JP2010010580A - Imaging module and method of manufacturing the same, and endoscope apparatus - Google Patents

Imaging module and method of manufacturing the same, and endoscope apparatus Download PDF

Info

Publication number
JP2010010580A
JP2010010580A JP2008170718A JP2008170718A JP2010010580A JP 2010010580 A JP2010010580 A JP 2010010580A JP 2008170718 A JP2008170718 A JP 2008170718A JP 2008170718 A JP2008170718 A JP 2008170718A JP 2010010580 A JP2010010580 A JP 2010010580A
Authority
JP
Japan
Prior art keywords
imaging module
spacer
semiconductor chip
manufacturing
cover glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008170718A
Other languages
Japanese (ja)
Other versions
JP5186295B2 (en
Inventor
Kazuaki Takahashi
一昭 高橋
Akira Kitano
亮 北野
Takashi Yashiro
孝 矢代
Tsuneki Yamamoto
恒喜 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fujinon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp filed Critical Fujinon Corp
Priority to JP2008170718A priority Critical patent/JP5186295B2/en
Publication of JP2010010580A publication Critical patent/JP2010010580A/en
Application granted granted Critical
Publication of JP5186295B2 publication Critical patent/JP5186295B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Endoscopes (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To precisely adjust parallelism between a cover glass and an image pickup device. <P>SOLUTION: An imaging module includes: the image pickup device 21 with an effective pixel region 21a formed in a semiconductor chip; a frame-like spacer 22 that is mounted on the semiconductor chip 21 and surrounds the effective pixel region 21a; the cover glass adhering onto the spacer 22; and an adhesive material for joining the semiconductor chip 21 to the spacer 22. In the imaging module, pressure sensors 30 are provided at lower parts of at least three spacers at positions along the spacer 22. The adhesive material is cured when the pressure detection values of respective pressure sensors 30 become identical. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、撮像モジュール及びその製造方法並びに内視鏡装置に関する。   The present invention relates to an imaging module, a manufacturing method thereof, and an endoscope apparatus.

デジタルカメラ等に用いられるCCD型やCMOS型等の撮像素子は、特許文献1,2に記載されている様に、撮像素子の受光面上にカバーガラスを若干離間して固定している。このカバーガラスは、撮像素子受光面と平行にした方がよいため、従来は、撮像モジュール製造時に、撮像素子受光面の周囲に複数個のスペーサを配置してその上にカバーガラスを置き、平行度を出すようにしている。   As described in Patent Documents 1 and 2, an image sensor such as a CCD type or a CMOS type used in a digital camera or the like has a cover glass fixed on the light receiving surface of the image sensor at a slight distance. Since it is better to make this cover glass parallel to the light receiving surface of the image sensor, conventionally, at the time of manufacturing the image pickup module, a plurality of spacers are arranged around the light receiving surface of the image sensor, and the cover glass is placed on the spacer and placed in parallel. I try to put out a degree.

特開2003―303946号公報JP 2003-303946 A 特開2002―270802号公報Japanese Patent Laid-Open No. 2002-270802

デジタルカメラ等に用いられる撮像素子と内視鏡装置の挿入部先端に取り付けられる撮像素子とではその大きさが異なり、特に近年の様に細径化が図られた内視鏡装置の先端部に取り付けられる撮像素子は、半導体チップの大きさが2mm角程度の微小な大きさになっている。   The size of the image sensor used in a digital camera or the like is different from that of the image sensor attached to the distal end of the insertion portion of the endoscope device. In particular, the distal end portion of the endoscope device whose diameter has been reduced as in recent years. The attached image sensor has a semiconductor chip with a small size of about 2 mm square.

この様な小さな撮像素子を搭載した撮像モジュールを製造する場合、撮像素子とカバーガラスとの間にスペーサを入れて調節しただけでは、両者間の平行度を出すことができない。つまり、カバーガラスを撮像素子側に押圧する力に偏りが生じると、平行度が違ってきてしまう。   When manufacturing an image pickup module having such a small image pickup device, the degree of parallelism between the two cannot be obtained only by adjusting a spacer between the image pickup device and the cover glass. That is, if the force that presses the cover glass toward the imaging element is biased, the parallelism will be different.

本発明の目的は、カバーガラスと撮像素子との間の平行度を高精度に調整することが可能な撮像モジュールの製造方法及びこの製造方法で製造された撮像モジュールとこの撮像モジュールを搭載した内視鏡装置を提供することにある。   An object of the present invention is to provide an imaging module manufacturing method capable of adjusting the parallelism between the cover glass and the imaging device with high accuracy, an imaging module manufactured by the manufacturing method, and an imaging module mounted therein. An object of the present invention is to provide an endoscope apparatus.

本発明の撮像モジュールは、半導体チップに有効画素領域が形成された撮像素子と、前記半導体チップ上に搭載され前記有効画素領域を囲む枠形状のスペーサと、該スペーサの上に接着されるカバーガラスと、前記半導体チップと前記スペーサとの間を接着する接着材とを備える撮像モジュールであって、前記スペーサに沿う位置の少なくとも3箇所の該スペーサ下部に、夫々圧力センサが設けられていることを特徴とする。   An imaging module of the present invention includes an imaging element in which an effective pixel area is formed on a semiconductor chip, a frame-shaped spacer that is mounted on the semiconductor chip and surrounds the effective pixel area, and a cover glass that is bonded onto the spacer. And an adhesive module for bonding between the semiconductor chip and the spacer, wherein pressure sensors are provided at least under the spacer at three positions along the spacer, respectively. Features.

本発明の撮像モジュールは、前記圧力センサが前記半導体チップの表面部に形成された半導体製の圧力センサであることを特徴とする。   The imaging module of the present invention is characterized in that the pressure sensor is a semiconductor pressure sensor formed on a surface portion of the semiconductor chip.

本発明の撮像モジュールは、前記圧力センサが前記有効画素の製造プロセスで製造されたものであることを特徴とする。   The imaging module of the present invention is characterized in that the pressure sensor is manufactured by a manufacturing process of the effective pixel.

本発明の撮像モジュールの製造方法は、前記接着材の上に前記スペーサを介して載せた前記カバーガラスを前記半導体チップ側に押圧し、複数の前記圧力センサの圧力検出値が同一圧力値になったとき前記接着材を固化させることを特徴とする。尚、ここで、「同一圧力値」とは完全な同一圧力値である必要はなく、製品上、許容精度内,誤差範囲内で同一圧力値であれば良い。   In the method for manufacturing an imaging module according to the present invention, the cover glass placed on the adhesive material via the spacer is pressed toward the semiconductor chip, and the pressure detection values of the plurality of pressure sensors become the same pressure value. And the adhesive is solidified. Here, the “same pressure value” does not need to be a completely identical pressure value, and may be the same pressure value within the allowable accuracy and error range on the product.

本発明の撮像モジュールの製造方法は、接着材が、紫外線硬化樹脂または熱硬化樹脂であることを特徴とする。   The manufacturing method of the imaging module of the present invention is characterized in that the adhesive is an ultraviolet curable resin or a thermosetting resin.

本発明の撮像モジュールの製造方法は、複数の前記撮像素子が形成された半導体ウェハ上に前記スペーサを介して該半導体ウェハと同程度の広さの前記カバーガラスを接着させ、その後に、個々の前記撮像モジュールを個片化することを特徴とする。   In the method for manufacturing an imaging module according to the present invention, the cover glass having the same size as the semiconductor wafer is bonded to the semiconductor wafer on which the plurality of imaging elements are formed via the spacer, The imaging module is singulated.

本発明の内視鏡装置は、上記のいずれかに記載の撮像モジュールを挿入部先端に内蔵したことを特徴とする。   An endoscope apparatus according to the present invention is characterized in that the imaging module according to any one of the above is built in a distal end of an insertion portion.

本発明によれば、カバーガラスと撮像素子との平行度を低コストで精度良く検出し、両者間の平行度を高めた撮像モジュールを製造できるため、高品質の被写体画像を撮影できる撮像モジュールを得ることが可能となる。   According to the present invention, it is possible to manufacture an imaging module that can accurately detect the parallelism between the cover glass and the imaging element at a low cost and can increase the parallelism between the two. Can be obtained.

以下、本発明の一実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る内視鏡装置の全体図である。この内視鏡装置1は、手元操作部2と、この手元操作部2に連設された挿入部3と、手元操作部2に可撓性チューブ4を介して連設されたコネクタ部5とを備える。   FIG. 1 is an overall view of an endoscope apparatus according to an embodiment of the present invention. The endoscope apparatus 1 includes a hand operation unit 2, an insertion unit 3 connected to the hand operation unit 2, and a connector unit 5 connected to the hand operation unit 2 via a flexible tube 4. Is provided.

挿入部3の先端部3aの内部には、後述する撮像モジュールが内蔵されており、この撮像モジュールの出力信号線が、挿入部3,手元操作部2,チューブ4と挿通されてコネクタ部5に接続され、このコネクタ部5を、図示省略のビデオプロセッサに連結することで、撮像モジュールによる撮影映像がモニタ表示される。   An imaging module (to be described later) is built in the distal end portion 3 a of the insertion portion 3, and an output signal line of this imaging module is inserted into the insertion portion 3, the hand operation portion 2, and the tube 4 to the connector portion 5. By connecting the connector unit 5 to a video processor (not shown), a video image taken by the imaging module is displayed on a monitor.

図2は、図1に示す先端部3aの前面を示す斜視図である。内視鏡先端部3aには、鉗子孔開口7が設けられており、図1に示す鉗子孔入口8から挿入された図示しない処置具が鉗子孔開口7から出て処置が行われる。   FIG. 2 is a perspective view showing the front surface of the tip 3a shown in FIG. A forceps hole opening 7 is provided in the endoscope distal end portion 3a, and a treatment tool (not shown) inserted from the forceps hole inlet 8 shown in FIG.

また、内視鏡先端部3aには、対物レンズ9が設けられ、その両脇に、照明光を出射するライトガイド10,11が設けられている。鉗子孔開口7の脇に設けられた送気送水ノズル12は、対物レンズ9が汚れたとき水等の液体を対物レンズ9に噴射して洗浄を行う。   In addition, an objective lens 9 is provided at the endoscope distal end portion 3a, and light guides 10 and 11 for emitting illumination light are provided on both sides thereof. The air / water supply nozzle 12 provided on the side of the forceps hole opening 7 performs cleaning by jetting a liquid such as water onto the objective lens 9 when the objective lens 9 becomes dirty.

近年の内視鏡装置1は、挿入部3の細径化が図られ、その先端部3aの外径が5mm,6mm程度と細くなっている。先端部3aの内部には、鉗子孔開口7の通路やライトガイド10,11の光ファイバ束,送気送水ノズル12への流体通路などが挿通されているため、ここに搭載する撮像モジュールは小型化せざるを得ない。   In the endoscope apparatus 1 in recent years, the diameter of the insertion portion 3 is reduced, and the outer diameter of the distal end portion 3a is as thin as about 5 mm and 6 mm. Since the passage of the forceps hole opening 7, the optical fiber bundle of the light guides 10 and 11, the fluid passage to the air / water supply nozzle 12 and the like are inserted into the distal end portion 3 a, the imaging module mounted here is small-sized. I have to make it.

図3は、先端部3a内に搭載される撮像装置の概略図である。被写体からの入射光すなわちライトガイド10,11からの照明光の反射光を取り込む対物光学系15の先端部分に図2に示す対物レンズ9が設けられており、対物光学系15の入射光出口端に光路を直角に曲げるプリズム16が設けられ、プリズム16の下端部に平板状の撮像モジュール17が搭載される。   FIG. 3 is a schematic view of an imaging device mounted in the distal end portion 3a. An objective lens 9 shown in FIG. 2 is provided at the distal end portion of the objective optical system 15 that takes in incident light from a subject, that is, reflected light of illumination light from the light guides 10 and 11, and an incident light exit end of the objective optical system 15. A prism 16 that bends the optical path at a right angle is provided, and a flat imaging module 17 is mounted on the lower end of the prism 16.

図4は、撮像モジュール17の構成図である。撮像モジュール17は、半導体チップ上に形成した撮像素子21と、撮像素子21の受光面(有効画素領域)の周囲を囲む様に載置した矩形枠形状のスペーサ22と、スペーサ22の上に載置したカバーガラス23と、撮像素子21に隣接配置された端子基板24とを備え、撮像素子21のチップ端部に形成された接続パッド29(図5参照)と端子基板24上の信号端子(図示省略)とがワイヤ25でボンディングされる。   FIG. 4 is a configuration diagram of the imaging module 17. The imaging module 17 is mounted on the imaging element 21 formed on the semiconductor chip, a rectangular frame-shaped spacer 22 placed so as to surround the periphery of the light receiving surface (effective pixel area) of the imaging element 21, and the spacer 22. A cover glass 23 placed thereon and a terminal substrate 24 disposed adjacent to the image sensor 21. A connection pad 29 (see FIG. 5) formed on the chip end of the image sensor 21 and a signal terminal ( (Not shown) is bonded by the wire 25.

スペーサ22と撮像素子21を形成した半導体チップ表面との間や、カバーガラス23とスペーサ22との間は、例えば紫外線(UV)硬化樹脂により接着される。   The space between the spacer 22 and the surface of the semiconductor chip on which the imaging element 21 is formed, or the space between the cover glass 23 and the spacer 22 is bonded by, for example, ultraviolet (UV) curable resin.

図5は、撮像モジュール17の上面図であり、図6は、図5のVI―VI線断面である。撮像素子21の中央部分に形成された有効画素領域21aには、図示省略の多数の画素が二次元アレイ状に形成されている。各画素の検出信号を読み出す手段は、CMOS型であればCMOS回路となり、CCD型であれば電荷転送路となるが、本実施形態の撮像素子21はどちらの信号読出手段でも良い。   5 is a top view of the imaging module 17, and FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. In the effective pixel region 21a formed in the center portion of the image sensor 21, a large number of pixels (not shown) are formed in a two-dimensional array. The means for reading the detection signal of each pixel is a CMOS circuit if it is a CMOS type, and a charge transfer path if it is a CCD type, but the image sensor 21 of this embodiment may be any signal reading means.

撮像素子21が形成された半導体チップの有効画素領域21aを囲む4隅近傍位置には、半導体圧力センサ30が設けられている。この半導体圧力センサ30は、例えばピエゾ抵抗効果を利用した拡散型のセンサであり、撮像素子21を形成する半導体プロセスと同一プロセスで半導体チップの表面部に形成される。   Semiconductor pressure sensors 30 are provided in the vicinity of the four corners surrounding the effective pixel region 21a of the semiconductor chip on which the image sensor 21 is formed. The semiconductor pressure sensor 30 is a diffusion type sensor using, for example, a piezoresistive effect, and is formed on the surface portion of the semiconductor chip by the same process as the semiconductor process for forming the imaging element 21.

そして、有効画素領域21aを囲むように、矩形の枠形状のスペーサ22が半導体チップ上に載置されるが、スペーサ22の4隅が、半導体圧力センサ30上に来るように載置される。更にスペーサ22の上に、透明なカバーガラス23が載置される。スペーサ22の外部には、撮像素子21の接続パッド29の他、圧力センサ30の接続パッド30aも設けられる。   A rectangular frame-shaped spacer 22 is placed on the semiconductor chip so as to surround the effective pixel region 21 a, and the four corners of the spacer 22 are placed on the semiconductor pressure sensor 30. Further, a transparent cover glass 23 is placed on the spacer 22. Outside the spacer 22, a connection pad 30 a of the pressure sensor 30 is also provided in addition to the connection pad 29 of the image sensor 21.

本実施形態に係る撮像モジュールを製造する場合、撮像素子21の半導体チップ上に、スペーサ22をUV硬化樹脂31を薄く塗布してから載せ、その上に、UV硬化樹脂を薄く塗布してカバーガラス23を載せる。このとき、スペーサ22の4隅が、圧力センサ30の上に来るように位置合わせする。   When the imaging module according to the present embodiment is manufactured, the spacer 22 is placed on the semiconductor chip of the imaging element 21 after the UV curable resin 31 is thinly applied, and the UV curable resin is thinly applied thereon and then the cover glass is applied. 23 is placed. At this time, alignment is performed so that the four corners of the spacer 22 are on the pressure sensor 30.

そして、カバーガラス23の上からカバーガラス23を撮像素子21側に押し、パッド30aを通して得られる各圧力センサ30の検出信号値が同一圧力値を検出した時点で、UV硬化樹脂31に紫外線を照射することで、カバーガラス23,スペーサ22と撮像素子21とを接着し一体化させる。これにより、カバーガラス23と撮像素子の受光面21aとが平行となった撮像モジュールが得られる。   Then, the cover glass 23 is pushed toward the image sensor 21 from above the cover glass 23, and when the detection signal value of each pressure sensor 30 obtained through the pad 30a detects the same pressure value, the UV curable resin 31 is irradiated with ultraviolet rays. By doing so, the cover glass 23, the spacer 22, and the image pickup device 21 are bonded and integrated. Thereby, an imaging module in which the cover glass 23 and the light receiving surface 21a of the imaging element are parallel to each other is obtained.

スペーサ22の高さは全周に渡って高精度に均一高さに製造されており、4隅の圧力センサ30が許容精度内,誤差範囲内の同一圧力値で押圧されていることを検知した時点で、接着用樹脂を硬化すれば、カバーガラス23と撮像素子21との平行度は高精度に高くなる。   The height of the spacer 22 is manufactured to a uniform height with high accuracy over the entire circumference, and it is detected that the pressure sensors 30 at the four corners are pressed with the same pressure value within the allowable accuracy and error range. At that time, if the adhesive resin is cured, the parallelism between the cover glass 23 and the image sensor 21 is increased with high accuracy.

本実施形態では、各圧力センサ30を、有効画素を製造するプロセスと同一の半導体プロセスで同一基板上に製造するため、低コストで製造でき、各圧力センサ30間の製造誤差は少なく、このため、圧力検出誤差も極めて小さい。更にカバーガラス23と撮像素子21の平行度を高めたいのであれば、各圧力センサ30の圧力検出誤差を事前に測定しておき、この測定値に基づき補正した検出圧力値で、4つの圧力センサ30の同一圧力を検出するようにすれば良い。   In the present embodiment, since each pressure sensor 30 is manufactured on the same substrate by the same semiconductor process as that for manufacturing effective pixels, it can be manufactured at low cost, and manufacturing errors between the pressure sensors 30 are small. The pressure detection error is extremely small. If it is desired to further increase the parallelism between the cover glass 23 and the image sensor 21, the pressure detection error of each pressure sensor 30 is measured in advance, and the four pressure sensors are detected using the detected pressure values corrected based on the measured values. It is sufficient to detect 30 identical pressures.

図7は、本発明の別実施形態に係る撮像モジュールの製造方法説明図である。図6で説明した実施形態では、1つ1つの撮像モジュール17において、カバーガラス23と撮像素子21との平行度調整を行ってカバーガラス23をスペーサ22を介して撮像素子21に接着した。   FIG. 7 is an explanatory diagram of a method for manufacturing an imaging module according to another embodiment of the present invention. In the embodiment described with reference to FIG. 6, in each of the imaging modules 17, the parallelism between the cover glass 23 and the imaging element 21 is adjusted, and the cover glass 23 is bonded to the imaging element 21 via the spacer 22.

しかし、本実施形態では、ウェハ40に複数の撮像素子21を製造し、格子形状のスペーサ連結体を、ウェハ40上に、紫外線硬化樹脂を薄く塗布してから載せ、スペーサ連結体の上にウェハ40と同一径のカバーガラスを載せる。   However, in the present embodiment, a plurality of image pickup devices 21 are manufactured on the wafer 40, and the lattice-shaped spacer coupling body is placed on the wafer 40 after thinly applying an ultraviolet curable resin, and the wafer is disposed on the spacer coupling body. A cover glass having the same diameter as 40 is placed.

ウェハ40上に形成された複数の撮像素子21のうち、離散的な位置の複数個の撮像素子21を選択し、各撮像素子21のいずれかの圧力センサ30(図7中に例示する、点線丸で囲む圧力センサ)の検出値をウェハ40外部で検出できるように配線を行う。この配線は、カバーガラス23をウェハ40に載せる前に行う。   Among the plurality of image pickup elements 21 formed on the wafer 40, a plurality of image pickup elements 21 at discrete positions are selected, and one of the pressure sensors 30 of each image pickup element 21 (the dotted line illustrated in FIG. 7 is illustrated). Wiring is performed so that the detection value of the pressure sensor surrounded by a circle can be detected outside the wafer 40. This wiring is performed before the cover glass 23 is placed on the wafer 40.

そして、スペーサ連結体の上にカバーガラス23を載せで押圧し、検出対象としている圧力センサ30の検出圧力が同一圧力となった時点で、紫外線を照射し樹脂を硬化させる。   Then, the cover glass 23 is placed on the spacer coupling body and pressed, and when the detection pressure of the pressure sensor 30 to be detected becomes the same pressure, the resin is cured by irradiating ultraviolet rays.

その後、ウェハ40はカットせずに、その上のスペーサ連結体とカバーガラスだけを、少し幅のあるカッタでダイシングし、次に、このダイシングした跡に沿って、今度は薄いカッタでウェハ40のダイシングを行う。これにより、撮像素子21が個片化される。   Thereafter, the wafer 40 is not cut, and only the spacer coupling body and the cover glass on the wafer 40 are diced with a slightly wider cutter, and then along the diced mark, this time with a thin cutter, the wafer 40 is cut. Dicing is performed. Thereby, the image pick-up element 21 is separated into pieces.

尚、上述した実施形態では、紫外線硬化樹脂を例に説明したが、熱硬化樹脂を使用して接着することもできる。   In the above-described embodiment, the ultraviolet curable resin is described as an example. However, the thermosetting resin can be used for bonding.

また、半導体チップ表面部に圧力センサ30を形成する例について述べたが、半導体チップ上に圧力センサを形成できない場合には、圧力センサを別途単体で製造し、この圧力センサをスペーサの4隅の下に置いて、上記同様にカバーガラス23と撮像素子21との平行度を検出する様にしても良い。   Moreover, although the example which forms the pressure sensor 30 in the semiconductor chip surface part was described, when a pressure sensor cannot be formed on a semiconductor chip, a pressure sensor is manufactured separately and this pressure sensor is formed in four corners of a spacer. The parallelism between the cover glass 23 and the image sensor 21 may be detected by placing it below.

また、上述した実施形態では、内視鏡先端部に搭載する撮像モジュールについて説明したが、同じ製造技術を、デジタルカメラ等に搭載する撮像モジュールに適用することも可能である。   In the above-described embodiment, the imaging module mounted on the endoscope distal end has been described. However, the same manufacturing technique can also be applied to an imaging module mounted on a digital camera or the like.

本発明に係る撮像モジュールの製造方法は、低コストで精度良くカバーガラスと撮像素子チップとの平行度を出すことができるため、内視鏡装置に搭載する撮像モジュールに適用すると有用である。   The method for manufacturing an imaging module according to the present invention is useful when applied to an imaging module mounted on an endoscope apparatus because the parallelism between the cover glass and the imaging element chip can be accurately obtained at low cost.

本発明の一実施形態に係る内視鏡装置の構成図である。It is a lineblock diagram of an endoscope apparatus concerning one embodiment of the present invention. 図1に示す内視鏡先端部前面を示す斜視図である。It is a perspective view which shows the endoscope front-end | tip front surface shown in FIG. 内視鏡先端部に内蔵される撮像光学系の構成図である。It is a block diagram of the imaging optical system incorporated in the endoscope front-end | tip part. 図3に示す撮像モジュールの構成図である。It is a block diagram of the imaging module shown in FIG. 撮像モジュールの上面図である。It is a top view of an imaging module. 図5のVI―VI線断面図である。FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. 5. ウェハ状態での撮像モジュールの製造方法説明図である。It is explanatory drawing of the manufacturing method of the imaging module in a wafer state.

符号の説明Explanation of symbols

1 内視鏡装置
3 挿入部
3a 挿入部先端(内視鏡先端)
9 対物レンズ
15 対物光学系
16 プリズム
17 撮像モジュール
21 撮像素子
22 スペーサ
23 カバーガラス
30 圧力センサ
31 接着用樹脂
40 半導体ウェハ
DESCRIPTION OF SYMBOLS 1 Endoscope apparatus 3 Insertion part 3a Insertion part front-end | tip (endoscope front-end | tip)
DESCRIPTION OF SYMBOLS 9 Objective lens 15 Objective optical system 16 Prism 17 Imaging module 21 Imaging element 22 Spacer 23 Cover glass 30 Pressure sensor 31 Adhesive resin 40 Semiconductor wafer

Claims (7)

半導体チップに有効画素領域が形成された撮像素子と、前記半導体チップ上に搭載され前記有効画素領域を囲む枠形状のスペーサと、該スペーサの上に接着されるカバーガラスと、前記半導体チップと前記スペーサとの間を接着する接着材とを備える撮像モジュールであって、前記スペーサに沿う位置の少なくとも3箇所の該スペーサ下部に、夫々圧力センサが設けられていることを特徴とする撮像モジュール。   An image sensor in which an effective pixel region is formed on a semiconductor chip, a frame-shaped spacer mounted on the semiconductor chip and surrounding the effective pixel region, a cover glass bonded on the spacer, the semiconductor chip, and the semiconductor chip An imaging module comprising an adhesive for adhering to a spacer, wherein pressure sensors are provided at lower portions of the spacer at least at three positions along the spacer. 請求項1に記載の撮像モジュールであって、前記圧力センサが前記半導体チップの表面部に形成された半導体製の圧力センサであることを特徴とする撮像モジュール。   2. The imaging module according to claim 1, wherein the pressure sensor is a semiconductor pressure sensor formed on a surface portion of the semiconductor chip. 請求項2に記載の撮像モジュールであって、前記圧力センサが前記有効画素の製造プロセスで製造されたものであることを特徴とする撮像モジュール。   The imaging module according to claim 2, wherein the pressure sensor is manufactured by a manufacturing process of the effective pixel. 請求項1乃至請求項3のいずれかに記載の撮像モジュールを製造する方法であって、前記接着材の上に前記スペーサを介して載せた前記カバーガラスを前記半導体チップ側に押圧し、複数の前記圧力センサの圧力検出値が同一圧力値になったとき前記接着材を固化させることを特徴とする撮像モジュールの製造方法。   A method for manufacturing the imaging module according to any one of claims 1 to 3, wherein the cover glass placed on the adhesive material via the spacer is pressed toward the semiconductor chip, and a plurality of the imaging modules are manufactured. The method for manufacturing an imaging module, wherein the adhesive is solidified when the pressure detection values of the pressure sensors become the same pressure value. 請求項4に記載の撮像モジュールの製造方法であって、前記接着材が、紫外線硬化樹脂または熱硬化樹脂であることを特徴とする撮像モジュールの製造方法。   5. The method for manufacturing an imaging module according to claim 4, wherein the adhesive is an ultraviolet curable resin or a thermosetting resin. 請求項4または請求項5の撮像モジュールの製造方法は、複数の前記撮像素子が形成された半導体ウェハ上に前記スペーサを介して該半導体ウェハと同程度の広さの前記カバーガラスを接着させ、その後に、個々の前記撮像モジュールを個片化することを特徴とする撮像モジュールの製造方法。   The manufacturing method of the imaging module according to claim 4 or claim 5, wherein the cover glass having the same size as the semiconductor wafer is bonded to the semiconductor wafer on which the plurality of imaging elements are formed via the spacer. Thereafter, the imaging module manufacturing method, wherein each of the imaging modules is separated into pieces. 請求項1乃至請求項3のいずれかに記載の撮像モジュールを挿入部先端に内蔵したことを特徴とする内視鏡装置。   An endoscope apparatus comprising the imaging module according to any one of claims 1 to 3 built in a distal end of an insertion portion.
JP2008170718A 2008-06-30 2008-06-30 Imaging module, method for manufacturing the same, and endoscope apparatus Expired - Fee Related JP5186295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008170718A JP5186295B2 (en) 2008-06-30 2008-06-30 Imaging module, method for manufacturing the same, and endoscope apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008170718A JP5186295B2 (en) 2008-06-30 2008-06-30 Imaging module, method for manufacturing the same, and endoscope apparatus

Publications (2)

Publication Number Publication Date
JP2010010580A true JP2010010580A (en) 2010-01-14
JP5186295B2 JP5186295B2 (en) 2013-04-17

Family

ID=41590680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008170718A Expired - Fee Related JP5186295B2 (en) 2008-06-30 2008-06-30 Imaging module, method for manufacturing the same, and endoscope apparatus

Country Status (1)

Country Link
JP (1) JP5186295B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878206B2 (en) 2001-07-16 2005-04-12 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270802A (en) * 2001-03-06 2002-09-20 Canon Inc Solid-state imaging device and its manufacturing method
JP2003303946A (en) * 2002-04-12 2003-10-24 Sony Corp Solid-state image pickup device and manufacturing method thereof
JP2005501405A (en) * 2001-08-24 2005-01-13 カール−ツアイス−シュティフツンク Manufacturing method of electronic parts
JP2006147864A (en) * 2004-11-19 2006-06-08 Fujikura Ltd Semiconductor package and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270802A (en) * 2001-03-06 2002-09-20 Canon Inc Solid-state imaging device and its manufacturing method
JP2005501405A (en) * 2001-08-24 2005-01-13 カール−ツアイス−シュティフツンク Manufacturing method of electronic parts
JP2003303946A (en) * 2002-04-12 2003-10-24 Sony Corp Solid-state image pickup device and manufacturing method thereof
JP2006147864A (en) * 2004-11-19 2006-06-08 Fujikura Ltd Semiconductor package and its manufacturing method

Also Published As

Publication number Publication date
JP5186295B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
JP5047679B2 (en) Imaging unit and method for manufacturing the imaging unit
US10571680B2 (en) Image pickup apparatus and endoscope
US9681067B2 (en) Manufacturing method for image pickup unit and image pickup unit
JP4754221B2 (en) Optical lens alignment assembly for centering the optical lens on the image sensor
US20100091168A1 (en) Solid-state image pickup apparatus, and method of manufacturing solid-state image pickup apparatus
US8796798B2 (en) Imaging module, fabricating method therefor, and imaging device
JP5676171B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic apparatus
CN103492927A (en) Image pickup mechanism, endoscope, and method of manufacturing an image pickup mechanism
JP4819152B2 (en) Optical element wafer, optical element wafer module, optical element module, method for manufacturing optical element module, electronic element wafer module, method for manufacturing electronic element module, electronic element module, and electronic information device
KR20180034329A (en) Laminated lens structure, method of manufacturing the same, and electronic device
US7998779B2 (en) Solid-state imaging device and method of fabricating solid-state imaging device
WO2017061296A1 (en) Solid-state imaging element package, manufacturing method therefor, and electronic device
JP2008528094A (en) Sensor with narrow assembly outline
JP2004080774A (en) Method of manufacturing image sensors module
JP4772826B2 (en) Imaging device
JP2011100971A (en) Method for manufacturing curved circuit
US7785915B2 (en) Wafer level method of locating focal plane of imager devices
JP5186295B2 (en) Imaging module, method for manufacturing the same, and endoscope apparatus
US10739576B2 (en) Imaging apparatus, endoscopic system, and imaging apparatus manufacturing method
US10542874B2 (en) Imaging device and endoscope device
EP3712966B1 (en) Method for manufacturing a curved-surface detector
US20100225799A1 (en) Image pickup unit, method of manufacturing image pickup unit and electronic apparatus provided with image pickup unit
JP4938936B2 (en) Solid-state imaging device
JP2010010579A (en) Imaging module and method of manufacturing the same, and endoscope apparatus
JP6415129B2 (en) Imaging device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100618

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110208

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111216

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120914

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees