JP2002343424A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2002343424A
JP2002343424A JP2001144737A JP2001144737A JP2002343424A JP 2002343424 A JP2002343424 A JP 2002343424A JP 2001144737 A JP2001144737 A JP 2001144737A JP 2001144737 A JP2001144737 A JP 2001144737A JP 2002343424 A JP2002343424 A JP 2002343424A
Authority
JP
Japan
Prior art keywords
battery
fluorinated
embedded image
compound
swelling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001144737A
Other languages
Japanese (ja)
Other versions
JP5062459B2 (en
Inventor
Toru Tabuchi
田渕  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2001144737A priority Critical patent/JP5062459B2/en
Publication of JP2002343424A publication Critical patent/JP2002343424A/en
Application granted granted Critical
Publication of JP5062459B2 publication Critical patent/JP5062459B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery which can prevent swelling under a high temperature environment. SOLUTION: The electrolyte in the nonaqueous electrolyte secondary battery contains one or more kinds of fluorinated compound(s) represented by general formula (1) (wherein n is an integer of 1-2, R includes one among formulas (a)-(e)), and the weight of the fluorinated compound is 0.01% or more and less than 50% of the weight of the electrolyte.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】従来、正極と負極との間で一方が放出し
たリチウムイオンを他方に吸蔵させるという可逆反応に
よって充放電を行う電池は、高電圧・高エネルギー密度
を有するため、広く民生用電子機器の電源として用いら
れている。この種の電池は、電極に使用されているリチ
ウムと水との反応性が大きいために、電解液として水を
含まないものが使用されており、このため、非水電解質
二次電池と称されている(以下、単に「電池」と称する
ことがある)。
2. Description of the Related Art Conventionally, a battery which performs charging and discharging by a reversible reaction of absorbing lithium ions emitted from one side between a positive electrode and a negative electrode into the other has a high voltage and a high energy density. It is used as a power source for equipment. This type of battery uses an electrolyte that does not contain water because of the high reactivity between lithium used for the electrode and water, and is therefore called a non-aqueous electrolyte secondary battery. (Hereinafter, may be simply referred to as “battery”).

【0003】[0003]

【発明が解決しようとする課題】ところが、このような
非水電解質二次電池を高温環境下で長時間放置した場合
に、膨れが生じる場合があった。このような膨れを放置
すれば、電池の破損や性能低下に繋がる可能性があり、
改善が求められていた。
However, when such a non-aqueous electrolyte secondary battery is left in a high-temperature environment for a long time, swelling may occur. Leaving such swelling may lead to battery damage and performance degradation,
Improvement was required.

【0004】本発明は上記した事情に鑑みてなされたも
のであり、その目的は、膨れを防止できる非水電解質二
次電池を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a nonaqueous electrolyte secondary battery capable of preventing swelling.

【0005】[0005]

【課題を解決するための手段】高温環境下における電池
の膨れの原因は明らかではないが、電池内の温度が高温
になることによって、正極とセパレータとの界面で電解
液が分解して水素ガスを発生するためであると考えられ
る。本発明者は、この膨れを防止できる非水電解質二次
電池を開発すべく鋭意研究してきたところ、側鎖として
フッ素化アルキル基およびアルキル基を含むカーボネー
ト系化合物、カルバメート系化合物、エステル系化合
物、エーテル系化合物、または芳香族系化合物を電解液
に添加することにより、膨れを抑制できることを見出し
た。
The cause of battery swelling in a high-temperature environment is not clear, but when the temperature inside the battery rises, the electrolytic solution decomposes at the interface between the positive electrode and the separator, and hydrogen gas is removed. Is considered to occur. The present inventor has made intensive studies to develop a non-aqueous electrolyte secondary battery capable of preventing this swelling, and found that a carbonate-based compound containing a fluorinated alkyl group and an alkyl group as a side chain, a carbamate-based compound, an ester-based compound, It has been found that swelling can be suppressed by adding an ether compound or an aromatic compound to the electrolytic solution.

【0006】特に、分子量の大きな化合物を電解液に添
加すると、電解液の粘度が高くなり好ましくないことか
ら、フッ素化アルキル基およびアルキル基としては炭素
数2以下のものが好ましいことを見出した。さらに、フ
ッ素化アルキル基としてはトリフルオロエチル基が最も
好ましいことを見出した。
In particular, it has been found that when a compound having a large molecular weight is added to the electrolytic solution, the viscosity of the electrolytic solution increases, which is not preferable. Furthermore, they have found that a trifluoroethyl group is most preferred as the fluorinated alkyl group.

【0007】本発明は、かかる新規な知見に基づいてな
されたものであり、電解液中に、下記一般式(1)で示
されるフッ素化化合物のうち少なくとも一種が電解液の
重量に対して0.01%以上、50%未満添加されてい
ることを特徴とする非水電解質二次電池である。
The present invention has been made based on such a novel finding, and at least one fluorinated compound represented by the following general formula (1) is contained in an electrolytic solution in an amount of 0 to the weight of the electrolytic solution. A non-aqueous electrolyte secondary battery characterized by being added at 0.01% or more and less than 50%.

【0008】[0008]

【化2】 ここで、式中Rには、上記(a)〜(e)に示す構造単位が1
つだけ含まれていてもよく、あるいは、同種または異種
の構造単位の複数が含まれていてもよい。
Embedded image Here, in the formula, R represents one of the structural units shown in (a) to (e) above.
Only one may be included, or a plurality of the same or different structural units may be included.

【0009】上記式(1)で示されるフッ素化化合物の
うち、式中Rに
Among the fluorinated compounds represented by the above formula (1),

【0010】[0010]

【化3】 で示される構造を含むもの(以下、フッ素化エステル化
合物と称する)としては、例えば以下に例示する化合物
が挙げられる。
Embedded image (Hereinafter, referred to as a fluorinated ester compound) include, for example, the compounds exemplified below.

【0011】[0011]

【化4】 Embedded image

【化5】 Embedded image

【化6】 Embedded image

【化7】 Embedded image

【0012】また、式中RにIn the formula, R

【0013】[0013]

【化8】 で示される構造を含むもの(以下、フッ素化カルバメー
ト化合物と称する)としては、例えば以下に例示する化
合物が挙げられる。ここで、式中R'の構造としては特
に限定されるものではなく、例えば直鎖状、分岐状もし
くは環状のアルキル基、フェニル基、ビフェニル基、ナ
フチル基、アンチル基、およびこれらの誘導体等が挙げ
られるが、特に、アルキル基の場合には炭素数1〜10
のものが好ましい。
Embedded image (Hereinafter, referred to as a fluorinated carbamate compound) include, for example, the compounds exemplified below. Here, the structure of R ′ in the formula is not particularly limited, and examples thereof include a linear, branched or cyclic alkyl group, a phenyl group, a biphenyl group, a naphthyl group, an antil group, and derivatives thereof. In particular, in the case of an alkyl group, it has 1 to 10 carbon atoms.
Are preferred.

【0014】[0014]

【化9】 Embedded image

【化10】 Embedded image

【化11】 Embedded image

【化12】 Embedded image

【化13】 Embedded image

【0015】また、式中RにIn the formula, R

【0016】[0016]

【化14】 で示される構造を含むもの(以下、フッ素化カーボネー
ト化合物と称する)としては、環状カーボネート、鎖状
カーボネートのいずれであってもよい。環状カーボネー
トとしては、例えば以下に例示する化合物が挙げられ
る。なお、環状カーボネートの場合は、環を形成する炭
素数が2〜5の範囲であることが好ましい。
Embedded image (Hereinafter, referred to as a fluorinated carbonate compound) may be any of a cyclic carbonate and a chain carbonate. Examples of the cyclic carbonate include, for example, compounds exemplified below. In the case of a cyclic carbonate, the number of carbon atoms forming a ring is preferably in the range of 2 to 5.

【0017】[0017]

【化15】 Embedded image

【化16】 Embedded image

【0018】また、鎖状カーボネートとしては、例えば
以下に例示する化合物が挙げられる。
The chain carbonate includes, for example, the following compounds.

【0019】[0019]

【化17】 Embedded image

【化18】 Embedded image

【化19】 Embedded image

【0020】また、式中RにIn the formula, R

【0021】[0021]

【化20】 で示される構造を含むもの(以下、フッ素化エーテル化
合物と称する)としては、例えば、以下に例示するモノ
エーテル類、ジエーテル類の他、ポリエーテル類であっ
てもよいが、なかでも、ジエーテル類が好ましく使用で
きる。ジエーテル類としては、直鎖状、分枝状のいずれ
であってもよいが、炭素数10以下のものが好ましい。
Embedded image (Hereinafter referred to as fluorinated ether compounds) include, for example, monoethers and diethers exemplified below, and polyethers. Among them, diethers are preferable. Can be preferably used. The diethers may be linear or branched, but preferably have 10 or less carbon atoms.

【0022】[0022]

【化21】 Embedded image

【化22】 Embedded image

【化23】 Embedded image

【化24】 Embedded image

【化25】 Embedded image

【化26】 Embedded image

【化27】 Embedded image

【化28】 Embedded image

【化29】 Embedded image

【化30】 Embedded image

【化31】 Embedded image

【0023】また、式中RにIn the formula, R

【0024】[0024]

【化32】 で示される構造を含むもの(以下、フッ素化芳香族化合
物と称する)としては、例えば以下に例示する化合物が
挙げられる。なお、芳香環への側鎖の結合位置は特に制
限されるものではなく、いずれの位置に結合していても
よい。
Embedded image (Hereinafter, referred to as a fluorinated aromatic compound) include, for example, the compounds exemplified below. The bonding position of the side chain to the aromatic ring is not particularly limited, and the side chain may be bonded to any position.

【0025】[0025]

【化33】 Embedded image

【化34】 Embedded image

【化35】 Embedded image

【化36】 Embedded image

【化37】 Embedded image

【化38】 Embedded image

【化39】 Embedded image

【化40】 Embedded image

【0026】これらのフッ素化化合物は、単独で使用し
てもよく、2種以上の化合物を混合して使用してもよ
い。
These fluorinated compounds may be used alone or as a mixture of two or more compounds.

【0027】本発明の電解液に使用する溶媒としては、
非水電解質二次電池に通常使用されているものであれば
特に制限はなく、例えばエチレンカーボネート(E
C)、ジエチルカーボネート(DEC)ジメチルカーボ
ネート(DMC)、プロピレンカーボネート、γーブチ
ロラクトン、ジメチルスルホキシド、テトラヒドロフラ
ン、ジメトキシエタン、ジメチルアセドアミド等が挙げ
られる。
The solvent used in the electrolytic solution of the present invention includes:
There is no particular limitation as long as it is commonly used for non-aqueous electrolyte secondary batteries. For example, ethylene carbonate (E
C), diethyl carbonate (DEC), dimethyl carbonate (DMC), propylene carbonate, γ-butyrolactone, dimethyl sulfoxide, tetrahydrofuran, dimethoxyethane, dimethyl acedamide and the like.

【0028】また、本発明の電解液に使用する電解質と
しては、非水電解質二次電池に通常使用されているもの
であれば特に制限はなく、例えばLiPF6、LiB
4、LiClO4、LiN(SO3CF3)、LiC49
SO3、LiC817SO3等が挙げられる。また、電解
液には酸化防止剤、難燃剤、ラジカル捕捉剤、界面活性
剤等の添加物が含まれていてもよい。
The electrolyte used in the electrolytic solution of the present invention is not particularly limited as long as it is generally used for non-aqueous electrolyte secondary batteries. For example, LiPF 6 , LiB
F 4 , LiClO 4 , LiN (SO 3 CF 3 ), LiC 4 F 9
SO 3 and LiC 8 F 17 SO 3 are exemplified. Further, the electrolyte may contain additives such as an antioxidant, a flame retardant, a radical scavenger, and a surfactant.

【0029】電解液へのフッ素化化合物の添加量は、使
用するフッ素化化合物の種類により変動し、一概に制限
されないが、好ましくは電解液の重量に対して0.01
%以上、50%未満である。0.01%以下では膨れ防
止の効果が得られず、50%以上ではフッ素化化合物の
分解等の副反応によって電池の容量低下がおこるおそれ
があるためである。また、電池の容量低下を防ぐために
は、膨れ防止効果を有する範囲で添加量をできるだけ少
量とすること、具体的には20%以下とすることがより
好ましい。
The amount of the fluorinated compound added to the electrolytic solution varies depending on the type of the fluorinated compound used and is not absolutely limited.
% Or more and less than 50%. If it is less than 0.01%, the effect of preventing swelling cannot be obtained, and if it is more than 50%, the capacity of the battery may be reduced due to side reactions such as decomposition of the fluorinated compound. Further, in order to prevent a decrease in the capacity of the battery, it is more preferable that the addition amount be as small as possible within a range having the swelling prevention effect, specifically, 20% or less.

【0030】さらに詳細には、例えばフッ素化化合物と
してフッ素化エステル化合物を使用した場合には、電解
液の重量に対して0.01〜10%が好ましい。また、
フッ素化化合物としてフッ素化カルバメート化合物を使
用した場合には、電解液の重量に対して0.01〜10
%が好ましく、0.01%〜5%がより好ましい。ま
た、フッ素化化合物としてフッ素化カーボネート化合物
を使用した場合には、電解液の重量に対して0.01〜
15%が好ましく、より好ましくは0.01%〜10
%、さらに好ましくは0.01%〜5%である。また、
フッ素化化合物としてフッ素化エーテル化合物を使用し
た場合には、電解液の重量に対して0.01〜15%が
好ましく、0.01%〜10%がより好ましい。また、
フッ素化化合物としてフッ素化芳香族化合物を使用した
場合には、電解液の重量に対して0.01〜15%が好
ましく、0.01%〜10%がより好ましい。
More specifically, for example, when a fluorinated ester compound is used as the fluorinated compound, the content is preferably 0.01 to 10% based on the weight of the electrolytic solution. Also,
When a fluorinated carbamate compound is used as the fluorinated compound, 0.01 to 10% by weight of the electrolyte solution
% Is preferable, and 0.01% to 5% is more preferable. When a fluorinated carbonate compound is used as the fluorinated compound, the fluorinated compound is used in an amount of 0.01 to 0.01 wt.
15% is preferred, more preferably 0.01% to 10%
%, More preferably 0.01% to 5%. Also,
When a fluorinated ether compound is used as the fluorinated compound, it is preferably 0.01% to 15%, more preferably 0.01% to 10% based on the weight of the electrolytic solution. Also,
When a fluorinated aromatic compound is used as the fluorinated compound, it is preferably 0.01% to 15%, more preferably 0.01% to 10% based on the weight of the electrolytic solution.

【0031】本発明を適用する非水電解質二次電池の形
状は、特に制限されるものではなく、例えば円筒型、角
型、コイン型などが挙げられる。
The shape of the nonaqueous electrolyte secondary battery to which the present invention is applied is not particularly limited, and examples thereof include a cylindrical type, a square type, and a coin type.

【0032】[0032]

【発明の作用、および発明の効果】上記フッ素化化合物
を電解液に添加することにより、電池内でのガスの発生
を抑制することができる。このため、高温環境下におい
ても、電池の膨れを抑制することができる。また、フッ
素化化合物の添加量を電解液の重量に対して50%未満
とすることにより、副反応による電池の容量低下を抑え
つつ電池の膨れを抑制することができる。
Effect of the Invention and Effect of the Invention By adding the above fluorinated compound to the electrolytic solution, generation of gas in the battery can be suppressed. Therefore, swelling of the battery can be suppressed even in a high-temperature environment. In addition, by setting the amount of the fluorinated compound to be less than 50% based on the weight of the electrolytic solution, it is possible to suppress battery swelling while suppressing a decrease in battery capacity due to a side reaction.

【0033】[実施例]以下、実施例を挙げて本発明を
さらに詳細に説明する。
[Examples] Hereinafter, the present invention will be described in more detail with reference to examples.

【0034】<実施例1> 1.リチウムイオン二次電池の作製 (1)負極の作製 活物質としてグラファイトを、このグラファイトに対し
て結着剤としてポリフッ化ビニリデンを重量比86:1
4の割合で混合し、負極合剤ペーストを調製した。この
ペーストを、厚さ10μmの銅箔からなる集電体の両面
に均一に塗布し、乾燥、プレスした後に裁断して、帯状
の負極シートを作製した。
<Example 1> 1. Preparation of Lithium Ion Secondary Battery (1) Preparation of Negative Electrode Graphite as an active material and polyvinylidene fluoride as a binder with respect to this graphite at a weight ratio of 86: 1.
The resulting mixture was mixed at a ratio of 4 to prepare a negative electrode mixture paste. This paste was uniformly applied to both sides of a current collector made of a copper foil having a thickness of 10 μm, dried, pressed, and then cut to produce a strip-shaped negative electrode sheet.

【0035】(2)正極の作製 活物質としてリチウムコバルト複合酸化物を、このリチ
ウムコバルト複合酸化物に対して結着剤としてポリフッ
化ビニリデンを、導電剤としてアセチレンブラックを重
量比87:8:5の割合で混合し、正極合剤ペーストを
調製した。このペーストを、厚さ20μmのアルミニウ
ム箔からなる集電体の両面に均一に塗布し、上記負極シ
ートと同様の方法により、帯状の正極シートを作製し
た。
(2) Preparation of Positive Electrode A lithium-cobalt composite oxide as an active material, polyvinylidene fluoride as a binder and acetylene black as a conductive agent with respect to the lithium-cobalt composite oxide were used in a weight ratio of 87: 8: 5. To prepare a positive electrode mixture paste. This paste was uniformly applied to both surfaces of a current collector made of an aluminum foil having a thickness of 20 μm, and a belt-shaped positive electrode sheet was produced in the same manner as in the negative electrode sheet.

【0036】(3)電解液の調製 エチレンカーボネートとエチルメチルカーボネートと
を、体積比4/6の割合で混合した。この混合液に、表
1に示すフッ素化エステル化合物をそれぞれ所定量加え
て、非水溶媒を調製した。これらの非水溶媒に、電解質
としてリチウム塩としてLiPF6を1.0mol/l
の濃度で加え、非水電解液を調製した。
(3) Preparation of Electrolyte Solution Ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 4/6. A predetermined amount of each of the fluorinated ester compounds shown in Table 1 was added to this mixture to prepare a non-aqueous solvent. To these non-aqueous solvents, LiPF 6 was added as a lithium salt as an electrolyte in an amount of 1.0 mol / l.
To prepare a non-aqueous electrolyte.

【表1】 [Table 1]

【0037】(4)角型電池の作製 正極シート、ポリエチレン製のセパレータ、負極シー
ト、ポリエチレン製セパレータの順に積層したものを巻
回して発電素子を作製し、角型の電池缶に収納した。こ
の電池缶内に上記(3)で調製した電解液を充填し、絶
縁体を介した電池蓋により密閉して、周知の方法で角型
電池を組み立てた。なお、電池缶は厚さ0.2mmのア
ルミニウム板により製造され、組み立て後の電池は厚み
5mm、幅30mm)、高さ48mmとされた。
(4) Manufacture of prismatic battery A positive electrode sheet, a separator made of polyethylene, a negative electrode sheet, and a separator made of polyethylene were laminated in this order to form a power generating element, which was housed in a square battery can. The battery can was filled with the electrolytic solution prepared in the above (3), sealed with a battery lid via an insulator, and a prismatic battery was assembled by a known method. The battery can was made of a 0.2 mm-thick aluminum plate, and the assembled battery had a thickness of 5 mm, a width of 30 mm) and a height of 48 mm.

【0038】2.放置試験 上記の方法で作製した電池について、電流密度1C、充
電終止電圧4.2Vの条件で充電を行った。充電後、こ
の電池を80℃で4日間放置した。放置時間経過後、2
5℃で電池の厚みを測定した。また、電流密度1C、放
電終止電圧2.5Vの条件で放電を行い、残存放電容量
を測定した。
2. Leaving test The battery prepared by the above method was charged under the conditions of a current density of 1 C and a charge end voltage of 4.2 V. After charging, the battery was left at 80 ° C. for 4 days. After leaving time 2
The battery thickness was measured at 5 ° C. Further, discharge was performed under the conditions of a current density of 1 C and a discharge end voltage of 2.5 V, and the remaining discharge capacity was measured.

【0039】<実施例2>電解液として、実施例1のフ
ッ素化エステル化合物の代わりに、表2に示すフッ素化
カルバメート化合物を添加したものを用いた他は、実施
例1と同様に作製された電池を用いて、実施例1と同様
に放置試験を行った。
<Example 2> A electrolyte was prepared in the same manner as in Example 1, except that a fluorinated carbamate compound shown in Table 2 was added instead of the fluorinated ester compound of Example 1. A leaving test was performed in the same manner as in Example 1 using the battery thus obtained.

【表2】 [Table 2]

【0040】<実施例3>電解液として、実施例1のフ
ッ素化エステル化合物の代わりに、表3に示すフッ素化
カーボネート化合物を添加したものを用いた他は、実施
例1と同様に作製された電池を用いて、実施例1と同様
に放置試験を行った。
<Example 3> A electrolyte was prepared in the same manner as in Example 1 except that a fluorinated carbonate compound shown in Table 3 was added instead of the fluorinated ester compound of Example 1 as an electrolytic solution. A leaving test was performed in the same manner as in Example 1 using the battery thus obtained.

【0041】[0041]

【表3】 [Table 3]

【0042】<実施例4>電解液として、実施例1のフ
ッ素化エステル化合物の代わりに、表4に示すフッ素化
エーテル化合物を添加したものを用いた他は、実施例1
と同様に作製された電池を用いて、実施例1と同様に放
置試験を行った。
Example 4 Example 1 was repeated except that a fluorinated ether compound shown in Table 4 was added instead of the fluorinated ester compound of Example 1 as the electrolytic solution.
A leaving test was performed in the same manner as in Example 1 using the battery manufactured in the same manner as in Example 1.

【0043】[0043]

【表4】 [Table 4]

【0044】<実施例5>電解液として、実施例1のフ
ッ素化エステル化合物の代わりに、表5に示すフッ素化
芳香族化合物を添加したものを用いた他は、実施例1と
同様に作製された電池を用いて、実施例1と同様に放置
試験を行った。
Example 5 The same procedure as in Example 1 was carried out except that a fluorinated aromatic compound shown in Table 5 was added instead of the fluorinated ester compound of Example 1 as the electrolytic solution. A leaving test was performed in the same manner as in Example 1 using the battery thus obtained.

【0045】[0045]

【表5】 [Table 5]

【0046】<比較例>電解液にフッ素化化合物を添加
しない他は実施例1と同様に作製された電池を用いて、
実施例1と同様に放置試験を行った。
<Comparative Example> A battery manufactured in the same manner as in Example 1 except that no fluorinated compound was added to the electrolytic solution was used.
A standing test was performed in the same manner as in Example 1.

【0047】<結果と考察>表6〜表10には、それぞ
れのフッ素化化合物について、添加量、放置試験後の電
池の厚み、および放電容量の保持率を示した。なお、保
持率は初期容量に対する残存放電容量の割合で示した。
また、電解液にフッ素化化合物を添加しない場合につい
ての放置試験後の電池の厚み、および放電容量の保持率
を、表11に示した。
<Results and Discussion> Tables 6 to 10 show the amount of each fluorinated compound, the thickness of the battery after the standing test, and the retention of the discharge capacity. The retention was indicated by the ratio of the remaining discharge capacity to the initial capacity.
Table 11 shows the thickness of the battery and the retention rate of the discharge capacity after the standing test when no fluorinated compound was added to the electrolytic solution.

【0048】[0048]

【表6】 [Table 6]

【0049】[0049]

【表7】 [Table 7]

【0050】[0050]

【表8】 [Table 8]

【0051】[0051]

【表9】 [Table 9]

【0052】[0052]

【表10】 [Table 10]

【0053】[0053]

【表11】 [Table 11]

【0054】表6より、電解液中にフッ素化エステル化
合物を添加した場合には、いずれの化合物の場合でも、
添加しない場合(表11)と比較して電池の膨れが抑制
されていた。添加量の差によって膨れの抑制効果に大き
な違いは見られなかった。一方、放電容量の保持率は、
添加量が0.01%、5%、10%の場合には添加しな
い場合と同等以上であったが、添加量を15%とした場
合には、やや低下した。従って、添加量は0.01%〜
10%とすることが好ましいと考えられた。
From Table 6, it can be seen that when a fluorinated ester compound was added to the electrolyte solution,
The swelling of the battery was suppressed as compared with the case where it was not added (Table 11). There was no significant difference in the effect of suppressing swelling due to the difference in the amount added. On the other hand, the retention rate of the discharge capacity is
When the addition amount was 0.01%, 5%, and 10%, it was equal to or higher than the case where no addition was performed. Therefore, the amount of addition is 0.01% or more.
It was considered preferable to be 10%.

【0055】表7より、電解液中にフッ素化カルバメー
ト化合物を添加した場合には、いずれの化合物の場合で
も、添加しない場合(表11)と比較して電池の膨れが
抑制されていた。添加量が0.01%、5%の場合に
は、電池の厚みおよび放電容量の保持率に大きな違いは
見られなかった。しかし、添加量を10%とした場合に
は、膨れの抑制効果および放電容量の保持率がともに低
下した。従って、添加量は0.01%〜5%とすること
が好ましいと考えられた。
As shown in Table 7, when the fluorinated carbamate compound was added to the electrolytic solution, the swelling of the battery was suppressed as compared to the case where no compound was added (Table 11). When the addition amount was 0.01% or 5%, no significant difference was observed in the thickness of the battery and the retention of the discharge capacity. However, when the addition amount was 10%, both the effect of suppressing swelling and the retention of the discharge capacity were reduced. Therefore, it was considered that the addition amount was preferably set to 0.01% to 5%.

【0056】表8より、電解液中にフッ素化カーボネー
ト化合物を添加した場合には、いずれの化合物の場合で
も、添加しない場合(表11)と比較して電池の膨れが
抑制されていた。膨れは、添加量が5%、10%の場合
に最も抑制されていた。一方、放電容量の保持率は、添
加量が0.01%、5%の場合には添加しない場合と同
等以上であったが、添加量を10%とした場合には、僅
かに低下し、添加量を15%とすると、さらに低下し
た。従って、膨れ防止効果を有する範囲で添加量をでき
るだけ少量とすること、すなわち5%以下とすることが
好ましいと考えられた。
As can be seen from Table 8, when the fluorinated carbonate compound was added to the electrolytic solution, the swelling of the battery was suppressed as compared to the case where no compound was added (Table 11). Swelling was most suppressed when the added amount was 5% or 10%. On the other hand, the retention of the discharge capacity was equal to or higher than the case where no addition was performed when the addition amount was 0.01% and 5%, but slightly decreased when the addition amount was 10%, When the amount of addition was 15%, it further decreased. Therefore, it was considered preferable that the addition amount be as small as possible, that is, 5% or less within the range having the swelling prevention effect.

【0057】表9より、電解液中にフッ素化エーテル化
合物を添加した場合には、いずれの化合物の場合でも、
添加しない場合(表11)と比較して電池の膨れが抑制
されていた。膨れの抑制効果は添加量が0.01%、5
%、10%の場合には大きな違いは見られなかったが、
添加量が15%の場合にはやや低下した。放電容量の保
持率は、添加量が0.01%、5%、10%の場合には
添加しない場合と同等以上であったが、添加量を15%
とした場合には、やや低下した。従って、添加量は0.
01%〜10%とすることが好ましいと考えられた。
From Table 9, it can be seen that when a fluorinated ether compound was added to the electrolyte solution,
The swelling of the battery was suppressed as compared with the case where it was not added (Table 11). The effect of suppressing swelling is as follows: 0.01%
% And 10%, there was no significant difference,
When the amount of addition was 15%, it decreased slightly. The retention rate of the discharge capacity was equal to or higher than the case where no addition was performed when the addition amount was 0.01%, 5%, and 10%.
If so, it was slightly lower. Therefore, the amount of addition is 0.1.
It was thought that it was preferable to set the content to 01% to 10%.

【0058】表10より、電解液中にフッ素化芳香族化
合物を添加した場合には、いずれの化合物の場合でも、
添加しない場合(表11)と比較して電池の膨れが抑制
されていた。膨れの抑制効果は添加量が0.01%、1
0%の場合には大きな違いは見られなかったが、添加量
が15%の場合にはやや低下した。放電容量の保持率
は、添加量が0.01%、10%の場合には添加しない
場合と同等以上であったが、添加量を15%とした場合
には、やや低下した。従って、添加量は0.01%〜1
0%とすることが好ましいと考えられた。
From Table 10, it can be seen that when a fluorinated aromatic compound was added to the electrolytic solution,
The swelling of the battery was suppressed as compared with the case where it was not added (Table 11). The effect of suppressing swelling is as follows: 0.01%
No significant difference was observed in the case of 0%, but it was slightly decreased in the case of the addition amount of 15%. The retention of the discharge capacity was equal to or higher than the case where no addition was performed when the addition amount was 0.01% and 10%, but slightly decreased when the addition amount was 15%. Therefore, the amount of addition is 0.01% to 1%.
It was considered preferable to set it to 0%.

【0059】以上の結果から明らかなように、フッ素化
化合物を電解液に添加することにより、高温環境下にお
いて、電池の膨れを抑制することができる。また、膨れ
防止効果を有する範囲で添加量をできるだけ少量とする
ことにより、副反応による電池の容量低下を抑えつつ電
池の膨れを抑制することができる。
As is apparent from the above results, by adding the fluorinated compound to the electrolytic solution, the swelling of the battery can be suppressed in a high temperature environment. In addition, by making the addition amount as small as possible within the range having the swelling prevention effect, swelling of the battery can be suppressed while suppressing a decrease in the capacity of the battery due to a side reaction.

【0060】なお、本発明の技術的範囲は、上記した実
施形態によって限定されるものではなく、均等の範囲に
まで及ぶものである。
The technical scope of the present invention is not limited to the above-described embodiments, but extends to an equivalent range.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電解液中に、下記一般式(1)で示され
るフッ素化化合物のうち少なくとも一種が電解液の重量
に対して0.01%以上、50%未満添加されているこ
とを特徴とする非水電解質二次電池。 【化1】
1. The electrolyte according to claim 1, wherein at least one of the fluorinated compounds represented by the following general formula (1) is added in an amount of 0.01% or more and less than 50% based on the weight of the electrolyte. Non-aqueous electrolyte secondary battery. Embedded image
JP2001144737A 2001-05-15 2001-05-15 Nonaqueous electrolyte secondary battery Expired - Fee Related JP5062459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001144737A JP5062459B2 (en) 2001-05-15 2001-05-15 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001144737A JP5062459B2 (en) 2001-05-15 2001-05-15 Nonaqueous electrolyte secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011084655A Division JP5218589B2 (en) 2011-04-06 2011-04-06 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2002343424A true JP2002343424A (en) 2002-11-29
JP5062459B2 JP5062459B2 (en) 2012-10-31

Family

ID=18990642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001144737A Expired - Fee Related JP5062459B2 (en) 2001-05-15 2001-05-15 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5062459B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005114773A1 (en) * 2004-04-20 2005-12-01 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and lithium secondary battery using same
EP1630894A1 (en) * 2004-08-27 2006-03-01 Sanyo Component Europe GmbH Lithium secondary battery
JP2006114388A (en) * 2004-10-15 2006-04-27 Mitsubishi Chemicals Corp Non-aqueous electrolytic solution, and lithium secondary battery
WO2008078626A1 (en) * 2006-12-22 2008-07-03 Daikin Industries, Ltd. Nonaqueous electrolyte solution
WO2009035085A1 (en) * 2007-09-12 2009-03-19 Daikin Industries, Ltd. Electrolyte solution
WO2010001850A1 (en) * 2008-06-30 2010-01-07 ダイキン工業株式会社 Lithium secondary cell
WO2010013739A1 (en) * 2008-07-30 2010-02-04 ダイキン工業株式会社 Solvent for dissolution of electrolytic salt of lithium secondary battery
WO2010110159A1 (en) 2009-03-25 2010-09-30 ソニー株式会社 Electrolyte and secondary battery
EP2266159A2 (en) * 2008-03-18 2010-12-29 LG Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
US8003004B2 (en) 2008-01-23 2011-08-23 3M Innovative Properties Company Heat transfer apparatus and methods including hydrofluorocarbonates
US20120070731A1 (en) * 2006-04-27 2012-03-22 Mitsubishi Chemical Corporation Non-aqueous liquid electrolyte and non-aqueous liquid electrolyte secondary battery
WO2012144306A1 (en) * 2011-04-22 2012-10-26 宇部興産株式会社 Nonaqueous electrolyte solution, electricity storage device using same, and trifluoromethylbenzene compound
US8435679B2 (en) 2006-12-20 2013-05-07 3M Innovative Properties Counsel Fluorinated compounds for use in lithium battery electrolytes
CN104025364A (en) * 2011-12-22 2014-09-03 吉坤日矿日石能源株式会社 Organic electrolyte, and organic electrolyte storage battery
CN104321923A (en) * 2012-03-06 2015-01-28 吉坤日矿日石能源株式会社 Electrolyte for Li storage battery, and Li storage battery
EP2525433A4 (en) * 2010-01-15 2015-07-01 Lg Chemical Ltd Electrolyte comprising an amide compound, and electrochemical device comprising the electrolyte
CN110710034A (en) * 2017-05-29 2020-01-17 Jsr株式会社 Binder composition for electricity storage device, slurry for electricity storage device electrode, and electricity storage device
CN113620923A (en) * 2021-07-16 2021-11-09 扬州工业职业技术学院 Preparation method and application of low-temperature electrolyte additive

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01117838A (en) * 1987-10-30 1989-05-10 Neos Co Ltd Fluorine-containing alkoxyethanes
JPH06219992A (en) * 1992-11-18 1994-08-09 Mitsui Petrochem Ind Ltd New carbonic ester compound
JPH076786A (en) * 1992-11-18 1995-01-10 Sony Corp Nonaqueous electrolyte and nonaqueous electrolyte battery
JPH07249432A (en) * 1994-03-14 1995-09-26 Nippon Telegr & Teleph Corp <Ntt> Electrolyte for lithium secondary battery
JPH10116630A (en) * 1996-10-15 1998-05-06 Toray Ind Inc Non-aqueous electrolyte secondary battery
JPH10116627A (en) * 1996-10-11 1998-05-06 Sanyo Electric Co Ltd Lithium secondary battery
WO2000016427A1 (en) * 1998-09-11 2000-03-23 Mitsui Chemicals Inc. Nonaqueous electrolytic liquid and secondary batter with nonaqueous electrolytic liquid
JP2000106209A (en) * 1998-09-30 2000-04-11 Mitsui Chemicals Inc Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP2001052739A (en) * 1999-06-02 2001-02-23 Mitsui Chemicals Inc Nonaqueous electrolyte and secondary battery using the same
JP2001052740A (en) * 1999-06-02 2001-02-23 Mitsui Chemicals Inc Nonaqueous electrolyte and lithium secondary battery using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01117838A (en) * 1987-10-30 1989-05-10 Neos Co Ltd Fluorine-containing alkoxyethanes
JPH06219992A (en) * 1992-11-18 1994-08-09 Mitsui Petrochem Ind Ltd New carbonic ester compound
JPH076786A (en) * 1992-11-18 1995-01-10 Sony Corp Nonaqueous electrolyte and nonaqueous electrolyte battery
JPH07249432A (en) * 1994-03-14 1995-09-26 Nippon Telegr & Teleph Corp <Ntt> Electrolyte for lithium secondary battery
JPH10116627A (en) * 1996-10-11 1998-05-06 Sanyo Electric Co Ltd Lithium secondary battery
JPH10116630A (en) * 1996-10-15 1998-05-06 Toray Ind Inc Non-aqueous electrolyte secondary battery
WO2000016427A1 (en) * 1998-09-11 2000-03-23 Mitsui Chemicals Inc. Nonaqueous electrolytic liquid and secondary batter with nonaqueous electrolytic liquid
JP2000106209A (en) * 1998-09-30 2000-04-11 Mitsui Chemicals Inc Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP2001052739A (en) * 1999-06-02 2001-02-23 Mitsui Chemicals Inc Nonaqueous electrolyte and secondary battery using the same
JP2001052740A (en) * 1999-06-02 2001-02-23 Mitsui Chemicals Inc Nonaqueous electrolyte and lithium secondary battery using the same

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8007938B2 (en) 2004-04-20 2011-08-30 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and lithium secondary battery using same
US8043745B2 (en) 2004-04-20 2011-10-25 Mitsubishi Chemical Corporation Non-aqueous electrolyte solution and lithium secondary battery using same
EP3249735A2 (en) 2004-04-20 2017-11-29 Mitsubishi Chemical Corporation Non-aqueous electrolyte solution and lithium secondary battery using the same
US9231274B2 (en) 2004-04-20 2016-01-05 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and lithium secondary battery using same
US8435681B2 (en) 2004-04-20 2013-05-07 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and lithium secondary battery using same
CN103928706A (en) * 2004-04-20 2014-07-16 三菱化学株式会社 Nonaqueous Electrolyte Solution And Lithium Secondary Battery Using Same
WO2005114773A1 (en) * 2004-04-20 2005-12-01 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and lithium secondary battery using same
US9136560B2 (en) 2004-04-20 2015-09-15 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and lithium secondary battery using same
WO2006021452A2 (en) * 2004-08-27 2006-03-02 Sanyo Component Europe Gmbh Lithium secondary battery
WO2006021452A3 (en) * 2004-08-27 2006-12-21 Sanyo Component Europ Gmbh Lithium secondary battery
EP1630894A1 (en) * 2004-08-27 2006-03-01 Sanyo Component Europe GmbH Lithium secondary battery
JP4670305B2 (en) * 2004-10-15 2011-04-13 三菱化学株式会社 Non-aqueous electrolyte and lithium secondary battery
JP2006114388A (en) * 2004-10-15 2006-04-27 Mitsubishi Chemicals Corp Non-aqueous electrolytic solution, and lithium secondary battery
US20120070731A1 (en) * 2006-04-27 2012-03-22 Mitsubishi Chemical Corporation Non-aqueous liquid electrolyte and non-aqueous liquid electrolyte secondary battery
US9252457B2 (en) * 2006-04-27 2016-02-02 Mitsubishi Chemical Corporation Non-aqueous liquid electrolyte and non-aqueous liquid electrolyte secondary battery
US9406977B2 (en) 2006-12-20 2016-08-02 3M Innovative Properties Company Fluorinated compounds for use in lithium battery electrolytes
US8435679B2 (en) 2006-12-20 2013-05-07 3M Innovative Properties Counsel Fluorinated compounds for use in lithium battery electrolytes
WO2008078626A1 (en) * 2006-12-22 2008-07-03 Daikin Industries, Ltd. Nonaqueous electrolyte solution
JPWO2008078626A1 (en) * 2006-12-22 2010-04-22 ダイキン工業株式会社 Non-aqueous electrolyte
JP5321063B2 (en) * 2006-12-22 2013-10-23 ダイキン工業株式会社 Non-aqueous electrolyte
JPWO2009035085A1 (en) * 2007-09-12 2010-12-24 ダイキン工業株式会社 Electrolyte
JP5234000B2 (en) * 2007-09-12 2013-07-10 ダイキン工業株式会社 Electrolyte
WO2009035085A1 (en) * 2007-09-12 2009-03-19 Daikin Industries, Ltd. Electrolyte solution
US8003004B2 (en) 2008-01-23 2011-08-23 3M Innovative Properties Company Heat transfer apparatus and methods including hydrofluorocarbonates
EP2266159A2 (en) * 2008-03-18 2010-12-29 LG Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
US8277972B2 (en) 2008-03-18 2012-10-02 Lg Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
EP2266159A4 (en) * 2008-03-18 2012-05-30 Lg Chemical Ltd Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR101411088B1 (en) * 2008-06-30 2014-06-27 다이킨 고교 가부시키가이샤 Lithium secondary cell
WO2010001850A1 (en) * 2008-06-30 2010-01-07 ダイキン工業株式会社 Lithium secondary cell
US8877389B2 (en) 2008-06-30 2014-11-04 Daikin Industries, Ltd. Lithium secondary cell
JP5693222B2 (en) * 2008-06-30 2015-04-01 ダイキン工業株式会社 Lithium secondary battery
WO2010013739A1 (en) * 2008-07-30 2010-02-04 ダイキン工業株式会社 Solvent for dissolution of electrolytic salt of lithium secondary battery
WO2010110159A1 (en) 2009-03-25 2010-09-30 ソニー株式会社 Electrolyte and secondary battery
EP2525433A4 (en) * 2010-01-15 2015-07-01 Lg Chemical Ltd Electrolyte comprising an amide compound, and electrochemical device comprising the electrolyte
JP6070543B2 (en) * 2011-04-22 2017-02-01 宇部興産株式会社 Non-aqueous electrolyte, power storage device using the same, and trifluoromethylbenzene compound
WO2012144306A1 (en) * 2011-04-22 2012-10-26 宇部興産株式会社 Nonaqueous electrolyte solution, electricity storage device using same, and trifluoromethylbenzene compound
CN103493277A (en) * 2011-04-22 2014-01-01 宇部兴产株式会社 Nonaqueous electrolyte solution, electricity storage device using same, and trifluoromethylbenzene compound
US9472828B2 (en) 2011-04-22 2016-10-18 Ube Industries, Ltd. Nonaqueous electrolyte solution, electricity storage device using same, and trifluoromethylbenzene compound
JPWO2013094602A1 (en) * 2011-12-22 2015-04-27 Jx日鉱日石エネルギー株式会社 Organic electrolyte and organic electrolyte storage battery
EP2797154A4 (en) * 2011-12-22 2015-07-29 Jx Nippon Oil & Energy Corp Organic electrolyte, and organic electrolyte storage battery
CN104025364A (en) * 2011-12-22 2014-09-03 吉坤日矿日石能源株式会社 Organic electrolyte, and organic electrolyte storage battery
CN104321923A (en) * 2012-03-06 2015-01-28 吉坤日矿日石能源株式会社 Electrolyte for Li storage battery, and Li storage battery
CN104321923B (en) * 2012-03-06 2016-10-12 吉坤日矿日石能源株式会社 Li accumulator electrolyte and Li accumulator
CN110710034A (en) * 2017-05-29 2020-01-17 Jsr株式会社 Binder composition for electricity storage device, slurry for electricity storage device electrode, and electricity storage device
CN110710034B (en) * 2017-05-29 2023-04-14 株式会社引能仕材料 Binder composition for electricity storage device, slurry for electricity storage device electrode, and electricity storage device
CN113620923A (en) * 2021-07-16 2021-11-09 扬州工业职业技术学院 Preparation method and application of low-temperature electrolyte additive
CN113620923B (en) * 2021-07-16 2023-03-14 扬州工业职业技术学院 Preparation method and application of low-temperature electrolyte additive

Also Published As

Publication number Publication date
JP5062459B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
EP3349290B1 (en) Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution, and electricity storage device
JP4395026B2 (en) Non-aqueous electrolyte and lithium secondary battery including the same
US6797437B2 (en) Electrolyte system and energy storage device using same
KR101386165B1 (en) Organic electrolytic solution comprising vinyl based compound and lithium battery employing the same
JP4012174B2 (en) Lithium battery with efficient performance
KR101386164B1 (en) Organic electrolytic solution comprising vinyl based compound and lithium battery employing the same
KR101451802B1 (en) Organic electrolytic solution comprising glycidyl ether compund and lithium battery employing the same
JP5062459B2 (en) Nonaqueous electrolyte secondary battery
KR100599650B1 (en) Rechargeable lithium battery
JP2009105069A (en) Electrolyte for lithium secondary battery, and lithium secondary battery containing same
KR100428615B1 (en) A electrolyte for a lithium secondary battery
JP2006179458A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery having the same
US7989109B2 (en) Organic electrolytic solution and lithium battery employing the same
JP4153170B2 (en) Electrolyte for lithium secondary battery
JP4431941B2 (en) Nonaqueous electrolyte secondary battery
KR101349941B1 (en) Electrolyte For Lithium Secondary Battery and Lithium Secondary Battery Including The Same
US8956769B2 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
JP2010010078A (en) Nonaqueous electrolyte
KR102264048B1 (en) Electrolyte Solution for Secondary Battery and Secondary Battery Comprising the Same
KR20220124870A (en) Electrolyte Solution for Secondary Battery and Secondary Battery Comprising the Same
JP2000294279A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
KR101278794B1 (en) Non-aqueous electrolyte and secondary battery using the same
KR100412524B1 (en) A non-aqueous electrolyte and a lithium secondary battery comprising the same
US20230395850A1 (en) Lithium-ion battery electrolyte and lithium-ion battery
JP5218589B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080418

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090914

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090914

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120725

R150 Certificate of patent or registration of utility model

Ref document number: 5062459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees