JP2010006626A - Method of preparing ultra low shrinkage ae concrete and ultra low shrinkage ae concrete - Google Patents

Method of preparing ultra low shrinkage ae concrete and ultra low shrinkage ae concrete Download PDF

Info

Publication number
JP2010006626A
JP2010006626A JP2008165542A JP2008165542A JP2010006626A JP 2010006626 A JP2010006626 A JP 2010006626A JP 2008165542 A JP2008165542 A JP 2008165542A JP 2008165542 A JP2008165542 A JP 2008165542A JP 2010006626 A JP2010006626 A JP 2010006626A
Authority
JP
Japan
Prior art keywords
shrinkage
concrete
ultra
low
fine aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008165542A
Other languages
Japanese (ja)
Other versions
JP5008202B2 (en
Inventor
Kazumasa Inoue
和政 井上
Tateo Mitsui
健郎 三井
Chiaki Yoshizawa
千秋 吉澤
Akira Takano
明 鷹野
Mitsuo Kinoshita
光男 木之下
Kazuhide Saito
和秀 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Oil and Fat Co Ltd
JFE Mineral Co Ltd
Takenaka Komuten Co Ltd
Original Assignee
Takemoto Oil and Fat Co Ltd
JFE Mineral Co Ltd
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemoto Oil and Fat Co Ltd, JFE Mineral Co Ltd, Takenaka Komuten Co Ltd filed Critical Takemoto Oil and Fat Co Ltd
Priority to JP2008165542A priority Critical patent/JP5008202B2/en
Publication of JP2010006626A publication Critical patent/JP2010006626A/en
Application granted granted Critical
Publication of JP5008202B2 publication Critical patent/JP5008202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of preparing ultra low shrinkage AE (Air Entrained) concrete by which drying shrinkage rate of a resultant hardened body is suppressed to an extremely low region of ≤200 μm without adversely affecting the fluidity or entrained air quantity of the obtained ultra low shrinkable AE concrete and the strength of the resultant hardened body and the neutralization is simultaneously reduced and to provide the ultra low shrinkage AE concrete. <P>SOLUTION: Specific blast furnace slag fine aggregate is used at least as a part of fine aggregate in a ratio of 250-950 kg/m<SP>3</SP>as unit amount, specific crushed limestone is used as coarse aggregate in a ratio of 800-1,100 kg/m<SP>3</SP>as unit amount, specific (poly)alkylene glycol monoalkyl ether is used as a drying shrinkage reducing agent in a ratio of 4-25 kg/m<SP>3</SP>as unit amount and the ratio of unit amount measured by a relation, [ä(unit amount of water+unit amount of drying shrinkage reducing agent)/(unit amount of cement)}×100] is controlled to 35-65%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は超低収縮AEコンクリートの調製方法及び超低収縮AEコンクリートに関する。近年、コンリート構造物の長寿命化や高品質化の観点から、コンリート構造物には特に乾燥収縮によるひび割れの発生を抑制することが要求され、同時にまた中性化の少ないことが要求されるようになっている。コンリート構造物の乾燥収縮によるひび割れを抑制するためには、一般建築物において乾燥収縮率を600μ以下程度にする必要があり、地下構造物等の拘束部材断面が大きい場合の建築物において乾燥収縮率を400μ以下程度にする必要があるといわれているが、その一方で、実際の建築現場では、開口部や鉄筋の拘束の大きい部位において、乾燥収縮率が200μを超えると、ひび割れの発生を十分に抑制することが難しいことも指摘されている。コンリート構造物において乾燥収縮によるひび割れの発生を十分に抑制するためには、乾燥収縮率を200μ以下の極めて小さい領域に抑える必要があるのである。本発明は、得られるコンクリート構造物(以下、単に硬化体という)の乾燥収縮によるひび割れの発生を十分に抑制し、同時にまた中性化を少なくすることのできる超低収縮AEコンクリートの調製方法及び超低収縮AEコンクリートに関する。   The present invention relates to a method for preparing ultra-low shrinkage AE concrete and ultra-low shrinkage AE concrete. In recent years, from the viewpoint of extending the life and quality of a concrete structure, the concrete structure is required to suppress the occurrence of cracks due to drying shrinkage, and at the same time, it is required to have little neutralization. It has become. In order to suppress cracking due to drying shrinkage of a concrete structure, it is necessary to set the drying shrinkage rate to about 600 μm or less in a general building, and the drying shrinkage rate in a building where the cross-section of a restraint member such as an underground structure is large. On the other hand, in an actual construction site, if the drying shrinkage rate exceeds 200μ at a part where the opening and the reinforcing bar are constrained, the generation of cracks is sufficient. It has also been pointed out that it is difficult to control. In order to sufficiently suppress the occurrence of cracks due to drying shrinkage in the concrete structure, it is necessary to suppress the drying shrinkage rate to an extremely small region of 200 μm or less. The present invention provides a method for preparing an ultra-low-shrinkage AE concrete capable of sufficiently suppressing the occurrence of cracks due to drying shrinkage of the resulting concrete structure (hereinafter simply referred to as a cured product) and at the same time reducing neutralization. It relates to ultra-low shrinkage AE concrete.

従来、コンクリートの乾燥収縮率を低減する手段として、コンクリートの調製時に、各種の乾燥収縮低減剤を使用すること(例えば特許文献1及び2参照)、また膨張材を使用すること(例えば特許文献3参照)、更には乾燥収縮低減剤と膨張材とを併用すること(例えば特許文献4参照)が知られている。   Conventionally, as means for reducing the drying shrinkage rate of concrete, various dry shrinkage reducing agents are used at the time of preparing the concrete (for example, see Patent Documents 1 and 2), and an expansion material is used (for example, Patent Document 3). (See, for example, Patent Document 4).

しかし、かかる従来の手段には、調製したコンクリートの流動性や連行空気量、また得られる硬化体の強度に悪影響を及ぼすことなく、得られる硬化体の乾燥収縮率を200μ以下の極めて小さい領域に抑えることができず、また中性化を少なくすることもできないという問題がある。
特開昭56−037259号公報 特開平2−307849号公報 特開平11−302047号公報 特開2004−168606号公報
However, the conventional means does not adversely affect the fluidity and entrained air amount of the prepared concrete and the strength of the obtained cured body, and the drying shrinkage rate of the obtained cured body is in an extremely small region of 200 μm or less. There is a problem that it cannot be suppressed and neutralization cannot be reduced.
Japanese Patent Laid-Open No. 56-037259 Japanese Patent Laid-Open No. 2-307849 JP 11-302047 A JP 2004-168606 A

本発明が解決しようとする課題は、調製した超低収縮AEコンクリートの流動性や連行空気量、また得られる硬化体の強度に悪影響を及ぼすことなく、得られる硬化体の乾燥収縮率を200μ以下の極めて小さい領域に抑えることができ、同時にまた中性化を少なくすることができる超低収縮AEコンクリートの調製方法及び超低収縮AEコンクリートを提供する処にある。   The problem to be solved by the present invention is that the dry shrinkage rate of the obtained cured product is 200 μm or less without adversely affecting the fluidity and entrained air amount of the prepared ultra-low shrinkage AE concrete and the strength of the obtained cured product. Therefore, the present invention provides a method for preparing ultra-low-shrinkage AE concrete and ultra-low-shrinkage AE concrete that can be suppressed to an extremely small area and at the same time reduce neutralization.

しかして本発明者らは前記の課題を解決するべく研究した結果、細骨材、粗骨材及び乾燥収縮低減剤として特定のものを用い、しかもかかる特定の細骨材、粗骨材及び乾燥収縮低減剤を所定の割合で用いることが正しく好適であることを見出した。   As a result, the present inventors have studied to solve the above-mentioned problems. As a result, specific aggregates, coarse aggregates, and dry shrinkage reducing agents are used, and such specific fine aggregates, coarse aggregates and dry aggregates are used. It has been found that the use of a shrinkage reducing agent in a predetermined proportion is correct and suitable.

すなわち本発明は、少なくともセメント、水、細骨材、粗骨材、乾燥収縮低減剤、セメント分散剤及び空気量調節剤を用いて超低収縮AEコンクリートを調製するに際し、細骨材の少なくとも一部として下記の高炉スラグ細骨材を単位量250〜950kg/mの割合で用い、また粗骨材として下記の石灰砕石を単位量800〜1100kg/mの割合で用い、更に下記の乾燥収縮低減剤を単位量4〜25kg/mの割合で用いて、且つ下記の数1で求められる単位量率が35〜65%となるようにすることを特徴とする超低収縮AEコンクリートの調製方法に係る。また本発明は、かかる調製方法によって得られる超低収縮AEコンクリートに係る。 That is, the present invention provides at least one of fine aggregates when preparing ultra-low-shrinkage AE concrete using at least cement, water, fine aggregate, coarse aggregate, dry shrinkage reducing agent, cement dispersant, and air amount adjusting agent. the blast-furnace slag fine aggregate below used in a proportion of unit quantity 250~950kg / m 3 as parts, also using lime crushed stone below at a rate of a unit amount 800~1100kg / m 3 as coarse aggregate, further dried below An ultra-low-shrinkage AE concrete characterized in that a shrinkage reducing agent is used at a rate of unit amount of 4 to 25 kg / m 3 , and the unit amount ratio calculated by the following formula 1 is 35 to 65%. It relates to the preparation method. The present invention also relates to ultra-low shrinkage AE concrete obtained by such a preparation method.

高炉スラグ細骨材:JIS−A5011−1に記載された高炉スラグ細骨材の粒度による区分に含まれる高炉スラグ細骨材であって、粗粒率を1.2〜4.0に調製したもの   Blast furnace slag fine aggregate: A blast furnace slag fine aggregate included in the blast furnace slag fine aggregate classification according to JIS-A5011-1 and having a coarse rate of 1.2 to 4.0. thing

石灰砕石:CaO≧50質量%及びMgO≦2質量%の割合で含有する石灰砕石   Limestone: Limestone containing CaO ≧ 50% by mass and MgO ≦ 2% by mass

乾燥収縮低減剤:下記の化1で示される(ポリ)アルキレングリコールモノアルキルエーテル   Drying shrinkage reducing agent: (poly) alkylene glycol monoalkyl ether represented by the following chemical formula 1

Figure 2010006626
Figure 2010006626

化1において、
R:炭素数3又は4のアルキル基
A:分子中に1〜3個のオキシエチレン単位のみ又は分子中に合計2〜5個のオキシエチレン単位とオキシプロピレン単位とで構成された(ポリ)オキシアルキレン基を有する(ポリ)アルキレングリコールから全ての水酸基を除いた残基
In chemical formula 1,
R: an alkyl group having 3 or 4 carbon atoms A: (poly) oxy composed of only 1 to 3 oxyethylene units in the molecule or a total of 2 to 5 oxyethylene units and oxypropylene units in the molecule Residues obtained by removing all hydroxyl groups from (poly) alkylene glycol having an alkylene group

Figure 2010006626
Figure 2010006626

本発明に係る超低収縮AEコンクリートの調製方法(以下、単に本発明の調製方法という)は、少なくともセメント、水、細骨材、粗骨材、乾燥収縮低減剤、セメント分散剤及び空気量調節剤を用いて超低収縮AEコンクリートを調製する方法である。   The method for preparing ultra-low shrinkage AE concrete according to the present invention (hereinafter simply referred to as the preparation method of the present invention) includes at least cement, water, fine aggregate, coarse aggregate, dry shrinkage reducing agent, cement dispersant, and air amount adjustment. This is a method for preparing ultra-low-shrinkage AE concrete using an agent.

本発明の調製方法に用いる細骨材は、その少なくとも一部として高炉スラグ細骨材を用いたものである。この高炉スラグ細骨材はJIS−A5011−1に記載された高炉スラグ細骨材の粒度による区分に含まれる高炉スラグ細骨材であって、粗粒率を1.2〜4.0に調製したものである。なかでも、高炉スラグ細骨材としては、粒度による区分が5mm高炉スラグ細骨材であって、粗粒率を1.5〜3.2に調製したものが好ましい。かかる高炉スラグ細骨材としては、その由来は特に制限されないが、高炉水砕スラグ細骨材が好ましい。尚、ここで粗粒率( fineness modulus、F.M.と略記される)は、80、40、20、10、5、2.5、1.2、0.6、0.3及び0.15(単位はmm)の各ふるいからなる1組のふるいを用いてふるい分け試験したときに、各ふるいを通らない全部の量の全試料に対する重量百分率の和を100で除した値であり、それ自体はセメントコンクリート用語として一般的に使用されている用語である。   The fine aggregate used in the preparation method of the present invention uses blast furnace slag fine aggregate as at least a part thereof. This blast furnace slag fine aggregate is a blast furnace slag fine aggregate included in the classification according to the grain size of the blast furnace slag fine aggregate described in JIS-A5011-1. The coarse particle ratio is adjusted to 1.2 to 4.0. It is a thing. Especially, as a blast furnace slag fine aggregate, the classification by a particle size is a blast furnace slag fine aggregate, Comprising: The coarse particle ratio adjusted to 1.5-3.2 is preferable. The origin of the blast furnace slag fine aggregate is not particularly limited, but blast furnace granulated slag fine aggregate is preferable. Here, the coarse particle ratio (abbreviated as fineness modulus, FM) is 80, 40, 20, 10, 5, 2.5, 1.2, 0.6, 0.3 and 0.00. The value obtained by dividing by 100 the sum of the weight percentages of all the samples that do not pass through each sieve when a screening test is performed using a set of 15 sieves (unit: mm). As such, it is a term commonly used as a cement concrete term.

以上説明した高炉スラグ細骨材は、単位量250〜950kg/mの割合で用いるが、好ましくは400〜900kg/mの割合で用いる。高炉スラグ細骨材以外の細骨材としては、川砂、山砂、海砂、砕砂等が挙げられるが、高炉スラグ細骨材は、細骨材全体の好ましくは30質量%以上を用い、より好ましくは50質量%以上を用いる。 The blast furnace slag fine aggregate described above is used at a rate of a unit amount of 250 to 950 kg / m 3 , but preferably at a rate of 400 to 900 kg / m 3 . Examples of the fine aggregate other than the blast furnace slag fine aggregate include river sand, mountain sand, sea sand, crushed sand, etc., but the blast furnace slag fine aggregate preferably uses 30% by mass or more of the whole fine aggregate, and more Preferably 50 mass% or more is used.

本発明の調製方法に用いる粗骨材は、CaO≧50質量%及びMgO≦2質量%の割合で含有する石灰砕石である。AEコンクリートを調製するときに、粗骨材として石灰砕石を用いると、得られる硬化体の乾燥収縮率を比較的小さくできることは知られている。しかし、粗骨材として一般に石灰砕石を用いるだけでは、得られる硬化体の乾燥収縮率を400〜650μ程度に抑えることができるにすぎない。他の条件を充足することを前提として、石灰砕石のなかでも、CaOを50質量%以上且つMgOを2質量%以下の割合で含有する特定の石灰砕石を用いることにより初めて、得られる硬化体の乾燥収縮率を200μ以下にまで抑えることができる。かかる石灰砕石は、単位量800〜1100kg/mの割合で用いるが、好ましくは単位量850〜1050kg/mの割合で用いる。 The coarse aggregate used in the preparation method of the present invention is crushed limestone containing CaO ≧ 50 mass% and MgO ≦ 2 mass%. It is known that when AE concrete is prepared, the dry shrinkage rate of the resulting cured body can be made relatively small when lime crushed stone is used as the coarse aggregate. However, generally only using crushed limestone as the coarse aggregate can only suppress the drying shrinkage of the obtained cured product to about 400 to 650 μm. Assuming that other conditions are satisfied, among the lime crushed stones, the use of a specific crushed crushed stone containing CaO in a proportion of 50 mass% or more and MgO in a proportion of 2 mass% or less is the first The drying shrinkage can be suppressed to 200 μm or less. Such lime crushed stone is used in a proportion of unit quantity 800~1100kg / m 3, preferably used in a proportion of unit quantity 850~1050kg / m 3.

本発明の調製方法に用いる乾燥収縮低減剤は化1で示される(ポリ)アルキレングリコールモノアルキルエーテルである。化1中のRは炭素数3又は4のアルキル基であり、これにはプロピル基やブチル基が挙げられるが、なかでも炭素数4のブチル基が好ましい。ブチル基には、ノルマルブチル基、イソブチル基、セカンダリーブチル基、ターシャリーブチル基等の異性体が含まれるが、なかでもRとしてはノルマルブチル基が好ましい。また化1中のAは分子中に1〜3個のオキシエチレン単位のみ又は合計2〜5個のオキシエチレン単位とオキシプロピレン単位とで構成された(ポリ)オキシアルキレン基を有する(ポリ)アルキレングリコールから全ての水酸基を除いた残基である。したがって、化1で示される(ポリ)アルキレングリコールモノアルキルエーテルには、1)分子中に1〜3個のオキシエチレン単位のみで構成された(ポリ)オキシエチレン基を有する(ポリ)エチレングリコールモノアルキルエーテル、2)分子中に合計2〜5個のオキシエチレン単位とオキシプロピレン単位とで構成された(ポリ)オキシアルキレン基を有する(ポリ)アルキレングリコールモノアルキルエーテルが含まれる。ここで、オキシエチレン単位とオキシプロピレン単位の結合様式はランダム状でもブロック状でもよい。以上説明した乾燥収縮低減剤のなかでもジエチレングリコールモノブチルエーテルが好ましい。かかる乾燥収縮低減剤は、単位量4〜25kg/mの割合で用いるが、好ましくは8〜20kg/mの割合で用いる。 The drying shrinkage reducing agent used in the preparation method of the present invention is a (poly) alkylene glycol monoalkyl ether represented by Chemical Formula 1. R in Chemical Formula 1 is an alkyl group having 3 or 4 carbon atoms, and examples thereof include a propyl group and a butyl group, and among them, a butyl group having 4 carbon atoms is preferable. The butyl group includes isomers such as a normal butyl group, an isobutyl group, a secondary butyl group, and a tertiary butyl group. Among them, R is preferably a normal butyl group. A in Chemical Formula 1 has a (poly) oxyalkylene group composed of only 1 to 3 oxyethylene units or a total of 2 to 5 oxyethylene units and oxypropylene units in the molecule. A residue obtained by removing all hydroxyl groups from glycol. Therefore, the (poly) alkylene glycol monoalkyl ether represented by Chemical Formula 1 is 1) a (poly) ethylene glycol monoalkyl having a (poly) oxyethylene group composed of only 1 to 3 oxyethylene units in the molecule. Alkyl ethers 2) (poly) alkylene glycol monoalkyl ethers having a (poly) oxyalkylene group composed of a total of 2 to 5 oxyethylene units and oxypropylene units in the molecule are included. Here, the bonding mode of the oxyethylene unit and the oxypropylene unit may be random or block. Of the drying shrinkage reducing agents described above, diethylene glycol monobutyl ether is preferable. The drying shrinkage reducing agent is used in a unit amount of 4 to 25 kg / m 3 , but preferably in a rate of 8 to 20 kg / m 3 .

本発明の調製方法に用いる空気量調節剤としては、ポリオキシアルキレンアルキルエーテル硫酸塩、アルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルベンゼンスルホン酸塩、ロジン石けん、高級脂肪酸石けん、アルキルリン酸エステル塩、ポリオキシアルキレンアルキルエーテルリン酸エステル塩等が挙げられるが、なかでもアルキルリン酸モノエステル塩が好ましく、オクチルリン酸モノエステルカリウム塩がより好ましい。かかる空気量調節剤は、セメント100質量部当たり、通常0.001〜0.01質量部の割合で用いる。   Examples of the air amount adjusting agent used in the preparation method of the present invention include polyoxyalkylene alkyl ether sulfate, alkyl benzene sulfonate, polyoxyethylene alkyl benzene sulfonate, rosin soap, higher fatty acid soap, alkyl phosphate ester salt, polyoxy An alkylene alkyl ether phosphate ester salt and the like can be mentioned, among which an alkyl phosphate monoester salt is preferable, and an octyl phosphate monoester potassium salt is more preferable. Such an air amount adjusting agent is usually used at a ratio of 0.001 to 0.01 parts by mass per 100 parts by mass of cement.

本発明の調製方法に用いるセメント分散剤としては、リグニンスルホン酸塩系のもの、ナフタレンスルホン酸ホルマリン高縮合物塩系のもの、ポリカルボン酸塩系のもの等が挙げられるが、なかでも水溶性ビニル共重合体から成るポリカルボン酸塩系のセメント分散剤(例えば特開昭58−74552号公報や特開平1−226757号公報等に記載のもの)が好ましい。かかるセメント分散剤は、セメント100質量部当たり、通常0.05〜2質量部の割合で用いる。   Examples of the cement dispersant used in the preparation method of the present invention include lignin sulfonate type, naphthalene sulfonate formalin high condensate type, polycarboxylate type, and the like. A polycarboxylate cement dispersant made of a vinyl copolymer (for example, those described in JP-A-58-74552 and JP-A-1-226757) is preferred. Such a cement dispersant is usually used at a ratio of 0.05 to 2 parts by mass per 100 parts by mass of cement.

本発明の調製方法に用いるセメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等の各種ポルトランドセメントの他に、高炉セメント、フライアッシュセメント、シリカフュームセメント等の各種混合セメント、更には超早強セメントやアルミナセメント等が挙げられるが、なかでも普通ポルトランドセメントが好ましい。   As the cement used in the preparation method of the present invention, various portland cements such as ordinary Portland cement, early-strength Portland cement, moderately hot Portland cement, low heat Portland cement, and various types of mixed blast furnace cement, fly ash cement, silica fume cement and the like. Examples of the cement include super early strength cement and alumina cement. Of these, ordinary Portland cement is preferable.

本発明の調製方法では、少なくとも以上説明したようなセメント、細骨材、粗骨材、乾燥収縮低減剤、セメント分散剤、空気量調節剤、及び更に水を用いて練り混ぜ、超低収縮AEコンクリートを調製する。調製に際して、セメント、水、細骨材、粗骨材、乾燥収縮低減剤、セメント分散剤及び空気量調節剤の練り混ぜ手順は特に制限されないが、先に所要量のセメント、水、細骨材、乾燥収縮低減剤、空気連行剤及びセメント分散剤を練り混ぜ、しかる後に粗骨材を練り混ぜる方法が好ましい。   In the preparation method of the present invention, at least as described above, cement, fine aggregate, coarse aggregate, dry shrinkage reducing agent, cement dispersant, air amount adjusting agent, and further kneading with water, ultra-low shrinkage AE Prepare concrete. During the preparation, the mixing procedure of cement, water, fine aggregate, coarse aggregate, drying shrinkage reducing agent, cement dispersant and air amount adjusting agent is not particularly limited, but the required amount of cement, water, fine aggregate is first used. A method of kneading a drying shrinkage reducing agent, an air entraining agent and a cement dispersant and then kneading the coarse aggregate is preferable.

本発明の調製方法において、連行空気量は通常3〜8容量%とするが、3〜7容量%とするのが好ましい。   In the preparation method of the present invention, the amount of entrained air is usually 3 to 8% by volume, but preferably 3 to 7% by volume.

本発明の調製方法では、前記したように、少なくともセメント、水、細骨材、粗骨材、乾燥収縮低減剤、セメント分散剤及び空気量調節剤を用いて練り混ぜ、超低収縮AEコンクリートを調製する。この際に本発明の調製方法では、前記の数1で求められる単位量率が35〜65%となるようにするが、好ましくは40〜60%となるようにする。   In the preparation method of the present invention, as described above, at least cement, water, fine aggregate, coarse aggregate, dry shrinkage reducing agent, cement dispersant and air amount adjusting agent are kneaded, and ultra low shrinkage AE concrete is obtained. Prepare. At this time, in the preparation method of the present invention, the unit amount ratio obtained by the above formula 1 is set to 35 to 65%, preferably 40 to 60%.

本発明の調製方法では、本発明の効果を損なわない範囲内で、必要に応じて防錆剤、急結剤、凝結促進剤、凝結遅延剤、防水剤等の添加剤を併用することができる。   In the preparation method of the present invention, additives such as a rust preventive, a quick setting agent, a setting accelerator, a setting retarder, and a waterproofing agent can be used in combination within the range not impairing the effects of the present invention. .

本発明に係る超低収縮AEコンクリートは、以上説明した本発明の調製方法によって調製されるものであり、それから得られる硬化体の乾燥収縮率を200μ以下に抑えることができ、同時にまたAEコンクリートの耐久性改善項目である中性化を少なくすることができる。   The ultra-low-shrinkage AE concrete according to the present invention is prepared by the above-described preparation method of the present invention, and the drying shrinkage of the cured product obtained therefrom can be suppressed to 200 μm or less. Neutralization, which is a durability improvement item, can be reduced.

本発明に係る超低収縮AEコンクリートは、建設現場で打設される超低収縮AEコンクリートとしてだけでなく、コンクリート製品工場で加工される二次製品用の超低収縮AEコンクリートとしても適用できる。   The ultra-low-shrinkage AE concrete according to the present invention can be applied not only as an ultra-low-shrinkage AE concrete placed at a construction site, but also as an ultra-low-shrinkage AE concrete for a secondary product processed at a concrete product factory.

本発明によると、調製したAEコンクリートの流動性や空気連行量、また得られる硬化体の強度に大きな悪影響を及ぼすことなく、得られる硬化体の乾燥収縮率を200μ以下に抑え、しかも中性化の少ない耐久性の優れた超低収縮AEコンクリートを提供することができるという効果がある。   According to the present invention, the dry shrinkage rate of the obtained hardened body is suppressed to 200 μm or less without significant adverse effects on the fluidity and air entrainment amount of the prepared AE concrete and the strength of the obtained hardened body, and is neutralized. There is an effect that it is possible to provide ultra-low-shrinkage AE concrete with less durability and excellent durability.

以下、本発明の構成及び効果をより具体的にするため、実施例等を挙げるが、本発明が該実施例に限定されるというものではない。なお、以下の実施例等において、別に記載しない限り、%は質量%を、また部は質量部を意味する。   Hereinafter, in order to make the configuration and effects of the present invention more specific, examples and the like will be described. However, the present invention is not limited to the examples. In the following examples and the like, unless otherwise indicated,% means mass%, and part means mass part.

試験区分1(超低収縮AEコンクリートの調製)
実施例1
表1に記載した調合条件で、50Lのパン型強制練りミキサーに、普通ポルトランドセメント(密度=3.16g/cm、ブレーン値3300)、高炉スラグ細骨材(表2に記載したS−1、粒度による区分が5mmの高炉スラグ細骨材であって、粗粒率を2.55に調製したもの、密度=2.70g/cm)、天然砂(神栖産陸砂、粗粒率=2.60、密度=2.62g/cm)、空気量調節剤(オクチルリン酸モノエステルカリウム塩)、セメント分散剤(竹本油脂社製のポリカルボン酸塩系セメント分散剤、商品名チューポールHP−11)及び乾燥収縮低減剤(表4に記載したA−1、ジエチレングリコールモノブチルエーテル)のそれぞれ所要量を練り混ぜ水(水道水)と共に投入して45秒間練り混ぜた。次に、粗骨材(表3に記載したG−1、秩父産石灰砕石、密度=2.70g/cm)を投入して60秒間練り混ぜ、目標スランプが18±1cm、目標空気量が4.5±1%の範囲とした実施例1の超低収縮AEコンクリートを調製した。尚、空気量調節剤及びセメント分散剤の使用量は表1の脚注に示した。
Test category 1 (Preparation of ultra-low shrinkage AE concrete)
Example 1
Under the mixing conditions described in Table 1, a 50 L pan-type forced kneader was mixed with ordinary Portland cement (density = 3.16 g / cm 3 , brain value 3300), blast furnace slag fine aggregate (S-1 described in Table 2). , Blast furnace slag fine aggregate with a particle size classification of 5 mm, with a coarse particle ratio adjusted to 2.55, density = 2.70 g / cm 3 , natural sand (land sand from Kamisu, coarse particle ratio = 2.60, density = 2.62 g / cm 3 ), air amount regulator (octyl phosphate monoester potassium salt), cement dispersant (polycarboxylate cement dispersant manufactured by Takemoto Yushi Co., Ltd., trade name Tupol) The required amounts of HP-11) and the drying shrinkage reducing agent (A-1, diethylene glycol monobutyl ether described in Table 4) were added together with kneaded water (tap water) and kneaded for 45 seconds. Next, coarse aggregate (G-1 listed in Table 3, Chichibu limestone, density = 2.70 g / cm 3 ) is added and mixed for 60 seconds, the target slump is 18 ± 1 cm, and the target air volume is An ultra-low-shrinkage AE concrete of Example 1 having a range of 4.5 ± 1% was prepared. In addition, the usage-amount of the air quantity regulator and the cement dispersing agent was shown in the footnote of Table 1.

実施例2〜12
実施例1と同様にして、それぞれ表1に示した調合条件で超低収縮AEコンクリートを調製した。
Examples 2-12
In the same manner as in Example 1, ultra-low shrinkage AE concrete was prepared under the blending conditions shown in Table 1, respectively.

比較例1
表1に記載した調合条件で、50Lのパン型強制練りミキサーに普通ポルトランドセメント(密度=3.16g/cm、ブレーン値3300)、高炉スラグ細骨材(表2に記載したS−1、粒度による区分が5mmの高炉スラグ細骨材であって、粗粒率を2.55に調製したもの、密度=2.70g/cm)、天然砂(神栖産陸砂、粗粒率=2.60、密度=2.62g/cm)、空気量調節剤(オクチルリン酸モノエステルカリウム塩)、セメント分散剤(竹本油脂社製のポリカルボン酸塩系セメント分散剤、商品名チューポールHP−11)及び乾燥収縮低減剤(表4に記載したA−1、ジエチレングリコールモノブチルエーテル)のそれぞれ所要量を練り混ぜ水(水道水)と共に投入して45秒間練り混ぜた。次に、粗骨材(表3に記載したG−1、秩父産石灰砕石、密度=2.70g/cm)を投入して60秒間練り混ぜ、目標スランプが18±1cm、目標空気量が4.5±1%の範囲とした比較例1の超低収縮AEコンクリートを調製した。尚、空気量調節剤及びセメント分散剤の使用量は表1の脚注に示した。
Comparative Example 1
Under the blending conditions shown in Table 1, ordinary Portland cement (density = 3.16 g / cm 3 , brain value 3300), blast furnace slag fine aggregate (S-1, described in Table 2, Blast furnace slag fine aggregate with a particle size classification of 5 mm, with a coarse particle ratio adjusted to 2.55, density = 2.70 g / cm 3 , natural sand (Kamisu land sand, coarse particle ratio = 2 .60, density = 2.62 g / cm 3 ), air amount regulator (octyl phosphate monoester potassium salt), cement dispersant (polycarboxylate-based cement dispersant manufactured by Takemoto Yushi Co., Ltd., trade name Tupole HP -11) and a required amount of a drying shrinkage reducing agent (A-1, diethylene glycol monobutyl ether described in Table 4) were added together with kneaded water (tap water) and kneaded for 45 seconds. Next, coarse aggregate (G-1 listed in Table 3, Chichibu limestone, density = 2.70 g / cm 3 ) is added and mixed for 60 seconds, the target slump is 18 ± 1 cm, and the target air volume is An ultra-low-shrinkage AE concrete of Comparative Example 1 having a range of 4.5 ± 1% was prepared. In addition, the usage-amount of the air quantity regulator and the cement dispersing agent was shown in the footnote of Table 1.

比較例2〜21
比較例1と同様にして、それぞれ表1に示した調合条件で超低収縮AEコンクリートを調製した。























Comparative Examples 2 to 21
In the same manner as in Comparative Example 1, ultra-low shrinkage AE concrete was prepared under the blending conditions shown in Table 1, respectively.























Figure 2010006626
Figure 2010006626

表1において、
単位量:単位はkg/m
空気量調節剤の使用量:普通ポルトランドセメント100部に対し、実施例1〜6及び比較例1〜10は0.005部の割合、実施例7〜12及び比較例11〜21は0.006部の割合
セメント分散剤の使用量:普通ポルトランドセメント100部に対し、実施例1〜6及び比較例1〜10は0.9部の割合、実施例7〜12及び比較例11〜21は1.0部の割合
高炉スラグ細骨材:下記の表2に記載したもの
天然砂:神栖産陸砂、粗粒率=2.60、密度=2.62g/cm
石灰砕石:下記の表3に記載したもの
乾燥収縮低減剤:下記の表4に記載したもの
セメント:密度=3.16g/cm、ブレーン値3300の普通ポルトランドセメント
目標スランプ:各例いずれも18±1cm
目標空気量:各例いずれも4.5±1%
In Table 1,
Unit amount: Unit is kg / m 3
Use amount of air amount regulator: Examples 1 to 6 and Comparative Examples 1 to 10 are 0.005 parts with respect to 100 parts of ordinary Portland cement, and Examples 7 to 12 and Comparative Examples 11 to 21 are 0.006. A proportion of parts Amount of cement dispersant used: A proportion of 0.9 parts in Examples 1 to 6 and Comparative Examples 1 to 10, and 1 in Examples 7 to 12 and Comparative Examples 11 to 21 with respect to 100 parts of ordinary Portland cement. 0.0 part ratio Blast Furnace Slag Fine Aggregate: as described in Table 2 below Natural Sand: Land sand from Kamisu, Coarse Grain = 2.60, Density = 2.62 g / cm 3
Limestone: listed in Table 3 below Drying shrinkage reducing agent: listed in Table 4 below Cement: Normal Portland cement with density = 3.16 g / cm 3 and Blaine value 3300 Target slump: 18 for each example ± 1cm
Target air volume: 4.5 ± 1% in all cases

Figure 2010006626
Figure 2010006626

Figure 2010006626
Figure 2010006626

Figure 2010006626
Figure 2010006626

試験区分2(超低収縮AEコンクリートの評価)
試験区分1で調製した各例の超低収縮AEコンクリートについて、連行空気量、スランプを下記のように求め、結果を表5にまとめて示した。また各例の超低収縮AEコンクリートの硬化体について、乾燥収縮率、促進中性化深さ及び圧縮強度を下記のように求め、結果を表5にまとめて示した。
Test category 2 (Evaluation of ultra-low shrinkage AE concrete)
About the ultra-low-shrinkage AE concrete of each example prepared in Test Category 1, the entrained air amount and slump were determined as follows, and the results are shown in Table 5. Moreover, about the hardened | cured material of the ultra-low-shrinkage AE concrete of each example, the drying shrinkage rate, the accelerated neutralization depth, and the compressive strength were calculated | required as follows, and the result was put together in Table 5 and shown.

・連行空気量(容量%):練り混ぜ直後の超低収縮AEコンクリートについて、JIS−A1128に準拠して測定した。
・スランプ(cm):空気量の測定と同時に,JIS−A1101に準拠して測定した。
Entrained air amount (volume%): Measured according to JIS-A1128 for ultra-low shrinkage AE concrete immediately after mixing.
-Slump (cm): Measured according to JIS-A1101 simultaneously with the measurement of the air amount.

・乾燥収縮率(μ):JIS−A1129に準拠し、各例の超低収縮AEコンクリートを20℃×60%RHの条件下で保存した材齢26週の供試体についてコンパレータ法により乾燥収縮ひずみを測定し、乾燥収縮率を求めた。この数値は小さいほど、乾燥収縮が小さいことを示す。
・促進中性化深さ(mm):各例の超低収縮AEコンクリートについて、10cm×10cm×40cmの角型供試体を形成し、その上面を除いて他の5面をエポキシ樹脂でシールして、20℃×60%RH、炭酸ガス濃度5%の条件化で促進試験を行なった。材齢13週に角型供試体を縦断面で切断し、1%フェノールフタレイン溶液を吹き付けて赤色化しない部分を中性化しない部分とし、上面からの幅を促進中性化深さとした。この数値は小さいほど中性化が進まず、耐久性が優れていることを示す。
・圧縮強度(N/mm):各例の超低収縮AEコンクリートについて、JIS−A1108に準拠し、材齢7日と材齢28日で測定した。
-Drying shrinkage rate (μ): In accordance with JIS-A1129, dry shrinkage strain was measured by a comparator method on a 26-week-old specimen in which each ultra-low-shrinkage AE concrete was stored at 20 ° C x 60% RH. Was measured to determine the drying shrinkage. The smaller this value, the smaller the drying shrinkage.
-Accelerated neutralization depth (mm): For each ultra-low-shrinkage AE concrete, a 10 cm x 10 cm x 40 cm square specimen was formed and the other five surfaces were sealed with epoxy resin except for the top surface. The acceleration test was conducted under the conditions of 20 ° C. × 60% RH and carbon dioxide concentration of 5%. A rectangular specimen was cut in a longitudinal section at the age of 13 weeks, and a 1% phenolphthalein solution was sprayed to make a portion that was not reddened a non-neutralized portion, and a width from the upper surface was defined as an accelerated neutralization depth. A smaller value indicates that neutralization does not progress and durability is excellent.
-Compressive strength (N / mm < 2 >): About the ultra-low shrinkage | contraction AE concrete of each example, based on JIS-A1108, it measured by material age 7 days and material age 28 days.

Figure 2010006626
Figure 2010006626

Claims (11)

少なくともセメント、水、細骨材、粗骨材、乾燥収縮低減剤、セメント分散剤及び空気量調節剤を用いて超低収縮AEコンクリートを調製するに際し、細骨材の少なくとも一部として下記の高炉スラグ細骨材を単位量250〜950kg/mの割合で用い、また粗骨材として下記の石灰砕石を単位量800〜1100kg/mの割合で用い、更に下記の乾燥収縮低減剤を単位量4〜25kg/mの割合で用いて、且つ下記の数1で求められる単位量率が35〜65%となるようにすることを特徴とする超低収縮AEコンクリートの調製方法。
高炉スラグ細骨材:JIS−A5011−1に記載された高炉スラグ細骨材の粒度による区分に含まれる高炉スラグ細骨材であって、粗粒率を1.2〜4.0に調製したもの
石灰砕石:CaO≧50質量%及びMgO≦2質量%の割合で含有する石灰砕石
乾燥収縮低減剤:下記の化1で示される(ポリ)アルキレングリコールモノアルキルエーテル
Figure 2010006626
(化1において、
R:炭素数3又は4のアルキル基
A:分子中に1〜3個のオキシエチレン単位のみ又は分子中に合計2〜5個のオキシエチレン単位とオキシプロピレン単位とで構成された(ポリ)オキシアルキレン基を有する(ポリ)アルキレングリコールから全ての水酸基を除いた残基)
Figure 2010006626
When preparing an ultra-low shrinkage AE concrete using at least cement, water, fine aggregate, coarse aggregate, dry shrinkage reducing agent, cement dispersant, and air amount adjusting agent, at least a part of the fine aggregate is as follows: with slag sand in the ratio of the unit amount 250~950kg / m 3, also using lime crushed stone below at a rate of a unit amount 800~1100kg / m 3 as coarse aggregate, further units of drying shrinkage-reducing agent of the following A method for preparing ultra-low-shrinkage AE concrete, characterized in that it is used at a rate of 4 to 25 kg / m 3 , and the unit rate determined by the following formula 1 is 35 to 65%.
Blast furnace slag fine aggregate: A blast furnace slag fine aggregate included in the blast furnace slag fine aggregate classification according to JIS-A5011-1 and having a coarse rate of 1.2 to 4.0. Lime crushed stone: Lime crushed stone containing CaO ≧ 50 mass% and MgO ≦ 2 mass% Drying shrinkage reducing agent: (poly) alkylene glycol monoalkyl ether represented by the following chemical formula 1
Figure 2010006626
(In chemical formula 1,
R: an alkyl group having 3 or 4 carbon atoms A: (poly) oxy composed of only 1 to 3 oxyethylene units in the molecule or a total of 2 to 5 oxyethylene units and oxypropylene units in the molecule Residue obtained by removing all hydroxyl groups from (poly) alkylene glycol having an alkylene group)
Figure 2010006626
高炉スラグ細骨材が、粒度による区分が5mm高炉スラグ細骨材であって、粗粒率を1.5〜3.2に調製したものである請求項1記載の超低収縮AEコンクリートの調製方法。   Preparation of ultra-low-shrinkage AE concrete according to claim 1, wherein the blast furnace slag fine aggregate is a blast furnace slag fine aggregate having a particle size classification of 5 mm and having a coarse particle ratio adjusted to 1.5 to 3.2. Method. 高炉スラグ細骨材を単位量400〜900kg/mの割合で用いる請求項1又は2記載の超低収縮AEコンクリートの調製方法。 Process for the preparation of ultra-low shrinkage AE concrete according to claim 1 or 2, wherein using blast furnace slag sand in the ratio of the unit amount 400~900kg / m 3. 乾燥収縮低減剤としてジエチレングリコールモノブチルエーテルを単位量8〜20kg/mの割合で用いる請求項1〜3のいずれか一つの項記載の超低収縮AEコンクリートの調製方法。 The method for preparing ultra-low-shrinkage AE concrete according to any one of claims 1 to 3 , wherein diethylene glycol monobutyl ether is used as a drying shrinkage reducing agent in a unit amount of 8 to 20 kg / m 3 . 空気量調節剤がアルキルリン酸モノエステル塩である請求項1〜4のいずれか一つの項記載の超低収縮AEコンクリートの調製方法。   The method for preparing ultra-low-shrinkage AE concrete according to any one of claims 1 to 4, wherein the air amount regulator is an alkyl phosphate monoester salt. セメント分散剤がポリカルボン酸塩系セメント分散剤である請求項1〜5のいずれか一つの項記載の超低収縮AEコンクリートの調製方法。   The method for preparing ultra-low shrinkage AE concrete according to any one of claims 1 to 5, wherein the cement dispersant is a polycarboxylate-based cement dispersant. セメントが普通ポルトランドセメントである請求項1〜6のいずれか一つの項記載の超低収縮AEコンクリートの調製方法。   The method for preparing an ultra-low shrinkage AE concrete according to any one of claims 1 to 6, wherein the cement is ordinary Portland cement. 空気量を3〜7容量%とする請求項1〜7のいずれか一つの項記載の超低収縮AEコンクリートの調製方法。   The method for preparing ultra-low shrinkage AE concrete according to any one of claims 1 to 7, wherein the amount of air is 3 to 7% by volume. 単位量率が40〜60%となるようにする請求項1〜8のいずれか一つの項記載の超低収縮AEコンクリートの調製方法。   The method for preparing ultra-low shrinkage AE concrete according to any one of claims 1 to 8, wherein the unit amount ratio is 40 to 60%. 請求項1〜9のいずれか一つの項記載の超低収縮AEコンクリートの調製方法によって得られる超低収縮AEコンクリート。   Ultra-low shrinkage AE concrete obtained by the method for preparing ultra-low shrinkage AE concrete according to any one of claims 1 to 9. 得られる硬化体の乾燥収縮率が200μ以下となるものである請求項10記載の超低収縮AEコンクリート。   The ultra-low-shrinkage AE concrete according to claim 10, wherein the obtained cured product has a drying shrinkage of 200 µm or less.
JP2008165542A 2008-06-25 2008-06-25 Preparation method of ultra-low shrinkage AE concrete and ultra-low shrinkage AE concrete Active JP5008202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008165542A JP5008202B2 (en) 2008-06-25 2008-06-25 Preparation method of ultra-low shrinkage AE concrete and ultra-low shrinkage AE concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008165542A JP5008202B2 (en) 2008-06-25 2008-06-25 Preparation method of ultra-low shrinkage AE concrete and ultra-low shrinkage AE concrete

Publications (2)

Publication Number Publication Date
JP2010006626A true JP2010006626A (en) 2010-01-14
JP5008202B2 JP5008202B2 (en) 2012-08-22

Family

ID=41587549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008165542A Active JP5008202B2 (en) 2008-06-25 2008-06-25 Preparation method of ultra-low shrinkage AE concrete and ultra-low shrinkage AE concrete

Country Status (1)

Country Link
JP (1) JP5008202B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006305A (en) * 2009-06-29 2011-01-13 Takemoto Oil & Fat Co Ltd Low shrinkage ae concrete composition using blast furnace slag cement
JP2012116712A (en) * 2010-12-01 2012-06-21 Takenaka Komuten Co Ltd Method of preparing ultra low-shrinkage ae concrete and ultra low-shrinkage ae concrete
JP2012197212A (en) * 2011-03-04 2012-10-18 Takenaka Komuten Co Ltd Nonshrink ae concrete composition
JP2012211040A (en) * 2011-03-31 2012-11-01 Takenaka Komuten Co Ltd Method for preparing nonshrinkage ae concrete and nonshrinkage ae concrete
JP2014065657A (en) * 2012-09-07 2014-04-17 Shimizu Corp Ultra-low-shrinkage concrete
JP2015034119A (en) * 2013-07-09 2015-02-19 清水建設株式会社 Surface finishing method of concrete structure, and concrete structure
US10308554B2 (en) 2015-05-26 2019-06-04 Holcim Technology Ltd. Concrete composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302056A (en) * 1998-04-24 1999-11-02 Taiheiyo Cement Corp Low shrinkage, high strength and high flow concrete composition and its hardened body
JP2002060263A (en) * 2000-08-21 2002-02-26 Takemoto Oil & Fat Co Ltd Additive for hydraulic cement composition and hydraulic cement composition
JP2004262715A (en) * 2003-03-03 2004-09-24 Takenaka Komuten Co Ltd Multifunctional admixture for concrete, and concrete
JP2007153652A (en) * 2005-12-02 2007-06-21 Takenaka Komuten Co Ltd Method of producing ae concrete and ae concrete
JP2008007382A (en) * 2006-06-30 2008-01-17 Chugoku Electric Power Co Inc:The Method for preparing concrete
JP2008273766A (en) * 2007-04-26 2008-11-13 Takenaka Komuten Co Ltd Shrinkage-reducing ae (air-entrained) concrete composition
JP2009249228A (en) * 2008-04-07 2009-10-29 Takenaka Komuten Co Ltd Ultralow-shrinkage ae concrete composition
JP2009249227A (en) * 2008-04-07 2009-10-29 Takenaka Komuten Co Ltd Ultralow-shrinkage ae concrete composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302056A (en) * 1998-04-24 1999-11-02 Taiheiyo Cement Corp Low shrinkage, high strength and high flow concrete composition and its hardened body
JP2002060263A (en) * 2000-08-21 2002-02-26 Takemoto Oil & Fat Co Ltd Additive for hydraulic cement composition and hydraulic cement composition
JP2004262715A (en) * 2003-03-03 2004-09-24 Takenaka Komuten Co Ltd Multifunctional admixture for concrete, and concrete
JP2007153652A (en) * 2005-12-02 2007-06-21 Takenaka Komuten Co Ltd Method of producing ae concrete and ae concrete
JP2008007382A (en) * 2006-06-30 2008-01-17 Chugoku Electric Power Co Inc:The Method for preparing concrete
JP2008273766A (en) * 2007-04-26 2008-11-13 Takenaka Komuten Co Ltd Shrinkage-reducing ae (air-entrained) concrete composition
JP2009249228A (en) * 2008-04-07 2009-10-29 Takenaka Komuten Co Ltd Ultralow-shrinkage ae concrete composition
JP2009249227A (en) * 2008-04-07 2009-10-29 Takenaka Komuten Co Ltd Ultralow-shrinkage ae concrete composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006305A (en) * 2009-06-29 2011-01-13 Takemoto Oil & Fat Co Ltd Low shrinkage ae concrete composition using blast furnace slag cement
JP2012116712A (en) * 2010-12-01 2012-06-21 Takenaka Komuten Co Ltd Method of preparing ultra low-shrinkage ae concrete and ultra low-shrinkage ae concrete
JP2012197212A (en) * 2011-03-04 2012-10-18 Takenaka Komuten Co Ltd Nonshrink ae concrete composition
JP2012211040A (en) * 2011-03-31 2012-11-01 Takenaka Komuten Co Ltd Method for preparing nonshrinkage ae concrete and nonshrinkage ae concrete
JP2014065657A (en) * 2012-09-07 2014-04-17 Shimizu Corp Ultra-low-shrinkage concrete
JP2015034119A (en) * 2013-07-09 2015-02-19 清水建設株式会社 Surface finishing method of concrete structure, and concrete structure
US10308554B2 (en) 2015-05-26 2019-06-04 Holcim Technology Ltd. Concrete composition
EP3303249B1 (en) * 2015-05-26 2020-04-01 Holcim Technology Ltd. Use of an organic shrinkage reducing admixture in a concrete composition to reduce its drying time once hardened

Also Published As

Publication number Publication date
JP5008202B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
US8993656B2 (en) Robust polycarboxylate containing ether linkages for milling preparation of cementitious materials
JP5008202B2 (en) Preparation method of ultra-low shrinkage AE concrete and ultra-low shrinkage AE concrete
JP4999188B2 (en) Ultra-low shrinkage AE concrete composition
JP5748271B2 (en) Non-shrink AE concrete composition
JP5610626B2 (en) Preparation method of low shrinkage AE concrete and low shrinkage AE concrete
JP3975087B2 (en) High performance concrete
JPH0986976A (en) High fluidity cement composition
JP4489855B2 (en) Cement admixture and cement composition containing the same
Hernández-Carrillo et al. Optimization of Ultra-High-Performance Concrete Using Soft and Hard Inert Fillers (Limestone and Quartz).
JP5227161B2 (en) Cement admixture and cement composition
JP4994289B2 (en) Ultra-low shrinkage AE concrete composition
JPH08295545A (en) Air entraining agent for fly ash-containing cement composition
JP3970616B2 (en) High performance concrete
JP2003335565A (en) High performance concrete
JP2000109353A (en) Quick setting spray cement concrete and spraying method using the same
JP5595068B2 (en) Cement composition and cured body thereof
JP2001019529A (en) Cement hardened product
JP4145378B2 (en) Wet spraying method
JP2011132106A (en) Hydraulic composition and cured product
JP4937465B2 (en) Cement admixture and cement composition
JPH08295546A (en) Air entraining agent for fly ash-containing cement composition
US11390561B2 (en) Controlled hydration of quicklime
NALLA et al. Behavior of M 50 grade self-compacting concrete developed using portland slag cement and metakaolin
JP2003176164A (en) High performance concrete
JP2023030913A (en) Mortar composition and method for use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120528

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Ref document number: 5008202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250