかえって圧縮性を損な
う。
The above Fe-W or Fe-WV Fe
When the base alloy powder contains 0.1 to 1% of C, Fe
It is preferable because W or V in the base alloy powder forms a carbide, the amount of alloy components in the matrix of the powder decreases, and the compressibility of the powder improves. If the amount of C in the Fe-based alloy powder is less than 0.1%, the amount of carbide formed in the Fe alloy powder is small, and does not contribute to the improvement of the compressibility, and is formed if it exceeds 1%. The amount of carbides becomes too large, which impairs the compressibility.

【0015】(Ni基合金粉末)耐食性を確保した上で
耐摩耗性を向上させるため、掃鉛剤成分に対する耐食性
を有するNiを基とし、硬質な炭化物を形成するCr、
Moを含有するNi基合金粉末を硬質相形成のため添加
した。すなわち、Cr炭化物、Mo炭化物、Cr−Mo
共晶炭化物等よりなる硬質相は、ピン留め効果でバルブ
が着座したときに発生する基地の塑性流動を抑制する働
きを示す。また、Ni基合金粉末のNi、Crは前記F
e基合金粉末に拡散し、基地の焼入れ性を向上させ、マ
ルテンサイト化させて耐摩耗性を向上させると共に、硬
質相の周囲のNi、Crの濃度の高い部分は、軟質な、
白色のオーステナイトまたはオーステナイトとフェライ
トの混合相を形成し、バルブ着座時の衝撃を緩和すると
共に、硬質相の脱落を防ぐ効果がある。
(Ni-based alloy powder) In order to improve the abrasion resistance while securing the corrosion resistance, Cr, which forms a hard carbide based on Ni, which has a corrosion resistance to a lead-cleaning agent component,
A Ni-based alloy powder containing Mo was added to form a hard phase. That is, Cr carbide, Mo carbide, Cr-Mo
The hard phase made of eutectic carbide or the like has a function of suppressing the plastic flow of the matrix generated when the valve is seated by the pinning effect. Further, Ni and Cr of the Ni-based alloy powder are
It diffuses into the e-base alloy powder, improves the hardenability of the matrix, converts it to martensite, and improves the wear resistance. At the same time, the high concentration of Ni and Cr around the hard phase is soft,
It forms white austenite or a mixed phase of austenite and ferrite, has an effect of alleviating the impact when the valve is seated and preventing the hard phase from falling off.

【0016】Ni基合金粉末の添加量が3%以下では耐
摩耗性向上に寄与せず、20%を超えると圧縮性が低下
して機械的特性が低下すると共に、硬質相の量が多くな
り、バルブに対する攻撃性が増加してバルブを摩耗させ
る。このため、本発明ではNi基合金粉末の添加量を3
〜20%に限定した。
If the amount of the Ni-based alloy powder is less than 3%, it does not contribute to the improvement of the wear resistance. If it exceeds 20%, the compressibility is reduced, the mechanical properties are reduced, and the amount of the hard phase is increased. This increases the aggressiveness of the valve, causing the valve to wear. Therefore, in the present invention, the addition amount of the Ni-based alloy powder is set to 3
Limited to ~ 20%.

【0017】また、Ni基合金粉末中に固溶して与えら
れるCrは、Ni基合金粉末中のCと反応し、硬く耐摩
耗性に優れたCr炭化物および後述するMoとの共晶炭
化物を形成する。また、基地に拡散することで基地の焼
入れ性を改善し、基地組織をマルテンサイト化して耐摩
耗性を向上させると共に、Cr濃度の高い硬質相の周囲
にオーステナイトまたはオーステナイトとフェライトの
混合相を形成し、バルブ着座時の衝撃を緩和すると共
に、硬質相の脱落を防止する。このとき、Cr量が25
%未満であると充分な炭化物を得られず、また35%を
超えると炭化物の量が多くなり相手攻撃性が高くなりバ
ルブを摩耗させる。このため、本発明ではNi基合金粉
末中のCr量を25〜35%に限定した。
Cr provided as a solid solution in the Ni-based alloy powder reacts with C in the Ni-based alloy powder to form a hard and wear-resistant Cr carbide and a eutectic carbide with Mo described later. Form. It also improves the hardenability of the matrix by diffusing it into the matrix, transforms the matrix structure into martensite, improves wear resistance, and forms austenite or a mixed phase of austenite and ferrite around the hard phase with a high Cr concentration. In addition, the shock when the valve is seated is reduced, and the hard phase is prevented from falling off. At this time, the amount of Cr is 25
If it is less than 35%, sufficient carbides cannot be obtained, and if it exceeds 35%, the amount of carbides increases and the aggressiveness of the partner increases, causing the valve to wear. Therefore, in the present invention, the amount of Cr in the Ni-based alloy powder is limited to 25 to 35%.

【0018】また、Ni基合金粉末中に固溶して与えら
れるMoは、Ni基合金粉末中のCと反応し、硬く耐摩
耗性に優れたMo炭化物およびCrとの共晶炭化物を形
成する。このとき、Mo量が7%未満であると充分な炭
化物が得られないため耐摩耗性に寄与せず、また11%
を超えると炭化物の量が多くなり相手攻撃性が高くなり
バルブを摩耗させる。このため、本発明ではNi基合金
粉末中のMo量を7〜11%に限定した。
Mo, which is provided as a solid solution in the Ni-based alloy powder, reacts with C in the Ni-based alloy powder to form a hard carbide having excellent wear resistance and a eutectic carbide with Cr. . At this time, if the Mo content is less than 7%, a sufficient carbide cannot be obtained, so that it does not contribute to the wear resistance.
If it exceeds, the amount of carbides increases and the aggressiveness of the partner increases, causing the valve to wear. Therefore, in the present invention, the amount of Mo in the Ni-based alloy powder is limited to 7 to 11%.

【0019】SiもNi基合金粉末中に固溶して与えら
れ、脱酸剤として作用し、Ni基合金粉末とFe基合金
粉末の固着性を高める効果がある。ただし、Ni基合金
粉末中のSi量が0.5%以下であると、脱酸効果が不
十分で粉末の固着性を改善するには至らず、1.5%を
超えるとそれ以上の脱酸効果が望めず、Ni基合金粉末
自体が硬くなるため圧縮性が低下し、機械的強度、耐摩
耗性の低下の原因となる。このため、本発明ではNi基
合金粉末中のSi量を0.5〜1.5%とした。
Si is also provided as a solid solution in the Ni-based alloy powder, acts as a deoxidizing agent, and has the effect of increasing the adhesion between the Ni-based alloy powder and the Fe-based alloy powder. However, if the amount of Si in the Ni-based alloy powder is 0.5% or less, the deoxidizing effect is insufficient to improve the fixability of the powder. The acid effect cannot be expected, and the Ni-based alloy powder itself is hardened, so that the compressibility is reduced, which causes a decrease in mechanical strength and wear resistance. Therefore, in the present invention, the amount of Si in the Ni-based alloy powder is set to 0.5 to 1.5%.

【0020】なお、Ni基合金粉末に、Fe基合金粉末
に拡散しやすいCあるいはFeを少量含有させること
で、両粉末の固着性を向上させることも可能である。C
は、Ni基合金粉末中に固溶され、Cr、Moと反応し
て硬質な炭化物を形成することによる耐摩耗性向上のた
めに与えられる。また、Cは黒鉛粉末として与えられ、
基地中のW、V炭化物の析出および基地のマルテンサイ
ト化、ベイナイト化の基地強化に寄与する。Ni基合金
粉末中に固溶されて与えられるC量は、1.5%未満で
あると析出する炭化物の量が少なくなり、耐摩耗性向上
の効果が乏しく、一方、3.0%を超えると析出する炭
化物の量が多くなりすぎ、バルブ攻撃性が高まるほか、
粉末が硬くなるため圧縮性が低下し、成形体密度が低下
する結果、強度が低下する。このため、本発明ではNi
基合金粉末中のC量を、1.5〜3.0%にした。
It is also possible to improve the adhesion of both powders by adding a small amount of C or Fe, which easily diffuses into the Fe-based alloy powder, to the Ni-based alloy powder. C
Is provided in order to improve wear resistance by forming a hard carbide by reacting with Cr and Mo in a solid solution in a Ni-based alloy powder. Also, C is given as graphite powder,
It contributes to the precipitation of W and V carbides in the base, the formation of martensite in the base, and the strengthening of the base into bainite. If the amount of C provided as a solid solution in the Ni-based alloy powder is less than 1.5%, the amount of carbides precipitated will be small, and the effect of improving wear resistance will be poor, while exceeding 3.0%. And the amount of carbide that precipitates is too large, which increases valve attack,
Since the powder becomes hard, the compressibility is reduced, and the density of the compact is reduced. As a result, the strength is reduced. For this reason, in the present invention, Ni
The amount of C in the base alloy powder was set to 1.5 to 3.0%.

【0021】(黒鉛粉末)黒鉛粉末として添加されるC
量が0.5%未満であると、W、V炭化物の析出量が少
なくなると共に、基地中に固溶されるC量が少なく、基
地の強化および耐摩耗性の向上に寄与せず、一方、1.
4%を超えると、基地中にCが過飽和に固溶され、靱性
の低下および被削性の低下が生じると共に、焼結時に液
相が発生しやすくなり、寸法制度が損なわれる。このた
め、本発明では黒鉛粉末として添加するC量を0.5〜
1.4%とした。
(Graphite powder) C added as graphite powder
If the amount is less than 0.5%, the amount of precipitation of W and V carbides will be small, and the amount of C dissolved in the matrix will be small, and will not contribute to strengthening of the matrix and improvement of wear resistance. 1.
If it exceeds 4%, C is supersaturated in the matrix to form a solid solution, resulting in a decrease in toughness and machinability, and a liquid phase is likely to be generated during sintering, which impairs the dimensional accuracy. For this reason, in the present invention, the amount of C added as graphite powder is 0.5 to
It was set to 1.4%.

【0022】(MnS粒子またはMn,S)以上の焼結
合金において、被削性改善を望む場合には、第3発明の
如くMnS粒子を組織中に均一かつ微細に分散させるこ
とが効果的である。すなわち、MnS粒子はチップブレ
ーカー作用を持つため被削性向上に効果があると共に、
加工時に工具刃面に付着して刃先を保護し、工具の寿命
を向上させる。MnS粒子を基地中に分散させる方法と
しては、MnS粉末を配合する方法が簡便であり、有効
である。ただし、MnS粉は焼結を阻害するため、Fe
基合金粉末粉末中にMnとSの状態で添加し、焼結時に
反応させ基地中に微細に分散させることがより好まし
い。基地中に分散するMnS粒子の量は、MnS粉添加
による場合も、Fe基合金粉末中に固溶して反応生成さ
せる場合も、何れも1.2%を超えると機械的性質およ
び耐摩耗性が低下するため、MnS粉添加の場合、Mn
S粉の添加量の上限を1.2%、Fe基合金粉末の形で
与える場合、Fe基合金粉末中のMnおよびSの量をM
n:0.76%以下、S:0.44%以下とした。
When it is desired to improve the machinability of the sintered alloy of (MnS particles or Mn, S) or more, it is effective to disperse the MnS particles uniformly and finely in the structure as in the third invention. is there. That is, since the MnS particles have a chip breaker function, they are effective in improving machinability,
At the time of machining, it adheres to the tool blade surface to protect the cutting edge and prolong tool life. As a method of dispersing the MnS particles in the matrix, a method of blending MnS powder is simple and effective. However, since MnS powder inhibits sintering, Fe
It is more preferable that Mn and S are added to the base alloy powder in a state of being reacted during sintering and finely dispersed in the matrix. When the amount of MnS particles dispersed in the matrix is more than 1.2% in both cases of adding MnS powder and forming a solid solution in Fe-based alloy powder to form a reaction, mechanical properties and wear resistance are exceeded. Is reduced, MnS powder addition, MnS
When the upper limit of the amount of S powder to be added is given as 1.2% in the form of an Fe-based alloy powder, the amounts of Mn and S in the Fe-based alloy powder are set to M
n: 0.76% or less, S: 0.44% or less.

【0023】(アクリル樹脂等)以上の焼結合金におい
て、被削性を向上させる場合は、焼結体の気孔中にアク
リル樹脂、鉛または鉛合金、銅または銅合金を含浸ある
いは溶浸することが効果的である。アクリル樹脂、鉛ま
たは鉛合金、銅または銅合金が気孔中に存在させると、
切削時の切削形態が断続切削から連続切削になり、工具
に与える衝撃を減少させて工具刃先の損傷を防止し、被
削性を向上させることができる。また、鉛または鉛合
金、銅または銅合金は軟質であるため、工具刃面に付着
して工具の刃先を保護し、被削性および工具の寿命を向
上させると共に、使用時にバルブシートとバルブフェイ
ス面の間で固体潤滑剤として作用し、双方の摩耗を減少
させる働きがある。しかも、銅または銅合金は熱伝導率
が高く、切削時に刃先で発生する熱を外部へ逃がし、刃
先部の熱のこもりを防止して刃先部のダメージを軽減す
る効果がある。
(Acrylic resin, etc.) In order to improve machinability in the above sintered alloy, impregnation or infiltration of acrylic resin, lead or lead alloy, copper or copper alloy into pores of the sintered body is required. Is effective. When acrylic resin, lead or lead alloy, copper or copper alloy is present in the pores,
The cutting mode at the time of cutting is changed from intermittent cutting to continuous cutting, the impact given to the tool is reduced, the damage to the tool edge can be prevented, and the machinability can be improved. In addition, since lead or lead alloys, copper or copper alloys are soft, they adhere to the tool blade surface to protect the cutting edge of the tool, improve machinability and tool life, and when used, use the valve seat and valve face. It acts as a solid lubricant between the surfaces and serves to reduce wear on both sides. In addition, copper or a copper alloy has a high thermal conductivity, has the effect of releasing heat generated at the cutting edge during cutting to the outside, preventing heat buildup at the cutting edge, and reducing damage to the cutting edge.

【0024】[0024]

【実施例】以下、本発明を実施例によってさらに説明す
る。実施例では、表1に示す成分組成からなるFe基合
金粉末(粉末番号1〜21)を用いると共に、硬質層形
成粉末、黒鉛粉末、MnS粉末および成形潤滑剤(ステ
アリン酸亜鉛)を用いて、表2に列記した割合で配合
し、その各配合物を30分間混合した後、成形圧6.5
ton/cm2で成形した。
The present invention will be further described below with reference to examples. In Examples, Fe-based alloy powders (powder numbers 1 to 21) having the component compositions shown in Table 1 were used, and hard layer forming powders, graphite powders, MnS powders, and molding lubricants (zinc stearate) were used. After blending at the ratios listed in Table 2 and mixing the blends for 30 minutes, the molding pressure was 6.5.
It was molded at ton / cm2.

【0025】そして、以上の各成形体をアンモニア分解
ガス雰囲気中1175℃で60分間焼結することによ
り、表3の本発明合金1〜29(試料番号1〜29)
と、何れかの成分が本発明から外れた比較合金1〜12
(試料番号1〜12まで)を得た。
The above compacts were sintered in an ammonia decomposition gas atmosphere at 1175 ° C. for 60 minutes to obtain alloys 1 to 29 of the present invention shown in Table 3 (sample numbers 1 to 29).
And any of the comparative alloys 1 to 12 in which any component deviates from the present invention.
(Sample numbers 1 to 12) were obtained.

【0026】なお、本発明合金18〜20は、焼結後、
さらに気孔中にアクリル樹脂、Pb、Cuの含浸または
溶浸を施した。また、表2,3の比較合金13は従来合
金として特許第1043124号に記載のバルブシート
用従来合金である。
It should be noted that the alloys 18 to 20 of the present invention, after sintering,
Further, the pores were impregnated or infiltrated with acrylic resin, Pb, and Cu. Comparative alloy 13 in Tables 2 and 3 is a conventional alloy for valve seats described in Japanese Patent No. 1043124 as a conventional alloy.

【0027】使用したFe基合金粉末の成分組成Composition of Fe-based alloy powder used

【表1】 [Table 1]

【0028】本発明合金(1〜29)と比較合金(1〜
13)の配合比
The alloy (1 to 29) of the present invention and the comparative alloy (1 to 29)
13) Compounding ratio

【表2】 [Table 2]

【0029】本発明合金(1〜29)と比較合金(1〜
13)の全体組成
The alloys of the present invention (1-29) and the comparative alloys (1-29)
13) Overall composition

【表3】 [Table 3]

【0030】以上の焼結合金に対して見掛け硬さ試験、
圧環強さ試験、被削性試験、耐摩耗性試験および耐食性
を行った。その結果を表4に一覧表示した。なお、被削
性試験は卓上ボール盤を使用し、回転部自重および追加
の重りのみの荷重で、ドリルで試料に穴をあけ、その加
工数を比較する試験であり、今回の試験では荷重は1.
8kg、使用ドリルはφ3mm超硬ドリル、試料の厚さ
を5mmに設定した。
An apparent hardness test was performed on the above sintered alloy,
A radial crushing strength test, a machinability test, a wear resistance test, and a corrosion resistance were performed. The results are listed in Table 4. The machinability test uses a tabletop drilling machine, drills holes in the sample with the load of the rotating part's own weight and only the additional weight, and compares the number of processed holes. In this test, the load was 1 .
8 kg, the drill used was a φ3 mm carbide drill, and the thickness of the sample was set to 5 mm.

【0031】耐摩耗性試験は、アルミ合金製ハウジング
にバルブシート形状に加工した焼結合金を圧入嵌合し、
バルブをモータ駆動による偏心カムの回転で上下ピスト
ン運動させることにより、バルブフェースとシート面を
繰り返し衝突させ、これを一定時間行い、そのときに発
生するバルブシートとバルブフェース面の摩耗量を測定
することで評価を行った。試験時にはバルブの傘をバー
ナーで加熱することにより温度を制御する。なお、今回
の試験では偏心カムの回転数を3000rpm、バルブ
シート部分の試験温度を250℃、繰り返し時間を10
時間に設定した。耐食性はPb化合物の混合粉を腐食剤
として使用し、この中に試料を設置し、大気中雰囲気で
加熱、300℃で5時間保持した後に試料最表面に発生
した腐食層の厚さを測定することで評価を行った。
In the wear resistance test, a sintered alloy worked into a valve seat shape was press-fitted into an aluminum alloy housing,
The valve face is moved up and down by the rotation of the eccentric cam driven by the motor, so that the valve face and the seat face collide repeatedly, and this is performed for a certain period of time, and the abrasion amount of the valve seat and the valve face face generated at that time is measured. Was evaluated. During the test, the temperature is controlled by heating the umbrella of the valve with a burner. In this test, the rotational speed of the eccentric cam was 3000 rpm, the test temperature of the valve seat portion was 250 ° C., and the repetition time was 10 minutes.
Set to time. For the corrosion resistance, a mixed powder of a Pb compound is used as a corrosive agent, a sample is placed in the mixed powder, heated in an air atmosphere, kept at 300 ° C. for 5 hours, and then the thickness of a corroded layer generated on the outermost surface of the sample is measured. Was evaluated.

【0032】本発明合金(1〜29)と比較合金(1〜
13)の評価
The alloy (1 to 29) of the present invention and the comparative alloy (1 to 29)
13) Evaluation

【表4】 [Table 4]

【0033】以上の表4の評価からは次のことが分か
る。なお、図2〜図8は前記評価の内、図2〜図5は耐
摩耗性(摩耗量)と耐食性(腐食深さ)についてグラフ
化し、図6,図7はさらに被削性(加工孔数)をも含め
てグラフ化した。△印はバルブ、○印はバルブシート、
□印はバルブとバルブシートの合計の摩耗量をプロット
し、従来合金(比較13)もバルブとバルブシートの合
計の摩耗量で図示した。また、図8は焼結合金の気孔中
にアクリル樹脂、Pb、Cuの含浸した場合の被削性
(加工孔数)を示している。なお、図中、例えば、本発
明合金1は発明1と、比較合金1は比較1と表示してい
る。
The following can be seen from the above evaluations in Table 4. 2 to 8 are graphs of the abrasion resistance (amount of wear) and corrosion resistance (corrosion depth) of the above evaluation, and FIGS. Number). △ indicates a valve, ○ indicates a valve seat,
The symbol □ plots the total wear of the valve and the valve seat, and the conventional alloy (Comparative 13) is also shown by the total wear of the valve and the valve seat. FIG. 8 shows the machinability (the number of processed holes) when the pores of the sintered alloy are impregnated with acrylic resin, Pb, and Cu. In the drawings, for example, the alloy 1 of the present invention is indicated as invention 1 and the comparative alloy 1 is indicated as comparison 1.

【0034】本発明合金1,2,17,29および比較
合金1,2,3の比較により、Fe基合金粉末中のW量
を変化させたとき、その影響を調べると以下のようにな
る。Fe基合金粉末中のW量が増加するにつれて、図2
に示す如くバルブシート摩耗量が減少している。一方、
バルブの摩耗量は、W量の増加にしたがい大きくなって
いる。バルブシートとバルブの合計の摩耗量は、3.5
〜6%で安定して低くなっている。このときの摩耗量
は、比較合金13の従来合金よりも低い値となってい
る。これは、W量の増加にしたがい、基地中のW炭化物
の量が増加した結果、バルブシートの摩耗は減少する
が、バルブに対する攻撃性が増加するためバルブの摩耗
量が増加するためと推察される。また、バルブ摩耗量が
増加すると、摩耗粉の影響でバルブシート自体の摩耗量
も増加するため、W量が6%以上では逆に合計摩耗量が
大きい結果となる。また、耐食性はFe基合金粉末中の
W量の増加にしたがい、基地に固溶するW量が増加した
結果、腐食深さが減少しており、良好な耐食性を示して
いる。以上のことから、Fe基合金粉末中のW量は、
3.5〜6%の範囲で耐摩耗性および耐食性ともに良好
であることが判る。
By comparing the alloys 1, 2, 17, 29 of the present invention and the comparative alloys 1, 2, 3, when the amount of W in the Fe-based alloy powder is changed, the effect is examined as follows. As the amount of W in the Fe-based alloy powder increases, FIG.
As shown in the figure, the wear amount of the valve seat is reduced. on the other hand,
The wear amount of the valve increases as the W amount increases. The total wear of the valve seat and the valve is 3.5
It is stable and low at ~ 6%. The amount of wear at this time is lower than that of the comparative alloy 13 of the related art. This is presumed to be due to an increase in the amount of W carbide in the base as the amount of W increased, resulting in a decrease in valve seat wear, but an increase in valve wear due to an increase in aggressiveness against the valve. You. Further, when the amount of valve wear increases, the amount of wear of the valve seat itself also increases due to the effect of abrasion powder. Therefore, when the W amount is 6% or more, the total wear amount is conversely large. Further, as the corrosion resistance increased with the increase in the amount of W in the Fe-based alloy powder, the amount of W dissolved in the matrix increased, and as a result, the corrosion depth decreased, indicating good corrosion resistance. From the above, the amount of W in the Fe-based alloy powder is
It can be seen that both abrasion resistance and corrosion resistance are good in the range of 3.5 to 6%.

【0035】本発明合金3〜6,17,28および比較
合金4,5を比較して、Fe基合金粉末中のV量を変化
させたときの影響を調べると、次のようになる。なお、
本発明合金3〜6,17,28は請求項1,2に関し、
その内、本発明合金3はFe基合金中のV量が0%のも
のであり、請求項1に対応している。Fe基合金粉末中
のV量が2%までは図3に示す如く、バルブシート摩耗
量はやや減少しているが、2%を超えると摩耗量が増加
している。一方、バルブ摩耗量はV量の増加にしたがい
徐々に増加している。バルブシートとバルブの合計摩耗
量は、V量が2%まではほぼ一定しており、2%を超え
ると摩耗量が増加し、2.2%で0%とほぼ同程度の摩
耗量となり、2.2%を超えるとかえって摩耗量が大き
くなっている。これは、V量の増加にしたがい基地中の
V炭化物が増加し、バルブシートの耐摩耗性を向上させ
るが、バルブ攻撃性が高まるため、バルブ摩耗量が増加
し、その影響でバルブシート摩耗量が増加するためと推
察される。また、耐食性は、V量の増加にしたがって腐
食深さが減少しており、向上している。以上のことか
ら、Fe基合金粉末中のV量は、2.2%以下で良好な
耐摩耗性と耐食性を示すことが判る。
The effects of changing the amount of V in the Fe-based alloy powder by comparing the alloys 3 to 6, 17, 28 of the present invention and the comparative alloys 4, 5 are as follows. In addition,
The alloys 3 to 6, 17, and 28 of the present invention relate to claims 1 and 2,
Among them, the alloy 3 of the present invention has a V content of 0% in the Fe-based alloy, and corresponds to claim 1. As shown in FIG. 3, up to 2% of the V content in the Fe-based alloy powder, the valve seat abrasion slightly decreases, but when it exceeds 2%, the abrasion increases. On the other hand, the valve wear amount gradually increases as the V amount increases. The total wear amount of the valve seat and the valve is almost constant up to the V amount of 2%, increases when the V amount exceeds 2%, becomes approximately the same as 0% at 2.2%, If it exceeds 2.2%, the amount of wear is rather large. This is because V carbide in the base increases as the V amount increases, and the wear resistance of the valve seat is improved. However, the valve aggressiveness is increased, so that the valve wear amount is increased. Is estimated to increase. In addition, the corrosion resistance is improved as the corrosion depth decreases with an increase in the amount of V. From the above, it can be seen that when the V content in the Fe-based alloy powder is 2.2% or less, good wear resistance and corrosion resistance are exhibited.

【0036】本発明合金7,17,25〜27および比
較合金6,7を比較すると(図4)、Ni基合金粉末が
3%の添加により、バルブシートの摩耗量は急激に減少
し、その後、添加量が20%までは徐々に摩耗量が減少
している。一方、バルブ摩耗量は、Ni基合金粉末の添
加量の増加にしたがい徐々に増加し、20%を超えると
急激に摩耗量が増加している。これにより、合計の摩耗
量は、Ni基合金粉末が3%の添加により低下し、20
%までは、比較合金13(従来合金)よりも低く、ほぼ
一定の値を示すが、20%を超えると急激に摩耗量が増
大している。これは、Ni基合金粉末の添加により、硬
質な金属間化合物からなる硬質相が形成されると共に、
硬質相周囲に軟質なオーステナイトまたはオーステナイ
トとフェライトの混合相およびその周囲に耐摩耗性に効
果のあるマルテンサイト相が形成され、金属間化合物に
よる耐摩耗性の向上、オーステナイトまたはオーステナ
イトとフェライトの混合相による金属間化合物の脱落防
止およびバルブ着座時の衝撃緩和、マルテンサイト相に
よる耐摩耗性の向上の効果により摩耗量が減少するが、
過剰なNi基合金粉末の添加は、金属間化合物の量、マ
ルテンサイト相の量が増加するためバルブ攻撃性が高ま
ること、および、オーステナイトまたはオーステナイト
とフェライトの混合相が増加することによる基地強度の
低下と相まって、耐摩耗性の急激な低下が生じるからと
推察される。一方、耐食性は、Ni基合金粉末の添加量
によらずほぼ一定であり、比較合金13(従来合金)よ
りも低い良好な値を示す。以上のことから、Ni基合金
粉末の添加量は3〜20%の範囲で耐摩耗性に大きな効
果があることが判る。
When the alloys 7, 17, 25 to 27 of the present invention and the comparative alloys 6, 7 are compared (FIG. 4), the addition of 3% of the Ni-based alloy powder sharply reduces the amount of wear of the valve seat. The amount of wear gradually decreased up to the addition amount of 20%. On the other hand, the valve wear gradually increases as the amount of the Ni-based alloy powder added increases, and when it exceeds 20%, the wear rapidly increases. Thereby, the total wear amount is reduced by adding 3% of the Ni-based alloy powder,
%, It is lower than that of the comparative alloy 13 (conventional alloy) and shows a substantially constant value, but when it exceeds 20%, the wear amount rapidly increases. This is because the addition of the Ni-based alloy powder forms a hard phase composed of a hard intermetallic compound,
A soft austenite or a mixed phase of austenite and ferrite is formed around the hard phase and a martensite phase effective for abrasion resistance is formed around the soft phase, improving wear resistance by intermetallic compounds, and austenite or a mixed phase of austenite and ferrite. The amount of wear is reduced due to the effect of preventing the intermetallic compound from falling off, reducing the impact when the valve is seated, and improving the wear resistance by the martensite phase.
Excessive addition of the Ni-based alloy powder increases the amount of the intermetallic compound and the amount of the martensite phase, thereby increasing the valve attack, and increasing the austenite or the mixed phase of austenite and ferrite, thereby increasing the base strength. It is inferred that the abrasion resistance sharply decreases in combination with the decrease. On the other hand, the corrosion resistance is almost constant irrespective of the addition amount of the Ni-based alloy powder, and shows a good value lower than that of the comparative alloy 13 (conventional alloy). From the above, it can be understood that the addition amount of the Ni-based alloy powder has a great effect on the wear resistance when it is in the range of 3 to 20%.

【0037】本発明合金8,9,17,23,24およ
び比較合金8,9を比較すると、バルブシート摩耗量
は、図5に示す如く0.5%の黒鉛粉末の添加で急激に
摩耗量が減少し、黒鉛粉末添加量:1.4%までは摩耗
量がさらに減少し、1.4%を超えるとかえってバルブ
シート摩耗量が急激に増加している。一方、バルブ摩耗
量は、黒鉛粉末添加量の増加にしたがい徐々に増加して
いる。これにより、合計摩耗量は、0.5〜1.4%の
間で比較合金13(従来合金)よりも低い値で安定して
いる。これは、黒鉛粉末添加量が増加することで基地中
の炭化物量が増加し、そのためバルブシート摩耗量は減
少するが、バルブ攻撃性が高くなるため、バルブの摩耗
は徐々に増大して、黒鉛粉末添加量が1.4%を超える
とバルブの摩耗の影響でバルブシートも摩耗するため、
急激に合計摩耗量が増加したものと推察される。また、
耐食性は、黒鉛粉末添加量が1.4%まではほぼ一定
で、比較合金13(従来合金)よりも低い良好な耐食性
を示している。以上のことから、黒鉛粉末添加量は0.
5〜1.4%の範囲で耐摩耗性に大きな効果があること
が判る。
When the alloys 8, 9, 17, 23, 24 of the present invention and the comparative alloys 8, 9 are compared, as shown in FIG. 5, the wear amount of the valve seat is sharply increased by adding 0.5% of graphite powder. , The wear amount further decreases until the graphite powder addition amount: 1.4%, and when it exceeds 1.4%, the valve seat wear amount sharply increases. On the other hand, the valve wear amount gradually increases as the amount of graphite powder added increases. Thus, the total wear amount is stable at a value lower than that of the comparative alloy 13 (conventional alloy) in the range of 0.5 to 1.4%. This is because, as the amount of graphite powder added increases, the amount of carbides in the matrix increases, and as a result, the valve seat wear decreases, but the valve aggressiveness increases, so the valve wear gradually increases, and the graphite increases. If the amount of powder exceeds 1.4%, the valve seat will also wear due to the valve wear,
It is presumed that the total wear increased rapidly. Also,
The corrosion resistance is almost constant up to the graphite powder addition amount of 1.4%, and shows good corrosion resistance lower than that of the comparative alloy 13 (conventional alloy). Based on the above, the amount of graphite powder added was 0.1.
It turns out that there is a great effect on abrasion resistance in the range of 5 to 1.4%.

【0038】発明合金10〜12,14,17,21お
よび比較合金10,12により、Fe基合金粉末にMn
とSを固溶させて与えたときのMnS量の影響(図
6)、および発明合金10,13,15,16,22お
よび比較合金11により、MnS粉末を添加して与えた
ときのMnS量の影響(図7)が判る。すなわち、Mn
SをFe基合金粉末中にMnとSを固溶させて与えた場
合も、MnS粉末を添加して与えた場合も共に、全体組
成中のMnS量が1.2%まではバルブシート摩耗量が
徐々に増加し、1.2%を超えると基地の強度が低下し
た結果、摩耗量が増大している。また、耐食性は、どち
らの場合も比較合金13(従来合金)よりも低い良好な
値を示している。MnSの添加形態から見ると、Mnと
SをFe基合金粉末中に固溶させて与えた場合は、Mn
S粉末を添加して与えた場合よりも摩耗量が低く、Mn
S量の増加による摩耗量の増加率も低くなっている。こ
れは、MnS粉末を添加して与えた場合、MnS粉末が
基地粉末の焼結による拡散・結合を阻害し、基地強度が
低下するためと推察される。そのため、耐食性もMnS
粉末添加の場合、問題ない範囲ではあるが若干低下する
傾向が見られる。一方、被削性は、どちらの場合でもM
nS量の増加にしたがい改善されているが、Fe基合金
粉末に固溶させて与えた場合の方が、基地中に均一に分
散するため同じMnS量でも被削性改善効果が大きくな
っている。以上のことから、添加形態によらずMnSに
より被削性は改善されるが、全体組成中のMnS量が
1.2%を超えると耐摩耗性が急激に悪化する。このた
め、MnSの添加量の上限を1.2%とした。また、添
加形態はMnS粉末を添加してもよいが、Fe基合金粉
末中にMnとSを固溶させて与えた方が、効果が高いこ
とが判る。
According to the invention alloys 10 to 12, 14, 17, and 21 and the comparative alloys 10 and 12, Mn was added to the Fe-based alloy powder.
Of MnS amount when solid solution of S and S is given (FIG. 6), and MnS amount when MnS powder is added and given by invention alloys 10, 13, 15, 16, 22 and comparative alloy 11. (FIG. 7). That is, Mn
In both cases where S is given by dissolving Mn and S in Fe-based alloy powder and when MnS powder is added, the amount of wear in the valve seat up to the MnS content of 1.2% in the overall composition. Is gradually increased, and when it exceeds 1.2%, the strength of the matrix is reduced, and as a result, the amount of wear is increased. In both cases, the corrosion resistance shows a good value lower than that of the comparative alloy 13 (conventional alloy). From the viewpoint of the addition form of MnS, when Mn and S are given as a solid solution in the Fe-based alloy powder,
The amount of wear is lower than that given by adding S powder and Mn
The rate of increase in the amount of wear due to the increase in the S amount is also low. This is presumed to be because when the MnS powder is added and given, the MnS powder inhibits diffusion and bonding due to sintering of the base powder, and lowers the base strength. Therefore, the corrosion resistance is also MnS
In the case of the addition of powder, there is a tendency that the amount is slightly reduced, although there is no problem. On the other hand, the machinability is M
Although improved with an increase in the amount of nS, the effect of improving the machinability is greater when the solid solution is applied to the Fe-based alloy powder and the MnS amount is the same because the metal is uniformly dispersed in the matrix. . From the above, the machinability is improved by MnS irrespective of the form of addition, but when the amount of MnS in the entire composition exceeds 1.2%, the wear resistance rapidly deteriorates. Therefore, the upper limit of the amount of MnS added is set to 1.2%. In addition, MnS powder may be added in the form of addition, but it can be seen that the effect is higher when Mn and S are dissolved in Fe-based alloy powder and given.

【0039】また、発明合金17,18,19,20と
比較合金13を比べると、被削性はFe基合金中にMn
とSを固溶させて全体組成中で0.9%のMnSを分散
させた合金は、従来合金よりも耐摩耗性、耐食性および
被削性において優れているが、図8に示す如くアクリル
樹脂、Pb、Cuを含浸または溶浸することで耐摩耗
性、耐食性を損なうことなく被削性をより向上させるこ
とが可能であることが判る。
When the alloys of the invention 17, 18, 19, and 20 were compared with the comparative alloy 13, the machinability was Mn in the Fe-based alloy.
An alloy in which 0.9% MnS is dispersed in the entire composition by dissolving S and S in solid solution is superior in wear resistance, corrosion resistance and machinability to the conventional alloy, but as shown in FIG. , Pb, and Cu can be impregnated or infiltrated to further improve machinability without impairing wear resistance and corrosion resistance.

【0040】[0040]

【発明の効果】以上の説明より明らかなように、本発明
のバルブシート用耐摩耗性焼結合金およびその製造方法
によれば、Co等の高価な元素を使用しないため安価で
あり、内燃機関のバルブシート用焼結合金として実用に
十分な耐摩耗性を有しており、さらに、掃鉛剤成分、P
b化合物に対する優れた耐食性を有する焼結合金が得ら
れる。特に、請求項3,4およびその製造方法の場合は
さらに被削性をも改善した優れた焼結合金となる。
As is apparent from the above description, according to the wear-resistant sintered alloy for a valve seat of the present invention and the method for producing the same, since an expensive element such as Co is not used, it is inexpensive, and the internal combustion engine is inexpensive. It has sufficient wear resistance for practical use as a sintered alloy for valve seats.
A sintered alloy having excellent corrosion resistance to the compound b is obtained. In particular, in the case of the third and fourth aspects and the manufacturing method thereof, an excellent sintered alloy having further improved machinability is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の焼結合金の金属組織の模式図である。FIG. 1 is a schematic view of a metal structure of a sintered alloy of the present invention.

【図2】本発明の実施例において、基地形成合金粉末中
のW量を変化させたときの摩耗量と腐食深さの評価結果
を示すグラフである。
FIG. 2 is a graph showing the results of evaluation of the amount of wear and the corrosion depth when the amount of W in the matrix-forming alloy powder is changed in Examples of the present invention.

【図3】本発明の実施例において、基地形成合金粉末中
のV量を変化させたときの摩耗量と腐食深さの評価結果
を示すグラフである。
FIG. 3 is a graph showing the results of evaluation of the amount of wear and the corrosion depth when the amount of V in the matrix-forming alloy powder is changed in Examples of the present invention.

【図4】本発明の実施例において、硬質相形成粉末の添
加量を変化させたときの摩耗量と腐食深さの評価結果を
示すグラフである。
FIG. 4 is a graph showing an evaluation result of a wear amount and a corrosion depth when the addition amount of a hard phase forming powder is changed in Examples of the present invention.

【図5】本発明の実施例において、黒鉛粉末の量を変化
させたときの摩耗量と腐食深さの評価結果を示すグラフ
である。
FIG. 5 is a graph showing an evaluation result of a wear amount and a corrosion depth when the amount of graphite powder is changed in Examples of the present invention.

【図6】本発明の実施例において、全体組成中のMnS
量を変化させたときの摩耗量と腐食深さおよび加工孔数
の評価結果を示すグラフである。
FIG. 6 shows an example of MnS in the overall composition in an example of the present invention.
It is a graph which shows the wear amount when changing the amount, the corrosion depth, and the evaluation result of the number of processing holes.

【図7】本発明の実施例において、MnS粉末の添加量
を変化させたときの摩耗量と腐食深さおよび加工孔数の
評価結果を示すグラフである。
FIG. 7 is a graph showing the results of evaluation of the amount of wear, the corrosion depth, and the number of processed holes when the amount of added MnS powder was changed in Examples of the present invention.

【図8】本発明の実施例において、焼結合金にアクリル
樹脂、Pb、Cuを含浸した場合の加工孔数の評価結果
を示すグラフである。
FIG. 8 is a graph showing the evaluation results of the number of working holes when the sintered alloy is impregnated with acrylic resin, Pb, and Cu in the example of the present invention.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 全体組成が、重量比で、W:2.75〜
5.79%、Ni:1.58〜13.5%、Cr:0.
75〜7.0%、Mo:0.21〜2.2%、Si:
0.015〜0.3%、C:0.55〜2.0%、およ
び残部Feおよび不可避不純物からなり、その金属組織
が、 ベイナイト相もしくはベイナイトとソルバイトの混
合相と、 主としてCr炭化物よりなる硬質相の核を有し、そ
の核を取り囲むNi、Cr濃度の高いオーステナイト相
もしくはオーステナイトとフェライトの混合相と、 前記の周囲をさらに取り囲むマルテンサイト相、 上記〜からなると共に、微細なW炭化物が上記硬質
相をのぞく基地中に均一に分散する組織を呈することを
特徴とする耐食性に優れた内燃機関のバルブシート用耐
摩耗性焼結合金。
1. The composition according to claim 1, wherein the weight ratio is W: 2.75 to
5.79%, Ni: 1.58 to 13.5%, Cr: 0.
75-7.0%, Mo: 0.21-2.2%, Si:
0.015 to 0.3%, C: 0.55 to 2.0%, and the balance is Fe and inevitable impurities, and its metal structure is mainly composed of a bainite phase or a mixed phase of bainite and sorbite, and Cr carbide. Ni, which has a hard phase nucleus and surrounds the nucleus, has a high austenitic phase or a mixed phase of austenite and ferrite having a high Cr concentration, and a martensite phase further surrounding the periphery. A wear-resistant sintered alloy for a valve seat of an internal combustion engine having excellent corrosion resistance, which exhibits a structure in which the hard phase is uniformly dispersed in a matrix except for the hard phase.
【請求項2】 全体組成が、重量比で、W:2.75〜
5.79%、V:2.123%以下、Ni:1.58〜
13.5%、Cr:0.75〜7.0%、Mo:0.2
1〜2.2%、Si:0.015〜0.3%、C:0.
55〜2.0%、および残部Feおよび不可避不純物か
らなり、その金属組織が、 ベイナイト相もしくはベイナイトとソルバイトの混
合相と、 主としてCr炭化物よりなる硬質相の核を有し、そ
の核を取り囲むNi、Cr濃度の高いのオーステナイト
相もしくはオーステナイトとフェライトの混合相、 前記の周囲をさらに取り囲むマルテンサイト相 上記〜からなると共に、微細なW炭化物およびV炭
化物が上記硬質相をのぞく基地中に均一に分散する組織
を呈することを特徴とする耐食性に優れた内燃機関のバ
ルブシート用耐摩耗性焼結合金。
2. The composition as a whole has a weight ratio of W: 2.75 to 2.75.
5.79%, V: 2.123% or less, Ni: 1.58-
13.5%, Cr: 0.75 to 7.0%, Mo: 0.2
1 to 2.2%, Si: 0.015 to 0.3%, C: 0.2%
55-2.0%, with the balance being Fe and unavoidable impurities, the metal structure of which has a nucleus of a bainite phase or a mixed phase of bainite and sorbite and a hard phase nucleus mainly composed of Cr carbide, and Ni surrounding the nucleus An austenite phase having a high Cr concentration or a mixed phase of austenite and ferrite; a martensite phase further surrounding the periphery; and fine W carbides and V carbides are uniformly dispersed in the matrix except the hard phases. A wear-resistant sintered alloy for a valve seat of an internal combustion engine having excellent corrosion resistance, characterized by exhibiting a texture that changes.
【請求項3】 請求項1もしくは2に記載の耐摩耗性焼
結合金において、全体組成中に、さらに、重量比で、M
n:0.762%以下およびS:0.438%以下を含
み、前記硬質相をのぞく基地中に、1.2%以下のMn
S粒子が分散する組織を呈する耐食性に優れた内燃機関
のバルブシート用耐摩耗性焼結合金。
3. The wear-resistant sintered alloy according to claim 1, further comprising a weight ratio of M in the overall composition.
n: 0.762% or less and S: 0.438% or less, and 1.2% or less of Mn in the matrix excluding the hard phase
An abrasion-resistant sintered alloy for a valve seat of an internal combustion engine having a structure in which S particles are dispersed and having excellent corrosion resistance.
【請求項4】 請求項1〜3記載の耐摩耗性焼結合金に
おいて、前記焼結合金の気孔中に、アクリル樹脂、鉛ま
たは鉛合金、もしくは銅または銅合金の何れかが分散し
ている耐食性に優れた内燃機関のバルブシート用耐摩耗
性焼結合金。
4. A wear-resistant sintered alloy according to claim 1, wherein acrylic resin, lead or a lead alloy, or copper or a copper alloy is dispersed in pores of the sintered alloy. Wear resistant sintered alloy for valve seats of internal combustion engines with excellent corrosion resistance.
【請求項5】 重量比で、W:3.5〜6.0%、およ
び残部Feおよび不可避不純物からなるFe基合金粉末
に、 重量比で、Cr:25〜35%、Mo:7〜11%、S
i:0.5〜1.5%、C:1.5〜3.0%、および
残部Niおよび不可避不純物よりなるNi基合金粉末:
3〜20%、および黒鉛粉末:0.5〜1.4%を配合
した混合粉末を用いる、ことを特徴とする請求項1記載
の耐食性に優れた内燃機関のバルブシート用耐摩耗性焼
結合金の製造方法。
5. An Fe-based alloy powder comprising 3.5 to 6.0% by weight of W and the balance of Fe and unavoidable impurities in a weight ratio of Cr: 25 to 35% by weight and Mo: 7 to 11 by weight. %, S
i: 0.5 to 1.5%, C: 1.5 to 3.0%, and a Ni-based alloy powder composed of the balance of Ni and unavoidable impurities:
The wear-resistant sintering for a valve seat of an internal combustion engine having excellent corrosion resistance according to claim 1, wherein a mixed powder containing 3 to 20% and graphite powder: 0.5 to 1.4% is used. Gold manufacturing method.
【請求項6】 重量比で、W:3.5〜6.0%、V:
2.2%以下、および残部Feおよび不可避不純物から
なるFe基合金粉末に、 重量比で、Cr:25〜35%、Mo:7〜11%、S
i:0.5〜1.5%、C:1.5〜3.0%、および
残部Niおよび不可避不純物よりなるNi基合金粉末:
3〜20%、および黒鉛粉末:0.5〜1.4%を配合
した混合粉末を用いる、ことを特徴とする請求項2記載
の耐食性に優れた内燃機関のバルブシート用耐摩耗性焼
結合金の製造方法。
6. The weight ratio of W: 3.5-6.0%, V:
2.2% or less, Fe: 25 to 35% by weight, Mo: 7 to 11%, S:
i: 0.5 to 1.5%, C: 1.5 to 3.0%, and a Ni-based alloy powder composed of the balance of Ni and unavoidable impurities:
The wear-resistant sintering for a valve seat of an internal combustion engine having excellent corrosion resistance according to claim 2, wherein a mixed powder containing 3 to 20% and graphite powder: 0.5 to 1.4% is used. Gold manufacturing method.
【請求項7】 請求項5もしくは6に記載のFe基合金
粉末中に、さらに、重量比で、Mn:0.790%以
下、S:0.454%以下を含むFe基合金粉末を用い
る、請求項3に記載の耐食性に優れた内燃機関のバルブ
シート用耐摩耗性焼結合金の製造方法。
7. An Fe-based alloy powder according to claim 5 or 6, further comprising, by weight ratio, Mn: 0.790% or less and S: 0.454% or less. The method for producing a wear-resistant sintered alloy for a valve seat of an internal combustion engine having excellent corrosion resistance according to claim 3.
【請求項8】 請求項5もしくは6に記載の混合粉末
に、重量比で、1.2%以下のMnS粉末をさらに添加
する、請求項3に記載の耐食性に優れた内燃機関のバル
ブシート用耐摩耗性焼結合金の製造方法。
8. A valve seat for an internal combustion engine having excellent corrosion resistance according to claim 3, wherein a MnS powder having a weight ratio of 1.2% or less is further added to the mixed powder according to claim 5 or 6. Manufacturing method of wear resistant sintered alloy.
【請求項9】 請求項5〜8に記載の混合粉末を用いて
成形し、焼結した焼結体の気孔中に、アクリル樹脂、鉛
または鉛合金、もしくは銅または銅合金の何れかを含浸
もしくは溶浸する、請求項4に記載の耐食性に優れた内
燃機関のバルブシート用耐摩耗性焼結合金の製造方法。
9. Pores of a sintered body molded and sintered using the mixed powder according to claim 5 and impregnated with any one of acrylic resin, lead or a lead alloy, or copper or a copper alloy The method for producing a wear-resistant sintered alloy for a valve seat of an internal combustion engine having excellent corrosion resistance according to claim 4, which is infiltrated or infiltrated.
JP22076896A 1996-08-05 1996-08-05 Wear resistant sintered alloy for valve seats of internal combustion engines with excellent corrosion resistance and method for producing the same Expired - Fee Related JP3354401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22076896A JP3354401B2 (en) 1996-08-05 1996-08-05 Wear resistant sintered alloy for valve seats of internal combustion engines with excellent corrosion resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22076896A JP3354401B2 (en) 1996-08-05 1996-08-05 Wear resistant sintered alloy for valve seats of internal combustion engines with excellent corrosion resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1046298A true JPH1046298A (en) 1998-02-17
JP3354401B2 JP3354401B2 (en) 2002-12-09

Family

ID=16756262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22076896A Expired - Fee Related JP3354401B2 (en) 1996-08-05 1996-08-05 Wear resistant sintered alloy for valve seats of internal combustion engines with excellent corrosion resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP3354401B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265081A (en) * 2005-03-25 2006-10-05 National Institute Of Advanced Industrial & Technology Selflubricating composite material and its producing method
JP2010014023A (en) * 2008-07-03 2010-01-21 Hitachi Powdered Metals Co Ltd Governor weight and method for manufacturing the same
DE102009031390A1 (en) 2008-07-03 2010-06-10 Hitachi Powdered Metals Co., Ltd., Matsudo Hard phase forming alloy powder, wear resistant sintered alloy, and manufacturing method for wear resistant sintered alloy
CN114523113A (en) * 2022-02-16 2022-05-24 华东冶金地质勘查局超硬材料研究所 Valve seat ring for small engine facing green fuel and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265081A (en) * 2005-03-25 2006-10-05 National Institute Of Advanced Industrial & Technology Selflubricating composite material and its producing method
JP4714922B2 (en) * 2005-03-25 2011-07-06 独立行政法人産業技術総合研究所 Self-lubricating composite material and manufacturing method thereof
JP2010014023A (en) * 2008-07-03 2010-01-21 Hitachi Powdered Metals Co Ltd Governor weight and method for manufacturing the same
DE102009031390A1 (en) 2008-07-03 2010-06-10 Hitachi Powdered Metals Co., Ltd., Matsudo Hard phase forming alloy powder, wear resistant sintered alloy, and manufacturing method for wear resistant sintered alloy
US9260772B2 (en) 2008-07-03 2016-02-16 Hitachi Powdered Metals Co., Ltd. Hard phase forming alloy powder, wear resistant sintered alloy, and production method for wear resistant sintered alloy
CN114523113A (en) * 2022-02-16 2022-05-24 华东冶金地质勘查局超硬材料研究所 Valve seat ring for small engine facing green fuel and preparation method thereof

Also Published As

Publication number Publication date
JP3354401B2 (en) 2002-12-09

Similar Documents

Publication Publication Date Title
US7892481B2 (en) Manufacturing method for wear resistant sintered member, sintered valve seat, and manufacturing method therefor
EP1536028B1 (en) Alloy powder for forming hard phase and manufacturing method for wear resistant sintered alloy
JP3447030B2 (en) Wear resistant sintered alloy and method for producing the same
JP4466957B2 (en) Wear-resistant sintered member and manufacturing method thereof
US20050193861A1 (en) Iron-based sintered alloy material for valve seat
JP3327663B2 (en) High temperature wear resistant sintered alloy
JP3852764B2 (en) Wear-resistant sintered alloy and method for producing the same
JP4693170B2 (en) Wear-resistant sintered alloy and method for producing the same
JP4179550B2 (en) Wear-resistant sintered alloy and method for producing the same
JP4455390B2 (en) Wear-resistant sintered alloy and method for producing the same
JP3354402B2 (en) Wear resistant sintered alloy for valve seat of internal combustion engine with excellent corrosion resistance and method for producing the same
JP3354401B2 (en) Wear resistant sintered alloy for valve seats of internal combustion engines with excellent corrosion resistance and method for producing the same
JP2002285293A (en) Valve seat material for high load engine and production method therefor
JPH10219411A (en) Wear resistant sintered alloy and its production
JP5314950B2 (en) Alloy powder for hard phase formation
JPH11335799A (en) Abrasion resistant sintered alloy and its production
JP5253132B2 (en) Wear-resistant sintered alloy and method for producing the same
JP4716366B2 (en) Sintered valve seat manufacturing method
JP2009035785A (en) Method for manufacturing sintered parts having corrosion resistance and abrasion resistance at high temperature
JP2000064003A (en) Wear resistant sintered alloy and its production
JP3862196B2 (en) Iron-based sintered valve seat
JP2010144235A (en) Wear-resistant sintered alloy and method for producing the same
JP5358131B2 (en) Wear-resistant sintered alloy and method for producing the same
JP2006274359A (en) Alloy powder for forming hard phase and ferrous powder mixture using the same
JP3068127B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees