JP2010008207A - 圧電薄膜の物性測定方法及び圧電薄膜の物性測定装置 - Google Patents

圧電薄膜の物性測定方法及び圧電薄膜の物性測定装置 Download PDF

Info

Publication number
JP2010008207A
JP2010008207A JP2008167583A JP2008167583A JP2010008207A JP 2010008207 A JP2010008207 A JP 2010008207A JP 2008167583 A JP2008167583 A JP 2008167583A JP 2008167583 A JP2008167583 A JP 2008167583A JP 2010008207 A JP2010008207 A JP 2010008207A
Authority
JP
Japan
Prior art keywords
piezoelectric thin
thin film
upper electrode
probe
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008167583A
Other languages
English (en)
Other versions
JP5159468B2 (ja
Inventor
Takashi Yamamoto
孝 山本
Ken Nishida
謙 西田
Takashi Iijima
高志 飯島
Yasuhisa Yamashita
泰久 山下
Kyo Aiso
亨 相蘇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Toyo Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Toyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Toyo Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008167583A priority Critical patent/JP5159468B2/ja
Publication of JP2010008207A publication Critical patent/JP2010008207A/ja
Application granted granted Critical
Publication of JP5159468B2 publication Critical patent/JP5159468B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

【課題】圧電薄膜における横方向圧電定数d31の正確な値を容易に測定することができる圧電薄膜における物性測定方法及び圧電薄膜における物性測定装置を提供すること。
【解決手段】基板上に、下部電極と、厚さtの圧電体である圧電薄膜と、をこの順に積層し、且つ圧電薄膜上に、長さtの互いに対向する少なくとも一組の辺を有する長方形状又は正方形状の上部電極を形成して試料を作成する。この試料を、上部電極の長さtの辺が第1の方向に一致するように試料台上に設置し、第1の方向における最端部にプローブを位置させ、上部電極と下部電極との間に所定の電圧Vを印加して圧電薄膜を変位させる。この変位に起因するプローブと上部電極との位置関係の変化を打ち消すように、試料台をプローブの変位に追従させて第1の方向に駆動し、この駆動量に基づいて圧電薄膜の第1の方向における変位量ΔSを算出して圧電薄膜の横方向圧電定数d31を算出する。
【選択図】 図1

Description

本発明は、圧電薄膜の物性測定方法及び圧電薄膜の物性測定装置に関する。
例えば携帯機器等の電子機器に内蔵される部品には、小型、軽量、低損失、及び高信頼性度が要求されている。このような要求を満たすデバイスとして、圧電薄膜を用いるデバイスが多数提案されている。
具体的には、圧電薄膜は、例えばMEMS(Micro Electro−Mechanical System)デバイスや、通信機器向けの圧電共振子フィルタ(FBAR)等の圧電特性を利用するデバイスに用いられている。
このようなデバイスの作製においては、通常コンピュータシミュレーションが利用される。従って、当然ながら正確なシミュレーション結果を得る必要があり、この為に、当該デバイスの作製に用いる材料の諸物性の値、特に圧電薄膜の圧電定数(特に縦方向圧電定数d33及び横方向圧電定数d31)の値を正確に測定する技術が求められている。
ここで、圧電薄膜の縦方向圧電定数d33を測定する為の技術に関しては、DBI(Double−Beam−Interferometry)法及びAFM(Atomic Force Microscopy)法を用いて多くの研究が為されている。
なお、DBI法は、電界誘起(EFI)歪みを最も正確に測定できる方法である。他方、AFM法によって測定されたEFI歪みの値は、PZT膜厚と上部電極との比に大きく依存する。しかしながら、AFM法は、良好な操作性及び十分な測定感度を有していることから広く用いられている。
ところで、上述した縦方向圧電定数d33を測定する技術として、例えば特許文献1に次のような技術が開示されている。
すなわち、特許文献1には、表裏面にそれぞれ電極が形成された圧電薄膜の表電極に、自由端部を接触させた片持ち梁部材と、前記圧電薄膜の表裏電極間に電圧を印加する電圧印加手段と、前記片持ち梁部材の表面に光源より光ビームを照射し、前記片持ち梁部材より反射された反射光ビームの位置を検出する位置検出手段と、前記位置検出手段からの検出信号をもとに、前記圧電性薄膜における変位量および圧電定数を算出する算出手段と、を備えた圧電薄膜評価装置が開示されている。
この特許文献1に開示された技術によれば、上述した縦方向圧電定数d33を或る程度精度よく測定することができる。
特開平6−258072号公報
ところで、当業者には周知の事実であるが、実際のデバイスの作製においては、縦方向圧電定数d33の重要性と同程度或いはそれ以上に、横方向圧電定数d31も重要である。
しかしながら、上述したように縦方向圧電定数d33の測定に関する技術とは異なり、横方向圧電定数d31を測定する為の技術は確立されていない。従って、横方向圧電定数d31に関しては、現状では、上述した方法によって算出した縦方向圧電定数d33の値に基づいて推測(或いは縦方向圧電定数d33を転用)するに留まっている。
なお、当然ながら、実用性を全く無視した大掛かりな装置構成及び多大な時間を掛けることで、横方向圧電定数d31の正確な値を求めることは可能である。しかしながら、このような方法は全く非現実的であり、現実にそのような方法は採られていない。つまり、現実的な方法で、横方向圧電定数d31を測定する技術は知られていない。また、特許文献1においても、横方向圧電定数d31の測定技術に関しては何ら開示されていない。
以上説明したように、現在、圧電薄膜における横方向圧電定数d31の正確な値を、実用性を有する方法により測定する技術が求められている。
本発明は、前記のような事情に鑑みて為されたものであり、圧電薄膜における横方向圧電定数d31の正確な値を容易に測定することができる圧電薄膜の物性測定方法及び圧電薄膜の物性測定装置を提供することを目的とする。
前記の目的を達成するために、本発明の第1の態様に係る圧電薄膜の物性測定方法は、
走査型プローブ顕微鏡を用いた圧電薄膜の物性測定方法であって、
基板上に、下部電極と、厚さtの圧電体である圧電薄膜と、をこの順に積層し、且つ前記圧電薄膜上に、長さtの互いに対向する少なくとも一組の辺を有する長方形状又は正方形状の上部電極を形成する試料作成ステップと、
前記試料作成ステップにおいて作成した試料を、前記上部電極の長さtの辺が第1の方向に一致するように、試料台上に設置するステップと、
プローブを前記上部電極に接触させて前記上部電極の表面の3次元形状を測定し、該測定により前記上部電極の前記第1の方向における最端部の位置を検出する最端部位置検出ステップと、
前記最端部位置検出ステップにおいて検出した前記最端部に、前記プローブを位置させるプローブ位置設定ステップと、
前記プローブによって、前記上部電極と前記下部電極との間に、所定の電圧Vを印加して前記圧電薄膜を分極及び変位させる電圧印加ステップと、
前記電圧印加ステップにおいて生じた前記プローブの変位を検出し、該検出した変位に起因する前記プローブと前記上部電極との位置関係の変化を打ち消すように、前記試料台を、前記プローブの変位に追従させて前記第1の方向に駆動するフィードバック制御ステップと、
前記フィードバック制御ステップにおける前記試料台の駆動量に基づいて、前記電圧印加ステップにおいて生じた前記圧電薄膜の前記第1の方向における変位量ΔSを算出する変位量算出ステップと、
前記変位量算出ステップにおいて算出した前記変位量ΔSの値に基づいて、前記圧電薄膜の横方向圧電定数d31を算出する横方向圧電定数d31算出ステップと、
を有することを特徴とする。
前記の目的を達成するために、本発明の第2の態様に係る圧電薄膜の物性測定装置は、
基板上に下部電極と圧電薄膜と上部電極とがこの順に積層された試料における前記圧電薄膜の物性測定装置であって、
第1の方向に駆動可能なアクチュエータを有する試料台と、
前記上部電極の前記第1の方向における最端部を検出し、且つ該最端部を介して前記上部電極と前記下部電極との間に所定の電圧を印加する為のプローブと、
前記プローブに所定の電位を与える電圧源と、
前記上部電極と前記下部電極との間に所定の電圧が印加された際に、前記圧電薄膜に生じる変位に起因する前記プローブの変位量を検出する為のプローブ変位検出手段と、
前記上部電極と前記プローブとの相対的位置関係が、前記プローブの変位によって変化しないように、前記プローブ変位検出手段によって検出された前記プローブの変位量に基づいて、前記試料台を前記第1の方向に駆動制御するフィードバック制御手段と、
前記フィードバック制御手段によって前記第1の方向に駆動された前記試料台の移動量に基づいて、前記圧電薄膜の変位量ΔSを算出し、該ΔSの値と、前記tの値と、前記Vの値と、を
d31=(ΔS/t)×(t/V)
に代入して、前記圧電薄膜の横方向圧電定数d31を算出する横方向圧電定数d31演算手段と、
を具備し、
前記試料は、基板上に、下部電極と、厚さtの圧電体である圧電薄膜と、がこの順に積層され、前記圧電薄膜上に、長さtの互いに対向する少なくとも一組の辺を有する長方形状又は正方形状の上部電極が形成されていることを特徴とする。
本発明によれば、圧電薄膜における横方向圧電定数d31の正確な値を容易に測定することができる圧電薄膜の物性測定方法及び圧電薄膜の物性測定装置を提供することができる。
以下、図面を参照して本発明の一実施形態を説明する。
図1は、本一実施形態に係る圧電薄膜の物性測定方法を実施する為の走査型プローブ顕微鏡(以降、SPMと称する)の一構成例を模式的に示す図である。
ここで、SPMは、一般的に原子オーダ(ナノメータ(nm)以下)の測定分解能を有する顕微鏡であり、表面の形状計測を始めとして各種分野に適用されている。検出に利用する物理量に依存して、走査型トンネル顕微鏡(以降、STMと称する)、原子間力顕微鏡(以降、AFMと称する)、磁気力顕微鏡(以降、MFMと称する)等に分類される。特にAFMは、試料表面の凹凸形状を高分解能で検出するのに適しており、半導体、ディスク等の分野で実績をあげている。
具体的には、SPMは、10nm程度にまで先鋭化されたプローブによって、試料表面に働く距離に依存する物理量を測定し、表面形状や表面物性を可視化する顕微鏡である。そして、SPMは面分解能に加え、オングストロームレベルの高さ分解能を有している。例えば、金属や磁性膜がコートされたプローブを利用すれば、試料における表面電位や電流、熱伝導度等の物性状態を可視化することが可能である。
なお、本一実施形態においては、説明の便宜上、SPMとしてAFMを例にして説明する。しかしながら、SPMとしてAFM以外の顕微鏡を用いても勿論よい。
図1に示すように、AFM100は、ピエゾスキャナ111と、電圧源115と、レーザダイオード(以降、LDと称する)117と、カンチレバー119と、カンチレバー駆動機構121と、導電性プローブ123と、フォトディテクタ(以降、PDと称する)125と、L−R信号生成手段126と、フィードバックモジュール127と、ピエゾアクチュエータ制御手段129と、を具備する。
前記ピエゾスキャナ111は、X軸方向に駆動可能な試料ステージである。このピエゾスキャナ111は、当該ピエゾスキャナ111をX軸方向へ駆動する為のピエゾアクチュエータであるX軸方向ピエゾアクチュエータを具備している。
なお、移動可能な試料ステージとして用いる装置は、ピエゾスキャナに限られないことは勿論である。つまり、少なくともX軸方向に駆動可能な試料ステージであれば、どのような装置を用いてもよい。
前記電圧源115は、後述する下部電極15に所定の電圧を印加する為の電圧源である。
前記LD117は、カンチレバー119へレーザ光を照射する為の光源である。
前記カンチレバー119は、後述する試料200の上方に配置され、その先端部には導電性プローブ123が設けられている。
前記カンチレバー駆動機構121は、カンチレバー119を移動させる為の機構である。具体的には、カンチレバー駆動機構121は、X軸方向駆動機構と、Y軸方向駆動機構と、Z軸方向駆動機構と、から成る。X軸方向駆動機構、Y軸方向駆動機構、及びZ軸方向駆動機構は、それぞれX軸方向、Y軸方向、Z軸方向に導電性プローブ123を駆動する為の機構である。
なお、導電性プローブ123と上部電極13(詳細は後述する)との接触圧力については、後述するカンチレバー駆動機構121が有するZ軸方向駆動機構により調節する。また、上部電極13上における導電性プローブ123の位置は、後述するカンチレバー駆動機構121が有するX軸方向駆動機構及びY軸方向駆動機構により調節する。
前記導電性プローブ123は、試料200の表面測定の際には、前記Z軸方向駆動機構によって下方向へ移動され、試料200の表面との間で原子間力が生じる程度の距離まで試料200に対して接近されて配置される。
なお、後述する測定処理の際に重要な事項の一つは、導電性プローブ123と、上部電極13と、の相対的位置関係を厳密に固定することである。この為に、上述したX軸方向ピエゾアクチュエータに高分解能低ノイズの位置センサを設ける。そして、これら位置センサを利用して厳密なフィードバック制御を行うことにより、導電性プローブ123と、上部電極13との相対的位置関係を保持することが必須である。
前記PD125は、前記カンチレバー119に対してカンチレバー119の変位を検出する変位検出器であり、例えば4分割フォトディテクタ(受光素子)である。具体的には、前記LD117から射出されたレーザ光は、前記カンチレバー119の背面の反射面で反射された後、当該PD125に入射する。
前記L−R信号生成手段126は、前記PD125から出力された信号(4分割された受光素子のL信号及びR信号)から、その差分の値であるL−R信号を生成して、フィードバックモジュール127へ出力する。
前記フィードバックモジュール127は、前記PD125から出力されたL−R信号と、予め設定されているL−R信号の初期値と、に基づいて、前記L−R信号の値が常に一定の値を維持するように、前記試料200のX軸方向における位置を調節する為の制御信号を生成して、ピエゾアクチュエータ制御手段129に出力する。
前記ピエゾアクチュエータ制御手段129は、前記フィードバックモジュール127から出力された制御信号に基づいて、ピエゾスキャナ111が具備するX軸方向ピエゾアクチュエータを駆動制御して前記ピエゾスキャナ111をX軸方向に駆動する。
なお、X軸方向及びY軸方向は、図1において試料200の厚み方向(Z軸方向)に垂直な水平平面内に含まれる直交する2軸の方向である。
以下、図2を参照して、本一実施形態における主な測定対象である圧電薄膜における横方向圧電定数d31について詳細に説明する。
図2に示すように、圧電薄膜11の膜厚をtfとし、該圧電薄膜11上に載置された上部電極13の長さをLとする。そして、前記上部電極13と共に前記圧電薄膜11を挟持する下部電極15と前記上部電極13との間に、電圧源115によって所定の電圧Vを印加する。このような構成のもと、まず前記下部電極15と前記上部電極13との間に所定の電圧Vを印加して圧電薄膜11をその厚み方向に分極させる。ここで、所定の電圧Vを印加した際の、上部電極端における圧電薄膜11の電界印加方向に垂直(電極面に平行)な方向の変位量をΔSとすると、
ΔS=−d31(V/tf)L ・・・(式1)
と表すことができる。
前記(式1)を変形すると、
横方向圧電定数d31は、
d31=(ΔS/L)×(tf/V) ・・・(式2)
と表すことができる。
ここで、より具体的に説明する。
例えば、圧電薄膜11の膜厚tfを1000nmとし、上部電極の長さLを1000nmとし、電圧Vを250Vとし、変位量ΔSを10nmとすると、圧電薄膜の横方向圧電定数d31は、
d31=(1.0×10−8/1.0×10−6)×(1.0×10−6/2.5×10
d31=40pm/V
と算出される。
なお、図3A及び図3Bに示すように、横軸に印加電圧Vを取り、縦軸に変位量ΔSを取ると、横方向圧電定数d31は、符号23を付した変位曲線と横軸とが為す角αを用いて、tanαで表される。
ここで、図3Aは、圧電薄膜11に対して電圧を正負に印加したバイポーラ時の(圧電薄膜11にバイポーラの電界を印加した場合の)変位曲線を示す図である。図3Bは、圧電薄膜11に対して電圧を正側のみに印加したユニポーラ時の(圧電薄膜11にユニポーラの電界を印加した場合の)変位曲線を示す図である。
以下、図4に示すフローチャートを参照して、本一実施形態に係る圧電薄膜における物性測定方法について詳細に説明する。
まず、横方向圧電定数d31を測定する対象の試料を作製して、図1を参照して説明した前記ピエゾスキャナ111上に載置する(ステップS1)。このステップS1における横方向圧電定数d31を測定する試料の作製方法は、本一実施形態の主な特徴部の一つであるので、図5に示すサブルーチンのフローチャートを参照して詳細に説明する。
まず、図6Aに示すように、基板17上に、下部電極15と、被測定試料としての膜厚既知の圧電体である圧電薄膜11と、をこの順に積層する(ステップS11)。
続いて、図6Bに示すように前記圧電薄膜11上に、上部電極13を形成する(ステップS12)。このステップS12は、詳細には次の様な工程である。すなわち、まず前記圧電薄膜11の厚みtfと同一の長さtfを有する辺からなる方形状(例えば正方形状又は長方形状等)の貫通孔部を有するマスク19を、例えばレジスト等により前記圧電薄膜11上に形成する。そして、例えばスパッタリング法により、例えば銅、金、銀、アルミニウム、パラジウム、白金、ニオブ、タングステン等の電極材料を、前記貫通孔部に対応する前記圧電薄膜11上に堆積して上部電極13を形成する。
前記ステップS12における工程を終えた後、図6Cに示すように、例えばリフトオフ法により、前記マスク19を除去する(ステップS13)。
なお、前記上部電極13の形成方法としては、上述した方法以外にも例えば次のような方法を挙げることができる。すなわち、予め圧電薄膜11上における全面に、上部電極13をスパッタリング等によって形成し、その後上部電極として利用する領域のみをマスキングし、該マスキングを施さない領域に関しては例えばドライ又はウェットのエッチングによって除去することで形成する方法を挙げることができる。この場合、図6Dに示すように、圧電薄膜11についても例えばサイドエッチング等を施すことによって、上部電極13と同形状としても勿論よい。
換言すれば、前記圧電薄膜11の厚みtfと同一の長さtfを有し、互いに対向する少なくとも一組の辺を有する長方形状又は正方形状の上部電極13を形成することができれば、どのような方法によって上部電極13を形成してもよい。
以下、図4に示すフローチャートの処理の説明へ戻る。
前記ステップS1における工程を終えた後、上部電極13の辺のうち前記圧電薄膜11の厚みtfと同一の長さtfを有する辺がX軸方向に一致するように、且つ本一実施形態に係る測定装置に付随している光学顕微鏡(不図示)を用いて、上部電極13のうち長さtfを有する辺方向の最端部(X軸方向における最端部;図1においては右端部)がピエゾスキャナ111の略中心に位置するように、前記試料200をピエゾスキャナ111上に載置する(ステップS2)。
なお、前記導電性プローブ123は、上部電極13の前記最端部を検出する役割と、該最端部に当該導電性プローブ123を一定のカで上部電極13に接触させ且つ上部電極13に電圧を印加する役割を有する。
続いて、前記導電性プローブ123を上部電極13に接触させて上部電極13表面の3次元形状を測定し、該測定により上部電極13のX軸方向における最端部の位置を検出した後、前記カンチレバー駆動機構121によって、前記最端部に前記導電性プローブ123を位置させて停止させる(ステップS3)。
このステップS3の工程を終えた後、前記上部電極13と前記下部電極15との間に、前記導電性プローブ123を介して前記電圧源115によって所定の電圧を印加し、前記試料200における前記圧電薄膜11を変位させる。この変位に同期して前記導電性プローブ123は左右方向に捻じれて変位する。
そして、この導電性プローブ123に生じた捻じれ変位を、前記LD117によって射出されて前記カンチレバー119によって反射されたレーザ光を受光する前記PD125を用いて検出する。
つまり、前記導電性プローブ123に生じた捻じれ変位は、前記カンチレバー119を変位させ、この変位は、前記カンチレバー119によって反射される前記LD117からのレーザ光を受光した前記PD125が生成する電気信号を変化させる。
ここで、前記PD125によって検出された信号は、前記L−R信号生成手段126に出力され、前記L−R信号生成手段126によって上述したL−R信号が生成される。そして、このL−R信号は、前記フィードバックモジュール127に出力される。
前記フィードバックモジュール127は、このL−R信号に基づいて、L−R信号が常に所定の値(予め設定された初期値)を維持するように、前記ピエゾアクチュエータ制御手段129を介して、前記ピエゾスキャナ111をX軸方向に移動させる制御を行い、該移動の距離に基づいて前記圧電薄膜11のX軸方向における変位量(伸び量)を算出する(ステップS4)。
換言すれば、上述した電圧の印加により前記導電性プローブ124に生じた捻じれ変位に起因する、前記導電性プローブ124と前記上部電極13との位置関係の変化を打ち消す(補正する)方向に、X軸方向アクチュエータによりピエゾスキャナ111を駆動する。このようなフィードバック制御を行うことで、前記導電性プローブ124と前記上部電極13との相対的位置関係を厳密に保持する。
このとき、当然ながら、X軸方向アクチュエータに印加された電圧に基づいて、X軸方向アクチュエータの動作量(ピエゾスキャナ111のX軸方向における移動量)を算出することができる。そして、上述したフィードバック制御を行っている為、X軸方向アクチュエータと圧電薄膜11の変位量(伸び)とは一致している。従って、ステップS4において、前記圧電薄膜11のX軸方向における変位量(伸び量)を算出することが可能となる。
つまり、ステップS4においては、導電性プローブ123に電圧を印加して試料200に電界を加えたときの圧電薄膜11のX軸方向における変位量(伸び量)であるΔSを、導電性プローブ124の捻じれ変位の量に基づいて検出し、これに基づいて上述した(式2)に基づいて横方向圧電定数d31を算出する。なお、この算出を行う為の演算手段を別途設けても勿論よい。
なお、前記ステップS4において検出した変位量ΔSの値を(式2)に適用することで正確な横方向圧電定数d31を算出することができるのは、当該変位量ΔSの値が理論値と略同一の値である為である。
つまり、図5に示すフローチャートに従って作成した試料200を用いることで、ステップS4において検出する変位量ΔSの値が理論値と略同一の値となる。これは、各種パラメータの膨大な組み合わせによるシミュレーション実験結果に基づいたものである。
すなわち、前記ステップS4において算出した変位量の値が、理論値と略同一の値を示すことはシミュレーション実験により確認されており、詳細には次のような実験結果が得られている。なお、当該実験は、圧電薄膜の横方向圧電定数d31をSPMによって測定する際の最適な測定条件を試料構造の観点から検討した実験である。
具体的には、基板上に成膜した強誘電の圧電薄膜の上部電極に電圧を印加し、圧電薄膜の厚み方向に電界を加えたときの面方向の伸びを、上部電極端を測定点とするSPMにより正確に計測する為に、横方向圧電特性d31を正確に反映する圧電薄膜の面方向における伸びを示す上部電極の形状を、圧電薄膜の厚み、基板の厚み、及び上部電極の寸法をパラメータとしたシミュレーションによって算出する実験である。なお、上部電極端にSPMのプローブ先端を固定し、上述した測定方法によって、圧電薄膜における面方向の伸びを計測することにより横方向圧電定数d31を算出する。
まず、図5及び図6A乃至図6Dを参照して説明した工程により製造した試料200は、例えば図7に示すような構成の試料200となる。
すなわち、図7に示すように、厚みtfの圧電薄膜11を挟持する上部電極13の長さをLとしてシミュレーションを行う。つまり、上部電極13と下部電極15との間に、電圧源115によって所定の電圧Vを印加したときに、上部電極端における圧電薄膜11の電界印加方向に垂直(電極面に平行)な方向における変位量ΔSを、図4に示すフローチャートを参照して説明した工程によって算出する。
なお、この上部電極13の長さLの値は、図8Aに示すシミュレーション結果に基づいて決定する。図8Aに示すグラフは、横軸には上部電極13の長さL(μm)をとり、縦軸には圧電薄膜の変位量ΔS(nm)をとるグラフである。そして、各々のグラフは次の様なグラフである。
・丸印で測定点を取っているグラフは、圧電薄膜11の厚みtf=0.5μmのときのグラフである。
・三角形印で測定点を取っているグラフは、圧電薄膜11の厚みtf=2μmのときのグラフである。
・四角形印で測定点を取っているグラフは、圧電薄膜11の厚みtf=10μmのときのグラフである。
図8Aに示すグラフから分かるように、前記Lの値と前記tfの値とが同一の値である場合(つまり、L=tfの場合)に、圧電薄膜11の変位量ΔSは、理論値のグラフに従った値(理論値と略同一の値)となる。
具体的には、同図に示す例では、上部電極13の長さL=10μm且つ圧電薄膜11の厚みtf=10μmの場合に、実験値を示すグラフと理論値を示すグラフとが交わっている。
つまり、L=tfの場合に、圧電薄膜11の変位量ΔSは理論値と略同一の値となる。なお、この条件は、各種パラメータの膨大な組み合わせによるシミュレーション実験から見出された条件である。図8Bは、図6Dに示す型の試料によるシミュレーション結果の一例を示す図である。
このように、圧電薄膜11の変位量ΔSが理論値に一致する条件に適合するように試料200を製造し、且つ図4に示すフローチャートに従って測定を行うことで、横方向圧電定数d31を正確に測定することが可能となる。
なお、以上説明した測定方法は、圧電薄膜11の厚み方向(縦方向)変位の測定(縦方向圧電定数d33の測定)に対しても適用することができる。すなわち、横方向圧電定数d31の測定と同様の測定条件(上部電極13の長さL=tf)を満たす限りにおいては、圧電薄膜11の縦方向圧電定数d33を正確に算出することが可能である。
詳細には、横方向圧電定数d31の測定と同様の測定条件(上部電極13の長さL=tf)の下で測定された圧電薄膜11の縦方向圧電定数d33の値に、所定の換算係数を掛けることで、正確な値の縦方向圧電定数d33が求まる。
なお、前記Lは上述したように圧電薄膜11上に載置された上部電極13の幅を示し、この長さLの辺と直角を為す辺(X−Y平面を構成する辺)の長さをWとする。
ここで、前記所定の換算係数は上部電極13の形状に依存する。具体的には、例えばW
=1/4Lの条件を満たす場合には、前記所定の換算係数の値は“1.3”である。また、L=1/4Wの条件を満たす場合には、前記所定の換算係数の値は“1.8”である。さらには、上部電極13の形状が正方形状(W=L)である場合には、前記所定の換算係数の値は“1.5”である。なお、上部電極13の形状がその他の形状を採る場合における前記所定の換算係数の値も、前記膨大なシミュレーション結果から算出できる。
図9は、W=Lの場合における縦方向圧電定数d33の値を測定したシミュレーション結果のグラフを示す図である。詳細には、図9に示すグラフは、横軸には上部電極13の幅L(μm)をとり、縦軸には縦方向圧電定数d33(pm/V)の値をとるグラフである。そして、各々のグラフは次の様なグラフである。
・丸印で測定点を取っているグラフは、圧電薄膜11の厚みtf=0.5μmのときのグラフである。
・三角形印で測定点を取っているグラフは、圧電薄膜11の厚みtf=2μmのときのグラフである。
・四角形印で測定点を取っているグラフは、圧電薄膜11の厚みtf=10μmのときのグラフである。
図9に示すグラフから分かるように、W=Lの場合であって且つ前記Lの値と前記tfの値とが同一の値である場合(換言すれば、L=tfの場合)には、縦方向圧電定数d33の値は理論値の1/1.5倍の値となる。
具体的には、同図に示す例では、上部電極13の幅の値L=10μm且つ圧電薄膜11の厚みtf=10μmの場合に、実験値を示すグラフの値の1.5倍の値が、理論値を示すグラフの値に等しくなっている。
つまり、L=tfの場合に、圧電薄膜11の縦方向圧電定数d33の値は理論値の所定数倍の値となる。なお、この条件は、各種パラメータの膨大な組み合わせによるシミュレーション実験から見出された条件である。
なお、通常、測定は複数回行うが、上述した電圧印加による圧電薄膜11の分極により、圧電薄膜はその厚み方向に分極されている。通常、測定は複数回行うが、一回目の電圧印加による分極が持続している。
以上説明したように、本一実施形態によれば、圧電薄膜における横方向圧電定数d31の正確な値を容易に測定することができる圧電薄膜の物性測定方法及び圧電薄膜の物性測定装置を提供することができる。
具体的には、前記ステップS4において算出した変位量の値は、理論値と略同一の値を示す。つまり、前記ステップS4において算出した変位量の値を、そのまま前記(式1)及び前記(式2)におけるΔSの値として用いることができる。つまり、以上説明した簡易な工程で、横方向圧電定数d31の値を正確に求めることが可能となる。
以上、一実施形態に基づいて本発明を説明したが、本発明は上述した実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形及び応用が可能なことは勿論である。
さらに、上述した実施形態には種々の段階の発明が含まれており、開示される複数の構成要件の適当な組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成も発明として抽出され得る。
本発明の一実施形態に係る圧電薄膜における物性測定方法を実施する為の走査型プローブ顕微鏡の構成を模式的に示す図。 横方向圧電定数d31を説明する図。 横方向圧電定数d31を説明する図。 横方向圧電定数d31を説明する図。 本発明の一実施形態に係る圧電薄膜における物性測定方法のフローチャートを示す図。 横方向圧電定数d31を測定する試料の作製方法のフローチャートを示す図。 横方向圧電定数d31を測定する試料の作製方法を模式的に示す図。 横方向圧電定数d31を測定する試料の作製方法を模式的に示す図。 横方向圧電定数d31を測定する試料の作製方法を模式的に示す図。 横方向圧電定数d31を測定する試料の作製方法を模式的に示す図。 図5及び図6A乃至図6Dに示す工程により作製した試料を用いた実験を説明する図。 L=tfのときに横方向変位が理論値に一致することを示すシミュレーション結果のグラフを示す図。 図6Dに示す型の試料において、L=tfのときに横方向変位が理論値に一致することを示すシミュレーション結果のグラフを示す図。 W=Lの場合における縦方向圧電定数d33の値を測定したシミュレーション結果のグラフを示す図。
符号の説明
11…圧電薄膜、 13…上部電極、 15…下部電極、 17…基板、 19…マスク、 100…AFM、 111…ピエゾスキャナ、 115…電圧源、 117…レーザダイオード、 119…カンチレバー、 121…カンチレバー駆動機構、 123…導電性プローブ、 125…フォトディテクタ、 126…L−R信号生成手段、127…フィードバックモジュール、 129…ピエゾアクチュエータ制御手段、 200…試料。

Claims (6)

  1. 走査型プローブ顕微鏡を用いた圧電薄膜の物性測定方法であって、
    基板上に、下部電極と、厚さtの圧電体である圧電薄膜と、をこの順に積層し、且つ前記圧電薄膜上に、長さtの互いに対向する少なくとも一組の辺を有する長方形状又は正方形状の上部電極を形成する試料作成ステップと、
    前記試料作成ステップにおいて作成した試料を、前記上部電極の長さtの辺が第1の方向に一致するように、試料台上に設置するステップと、
    プローブを前記上部電極に接触させて前記上部電極の表面の3次元形状を測定し、該測定により前記上部電極の前記第1の方向における最端部の位置を検出する最端部位置検出ステップと、
    前記最端部位置検出ステップにおいて検出した前記最端部に、前記プローブを位置させるプローブ位置設定ステップと、
    前記プローブによって、前記上部電極と前記下部電極との間に、所定の電圧Vを印加して前記圧電薄膜を分極及び変位させる電圧印加ステップと、
    前記電圧印加ステップにおいて生じた前記プローブの変位を検出し、該検出した変位に起因する前記プローブと前記上部電極との位置関係の変化を打ち消すように、前記試料台を、前記プローブの変位に追従させて前記第1の方向に駆動するフィードバック制御ステップと、
    前記フィードバック制御ステップにおける前記試料台の駆動量に基づいて、前記電圧印加ステップにおいて生じた前記圧電薄膜の前記第1の方向における変位量ΔSを算出する変位量算出ステップと、
    前記変位量算出ステップにおいて算出した前記変位量ΔSの値に基づいて、前記圧電薄膜の横方向圧電定数d31を算出する横方向圧電定数d31算出ステップと、
    を有することを特徴とする圧電薄膜の物性測定方法。
  2. 前記横方向圧電定数d31算出ステップにおいては、
    前記変位量算出ステップにおいて算出した前記変位量ΔSの値と、前記tの値と、前記Vの値と、を
    d31=(ΔS/t)×(t/V)
    に代入して、前記圧電薄膜の横方向圧電定数d31を算出することを特徴とする請求項1に記載の圧電薄膜の物性測定方法。
  3. 前記走査型プローブ顕微鏡は、原子間力顕微鏡であることを特徴とする請求項1に記載の圧電薄膜の物性測定方法。
  4. 前記フィードバック制御ステップにおいては、
    前記試料台を前記第1の方向に駆動する際に、該駆動の為のアクチュエータに設けられた高分解能且つ低ノイズの位置センサの出力に基づいて、前記試料台を前記第1の方向に駆動することを特徴とする請求項1に記載の圧電薄膜物性測定方法。
  5. 基板上に下部電極と圧電薄膜と上部電極とがこの順に積層された試料における前記圧電薄膜の物性測定装置であって、
    第1の方向に駆動可能なアクチュエータを有する試料台と、
    前記上部電極の前記第1の方向における最端部を検出し、且つ該最端部を介して前記上部電極と前記下部電極との間に所定の電圧を印加する為のプローブと、
    前記プローブに所定の電位を与える電圧源と、
    前記上部電極と前記下部電極との間に所定の電圧が印加された際に、前記圧電薄膜に生じる変位に起因する前記プローブの変位量を検出する為のプローブ変位検出手段と、
    前記上部電極と前記プローブとの相対的位置関係が、前記プローブの変位によって変化しないように、前記プローブ変位検出手段によって検出された前記プローブの変位量に基づいて、前記試料台を前記第1の方向に駆動制御するフィードバック制御手段と、
    前記フィードバック制御手段によって前記第1の方向に駆動された前記試料台の移動量に基づいて、前記圧電薄膜の変位量ΔSを算出し、該ΔSの値と、前記tの値と、前記Vの値と、を
    d31=(ΔS/t)×(t/V)
    に代入して、前記圧電薄膜の横方向圧電定数d31を算出する横方向圧電定数d31演算手段と、
    を具備し、
    前記試料は、基板上に、下部電極と、厚さtの圧電体である圧電薄膜と、がこの順に積層され、前記圧電薄膜上に、長さtの互いに対向する少なくとも一組の辺を有する長方形状又は正方形状の上部電極が形成されていることを特徴とする圧電薄膜の物性測定装置。
  6. 前記アクチュエータは、高分解能且つ低ノイズの位置センサを有することを特徴とする請求項5に記載の圧電薄膜の物性測定装置。
JP2008167583A 2008-06-26 2008-06-26 圧電薄膜の物性測定方法及び圧電薄膜の物性測定装置 Expired - Fee Related JP5159468B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008167583A JP5159468B2 (ja) 2008-06-26 2008-06-26 圧電薄膜の物性測定方法及び圧電薄膜の物性測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008167583A JP5159468B2 (ja) 2008-06-26 2008-06-26 圧電薄膜の物性測定方法及び圧電薄膜の物性測定装置

Publications (2)

Publication Number Publication Date
JP2010008207A true JP2010008207A (ja) 2010-01-14
JP5159468B2 JP5159468B2 (ja) 2013-03-06

Family

ID=41588904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008167583A Expired - Fee Related JP5159468B2 (ja) 2008-06-26 2008-06-26 圧電薄膜の物性測定方法及び圧電薄膜の物性測定装置

Country Status (1)

Country Link
JP (1) JP5159468B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012163502A (ja) * 2011-02-09 2012-08-30 Murata Mfg Co Ltd 圧電特性の測定装置および測定方法
CN114964356A (zh) * 2022-04-13 2022-08-30 北京大学深圳研究生院 氮化铝膜参数提取方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258072A (ja) * 1993-03-09 1994-09-16 Canon Inc 圧電体薄膜評価装置、原子間力顕微鏡
JPH0777552A (ja) * 1993-06-18 1995-03-20 Murata Mfg Co Ltd 圧電性の測定方法およびその装置
JP2001160575A (ja) * 1999-12-02 2001-06-12 Science & Tech Agency 強誘電体薄膜の評価方法
JP2004296785A (ja) * 2003-03-27 2004-10-21 Kyocera Corp 圧電アクチュエータの評価方法及び測定装置
JP2008267859A (ja) * 2007-04-17 2008-11-06 Seiko Epson Corp 圧電効果の測定方法、圧電効果の測定装置、圧電体素子、及び流体噴射ヘッド

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258072A (ja) * 1993-03-09 1994-09-16 Canon Inc 圧電体薄膜評価装置、原子間力顕微鏡
JPH0777552A (ja) * 1993-06-18 1995-03-20 Murata Mfg Co Ltd 圧電性の測定方法およびその装置
JP2001160575A (ja) * 1999-12-02 2001-06-12 Science & Tech Agency 強誘電体薄膜の評価方法
JP2004296785A (ja) * 2003-03-27 2004-10-21 Kyocera Corp 圧電アクチュエータの評価方法及び測定装置
JP2008267859A (ja) * 2007-04-17 2008-11-06 Seiko Epson Corp 圧電効果の測定方法、圧電効果の測定装置、圧電体素子、及び流体噴射ヘッド

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012163502A (ja) * 2011-02-09 2012-08-30 Murata Mfg Co Ltd 圧電特性の測定装置および測定方法
CN114964356A (zh) * 2022-04-13 2022-08-30 北京大学深圳研究生院 氮化铝膜参数提取方法
CN114964356B (zh) * 2022-04-13 2024-02-13 北京大学深圳研究生院 氮化铝膜参数提取方法

Also Published As

Publication number Publication date
JP5159468B2 (ja) 2013-03-06

Similar Documents

Publication Publication Date Title
US8353060B2 (en) Scanning probe microscope and a measuring method using the same
US7552625B2 (en) Force sensing integrated readout and active tip based probe microscope systems
US8434370B2 (en) Micro/nano-mechanical test system employing tensile test holder with push-to-pull transformer
US8220318B2 (en) Fast microscale actuators for probe microscopy
US20070103697A1 (en) Integrated displacement sensors for probe microscopy and force spectroscopy
JPH04364413A (ja) カンチレバー型変位素子、及びこれを用いた走査型トンネル顕微鏡、情報処理装置
KR102097351B1 (ko) 다중 통합 팁들 스캐닝 프로브 현미경
JP2013530387A (ja) 平面物体のレベリングのためのボールスペーサ方法
Peng et al. A Cr-N thin film displacement sensor for precision positioning of a micro-stage
Zhang et al. In-situ control of on-chip angstrom gaps, atomic switches, and molecular junctions by light irradiation
JP5164743B2 (ja) カンチレバー、カンチレバーシステム及びプローブ顕微鏡並びに吸着質量センサ
JP5159468B2 (ja) 圧電薄膜の物性測定方法及び圧電薄膜の物性測定装置
Gotszalk et al. Tip-based nano-manufacturing and-metrology
US9190938B2 (en) Piezoelectric actuating device
CN104406526A (zh) 脉冲微位移传感器及其测量位移的方法
JPH1038916A (ja) プローブ装置及び微小領域に対する電気的接続方法
JPH06258072A (ja) 圧電体薄膜評価装置、原子間力顕微鏡
US20070227235A1 (en) Apparatus for evaluating piezoelectric film, and method for evaluating piezoelectric film
JP4931708B2 (ja) 顕微鏡用プローブ及び走査型プローブ顕微鏡
JP4785537B2 (ja) プローブ、走査型プローブ顕微鏡、及びプローブの製造方法
CN110646640B (zh) 一种基于扫描探针显微镜的材料微/纳尺度的磁热信号探测方法
JP2003130774A (ja) 超微小硬度計
Kodama et al. B002 Construction of a surface profile measurement system by using a nanopipette ball probe with shear-force detection
KR20020045968A (ko) 주사 탐침 현미경용 캔틸레버 및 그의 제조 방법
Niblock Micro scanning probes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121211

R150 Certificate of patent or registration of utility model

Ref document number: 5159468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees