JP2010010078A - Nonaqueous electrolyte - Google Patents

Nonaqueous electrolyte Download PDF

Info

Publication number
JP2010010078A
JP2010010078A JP2008171038A JP2008171038A JP2010010078A JP 2010010078 A JP2010010078 A JP 2010010078A JP 2008171038 A JP2008171038 A JP 2008171038A JP 2008171038 A JP2008171038 A JP 2008171038A JP 2010010078 A JP2010010078 A JP 2010010078A
Authority
JP
Japan
Prior art keywords
carbonate
electrolytic solution
ocf
fluorine
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008171038A
Other languages
Japanese (ja)
Inventor
Meiten Ko
明天 高
Hideo Sakata
英郎 坂田
Hitomi Nakazawa
瞳 中澤
Akiyoshi Yamauchi
昭佳 山内
Hiroyuki Arima
博之 有馬
Michiru Kagawa
みちる 賀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2008171038A priority Critical patent/JP2010010078A/en
Publication of JP2010010078A publication Critical patent/JP2010010078A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide nonaqueous electrolyte having characteristics, such as battery characteristics (charge and discharge cycle characteristics, high discharge capacity or the like), nonflammability (incombustibility), and compatibility with other solvents such as hydrocarbon system carbonates with sufficient balance. <P>SOLUTION: A solvent for dissolving electrolytic salt includes: ether containing fluorine and chlorine shown in a formula 1 of HCF<SB>2</SB>CF<SB>2</SB>CH<SB>2</SB>OCF<SB>2</SB>CClFH; cyclic carbonate; and chain-like carbonate. The nonaqueous electrolyte includes electrolytic salt. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リチウム二次電池用に適した非水電解液に関する。   The present invention relates to a nonaqueous electrolytic solution suitable for a lithium secondary battery.

リチウム二次電池用の非水電解液に使用する電解質塩溶解用溶媒としては、エチレンカーボネート、プロピレンカーボネートなどの環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状カーボネートが汎用されている。しかしこれらの炭化水素系カーボネート類は引火点が低く燃焼性が高いため、特にハイブリッド自動車用や分散電源用の大型リチウム二次電池では、非水電解液の不燃性の向上が安全確保の上で重要な課題となっている。   Solvents for dissolving electrolyte salts used in non-aqueous electrolytes for lithium secondary batteries include cyclic carbonates such as ethylene carbonate and propylene carbonate, and chain carbonates such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate. . However, since these hydrocarbon carbonates have a low flash point and high combustibility, especially in large lithium secondary batteries for hybrid vehicles and distributed power supplies, the nonflammability of nonaqueous electrolytes is improved for ensuring safety. It is an important issue.

非水電解液としての性能を落とさずに不燃性(難燃性)を高めるために、フッ素系溶媒を添加することも提案されている(特許文献1〜12)が、電池特性(充放電サイクル特性、高放電容量など)、不燃性(難燃性)、炭化水素系カーボネート類等の他の溶媒成分との相溶性などの特性をバランスよく有する非水電解液が期待されている。   In order to improve nonflammability (flame retardancy) without degrading the performance as a non-aqueous electrolyte, it has also been proposed to add a fluorinated solvent (Patent Documents 1 to 12), but battery characteristics (charge / discharge cycle) Nonaqueous electrolytes having good balance of properties such as properties, high discharge capacity, nonflammability (flame retardant), and compatibility with other solvent components such as hydrocarbon carbonates are expected.

特開平08−037024号公報Japanese Patent Application Laid-Open No. 08-037044 特開平09−097627号公報JP 09-097627 A 特開平11−026015号公報Japanese Patent Laid-Open No. 11-026015 特開2000−294281号公報JP 2000-294281 A 特開2001−052737号公報JP 2001-052737 A 特開平11−307123号公報Japanese Patent Laid-Open No. 11-307123 特開平10−112334号公報JP-A-10-112334 国際公開第2006/088009号パンフレットInternational Publication No. 2006/088009 Pamphlet 国際公開第2006/106655号パンフレットInternational Publication No. 2006/106655 Pamphlet 国際公開第2006/106656号パンフレットInternational Publication No. 2006/106656 Pamphlet 国際公開第2006/106657号パンフレットInternational Publication No. 2006/106657 Pamphlet 国際公開第2008/007734号パンフレットInternational Publication No. 2008/007734 Pamphlet

本発明は、こうした従来の問題点を解決しようとするものであり、電池特性(充放電サイクル特性、高放電容量など)、不燃性(難燃性)、炭化水素系カーボネート類等の他の溶媒との相溶性などの特性をバランスよく有する非水電解液を提供することを目的とする。   The present invention is intended to solve such conventional problems, and other solvents such as battery characteristics (charge / discharge cycle characteristics, high discharge capacity, etc.), nonflammability (flame retardant), hydrocarbon carbonates and the like. An object of the present invention is to provide a nonaqueous electrolytic solution having a good balance of compatibility and other characteristics.

本発明者らは鋭意検討した結果、環状カーボネートと鎖状カーボネートを併用する非水電解液において、末端のフッ素原子を1個だけ塩素原子に置換した特定の含フッ素含塩素エーテルが、鎖状カーボネート全般に対して溶解性が優れ、しかも、耐酸化性、電池特性、安全性において、従来不燃性の向上用に提案されているHCF2CF2CH2OCF2CF2Hと同等の特性を発揮することを見出し、本発明を完成した。 As a result of intensive studies, the present inventors have found that in a non-aqueous electrolyte using both a cyclic carbonate and a chain carbonate, a specific fluorine-containing chlorinated ether in which only one terminal fluorine atom is substituted with a chlorine atom is a chain carbonate. Excellent solubility in general, and exhibits the same characteristics as HCF 2 CF 2 CH 2 OCF 2 CF 2 H, which has been proposed to improve nonflammability in terms of oxidation resistance, battery characteristics, and safety. The present invention has been completed.

すなわち本発明は、
(I)(A)式(1):HCF2CF2CH2OCF2CClFHで示される含フッ素含塩素エーテル、
(B)環状カーボネート、および
(C)鎖状カーボネート
を含む電解質塩溶解用溶媒、ならびに
(II)電解質塩
を含む非水電解液に関する。
That is, the present invention
(I) (A) formula (1): HCF fluorinated chlorine-containing ether represented by 2 CF 2 CH 2 OCF 2 CClFH ,
The present invention relates to (B) a cyclic carbonate, (C) a solvent for dissolving an electrolyte salt containing a chain carbonate, and (II) a non-aqueous electrolyte solution containing an electrolyte salt.

本発明の非水電解液において、電解質塩溶解用溶媒(I)が、溶媒(I)全体に対して、含フッ素含塩素エーテル(A)を10〜60体積%、環状カーボネート(B)を3〜40体積%および鎖状カーボネート(C)を10〜60体積%含み、電解質塩(II)としてLiPF6、LiBF4、LiN(O2SCF32およびLiN(O2SC252よりなる群から選ばれる少なくとも1種を0.8モル/リットル以上の濃度で含むことが、電池特性が良好な点から好ましい。 In the nonaqueous electrolytic solution of the present invention, the solvent (I) for dissolving the electrolyte salt is 10 to 60% by volume of the fluorine-containing chlorinated ether (A) and 3 of the cyclic carbonate (B) with respect to the entire solvent (I). -40% by volume and 10-60% by volume of linear carbonate (C), and LiPF 6 , LiBF 4 , LiN (O 2 SCF 3 ) 2 and LiN (O 2 SC 2 F 5 ) 2 as electrolyte salt (II) It is preferable from a point with favorable battery characteristics to contain at least 1 sort (s) chosen from the group which consists of 0.8 mol / liter or more of density | concentration.

かかる非水電解液はリチウム二次電池用の非水電解液として好適である。   Such a non-aqueous electrolyte is suitable as a non-aqueous electrolyte for a lithium secondary battery.

本発明はまた、正極、負極、セパレータおよび本発明の非水電解液を備えてなるリチウム二次電池にも関する。   The present invention also relates to a lithium secondary battery comprising a positive electrode, a negative electrode, a separator, and the nonaqueous electrolytic solution of the present invention.

本発明によれば、電池特性(充放電サイクル特性、高放電容量など)、不燃性(難燃性)、炭化水素系カーボネート類等の他の溶媒との相溶性などの特性をバランスよく有する非水電解液およびリチウム二次電池を提供することができる。   According to the present invention, the battery characteristics (charge / discharge cycle characteristics, high discharge capacity, etc.), nonflammability (flame retardant), and compatibility with other solvents such as hydrocarbon carbonates are well balanced. A water electrolyte and a lithium secondary battery can be provided.

本発明の非水電解液は、特定の成分を含む電解質塩溶解用溶媒(I)と電解質塩(II)とを含有する。   The nonaqueous electrolytic solution of the present invention contains an electrolyte salt dissolving solvent (I) containing a specific component and an electrolyte salt (II).

電解質塩溶解用溶媒(I)は、
(A)式(1):HCF2CF2CH2OCF2CClFHで示される含フッ素含塩素エーテル、
(B)環状カーボネート、および
(C)鎖状カーボネート
を含む。
Solvent for dissolving electrolyte salt (I)
(A) Formula (1): Fluorine-containing chlorine-containing ether represented by HCF 2 CF 2 CH 2 OCF 2 CClFH,
(B) a cyclic carbonate and (C) a chain carbonate.

以下、各溶媒成分(A)〜(C)について説明する。   Hereinafter, each solvent component (A)-(C) is demonstrated.

(A)式(1):HCF2CF2CH2OCF2CClFHで示される含フッ素含塩素エーテル:
この含フッ素含塩素エーテル(A)は、たとえばHCF2CF2CH2OHとクロロトリフルオロエチレンを反応させることにより容易に製造できる。
(A) Fluorine-containing chlorinated ether represented by the formula (1): HCF 2 CF 2 CH 2 OCF 2 CClFH:
The fluorine-chlorine-containing ether (A) may be readily prepared by, for example, the reaction of HCF 2 CF 2 CH 2 OH and chlorotrifluoroethylene.

従来公知のHCF2CF2CH2OCF2CF2HはDMCやMECに対する溶解性は良好であるが、同じ鎖状カーボネートであるDECに対しての溶解性が低いため、非水電解液の処方が制限されていた。本発明で用いる含フッ素含塩素エーテル(A)は、DECも含め鎖状カーボネート全般に対して溶解性に優れており、非水電解液の処方の幅を大きく広げることができる。 Conventionally known HCF 2 CF 2 CH 2 OCF 2 CF 2 H has good solubility in DMC and MEC, but has low solubility in DEC, which is the same chain carbonate. Was restricted. The fluorine-containing chlorinated ether (A) used in the present invention is excellent in solubility with respect to all chain carbonates including DEC, and can greatly widen the range of the formulation of the non-aqueous electrolyte.

また、耐酸化性、電池特性(レート特性、サイクル特性など)、安全性(過充電安全性など)についても、HCF2CF2CH2OCF2CF2Hと同等の特性が得られる。 In addition, oxidation resistance, battery characteristics (rate characteristics, cycle characteristics, etc.), and safety (overcharge safety, etc.) can be equivalent to those of HCF 2 CF 2 CH 2 OCF 2 CF 2 H.

(B)環状カーボネート:
非フッ素系環状カーボネート(B1)でもフッ素系環状カーボネート(B2)でも、これらの併用でもよい。これらのうち、電解質塩(II)の溶解性の向上、イオン解離性の向上といった効果が特に顕著に得られる点から非フッ素系環状カーボネート(B1)が好ましい。
(B) Cyclic carbonate:
The non-fluorinated cyclic carbonate (B1), the fluorine-based cyclic carbonate (B2), or a combination thereof may be used. Of these, the non-fluorinated cyclic carbonate (B1) is preferable from the viewpoint that the effects of improving the solubility of the electrolyte salt (II) and improving the ion dissociation can be obtained particularly remarkably.

非フッ素系環状カーボネート(B1)としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)およびビニレンカーボネート(VC)よりなる群から選ばれる少なくとも1種が、イオン解離性、低粘性、誘電率が良好な点から好ましい。なお、これらのうち、ビニレンカーボネートは負極の炭素表面の被膜形成材料として添加され、その添加量は5体積%以下であることが好ましい。   As the non-fluorinated cyclic carbonate (B1), at least one selected from the group consisting of ethylene carbonate (EC), propylene carbonate (PC) and vinylene carbonate (VC) has good ion dissociation, low viscosity and dielectric constant. From this point, it is preferable. Of these, vinylene carbonate is added as a film forming material on the carbon surface of the negative electrode, and the amount added is preferably 5% by volume or less.

フッ素系環状カーボネート(B2)は、不燃性(安全性)の向上効果を与える点で有用である。   The fluorine-based cyclic carbonate (B2) is useful in that it provides an effect of improving nonflammability (safety).

フッ素系環状カーボネート(B2)としては、たとえばトリフルオロエチレンカーボネート、3−モノフルオロプロピレンカーボネートなどが例示できる。   Examples of the fluorine-based cyclic carbonate (B2) include trifluoroethylene carbonate and 3-monofluoropropylene carbonate.

(C)鎖状カーボネート:
非フッ素系鎖状カーボネート(C1)でもフッ素系鎖状カーボネート(C2)でも、これらの併用でもよい。これらのうち、電解質塩(II)の電池容量の向上、レート特性の向上、低温特性の向上といった効果が得られる点から非フッ素系鎖状カーボネート(C1)が好ましい。
(C) Chain carbonate:
The non-fluorine chain carbonate (C1), the fluorine chain carbonate (C2), or a combination thereof may be used. Of these, the non-fluorine chain carbonate (C1) is preferable from the viewpoints of the effects of improving the battery capacity, rate characteristics, and low temperature characteristics of the electrolyte salt (II).

非フッ素系鎖状カーボネート(C1)としては、式(C1):
1OCOOR2
(式中、R1およびR2は同じかまたは異なり、炭素数1〜4のアルキル基)で示される化合物が、低粘性、他溶媒との相溶性が良好な点から好ましい。
As the non-fluorine chain carbonate (C1), the formula (C1):
R 1 OCOOR 2
A compound represented by the formula (wherein R 1 and R 2 are the same or different, and an alkyl group having 1 to 4 carbon atoms) is preferred from the viewpoint of low viscosity and good compatibility with other solvents.

具体例としては、たとえばジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、メチルプロピルカーボネートなどがあげられ、なかでもDEC、DMC、MECが、他溶媒との相溶性、レート特性が良好な点から好ましい。   Specific examples include, for example, diethyl carbonate (DEC), dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), methyl propyl carbonate, etc. Among them, DEC, DMC, MEC are compatible with other solvents, rate It is preferable from the viewpoint of good characteristics.

フッ素系鎖状カーボネート(C2)は、非フッ素系鎖状カーボネートよりも引火点が高いため不燃性(安全性)の向上効果を与える点で有用である。   Fluorine chain carbonate (C2) has a higher flash point than non-fluorine chain carbonate, and is useful in that it provides an effect of improving nonflammability (safety).

フッ素系鎖状カーボネート(C2)としては、たとえば2,2,2−トリフルオロエチルメチルカーボネート、2,2,2−トリフルオロエチルエチルカーボネート、3,3,2,2−テトラフルオロプロピルエチルカーボネートなどが例示できる。   Examples of the fluorine chain carbonate (C2) include 2,2,2-trifluoroethyl methyl carbonate, 2,2,2-trifluoroethyl ethyl carbonate, 3,3,2,2-tetrafluoropropyl ethyl carbonate, and the like. Can be illustrated.

本発明の非水電解液において、含フッ素含塩素エーテル(A)は、電解質塩溶解用溶媒(I)全体に対して、10〜60体積%含まれることが好ましい。含フッ素含塩素エーテル(A)の量が少なくなると不燃性、レート特性などが低下する傾向にあり、多くなると相分離したり放電容量が低下したりする傾向にある。難燃性およびレート特性が良好な点から、さらには10〜40体積%、特に20〜40体積%含まれることが好ましい。   In the nonaqueous electrolytic solution of the present invention, the fluorine-containing chlorine-containing ether (A) is preferably contained in an amount of 10 to 60% by volume with respect to the entire electrolyte salt dissolving solvent (I). If the amount of fluorine-containing chlorinated ether (A) decreases, nonflammability and rate characteristics tend to decrease, and if it increases, phase separation or discharge capacity tends to decrease. From the viewpoint of good flame retardancy and rate characteristics, it is preferably contained in an amount of 10 to 40% by volume, particularly 20 to 40% by volume.

本発明の非水電解液において、環状カーボネート(B)は、電解質塩溶解用溶媒(I)全体に対して、3〜40体積%含まれることが好ましい。環状カーボネート(B)の量が少なくなると放電容量、サイクル特性などが低下する傾向にあり、多くなると相分離する傾向にある。放電容量、サイクル特性が良好な点から、さらには5〜35体積%、特に8〜30体積%含まれることが好ましい。   In the nonaqueous electrolytic solution of the present invention, the cyclic carbonate (B) is preferably contained in an amount of 3 to 40% by volume with respect to the entire electrolyte salt dissolving solvent (I). When the amount of the cyclic carbonate (B) decreases, the discharge capacity and cycle characteristics tend to decrease, and when it increases, the phase separation tends to occur. From the viewpoint of good discharge capacity and cycle characteristics, it is further preferably contained in an amount of 5 to 35% by volume, particularly 8 to 30% by volume.

本発明の非水電解液において、鎖状カーボネート(C)は、電解質塩溶解用溶媒(I)全体に対して、10〜60体積%含まれることが好ましい。鎖状カーボネート(C)の量が少なくなると放電容量、サイクル特性、低温特性などが低下する傾向にあり、多くなると鎖状カーボネート、特に非フッ素系鎖状カーボネートの引火点が低いため安全性が低下する傾向とサイクル特性が低下する傾向にある。放電容量、レート特性、低温特性が良好な点から、さらには10〜40体積%、特に20〜40体積%含まれることが好ましい。   In the nonaqueous electrolytic solution of the present invention, the chain carbonate (C) is preferably contained in an amount of 10 to 60% by volume with respect to the entire electrolyte salt dissolving solvent (I). When the amount of chain carbonate (C) decreases, the discharge capacity, cycle characteristics, low temperature characteristics, etc. tend to decrease. When the amount increases, the flash point of chain carbonates, especially non-fluorine chain carbonates, is low, so safety decreases. And cycle characteristics tend to decrease. From the viewpoint of good discharge capacity, rate characteristics, and low temperature characteristics, it is further preferably contained in an amount of 10 to 40% by volume, particularly 20 to 40% by volume.

本発明の非水電解液において、HCF2CF2CH2OCF2CF2Hなどの含フッ素エーテルを電池特性が低下しない量であれば併用してもよい。 In the nonaqueous electrolytic solution of the present invention, a fluorine-containing ether such as HCF 2 CF 2 CH 2 OCF 2 CF 2 H may be used in combination as long as the battery characteristics do not deteriorate.

本発明において、必要に応じて有機溶媒として、過充電防止作用を有するヘキサフルオロベンゼン、フルオロベンゼン、トルエン、シクロヘキシルベンゼンなども使用できるが、その場合、上記含フッ素含塩素エーテル(A)、環状カーボネート(B)、鎖状カーボネート(C)といった各成分によってもたらされる利点および改善を排除しない量であることが好ましい。その量は電解液全体に対して0.5〜10重量%の範囲で使用できる。また、サイクル特性向上作用を有するモノフルオロエチレンカーボネートを本発明の効果を阻害しない量、たとえば電解液全体に対して0.1〜10重量%の範囲で使用してもよいし、難燃性向上作用を有するリン酸エステル類を本発明の効果を阻害しない量、たとえば電解液全体に対して0.1〜10重量%の範囲で使用してもよい。   In the present invention, hexafluorobenzene, fluorobenzene, toluene, cyclohexylbenzene and the like having an anti-overcharge action can be used as an organic solvent as necessary. In this case, the above-mentioned fluorine-containing chlorinated ether (A), cyclic carbonate The amount is preferably such that (B) and the advantages and improvements brought about by each component such as the chain carbonate (C) are not excluded. The amount can be used in the range of 0.5 to 10% by weight with respect to the entire electrolyte. In addition, monofluoroethylene carbonate having an effect of improving the cycle characteristics may be used in an amount that does not inhibit the effect of the present invention, for example, in the range of 0.1 to 10% by weight with respect to the entire electrolytic solution, and flame retardancy is improved You may use the phosphate ester which has an effect | action in the range which does not inhibit the effect of this invention, for example, 0.1 to 10 weight% with respect to the whole electrolyte solution.

つぎに電解質塩(II)について説明する。   Next, the electrolyte salt (II) will be described.

本発明の非水電解液に使用する電解質塩(II)としては、たとえばLiAsF6、LiClO4、LiPF6、LiBF4、LiN(O2SCF32、LiN(O2SC252またはこれらの組合せがあげられ、LiPF6、LiBF4、LiN(O2SCF32、LiN(O2SC252またはこれらの組合せが電池特性が良好である点から好ましく、特にLiPF6および/またはLiN(O2SCF32がサイクル寿命を向上させるという観点から好ましい。 Examples of the electrolyte salt (II) used in the nonaqueous electrolytic solution of the present invention include LiAsF 6 , LiClO 4 , LiPF 6 , LiBF 4 , LiN (O 2 SCF 3 ) 2 , LiN (O 2 SC 2 F 5 ) 2. Or a combination thereof, and LiPF 6 , LiBF 4 , LiN (O 2 SCF 3 ) 2 , LiN (O 2 SC 2 F 5 ) 2, or a combination thereof is preferable from the viewpoint of good battery characteristics, particularly LiPF. 6 and / or LiN (O 2 SCF 3 ) 2 are preferable from the viewpoint of improving the cycle life.

電解質塩(II)の濃度は、要求される電池特性を達成するためには、0.8モル/リットル以上、さらには1.0モル/リットル以上が必要である。上限は電解質塩溶解用有機溶媒(I)にもよるが、通常1.5モル/リットルである。   The concentration of the electrolyte salt (II) is required to be 0.8 mol / liter or more, further 1.0 mol / liter or more in order to achieve the required battery characteristics. The upper limit is usually 1.5 mol / liter although it depends on the organic solvent (I) for dissolving the electrolyte salt.

本発明の非水電解液には、さらに電池の高容量化を図るために、界面活性剤(D)を配合してもよい。界面活性剤(D)の配合量は、充放電サイクル特性を低下させずに電解液の表面張力を低下させるという点から、溶媒(I)全体に対して5質量%以下であり、さらには3質量%以下、特に0.05〜2質量%が好ましい。   In order to further increase the capacity of the battery, a surfactant (D) may be added to the nonaqueous electrolytic solution of the present invention. The blending amount of the surfactant (D) is 5% by mass or less based on the total amount of the solvent (I) from the viewpoint of reducing the surface tension of the electrolytic solution without reducing the charge / discharge cycle characteristics, and further 3 Less than mass%, especially 0.05-2 mass% is preferable.

界面活性剤(D)としては、カチオン性界面活性剤、アニオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤のいずれでもよいが、含フッ素界面活性剤が、サイクル特性、レート特性が良好な点から好ましい。   As the surfactant (D), any of a cationic surfactant, an anionic surfactant, a nonionic surfactant, and an amphoteric surfactant may be used. However, the fluorine-containing surfactant has cycle characteristics and rate characteristics. Is preferable from the viewpoint of good.

たとえば、式(D1a):
RfaCOO-+
(式中、Rfaは炭素数4〜20の含フッ素アルキル基、M+はアルカリ金属カチオンまたはNHR'3 +(R'は同じかまたは異なり、いずれもHまたは炭素数が1〜3のアルキル基))で示される含フッ素カルボン酸塩、および/または
式(D2a):
RfaSO3 -+
(式中、Rfaは炭素数4〜20の含フッ素アルキル基、M+はアルカリ金属カチオンまたはNHR'3 +(R'は同じかまたは異なり、いずれもHまたは炭素数が1〜3のアルキル基))で示される含フッ素スルホン酸塩、さらには
式(D1b):
RfbCOO-+
(式中、Rfbは炭素数4〜20の含フッ素エーテル基、M+はアルカリ金属カチオンまたはNHR'3 +(R'は同じかまたは異なり、いずれもHまたは炭素数が1〜3のアルキル基))で示される含フッ素カルボン酸塩、および/または
式(D2b):
RfbSO3 -+
(式中、Rfbは炭素数4〜20の含フッ素エーテル基、M+はアルカリ金属カチオンまたはNHR'3 +(R'は同じかまたは異なり、いずれもHまたは炭素数が1〜3のアルキル基))で示される含フッ素スルホン酸塩
の1種または2種以上が好ましく例示できる。
For example, the formula (D1a):
Rf a COO - M +
(Wherein, Rf a fluorine-containing alkyl group having 4 to 20 carbon atoms, M + unlike alkali metal cation or NHR '3 + (R' are the same or are both H or carbon atoms of 1 to 3 alkyl Group)) and / or formula (D2a):
Rf a SO 3 - M +
(Wherein, Rf a fluorine-containing alkyl group having 4 to 20 carbon atoms, M + unlike alkali metal cation or NHR '3 + (R' are the same or are both H or carbon atoms of 1 to 3 alkyl Group))-containing fluorine-containing sulfonate, and further formula (D1b):
Rf b COO - M +
(In the formula, Rf b is a fluorine-containing ether group having 4 to 20 carbon atoms, M + is an alkali metal cation or NHR ′ 3 + (R ′ is the same or different, both are H or alkyl having 1 to 3 carbon atoms) Group)) and / or formula (D2b):
Rf b SO 3 - M +
(In the formula, Rf b is a fluorine-containing ether group having 4 to 20 carbon atoms, M + is an alkali metal cation or NHR ′ 3 + (R ′ is the same or different, both are H or alkyl having 1 to 3 carbon atoms) One or more of the fluorine-containing sulfonates represented by the group)) can be preferably exemplified.

Rfaとしては炭素数4〜20の含フッ素アルキル基が、Rfbとしては炭素数4〜20の含フッ素エーテル基が、電解液の表面張力を低下させる度合いが良好な点から好ましく、特に炭素数4〜8の含フッ素アルキル基が溶解性に優れる点から好ましい。 The Rf a fluorine-containing alkyl group having 4 to 20 carbon atoms, and Rf b is a fluorine-containing ether group having 4 to 20 carbon atoms, preferably from the degree of lowering the surface tension of the electrolytic solution good points, particularly carbon The fluorine-containing alkyl group of several 4-8 is preferable from the point which is excellent in solubility.

+のアルカリ金属としては、Li、Na、Kが好ましく、M+としては特にNH4 +が好ましい。 As the M + alkali metal, Li, Na, and K are preferable, and as M + , NH 4 + is particularly preferable.

含フッ素カルボン酸塩(D1a)の具体例としては、たとえばC49COO-NH4 +、C511COO-NH4 +、C613COO-NH4 +、C715COO-NH4 +、C817COO-NH4 +、C919COO-NH4 +
49COO-NH(CH33 +、C511COO-NH(CH33 +、C613COO-NH(CH33 +、C715COO-NH(CH33 +、C817COO-NH(CH33 +、C919COO-NH(CH33 +、C49COO-Li+、C511COO-Li+、C613COO-Li+、C715COO-Li+、C817COO-Li+、C919COO-Li+などがあげられ、なかでも電解液への溶解性、表面張力の低下効果が良好な点から、C511COO-NH4 +、C715COO-NH4 +、C511COO-Li+、C613COO-Li+が好ましい。
Specific examples of the fluorine-containing carboxylate (D1a) include, for example, C 4 F 9 COO NH 4 + , C 5 F 11 COO NH 4 + , C 6 F 13 COO NH 4 + , C 7 F 15 COO - NH 4 +, C 8 F 17 COO - NH 4 +, C 9 F 19 COO - NH 4 +,
C 4 F 9 COO - NH ( CH 3) 3 +, C 5 F 11 COO - NH (CH 3) 3 +, C 6 F 13 COO - NH (CH 3) 3 +, C 7 F 15 COO - NH ( CH 3) 3 +, C 8 F 17 COO - NH (CH 3) 3 +, C 9 F 19 COO - NH (CH 3) 3 +, C 4 F 9 COO - Li +, C 5 F 11 COO - Li + , C 6 F 13 COO - Li + , C 7 F 15 COO - Li + , C 8 F 17 COO - Li + , C 9 F 19 COO - Li + , among others, solubility in the electrolyte C 5 F 11 COO - NH 4 + , C 7 F 15 COO - NH 4 + , C 5 F 11 COO - Li + , and C 6 F 13 COO - Li + preferable.

含フッ素カルボン酸塩(D1b)の具体例としては、C37OCF(CF3)COO-NH4 +、C37OCF(CF3)CF2OCF(CF3)COO-NH4 +、C37OCF(CF3)COO-NH(CH33 +、C37OCF(CF3)CF2OCF(CF3)COO-NH(CH33 +、C37OCF(CF3)COO-Li+、C37OCF(CF3)CF2OCF(CF3)COO-Li+などがあげられ、なかでも電解液への溶解性、表面張力の低下効果が良好な点から、C37OC(CF3)FCOO-NH4 +、C37OCF(CF3)CF2OCF(CF3)COO-NH4 +、C37OCF(CF3)COO-Li+、C37OCF(CF3)CF2OCF(CF3)COO-Li+が好ましい。 Specific examples of the fluorine-containing carboxylate (D1b) include C 3 F 7 OCF (CF 3 ) COO NH 4 + , C 3 F 7 OCF (CF 3 ) CF 2 OCF (CF 3 ) COO NH 4 + , C 3 F 7 OCF (CF 3) COO - NH (CH 3) 3 +, C 3 F 7 OCF (CF 3) CF 2 OCF (CF 3) COO - NH (CH 3) 3 +, C 3 F 7 OCF (CF 3 ) COO Li + , C 3 F 7 OCF (CF 3 ) CF 2 OCF (CF 3 ) COO Li +, etc., among others, the solubility in the electrolyte and the effect of reducing the surface tension from the viewpoint of good, C 3 F 7 OC (CF 3) FCOO - NH 4 +, C 3 F 7 OCF (CF 3) CF 2 OCF (CF 3) COO - NH 4 +, C 3 F 7 OCF (CF 3 ) COO - Li +, C 3 F 7 OCF (CF 3) CF 2 OCF (CF 3) COO - Li + is preferred .

含フッ素スルホン酸塩(D2a)の具体例としては、たとえばC49SO3 -NH4 +、C511SO3 -NH4 +、C613SO3 -NH4 +、C715SO3 -NH4 +、C817SO3 -NH4 +、C919SO3 -NH4 +、C49SO3 -NH(CH33 +、C511SO3 -NH(CH33 +、C613SO3 -NH(CH33 +、C715SO3 -NH(CH33 +、C817SO3 -NH(CH33 +、C919SO3 -NH(CH33 +、C49SO3 -Li+、C511SO3 -Li+、C613SO3 -Li+、C715SO3 -Li+、C817SO3 -Li+、C919SO3 -Li+などがあげられ、なかでも電解液への溶解性、表面張力の低下効果が良好な点から、C49SO3 -NH4 +、C613SO3 -NH4 +、C817SO3 -NH4 +、C49SO3 -Li+、C613SO3 -Li+、C817SO3 -Li+が好ましい。 Specific examples of the fluorine-containing sulfonate (D2a), for example, C 4 F 9 SO 3 - NH 4 +, C 5 F 11 SO 3 - NH 4 +, C 6 F 13 SO 3 - NH 4 +, C 7 F 15 SO 3 - NH 4 + , C 8 F 17 SO 3 - NH 4 +, C 9 F 19 SO 3 - NH 4 +, C 4 F 9 SO 3 - NH (CH 3) 3 +, C 5 F 11 SO 3 - NH (CH 3) 3 +, C 6 F 13 SO 3 - NH (CH 3) 3 +, C 7 F 15 SO 3 - NH (CH 3) 3 +, C 8 F 17 SO 3 - NH ( CH 3 ) 3 + , C 9 F 19 SO 3 - NH (CH 3 ) 3 + , C 4 F 9 SO 3 - Li + , C 5 F 11 SO 3 - Li + , C 6 F 13 SO 3 - Li + , C 7 F 15 SO 3 - Li + , C 8 F 17 SO 3 - Li + , C 9 F 19 SO 3 - Li +, etc. From a good point, C 4 F 9 SO 3 - NH 4 + , C 6 F 13 SO 3 - NH 4 +, C 8 F 17 SO 3 - NH 4 +, C 4 F 9 SO 3 - Li +, C 6 F 13 SO 3 - Li +, C 8 F 17 SO 3 - Li + is preferred .

含フッ素スルホン酸塩(D2b)の具体例としては、たとえばC37OC(CF3)FCF2OC(CF3)FSO3 -NH4 +、C37OC(CF3)FCF2OC(CF3)FCF2OC(CF3)FSO3 -NH4 +、HCF2CF2OCF2CF2SO3 -NH4 +、CF3CFHCF2OCF2CF2SO3 -NH4 +、C37OC(CF3)FSO3 -NH4 +、C37OC(CF3)FCF2OC(CF3)FSO3 -NH(CH33 +、C37OC(CF3)FCF2OC(CF3)FCF2OC(CF3)FSO3 -NH(CH33 +、HCF2CF2OCF2CF2SO3 -NH(CH33 +、CF3CFHCF2OCF2CF2SO3 -NH(CH33 +、C37OC(CF3)FSO3 -NH(CH33 +、C37OC(CF3)FCF2OC(CF3)FSO3 -Li+、C37OC(CF3)FCF2OC(CF3)FCF2OC(CF3)FSO3 -Li+、HCF2CF2OCF2CF2SO3 -Li+、CF3CFHCF2OCF2CF2SO3 -Li+、C37OC(CF3)FSO3 -Li+などがあげられ、なかでも電解液への溶解性、表面張力の低下効果が良好な点から、C37OC(CF3)FCF2OC(CF3)FSO3 -NH4 +、C37OC(CF3)FCF2OC(CF3)FSO3 -Li+、C37OC(CF3)FSO3 -NH4 +、C37OC(CF3)FSO3 -Li+が好ましい。 Specific examples of the fluorine-containing sulfonate (D2b), for example, C 3 F 7 OC (CF 3 ) FCF 2 OC (CF 3) FSO 3 - NH 4 +, C 3 F 7 OC (CF 3) FCF 2 OC (CF 3) FCF 2 OC ( CF 3) FSO 3 - NH 4 +, HCF 2 CF 2 OCF 2 CF 2 SO 3 - NH 4 +, CF 3 CFHCF 2 OCF 2 CF 2 SO 3 - NH 4 +, C 3 F 7 OC (CF 3) FSO 3 - NH 4 +, C 3 F 7 OC (CF 3) FCF 2 OC (CF 3) FSO 3 - NH (CH 3) 3 +, C 3 F 7 OC (CF 3) FCF 2 OC (CF 3) FCF 2 OC (CF 3) FSO 3 - NH (CH 3) 3 +, HCF 2 CF 2 OCF 2 CF 2 SO 3 - NH (CH 3) 3 +, CF 3 CFHCF 2 OCF 2 CF 2 SO 3 - NH (CH 3) 3 +, C 3 F 7 OC (CF 3) FSO 3 - NH (CH 3) 3 + , C 3 F 7 OC (CF 3) FCF 2 OC (CF 3) FSO 3 - Li +, C 3 F 7 OC (CF 3) FCF 2 OC (CF 3) FCF 2 OC (CF 3) FSO 3 - Li +, HCF 2 CF 2 OCF 2 CF 2 SO 3 - Li +, CF 3 CFHCF 2 OCF 2 CF 2 SO 3 - Li +, C 3 F 7 OC (CF 3) FSO 3 - Li + and the like, Naka But solubility in the electrolyte, the effect of lowering surface tension in terms of good, C 3 F 7 OC (CF 3) FCF 2 OC (CF 3) FSO 3 - NH 4 +, C 3 F 7 OC (CF 3 ) FCF 2 OC (CF 3) FSO 3 - Li +, C 3 F 7 OC (CF 3) FSO 3 - NH 4 +, C 3 F 7 OC (CF 3) FSO 3 - Li + is preferred.

そのほか、電極との濡れ性を向上するためにアニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、非イオン界面活性剤などの界面活性剤を本発明の特性を損なわない範囲で添加することができる。   In addition, surfactants such as anionic surfactants, cationic surfactants, amphoteric surfactants and nonionic surfactants should be added within the range that does not impair the properties of the present invention in order to improve the wettability with the electrodes. Can do.

本発明の電解液は、以上のような構成を備えることから、不燃性(難燃性)でかつ電池特性(充放電サイクル特性、放電容量)に優れる。さらに本発明の電解液によれば、低温でも相分離し難いこと、耐熱性に優れること、電解質塩の溶解性が高いこと、電池容量が向上し、レート特性に優れることを期待することもできる。   Since the electrolytic solution of the present invention has the above-described configuration, it is incombustible (flame retardant) and excellent in battery characteristics (charge / discharge cycle characteristics, discharge capacity). Furthermore, according to the electrolytic solution of the present invention, it can be expected that phase separation is difficult even at low temperatures, heat resistance is high, electrolyte salt solubility is high, battery capacity is improved, and rate characteristics are excellent. .

本発明の電解液は、容量やレート特性を向上させる点から、リチウム二次電池用として好適であり、正極、負極、セパレータと本発明の電解液を備えるリチウム二次電池を提供できる。   The electrolyte solution of the present invention is suitable for a lithium secondary battery from the viewpoint of improving capacity and rate characteristics, and can provide a lithium secondary battery including a positive electrode, a negative electrode, a separator, and the electrolyte solution of the present invention.

正極に使用する正極活物質としては特に制限されないが、コバルト系複合酸化物、ニッケル系複合酸化物、マンガン系複合酸化物、鉄系複合酸化物およびバナジウム系複合酸化物よりなる群から選ばれる少なくとも1種を用いるとき、エネルギー密度の高く、高出力のリチウム二次電池となることから好ましい。   The positive electrode active material used for the positive electrode is not particularly limited, but at least selected from the group consisting of cobalt-based composite oxides, nickel-based composite oxides, manganese-based composite oxides, iron-based composite oxides, and vanadium-based composite oxides. When using 1 type, it is preferable from becoming a high output lithium secondary battery with a high energy density.

コバルト系複合酸化物としては、LiCoO2が例示され、ニッケル系複合酸化物としては、LiNiO2が例示され、マンガン系複合酸化物としては、LiMnO2が例示される。また、LiCoxNi1-x2(0<x<1)やLiCoxMn1-x2(0<x<1)、LiNixMn1-x2(0<x<1)、LiNixMn2-x4(0<x<2)、LiNi1-x-yCoxMny2(0<x<1、0<y<1、0<x+y<1)で表されるCoNi、CoMn、NiMn、NiCoMnの複合酸化物でも良い。これらのリチウム含有複合酸化物は、Co、Ni、Mnなどの金属元素の一部が、Mg、Al、Zr、Ti、Crなどの1種以上の金属元素で置換されたものであってもよい。 An example of the cobalt-based composite oxide is LiCoO 2 , an example of the nickel-based composite oxide is LiNiO 2 , and an example of the manganese-based composite oxide is LiMnO 2 . LiCo x Ni 1-x O 2 (0 <x <1), LiCo x Mn 1-x O 2 (0 <x <1), LiNi x Mn 1-x O 2 (0 <x <1), LiNi x Mn 2-x O 4 (0 <x <2), CoNi represented by LiNi 1-xy Co x Mn y O 2 (0 <x <1,0 <y <1,0 <x + y <1) , CoMn, NiMn, and NiCoMn composite oxides may be used. In these lithium-containing composite oxides, a part of metal elements such as Co, Ni, and Mn may be substituted with one or more metal elements such as Mg, Al, Zr, Ti, and Cr. .

また、鉄系複合酸化物としては、たとえばLiFeO2、LiFePO4が例示され、バナジウム系複合酸化物としては、たとえばV25が例示される。 In addition, examples of the iron-based composite oxide include LiFeO 2 and LiFePO 4 , and examples of the vanadium-based composite oxide include V 2 O 5 .

正極活物質として、上記の複合酸化物のなかでも、容量を高くすることができる点から、ニッケル系複合酸化物またはコバルト系複合酸化物が好ましい。特に小型リチウム二次電池では、コバルト系複合酸化物を用いることはエネルギー密度が高い点と安全性の面から望ましい。本発明において特にハイブリッド自動車用や分散電源用の大型リチウム二次電池に使用される場合は、高出力が要求されるため、正極活物質の粒子は二次粒子が主体となり、その二次粒子の平均粒子径が40μm以下で平均一次粒子径1μm以下の微粒子を0.5〜7.0体積%含有することが好ましい。   As the positive electrode active material, among the above complex oxides, a nickel complex oxide or a cobalt complex oxide is preferable because the capacity can be increased. In particular, in a small lithium secondary battery, it is desirable to use a cobalt-based composite oxide from the viewpoint of high energy density and safety. In the present invention, particularly when used in a large-sized lithium secondary battery for a hybrid vehicle or a distributed power source, a high output is required, so the particles of the positive electrode active material are mainly secondary particles, and the secondary particles It is preferable to contain 0.5 to 7.0% by volume of fine particles having an average particle size of 40 μm or less and an average primary particle size of 1 μm or less.

平均一次粒子径が1μm以下の微粒子を含有させることにより電解液との接触面積が大きくなり電極と電解液の間でのリチウムイオンの拡散をより早くすることができ出力性能を向上させることができる。   By containing fine particles having an average primary particle diameter of 1 μm or less, the contact area with the electrolytic solution is increased, and the diffusion of lithium ions between the electrode and the electrolytic solution can be accelerated, and the output performance can be improved. .

本発明で負極に使用する負極活物質は炭素材料があげられ、リチウムイオンを挿入可能な金属酸化物や金属窒化物などもあげられる。炭素材料としては天然黒鉛、人造黒鉛、熱分解炭素類、コークス類、メソカーボンマイクロビーズ、炭素ファイバー、活性炭、ピッチ被覆黒鉛などがあげられ、リチウムイオンを挿入可能な金属酸化物としては、スズやケイ素、チタンを含む金属化合物、たとえば酸化スズ、酸化ケイ素、チタン酸リチウムなどがあげられ、金属窒化物としては、Li2.6Co0.4Nなどがあげられる。 Examples of the negative electrode active material used for the negative electrode in the present invention include carbon materials, and also include metal oxides and metal nitrides into which lithium ions can be inserted. Examples of carbon materials include natural graphite, artificial graphite, pyrolytic carbons, cokes, mesocarbon microbeads, carbon fibers, activated carbon, and pitch-coated graphite. Metal oxides capable of inserting lithium ions include tin and Examples of the metal compound include silicon and titanium, such as tin oxide, silicon oxide, and lithium titanate. Examples of the metal nitride include Li 2.6 Co 0.4 N.

正極活物質と負極活物質との組合せとしては、正極活物質がコバルト酸リチウムで負極活物質が黒鉛の組合せ、正極活物質がニッケル系複合酸化物で負極活物質が黒鉛の組合せが容量が増大する点から好ましい。   As a combination of the positive electrode active material and the negative electrode active material, the positive electrode active material is lithium cobaltate and the negative electrode active material is graphite. The positive electrode active material is nickel-based composite oxide and the negative electrode active material is graphite. This is preferable.

本発明に使用できるセパレータは特に制限はなく、微孔性ポリエチレンフィルム、微孔性ポリプロピレンフィルム、微孔性エチレン−プロピレンコポリマーフィルム、微孔性ポリプロピレン/ポリエチレン2層フィルム、微孔性ポリプロピレン/ポリエチレン/ポリプロピレン3層フィルムなどがあげられる。また、Liデントライトによって起こる短絡などを防止して安全性の向上を図るために作られたセパレータ上にアラミド樹脂を塗布したフィルム、またはポリアミドイミドおよびアルミナフィラーを含む樹脂をセパレータ上に塗布したフィルムなどもあげられる。   The separator that can be used in the present invention is not particularly limited, and is a microporous polyethylene film, a microporous polypropylene film, a microporous ethylene-propylene copolymer film, a microporous polypropylene / polyethylene bilayer film, a microporous polypropylene / polyethylene / Examples thereof include a polypropylene three-layer film. In addition, a film in which an aramid resin is coated on a separator made to prevent a short circuit caused by Li dentlite and improve safety, or a film in which a resin containing polyamideimide and an alumina filler is coated on a separator Etc.

また、本発明の電解液は、不燃性であることから、上記のハイブリッド自動車用や分散電源用の大型リチウム二次電池用の電解液として特に有用であるが、そのほか小型のリチウムイオン電池、アルミニウム電解コンデンサ用電解液、電気二重層キャパシタ用電解液などの非水電解液としても有用である。   In addition, since the electrolytic solution of the present invention is nonflammable, it is particularly useful as an electrolytic solution for a hybrid lithium battery or a large lithium secondary battery for a distributed power source. It is also useful as a nonaqueous electrolytic solution such as an electrolytic solution for electrolytic capacitors and an electrolytic solution for electric double layer capacitors.

そのほか、本発明の電解液は、たとえば電解コンデンサ、エレクトロルミネッセンスなどの固体表示素子、電流センサーなどのセンサーなどに使用することができる。   In addition, the electrolytic solution of the present invention can be used for, for example, electrolytic capacitors, solid display elements such as electroluminescence, sensors such as current sensors, and the like.

つぎに本発明を実施例に基づいて具体的に説明するが、本発明はかかる実施例のみに限定されるものではない。   Next, the present invention will be specifically described based on examples, but the present invention is not limited to such examples.

なお、以下の実施例および比較例で使用した各化合物は以下のとおりである。
成分(A)
(A1):HCF2CF2CH2OCF2CClFH
(A2):HCF2CF2CH2OCF2CF2
成分(B)
(B1):エチレンカーボネート
(B2):プロピレンカーボネート
成分(C)
(C1):ジメチルカーボネート
(C2):メチルエチルカーボネート
(C3):ジエチルカーボネート
In addition, each compound used in the following Examples and Comparative Examples is as follows.
Ingredient (A)
(A1): HCF 2 CF 2 CH 2 OCF 2 CClFH
(A2): HCF 2 CF 2 CH 2 OCF 2 CF 2 H
Ingredient (B)
(B1): Ethylene carbonate (B2): Propylene carbonate component (C)
(C1): Dimethyl carbonate (C2): Methyl ethyl carbonate (C3): Diethyl carbonate

実施例1
成分(A)としてHCF2CF2CH2OCF2CClFH(A1)、成分(B)としてエチレンカーボネート(B1)、成分(C)としてジメチルカーボネート(C1)を60/20/20体積%比となるように混合し、この電解質塩溶解用溶媒にさらに電解質塩としてLiPF6を1.0モル/リットルの濃度となるように加え、25℃にて充分に撹拌し本発明の非水電解液を調製した。
Example 1
The component (A) is HCF 2 CF 2 CH 2 OCF 2 CClFH (A1), the component (B) is ethylene carbonate (B1), and the component (C) is dimethyl carbonate (C1) in a 60/20/20 volume% ratio. Then, LiPF 6 as an electrolyte salt is further added to the electrolyte salt dissolving solvent to a concentration of 1.0 mol / liter, and the mixture is sufficiently stirred at 25 ° C. to prepare the nonaqueous electrolytic solution of the present invention. did.

実施例2
(A1)/(B1)/(C1)の混合割合を50/40/10体積%としたほかは実施例1と同様にして本発明の非水電解液を調製した。
Example 2
A nonaqueous electrolytic solution of the present invention was prepared in the same manner as in Example 1 except that the mixing ratio of (A1) / (B1) / (C1) was 50/40/10 vol%.

実施例3
(A1)/(B1)/(C1)の混合割合を4/50/10体積%としたほかは実施例1と同様にして本発明の非水電解液を調製した。
Example 3
A nonaqueous electrolytic solution of the present invention was prepared in the same manner as in Example 1 except that the mixing ratio of (A1) / (B1) / (C1) was 4/50/10 vol%.

実施例4
成分(C)としてメチルエチルカーボネート(C2)とジエチルカーボネート(C3)とを1:2(体積比)混合し、(A1)/(B1)/((C2)+(C3))の混合割合を60/10/30体積%としたほかは実施例1と同様にして本発明の非水電解液を調製した。
Example 4
As a component (C), methyl ethyl carbonate (C2) and diethyl carbonate (C3) are mixed 1: 2 (volume ratio), and the mixing ratio of (A1) / (B1) / ((C2) + (C3)) is set. A nonaqueous electrolytic solution of the present invention was prepared in the same manner as in Example 1 except that 60/10/30% by volume.

実施例5
成分(C)としてメチルエチルカーボネート(C2)とジエチルカーボネート(C3)とを1:2(体積比)混合し、(A1)/(B1)/((C2)+(C3))の混合割合を40/30/30体積%としたほかは実施例1と同様にして本発明の非水電解液を調製した。
Example 5
As a component (C), methyl ethyl carbonate (C2) and diethyl carbonate (C3) are mixed 1: 2 (volume ratio), and the mixing ratio of (A1) / (B1) / ((C2) + (C3)) is set. A nonaqueous electrolytic solution of the present invention was prepared in the same manner as in Example 1 except that 40/30/30% by volume.

実施例6
成分(C)としてメチルエチルカーボネート(C2)とジエチルカーボネート(C3)とを1:2(体積比)混合し、(A1)/(B1)/((C2)+(C3))の混合割合を30/40/30体積%としたほかは実施例1と同様にして本発明の非水電解液を調製した。
Example 6
As a component (C), methyl ethyl carbonate (C2) and diethyl carbonate (C3) are mixed 1: 2 (volume ratio), and the mixing ratio of (A1) / (B1) / ((C2) + (C3)) is set. A nonaqueous electrolytic solution of the present invention was prepared in the same manner as in Example 1 except that the volume was 30/40/30% by volume.

比較例1
実施例1において、成分(A1)に代えて、HCF2CF2CH2OCF2CF2H(A2)を用いたほかは同様にして比較用の非水電解液を調製した。
Comparative Example 1
A nonaqueous electrolytic solution for comparison was prepared in the same manner as in Example 1 except that HCF 2 CF 2 CH 2 OCF 2 CF 2 H (A2) was used instead of the component (A1).

比較例2
実施例2において、成分(A1)に代えて、HCF2CF2CH2OCF2CF2H(A2)を用いたほかは同様にして比較用の非水電解液を調製した。
Comparative Example 2
In Example 2, a nonaqueous electrolytic solution for comparison was prepared in the same manner except that HCF 2 CF 2 CH 2 OCF 2 CF 2 H (A2) was used instead of the component (A1).

比較例3
実施例3において、成分(A1)に代えて、HCF2CF2CH2OCF2CF2H(A2)を用いたほかは同様にして比較用の非水電解液を調製した。
Comparative Example 3
In Example 3, a non-aqueous electrolyte for comparison was prepared in the same manner except that HCF 2 CF 2 CH 2 OCF 2 CF 2 H (A2) was used instead of the component (A1).

比較例4
実施例4において、成分(A1)に代えて、HCF2CF2CH2OCF2CF2H(A2)を用いたほかは同様にして比較用の非水電解液を調製した。
Comparative Example 4
In Example 4, a non-aqueous electrolyte solution for comparison was prepared in the same manner except that HCF 2 CF 2 CH 2 OCF 2 CF 2 H (A2) was used instead of the component (A1).

比較例5
実施例5において、成分(A1)に代えて、HCF2CF2CH2OCF2CF2H(A2)を用いたほかは同様にして比較用の非水電解液を調製した。
Comparative Example 5
In Example 5, a nonaqueous electrolytic solution for comparison was prepared in the same manner except that HCF 2 CF 2 CH 2 OCF 2 CF 2 H (A2) was used instead of the component (A1).

比較例6
実施例6において、成分(A1)に代えて、HCF2CF2CH2OCF2CF2H(A2)を用いたほかは同様にして比較用の非水電解液を調製した。
Comparative Example 6
In Example 6, a non-aqueous electrolyte for comparison was prepared in the same manner except that HCF 2 CF 2 CH 2 OCF 2 CF 2 H (A2) was used instead of the component (A1).

これらの非水電解液について、以下の溶解性試験を行った。   The following solubility tests were performed on these nonaqueous electrolyte solutions.

溶解性試験
各非水電解液を25℃で24時間放置し、結晶(電解質)が析出するか否かで溶解性を判断する。評価は、結晶が出なかったものを○、結晶が出たものは×とする。
結果を表1に示す。
Solubility test Each non-aqueous electrolyte is allowed to stand at 25 ° C for 24 hours, and the solubility is judged by whether or not crystals (electrolytes) are precipitated. In the evaluation, ◯ indicates that no crystal appeared, and X indicates that a crystal appeared.
The results are shown in Table 1.

Figure 2010010078
Figure 2010010078

結晶が析出しなかったものは電解質が溶解しているので電解液として使える。しかし、結晶が析出した場合は電解液として使えない。この観点から、実施例1〜6のすべての電解液については結晶が析出しなかったため電解液として使える。一方、比較例1〜6の電解液については結晶が析出したため電解液として使えない。   Those in which crystals are not deposited can be used as an electrolyte because the electrolyte is dissolved. However, it cannot be used as an electrolyte when crystals are deposited. From this point of view, all of the electrolyte solutions of Examples 1 to 6 can be used as the electrolyte solution because no crystals were precipitated. On the other hand, the electrolyte solutions of Comparative Examples 1 to 6 cannot be used as the electrolyte solution because crystals are deposited.

この結果は、HCF2CF2CH2OCF2CClFHは電解液を調製する場合の組成範囲の自由度を広げることができ、優位であることがわかる。 From this result, it can be seen that HCF 2 CF 2 CH 2 OCF 2 CClFH is superior in that it can widen the degree of freedom of the composition range when preparing the electrolytic solution.

実施例7
(A1)/(B1)/(C1)の混合割合を40/20/40体積%としたほかは実施例1と同様にして本発明の非水電解液を調製した。
Example 7
A nonaqueous electrolytic solution of the present invention was prepared in the same manner as in Example 1 except that the mixing ratio of (A1) / (B1) / (C1) was 40/20/40% by volume.

比較例7
実施例7において、成分(A1)に代えて、HCF2CF2CH2OCF2CF2H(A2)を用いたほかは同様にして比較用の非水電解液を調製した。
Comparative Example 7
A nonaqueous electrolytic solution for comparison was prepared in the same manner as in Example 7 except that HCF 2 CF 2 CH 2 OCF 2 CF 2 H (A2) was used instead of the component (A1).

これらの非水電解液について、リニアースイープボルタンメトリー(LSV)をつぎの方法で測定した。結果を図1に示す。   For these non-aqueous electrolytes, linear sweep voltammetry (LSV) was measured by the following method. The results are shown in FIG.

LSV測定方法
BAS社製ボルタンメトリー用密閉セル(VC−4)を用い、作用極に白金極、対極・参照極にLiを用い、供試電解液を3ml入れて測定セルを作製する。このセルについて、25℃一定化で測定器としてポテンショ−ガルバノスタット(ソーラトロン社の1287型)を用い、自然電位から7.0Vまで5mV/secでスキャンし、電解液の分解開始電位を調べる。
LSV Measurement Method Using a closed voltammetry cell (VC-4) manufactured by BAS, using a platinum electrode as a working electrode, Li as a counter electrode and a reference electrode, 3 ml of a test electrolyte is put into a measurement cell. The cell is scanned at a rate of 5 mV / sec from a natural potential to 7.0 V using a potentio-galvanostat (1287 type manufactured by Solartron Co.) as a measuring instrument at a constant temperature of 25 ° C., and the decomposition initiation potential of the electrolytic solution is examined.

図1の結果から、実施例7の電解液は比較例7の電解液と比較して、電解液が分解を始める急激な立ち上がりの始まる電位はほとんど変わらない。このことは、成分(A):HCF2CF2CH2OCF2CClFHを配合した電解液は、実用的な電解液として十分使用できることを示している。 From the result of FIG. 1, the electrolytic solution of Example 7 has almost the same potential as that of the electrolytic solution of Comparative Example 7 at which the rapid rise at which the electrolytic solution begins to decompose begins. This indicates that an electrolytic solution containing component (A): HCF 2 CF 2 CH 2 OCF 2 CClFH can be sufficiently used as a practical electrolytic solution.

実施例8
(A1)/(B1)/(C1)の混合割合を10/30/60体積%としたほかは実施例1と同様にして本発明の非水電解液を調製した。
Example 8
A nonaqueous electrolytic solution of the present invention was prepared in the same manner as in Example 1 except that the mixing ratio of (A1) / (B1) / (C1) was 10/30/60% by volume.

比較例8
成分(A1)を配合せずに、(B1)/(C1)の混合割合を30/70体積%としたほかは実施例1と同様にして比較用の非水電解液を調製した。
Comparative Example 8
A nonaqueous electrolytic solution for comparison was prepared in the same manner as in Example 1 except that the component (A1) was not blended and the mixing ratio of (B1) / (C1) was 30/70% by volume.

これらの非水電解液、さらには実施例1、実施例4および比較例7のそれぞれの電解液について、以下の電池特性および過充電特性を調べた。結果を表2に示す。   The following battery characteristics and overcharge characteristics were examined for these non-aqueous electrolytes, as well as each of the electrolyte solutions of Example 1, Example 4, and Comparative Example 7. The results are shown in Table 2.

電池特性の測定
以下の方法で円筒型二次電池を作製した。
Measurement of battery characteristics A cylindrical secondary battery was produced by the following method.

LiCoO2とカーボンブラックとポリフッ化ビニリデン(呉羽化学(株)製。商品名KF−1000)を90/3/7(質量%比)で混合した正極活物質をN−メチル−2−ピロリドンに分散してスラリー状としたものを正極集電体(厚さ15μmのアルミニウム箔)上に均一に塗布し、乾燥して正極合剤層を形成し、その後、ローラプレス機により圧縮成形した後、切断し、リード体を溶接して、帯状の正極を作製した。 A positive electrode active material prepared by mixing LiCoO 2 , carbon black, and polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd., trade name KF-1000) at 90/3/7 (mass% ratio) is dispersed in N-methyl-2-pyrrolidone. Then, the slurry is applied uniformly on a positive electrode current collector (aluminum foil having a thickness of 15 μm), dried to form a positive electrode mixture layer, and then compression-molded with a roller press and then cut. The lead body was then welded to produce a strip-shaped positive electrode.

別途、人造黒鉛粉末(日立化成(株)製。商品名MAG−D)に、蒸留水で分散させたスチレン−ブタジエンゴムを固形分で6質量%となるように加え、ディスパーザーで混合してスラリー状としたものを負極集電体(厚さ10μmの銅箔)上に均一に塗布し、乾燥し、負極合剤層を形成し、その後、ローラプレス機により圧縮成形し、切断した後、乾燥し、リード体を溶接して、帯状の負極を作製した。   Separately, styrene-butadiene rubber dispersed with distilled water is added to artificial graphite powder (manufactured by Hitachi Chemical Co., Ltd., trade name MAG-D) so that the solid content becomes 6% by mass, and mixed with a disperser. After applying the slurry in a uniform manner on a negative electrode current collector (copper foil having a thickness of 10 μm), drying, forming a negative electrode mixture layer, and then compression molding with a roller press machine and cutting, It dried and welded the lead body and produced the strip | belt-shaped negative electrode.

この帯状の正極を厚さ20μmの微孔性ポリエチレンフィルム(セパレータ)を介して帯状の負極に重ね、渦巻状に巻回して渦巻状巻回構造の積層電極体とした。その際、正極集電体の粗面側が外周側になるようにして巻回した。その後、この電極体を外径18mmの有底円筒状の電池ケース内に充填し、正極および負極のリード体の溶接を行った。   This belt-like positive electrode was stacked on the belt-like negative electrode with a microporous polyethylene film (separator) having a thickness of 20 μm and wound in a spiral shape to obtain a laminated electrode body having a spiral winding structure. At that time, the positive electrode current collector was wound so that the rough surface side was the outer peripheral side. Thereafter, the electrode body was filled in a bottomed cylindrical battery case having an outer diameter of 18 mm, and the positive and negative lead bodies were welded.

ついで、実施例および比較例で調製した電解液を電池ケース内に注入し、電解液がセパレータなどに充分に浸透した後、封口し、予備充電、エージングを行い、筒形のリチウム二次電池を作製した。   Next, the electrolyte solutions prepared in Examples and Comparative Examples were injected into the battery case, and after the electrolyte solution sufficiently penetrated into the separator, etc., sealed, precharged, and aged, a cylindrical lithium secondary battery was obtained. Produced.

このリチウム二次電池について、つぎの要領で放電容量、レート特性、サイクル特性および過充電時の安全性を調べた。結果を表2に示す。   The lithium secondary battery was examined for discharge capacity, rate characteristics, cycle characteristics, and safety during overcharge in the following manner. The results are shown in Table 2.

(放電容量)
充放電電流をCで表示した場合、1800mAを1Cとして以下の充放電測定条件で測定を行う。評価は、比較例8の放電容量の結果を100とした指数で行う。
充放電条件
充電:1.0C、4.2Vにて充電電流が1/10Cになるまでを保持(CC・CV充電)
放電:1C 3.0Vcut(CC放電)
(Discharge capacity)
When the charge / discharge current is represented by C, measurement is performed under the following charge / discharge measurement conditions with 1800 mA as 1C. The evaluation is performed using an index with the result of the discharge capacity of Comparative Example 8 as 100.
Charging / Discharging Condition Charging: Holds until the charging current reaches 1 / 10C at 1.0C and 4.2V (CC / CV charging)
Discharge: 1C 3.0Vcut (CC discharge)

(レート特性)
充電については、1.0Cで4.2Vにて充電電流が1/10Cになるまで充電し0.2C相当の電流で3.0Vまで放電し、放電容量を求める。引き続き、1.0Cで4.2Vにて充電電流が1/10Cになるまで充電し、2C相当の電流で3.0Vになるまで放電し、放電容量を求める。この2Cでの放電容量と、0.2Cでの放電容量との比から、つぎの計算式に代入してレート特性を求める。
レート特性(%)=2C放電容量(mAh)/0.2C放電容量(mAh)×100
(Rate characteristics)
As for charging, charging is performed until the charging current becomes 1/10 C at 4.2 V at 1.0 C, and discharging is performed to 3.0 V at a current equivalent to 0.2 C, and the discharge capacity is obtained. Subsequently, the battery is charged at 1.0 C at 4.2 V until the charging current becomes 1/10 C, discharged at a current equivalent to 2 C until 3.0 V, and the discharge capacity is obtained. From the ratio of the discharge capacity at 2C and the discharge capacity at 0.2C, the rate characteristic is obtained by substituting into the following calculation formula.
Rate characteristic (%) = 2C discharge capacity (mAh) /0.2C discharge capacity (mAh) × 100

(サイクル特性)
サイクル特性については、上記の充放電条件(1.0Cで4.2Vにて充電電流が1/10Cになるまで充電し1C相当の電流で3.0Vまで放電する)で行う充放電サイクルを1サイクルとし、最初のサイクル後の放電容量と100サイクル後の放電容量を測定する。サイクル特性は、つぎの計算式で求められた値をサイクル維持率の値とする。
サイクル維持率(%)=100サイクル放電容量(mAh)/1サイクル放電容量(mAh)×100
(Cycle characteristics)
As for the cycle characteristics, a charge / discharge cycle performed under the above-described charge / discharge conditions (charging at 1.0 V until the charging current becomes 1/10 C at 4.2 V and discharging to 3.0 V at a current equivalent to 1 C) is 1 The discharge capacity after the first cycle and the discharge capacity after 100 cycles are measured. For the cycle characteristics, the value obtained by the following calculation formula is used as the cycle maintenance ratio value.
Cycle maintenance ratio (%) = 100 cycle discharge capacity (mAh) / 1 cycle discharge capacity (mAh) × 100

過充電特性
実施例および比較例の円筒型電池について、それぞれ1CmA相当の電流値で3.0Vまで放電し12Vを上限電圧として3CmA相当の電流値での過充電を行い、発火・破裂の有無を調べる。発火・破裂が発生した場合を×、発生しなかった場合を○とする。
Overcharge characteristics For the cylindrical batteries of Examples and Comparative Examples, each battery was discharged to 3.0 V at a current value equivalent to 1 CmA, overcharged at a current value equivalent to 3 CmA with 12 V as the upper limit voltage, and whether or not there was ignition or rupture. Investigate. The case where ignition or rupture occurs is marked as x, and the case where it does not occur is marked as ◯.

Figure 2010010078
Figure 2010010078

表2の結果から、成分(A1)、(B1)および(C1)の割合を変更しても、電池特性、過充電特性(安全性)が良好であることが分かる。また、成分(A)を配合しないと電池特性も過充電特性に劣ることも示されている。   From the results in Table 2, it can be seen that even when the proportions of the components (A1), (B1) and (C1) are changed, the battery characteristics and the overcharge characteristics (safety) are good. It is also shown that the battery characteristics are inferior to the overcharge characteristics unless the component (A) is blended.

実施例9〜14
成分(B)および成分(C)として表3に示す化合物を表3に示す割合で配合したほかは実施例1と同様にして本発明の非水電解液を調製した。
Examples 9-14
A nonaqueous electrolytic solution of the present invention was prepared in the same manner as in Example 1 except that the compounds shown in Table 3 were blended in the proportions shown in Table 3 as the components (B) and (C).

これらの電解液について上記の電池特性および過充電特性を調べた。結果を表3に示す。   The above battery characteristics and overcharge characteristics of these electrolytes were examined. The results are shown in Table 3.

Figure 2010010078
Figure 2010010078

表3の結果から、成分(B)および成分(C)を変更しても、電池特性、過充電特性(安全性)が良好に維持できることが分かる。   From the results of Table 3, it can be seen that even when the component (B) and the component (C) are changed, the battery characteristics and the overcharge characteristics (safety) can be maintained satisfactorily.

実施例15〜17
電解質塩としてLiPF6に代えて、LiN(O2SCF32(実施例15)、LiN(O2SC252(実施例16)またはLiBF4(実施例17)を用いたほかは実施例1と同様にして本発明の非水電解液を調製した。
Examples 15-17
In place of LiPF 6 as the electrolyte salt, LiN (O 2 SCF 3 ) 2 (Example 15), LiN (O 2 SC 2 F 5 ) 2 (Example 16) or LiBF 4 (Example 17) was used. Prepared a non-aqueous electrolyte solution of the present invention in the same manner as in Example 1.

これらの電解液について上記の電池特性および過充電特性を調べた。結果を表4に示す。   The above battery characteristics and overcharge characteristics of these electrolytes were examined. The results are shown in Table 4.

Figure 2010010078
Figure 2010010078

表4の結果から、電解質塩を変更しても、電池特性、過充電特性(安全性)が良好に維持できることが分かる。   From the results in Table 4, it can be seen that even if the electrolyte salt is changed, the battery characteristics and the overcharge characteristics (safety) can be maintained well.

実施例7と比較例7の電解液についてLSVを測定した結果を示すグラフである。It is a graph which shows the result of having measured LSV about the electrolyte solution of Example 7 and Comparative Example 7. FIG.

Claims (4)

(I)(A)式(1):HCF2CF2CH2OCF2CClFHで示される含フッ素含塩素エーテル、
(B)環状カーボネート、および
(C)鎖状カーボネート
を含む電解質塩溶解用溶媒、ならびに
(II)電解質塩
を含む非水電解液。
(I) (A) Formula (1): Fluorine-containing chlorine-containing ether represented by HCF 2 CF 2 CH 2 OCF 2 CClFH,
(B) A solvent for dissolving an electrolyte salt containing a cyclic carbonate and (C) a chain carbonate, and (II) a non-aqueous electrolyte solution containing an electrolyte salt.
電解質塩溶解用溶媒(I)が、溶媒(I)全体に対して、含フッ素含塩素エーテル(A)を10〜60体積%、環状カーボネート(B)を3〜40体積%および鎖状カーボネート(C)を10〜60体積%含み、電解質塩(II)としてLiPF6、LiBF4、LiN(O2SCF32およびLiN(O2SC252よりなる群から選ばれる少なくとも1種を0.8モル/リットル以上の濃度で含む請求項1記載のリチウム二次電池用非水電解液。 The solvent (I) for dissolving the electrolyte salt is 10 to 60% by volume of the fluorine-containing chlorinated ether (A), 3 to 40% by volume of the cyclic carbonate (B) and the chain carbonate (B) with respect to the entire solvent (I). 10) to 60% by volume of C), and at least one selected from the group consisting of LiPF 6 , LiBF 4 , LiN (O 2 SCF 3 ) 2 and LiN (O 2 SC 2 F 5 ) 2 as the electrolyte salt (II) The nonaqueous electrolytic solution for a lithium secondary battery according to claim 1, comprising: 0.8 mol / liter or more. リチウム二次電池用である請求項1または2記載の非水電解液。 The nonaqueous electrolytic solution according to claim 1 or 2, which is for a lithium secondary battery. 正極、負極、セパレータおよび請求項3記載の非水電解液を備えてなるリチウム二次電池。 A lithium secondary battery comprising a positive electrode, a negative electrode, a separator, and the nonaqueous electrolytic solution according to claim 3.
JP2008171038A 2008-06-30 2008-06-30 Nonaqueous electrolyte Pending JP2010010078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008171038A JP2010010078A (en) 2008-06-30 2008-06-30 Nonaqueous electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008171038A JP2010010078A (en) 2008-06-30 2008-06-30 Nonaqueous electrolyte

Publications (1)

Publication Number Publication Date
JP2010010078A true JP2010010078A (en) 2010-01-14

Family

ID=41590290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008171038A Pending JP2010010078A (en) 2008-06-30 2008-06-30 Nonaqueous electrolyte

Country Status (1)

Country Link
JP (1) JP2010010078A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021644A1 (en) 2009-08-19 2011-02-24 三菱化学株式会社 Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPWO2010013739A1 (en) * 2008-07-30 2012-01-12 ダイキン工業株式会社 Solvent for dissolving electrolyte salt of lithium secondary battery
JP2012169253A (en) * 2011-02-16 2012-09-06 Samsung Sdi Co Ltd Electrolyte for lithium secondary battery and lithium secondary battery including the same
WO2017061107A1 (en) * 2015-10-05 2017-04-13 国立大学法人東京大学 Method for producing secondary battery having coating film on electrode surface

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010013739A1 (en) * 2008-07-30 2012-01-12 ダイキン工業株式会社 Solvent for dissolving electrolyte salt of lithium secondary battery
JP5506682B2 (en) * 2008-07-30 2014-05-28 ダイキン工業株式会社 Solvent for dissolving electrolyte salt of lithium secondary battery
WO2011021644A1 (en) 2009-08-19 2011-02-24 三菱化学株式会社 Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2012169253A (en) * 2011-02-16 2012-09-06 Samsung Sdi Co Ltd Electrolyte for lithium secondary battery and lithium secondary battery including the same
WO2017061107A1 (en) * 2015-10-05 2017-04-13 国立大学法人東京大学 Method for producing secondary battery having coating film on electrode surface
JPWO2017061107A1 (en) * 2015-10-05 2018-03-22 国立大学法人 東京大学 Method for manufacturing secondary battery having coating on electrode surface
CN108140894A (en) * 2015-10-05 2018-06-08 国立大学法人东京大学 Has the manufacturing method of the secondary cell of overlay film in electrode surface
US10797350B2 (en) 2015-10-05 2020-10-06 Kabushiki Kaisha Toyota Jidoshokki Method for producing secondary battery including coating on electrode surface
CN108140894B (en) * 2015-10-05 2021-06-22 株式会社丰田自动织机 Method for manufacturing secondary battery having coating film on electrode surface

Similar Documents

Publication Publication Date Title
JP5693222B2 (en) Lithium secondary battery
JP5621770B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP5343665B2 (en) Solvent for non-aqueous electrolyte of lithium secondary battery
JP4012174B2 (en) Lithium battery with efficient performance
KR20090077716A (en) Non-aqueous electrolyte secondary battery and process for producing the same
JP5545292B2 (en) Electrolytic solution for power storage device and power storage device
WO2008007734A1 (en) Electrochemical device
JP2019053983A (en) Non-aqueous electrolyte additive, electrolyte for non-aqueous electrolyte cell, and non-aqueous electrolyte cell
KR102434069B1 (en) Electrolyte for lithium secondary battery
JP2007173014A (en) Nonaqueous electrolyte secondary battery
KR20180013103A (en) Lithium secondary battery of improved safety of nail penetration
JP2000195544A (en) Nonaqueous electrolyte and secondary battery using it
JP2002343424A (en) Nonaqueous electrolyte secondary battery
JP4765629B2 (en) Non-aqueous electrolyte and lithium secondary battery
US20130302701A1 (en) Non-aqueous electrolyte for secondary batteries and non-aqueous electrolyte secondary battery
WO2020022452A1 (en) Nonaqueous electrolyte solution for batteries and lithium secondary battery
WO2012029418A1 (en) Non-aqueous electrolyte composition and non-aqueous electrolyte secondary battery
JP7134555B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte for lithium secondary battery containing the same, and lithium secondary battery
JP2010010078A (en) Nonaqueous electrolyte
JP2009245830A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery containing nonaqueous electrolyte
CN110970663A (en) Non-aqueous electrolyte and lithium ion battery
JP2016091615A (en) Lithium ion battery
JP2011210651A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery containing the nonaqueous electrolyte
JP7395816B2 (en) Non-aqueous electrolytes for batteries and lithium secondary batteries
JP2018125219A (en) Electrolyte solution for lithium ion secondary battery

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100514

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20101020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101021