JP2010002136A - Air conditioning apparatus - Google Patents

Air conditioning apparatus Download PDF

Info

Publication number
JP2010002136A
JP2010002136A JP2008162059A JP2008162059A JP2010002136A JP 2010002136 A JP2010002136 A JP 2010002136A JP 2008162059 A JP2008162059 A JP 2008162059A JP 2008162059 A JP2008162059 A JP 2008162059A JP 2010002136 A JP2010002136 A JP 2010002136A
Authority
JP
Japan
Prior art keywords
refrigerant
ice
air conditioner
collector
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008162059A
Other languages
Japanese (ja)
Inventor
Manabu Yoshimi
学 吉見
Ryusuke Fujiyoshi
竜介 藤吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2008162059A priority Critical patent/JP2010002136A/en
Publication of JP2010002136A publication Critical patent/JP2010002136A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioning apparatus capable of collecting moisture mixed in a refrigerant without using a drier. <P>SOLUTION: In this air conditioning apparatus 1, an ice collector 50 is disposed in parallel with the low pressure-side pipe 70 of a refrigerant circuit 10. The water mixed in the refrigerant freezes to be ice particles, and is captured by a filter 54 of the ice collector 50, when a control section 6 executes a water collecting operation mode. As a result, deterioration of a refrigerating machine oil caused by the water in the refrigerant, and failures such as corrosion of piping and blocking of piping can be prevented. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、蒸気圧縮式の冷凍サイクル運転によって、ビル等の室内の冷暖房を行なう空気調和装置に関する。   The present invention relates to an air conditioner that cools and heats a room such as a building by vapor compression refrigeration cycle operation.

現地配管工事が必要な空気調和装置において、据付時に、配管内へ水分が過剰に混入することがあり、飽和水分濃度が低い冷媒を使用している場合、その水分が凍結して配管を閉塞させることがある。このため、冷媒回路にドライヤを接続して水分を吸着させる方法が提案されている(例えば、特許文献1参照)。   In an air conditioner that requires local piping work, excessive moisture may be mixed into the piping during installation. If a refrigerant with a low saturated moisture concentration is used, the moisture will freeze and block the piping. Sometimes. For this reason, a method of adsorbing moisture by connecting a dryer to the refrigerant circuit has been proposed (for example, see Patent Document 1).

しかしながら、ドライヤを使用した場合、ドライヤ内部の成分が冷媒回路中で分解し、分解粉によって配管を閉塞する可能性がある。
特開平10−253179号公報
However, when a dryer is used, components inside the dryer may be decomposed in the refrigerant circuit, and the piping may be blocked by the decomposed powder.
JP-A-10-253179

本発明の課題は、ドライヤを使用せずに、冷媒に混入した水分を回収することができる空気調和装置を提供することにある。   The subject of this invention is providing the air conditioning apparatus which can collect | recover the water | moisture content mixed in the refrigerant | coolant, without using a dryer.

第1発明に係る空気調和装置は、蒸気圧縮式の冷媒回路と、氷捕集器と、制御部とを備えている。氷捕集器は、冷媒回路の低圧側に取り付けられ、冷媒に含まれる氷粒子を捕獲する。制御部は、氷捕集器を通過する冷媒の温度を水の氷結温度以下にして運転する水分回収運転モードを実行する。   An air conditioner according to a first aspect of the present invention includes a vapor compression refrigerant circuit, an ice collector, and a control unit. The ice collector is attached to the low pressure side of the refrigerant circuit and captures ice particles contained in the refrigerant. The control unit executes a moisture recovery operation mode in which operation is performed with the temperature of the refrigerant passing through the ice collector being equal to or lower than the freezing temperature of water.

この空気調和装置では、冷媒に混入している水が、水分回収運転によって氷結して氷粒子となり氷捕集器に捕獲される。その結果、冷媒中の水分に起因する冷凍器油の劣化、配管腐食及び配管閉塞などの故障が未然に防止される。   In this air conditioner, water mixed in the refrigerant is frozen by the water recovery operation to become ice particles and captured by the ice collector. As a result, failures such as deterioration of refrigerating machine oil, pipe corrosion, and pipe blockage due to moisture in the refrigerant are prevented.

第2発明に係る空気調和装置は、第1発明に係る空気調和装置であって、氷捕集器が、冷媒を通過させる容器と、容器内部を冷媒の流れ方向と交差するように仕切るフィルタとを有している。   An air conditioner according to a second aspect of the present invention is the air conditioner according to the first aspect of the present invention, wherein the ice collector is a container that allows the refrigerant to pass therethrough, and a filter that partitions the interior of the container so as to intersect the refrigerant flow direction. have.

この空気調和装置では、容器とフィルタとによって簡単に且つ安価に、冷媒中の氷粒子が除去される。また、吸着剤による化学的吸着ではないので、吸着剤の分解、及び吸着剤による2次的な化学反応による故障が防止される。   In this air conditioner, ice particles in the refrigerant are removed easily and inexpensively by the container and the filter. In addition, since it is not chemical adsorption by the adsorbent, it is possible to prevent failure due to decomposition of the adsorbent and secondary chemical reaction by the adsorbent.

第3発明に係る空気調和装置は、第2発明に係る空気調和装置であって、容器の外周面には、フィルタを観察するためのサイトグラスが設けられている。   An air conditioner according to a third aspect is the air conditioner according to the second aspect, wherein a sight glass for observing the filter is provided on the outer peripheral surface of the container.

この空気調和装置では、作業者が、水分回収運転時に、フィルタによる氷粒子の捕獲量を目視で確認することができる。   In this air conditioner, the operator can visually confirm the amount of ice particles captured by the filter during the water recovery operation.

第4発明に係る空気調和装置は、第1発明に係る空気調和装置であって、氷捕集器が、冷媒を冷凍機油に通して氷粒子を冷凍機油に捕獲させる貯油器である。   An air conditioner according to a fourth aspect of the present invention is the air conditioner according to the first aspect of the present invention, wherein the ice collector is an oil reservoir that passes the refrigerant through the refrigerating machine oil and captures the ice particles in the refrigerating machine oil.

この空気調和装置では、冷凍機油によって簡単に且つ安価に、冷媒中の氷粒子が除去される。また、吸着剤による化学的吸着ではないので、吸着剤の分解、及び吸着剤による2次的な化学反応による故障が防止される。さらに、フィルタにも捕獲されないような超微粒の氷までも捕獲される。   In this air conditioner, ice particles in the refrigerant are easily and inexpensively removed by the refrigerating machine oil. In addition, since it is not chemical adsorption by the adsorbent, it is possible to prevent failure due to decomposition of the adsorbent and secondary chemical reaction by the adsorbent. Furthermore, even ultrafine ice that is not captured by the filter is captured.

第5発明に係る空気調和装置は、第1発明に係る空気調和装置であって、氷捕集器が、冷媒を旋回させ遠心力によって氷粒子を分離する旋回式分離器である。   An air conditioner according to a fifth aspect of the present invention is the air conditioner according to the first aspect of the present invention, wherein the ice collector is a swirl separator that swirls the refrigerant and separates the ice particles by centrifugal force.

この空気調和装置では、吸着剤による化学的吸着ではないので、吸着剤の分解、及び吸着剤による2次的な化学反応による故障が防止される。さらに、フィルタにも捕獲されないような超微粒の氷までも捕獲される。   In this air conditioner, since chemical adsorption by the adsorbent is not performed, the decomposition of the adsorbent and the failure due to the secondary chemical reaction by the adsorbent are prevented. Furthermore, even ultrafine ice that is not captured by the filter is captured.

第1発明に係る空気調和装置では、冷媒中の水分に起因する冷凍器油の劣化、配管腐食及び配管閉塞などの故障が未然に防止される。   In the air conditioner according to the first aspect of the present invention, failures such as deterioration of refrigerating machine oil, pipe corrosion, and pipe blockage due to moisture in the refrigerant are prevented.

第2発明に係る空気調和装置では、簡単に且つ安価に、冷媒中の氷粒子が除去される。また、吸着剤の分解、及び吸着剤による2次的な化学反応による故障が防止される。   In the air conditioner according to the second aspect of the present invention, ice particles in the refrigerant are removed easily and inexpensively. In addition, failure due to decomposition of the adsorbent and secondary chemical reaction due to the adsorbent is prevented.

第3発明に係る空気調和装置では、作業者が、水分回収運転時に、フィルタによる氷粒子の捕獲量を目視で確認することができので、水分回収運転を続行するか否かを作業者自身が判断することができる。   In the air conditioner according to the third aspect of the invention, the operator can visually confirm the amount of ice particles captured by the filter during the moisture recovery operation, so that the operator himself can decide whether or not to continue the moisture recovery operation. Judgment can be made.

第4発明に係る空気調和装置では、簡単に且つ安価に、冷媒中の氷粒子が除去される。また、吸着剤の分解、及び吸着剤による2次的な化学反応による故障が防止される。さらに、フィルタにも捕獲されないような超微粒の氷までも捕獲されるので、水分回収能力が向上する。   In the air conditioner according to the fourth aspect of the present invention, ice particles in the refrigerant are removed easily and inexpensively. In addition, failure due to decomposition of the adsorbent and secondary chemical reaction due to the adsorbent is prevented. Furthermore, even ultra-fine ice that cannot be captured by the filter is captured, so that the water recovery capability is improved.

第5発明に係る空気調和装置では、吸着剤の分解、及び吸着剤による2次的な化学反応による故障が防止される。さらに、フィルタにも捕獲されないような超微粒の氷までも捕獲されるので、水分回収能力が向上する。   In the air conditioner according to the fifth aspect of the present invention, failure due to decomposition of the adsorbent and secondary chemical reaction due to the adsorbent is prevented. Furthermore, even ultra-fine ice that cannot be captured by the filter is captured, so that the water recovery capability is improved.

以下図面を参照しながら、本発明の実施形態について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではない。   Embodiments of the present invention will be described below with reference to the drawings. The following embodiments are specific examples of the present invention and do not limit the technical scope of the present invention.

〔第1実施形態〕
<空気調和装置の構成>
図1は、本発明の第1実施形態に係る空気調和装置の概略構成図である。空気調和装置1は、蒸気圧縮式の冷凍サイクル運転によって、ビル等の室内の冷暖房を行なう。空気調和装置1は、主として、熱源ユニットとしての室外ユニット2と、それに並列に接続される利用ユニットとしての室内ユニット4と、室外ユニット2及び室内ユニット4を制御する制御部6とを備えている。冷媒回路10は、室外ユニット2と、室内ユニット4と、冷媒連絡配管とが接続されることによって構成される。
[First Embodiment]
<Configuration of air conditioner>
FIG. 1 is a schematic configuration diagram of an air-conditioning apparatus according to the first embodiment of the present invention. The air conditioner 1 performs air conditioning in a room such as a building by a vapor compression refrigeration cycle operation. The air conditioner 1 mainly includes an outdoor unit 2 as a heat source unit, an indoor unit 4 as a utilization unit connected in parallel thereto, and a control unit 6 that controls the outdoor unit 2 and the indoor unit 4. . The refrigerant circuit 10 is configured by connecting the outdoor unit 2, the indoor unit 4, and a refrigerant communication pipe.

<室内ユニット>
室内ユニット4は、ビル等の室内の天井に埋め込みや吊り下げによって、又は、室内の壁面に壁掛けによって設置されており、室内膨張弁41と室内熱交換器42とを有している。室内膨張弁41は、電動膨張弁であり、室内熱交換器42の液側に接続される。室内熱交換器42は、伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器であり、冷房運転時には冷媒の蒸発器となって室内空気を冷却し、暖房運転時には冷媒の凝縮器となって室内空気を加熱する。
<Indoor unit>
The indoor unit 4 is installed by being embedded or suspended in a ceiling of a room such as a building or by hanging on a wall surface of the room, and has an indoor expansion valve 41 and an indoor heat exchanger 42. The indoor expansion valve 41 is an electric expansion valve and is connected to the liquid side of the indoor heat exchanger 42. The indoor heat exchanger 42 is a cross fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of fins, and serves as a refrigerant evaporator during cooling operation to cool indoor air. During the heating operation, it becomes a refrigerant condenser and heats indoor air.

<室外ユニット>
室外ユニット2は、ビル等の室外に設置されており、圧縮機21、四路切換弁22、室外熱交換器23、及び室外膨張弁35を有している。圧縮機21は、回転数制御によって容量を変更できるインバータ圧縮機である。
<Outdoor unit>
The outdoor unit 2 is installed outside a building or the like, and includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, and an outdoor expansion valve 35. The compressor 21 is an inverter compressor whose capacity can be changed by rotational speed control.

四路切換弁22は、冷媒の流れの方向を切り換える弁である。冷房運転時には、圧縮機21の吐出側と室外熱交換器23のガス側とを連絡し、室内熱交換器42のガス側と圧縮機21の吸入側とを連絡する(図1の四路切換弁22の実線を参照)。また、暖房運転時には、圧縮機21の吐出側と室内熱交換器42のガス側とを連絡し、圧縮機21の吸入側と室外熱交換器23のガス側とを連絡する(図1の四路切換弁22の破線を参照)。   The four-way switching valve 22 is a valve that switches the direction of refrigerant flow. During the cooling operation, the discharge side of the compressor 21 and the gas side of the outdoor heat exchanger 23 are connected, and the gas side of the indoor heat exchanger 42 and the suction side of the compressor 21 are connected (four-way switching in FIG. 1). (See solid line for valve 22). Further, during the heating operation, the discharge side of the compressor 21 and the gas side of the indoor heat exchanger 42 are connected, and the suction side of the compressor 21 and the gas side of the outdoor heat exchanger 23 are connected (four in FIG. 1). (Refer to the broken line of the path switching valve 22).

室外熱交換器23は、伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器であり、冷房運転時には冷媒の凝縮器となり、暖房運転時には冷媒の蒸発器となる。   The outdoor heat exchanger 23 is a cross fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of fins. The outdoor heat exchanger 23 serves as a refrigerant condenser during the cooling operation, and serves as a refrigerant evaporator during the heating operation. It becomes.

室外膨張弁35は、電動膨張弁であり、室外側の冷媒回路10内を流れる冷媒の圧力や流量等の調節を行うために、室外熱交換器23と室内膨張弁41との間に接続される。   The outdoor expansion valve 35 is an electric expansion valve, and is connected between the outdoor heat exchanger 23 and the indoor expansion valve 41 in order to adjust the pressure, flow rate, and the like of the refrigerant flowing in the refrigerant circuit 10 on the outdoor side. The

(氷捕集器)
氷捕集器50は、冷媒に混入した水分を、圧縮機21に吸込まれる前に凍結させて回収する目的で配置される。氷捕集器50は、圧縮機21の吸込口上流の低圧側配管70と並列に配置され、氷捕集器50の上流側及び下流側となる位置には、予め第1閉鎖弁391及び第2閉鎖弁392が取り付けられている。低圧側配管70の途中には、第3閉鎖弁393が接続されている。
(Ice collector)
The ice collector 50 is arranged for the purpose of freezing and collecting the moisture mixed in the refrigerant before it is sucked into the compressor 21. The ice collector 50 is arranged in parallel with the low-pressure side pipe 70 upstream of the suction port of the compressor 21, and the first shut-off valve 391 and the first stop valve are disposed in advance at positions upstream and downstream of the ice collector 50. Two closing valves 392 are attached. A third closing valve 393 is connected in the middle of the low-pressure side pipe 70.

図2は、氷捕集器50の斜視図である。図2において、氷捕集器50は、円筒状の容器51、容器51の内部へ冷媒を導く冷媒導入管52、容器51の外部へ冷媒を導く冷媒出口管53、容器51の内部を冷媒の流れ方向と交差するように仕切るフィルタ54と有している。フィルタ54は、冷媒に混じって通過しようとする氷粒子を捕獲する。容器51の外周には、フィルタ54の捕獲された氷を目視できるように、サイトグラス51aが設けられている。   FIG. 2 is a perspective view of the ice collector 50. In FIG. 2, the ice collector 50 includes a cylindrical container 51, a refrigerant introduction pipe 52 that guides the refrigerant to the inside of the container 51, a refrigerant outlet pipe 53 that guides the refrigerant to the outside of the container 51, and the inside of the container 51 with the refrigerant. It has the filter 54 which partitions off so that it may cross | intersect a flow direction. The filter 54 captures ice particles that are about to pass through the refrigerant. A sight glass 51 a is provided on the outer periphery of the container 51 so that the ice captured by the filter 54 can be seen.

<空気調和装置の動作>
(冷房運転)
冷房運転時は、四路切換弁22が図1の実線で示される状態となり、圧縮機21の吐出側が室外熱交換器23のガス側に連絡され、かつ、圧縮機21の吸入側が室内熱交換器42のガス側に連絡された状態となる。室外膨張弁35は開状態にされている。
<Operation of air conditioner>
(Cooling operation)
During the cooling operation, the four-way switching valve 22 is in the state shown by the solid line in FIG. 1, the discharge side of the compressor 21 is connected to the gas side of the outdoor heat exchanger 23, and the suction side of the compressor 21 is indoor heat exchange. The gas is connected to the gas side of the vessel 42. The outdoor expansion valve 35 is open.

その状態で、圧縮機21が起動されると、圧縮機21から吐出された高温・高圧のガス冷媒が室外熱交換器23に導入される。ガス冷媒は、室外熱交換器23で室外空気と熱交換して凝縮し高温高圧の液冷媒となり室内膨張弁41に向う。高温高圧の液冷媒は、室内膨張弁41で減圧されて低温・低圧の気液二相冷媒となり、室内熱交換器42に入る。この気液二相冷媒は、室内熱交換器42で室内空気と熱交換しガス冷媒となり、再び圧縮機21に吸入される。   In this state, when the compressor 21 is started, the high-temperature and high-pressure gas refrigerant discharged from the compressor 21 is introduced into the outdoor heat exchanger 23. The gas refrigerant exchanges heat with outdoor air in the outdoor heat exchanger 23 and condenses to become a high-temperature and high-pressure liquid refrigerant toward the indoor expansion valve 41. The high-temperature and high-pressure liquid refrigerant is decompressed by the indoor expansion valve 41 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant and enters the indoor heat exchanger 42. The gas-liquid two-phase refrigerant exchanges heat with indoor air in the indoor heat exchanger 42 to become a gas refrigerant, and is sucked into the compressor 21 again.

(暖房運転)
暖房運転時は、四路切換弁22が図1の破線で示される状態となり、圧縮機21の吐出側が室内熱交換器42のガス側に連絡され、圧縮機21の吸入側が室外熱交換器23のガス側に連絡される。室外膨張弁35は、室外熱交換器23へ向う冷媒を室外熱交換器23において蒸発させることが可能な蒸発圧力まで減圧するため、開度調節される。また、室内膨張弁41は開状態にされる。
(Heating operation)
During the heating operation, the four-way switching valve 22 is in the state indicated by the broken line in FIG. 1, the discharge side of the compressor 21 is connected to the gas side of the indoor heat exchanger 42, and the suction side of the compressor 21 is the outdoor heat exchanger 23. The gas side is contacted. The degree of opening of the outdoor expansion valve 35 is adjusted in order to reduce the refrigerant going to the outdoor heat exchanger 23 to an evaporation pressure at which the refrigerant can be evaporated in the outdoor heat exchanger 23. Further, the indoor expansion valve 41 is opened.

その状態で、圧縮機21が起動されると、圧縮機21より吐出された高温・高圧のガス冷媒が室内熱交換器42に導入される。ガス冷媒は、室内熱交換器42で室内空気と熱交換して凝縮し高温高圧の液冷媒となる。室内熱交換器42を出た液冷媒は、室外膨張弁35で減圧されて低温・低圧の気液二相冷媒となり、室外熱交換器23に入る。この気液二相冷媒は、室外熱交換器23で室外空気と熱交換しガス冷媒となり、再び圧縮機21に吸入される。   In this state, when the compressor 21 is started, the high-temperature and high-pressure gas refrigerant discharged from the compressor 21 is introduced into the indoor heat exchanger 42. The gas refrigerant is condensed by exchanging heat with indoor air in the indoor heat exchanger 42 to become a high-temperature and high-pressure liquid refrigerant. The liquid refrigerant that has exited the indoor heat exchanger 42 is decompressed by the outdoor expansion valve 35, becomes a low-temperature / low-pressure gas-liquid two-phase refrigerant, and enters the outdoor heat exchanger 23. This gas-liquid two-phase refrigerant exchanges heat with outdoor air in the outdoor heat exchanger 23 to become a gas refrigerant, and is sucked into the compressor 21 again.

(水分回収運転)
水分回収運転とは、通常の運転時よりも低圧側の圧力を下げる運転であり、それによって、冷媒に混入している水分が凍結して氷粒子となり、氷捕集器50を通過するときに捕獲される。以下、図3の水分回収運転モードの動作フローを参照しながら、具体的に説明する。
(Moisture recovery operation)
The water recovery operation is an operation that lowers the pressure on the low pressure side compared with the normal operation, whereby the water mixed in the refrigerant freezes into ice particles and passes through the ice collector 50. Be captured. Hereinafter, the operation will be specifically described with reference to the operation flow in the moisture recovery operation mode of FIG.

空気調和装置の据付又は修繕等を行う作業者(以後、作業者)は、室外ユニット2及び室内ユニット4を各据付場所に設置し、冷媒連絡配管による室外ユニット2と室内ユニット4との接続が完了した後、氷捕集器50の冷媒導入管52を第1閉鎖弁391に、冷媒出口管53を第2閉鎖弁392に接続する。このとき、第1閉鎖弁391及び第2閉鎖弁392は閉状態である。次に、作業者は、氷捕集器50内部の真空引きを行い、真空引き終了後に、第3閉鎖弁393を閉じ、第1閉鎖弁391及び第2閉鎖弁392を開ける。そして、制御部6を介して水分回収運転モードを実行させる。   An operator who installs or repairs the air conditioner (hereinafter referred to as an operator) installs the outdoor unit 2 and the indoor unit 4 at each installation location, and the outdoor unit 2 and the indoor unit 4 are connected to each other by the refrigerant communication pipe. After completion, the refrigerant inlet pipe 52 of the ice collector 50 is connected to the first closing valve 391 and the refrigerant outlet pipe 53 is connected to the second closing valve 392. At this time, the first closing valve 391 and the second closing valve 392 are closed. Next, the operator evacuates the ice collector 50, and after the evacuation, the third closing valve 393 is closed and the first closing valve 391 and the second closing valve 392 are opened. Then, the moisture recovery operation mode is executed via the control unit 6.

制御部6は、ステップS1で、外気温Taが所定温度Tよりも低いか否か確認し、ステップS2で、水分回収運転を暖房運転モード及び冷房運転モードのいずれで行うのかを選択する。つまり、外気温Taが所定温度Tよりも低いときは、暖房運転モードを選択し、外気温Taが所定温度Tよりも高いときは、冷房運転モードを選択する。そして、ステップS3では、ステップS2で選択した運転モードを開始し、同時に運転時間tを計時する。なお、水分回収運転では、冷媒に混入している水分が氷結する氷結温度TL(例えば、−5℃)まで蒸発温度Teを下げる。   In step S1, the control unit 6 confirms whether or not the outside air temperature Ta is lower than the predetermined temperature T, and in step S2, selects whether the moisture recovery operation is performed in the heating operation mode or the cooling operation mode. That is, when the outside air temperature Ta is lower than the predetermined temperature T, the heating operation mode is selected, and when the outside air temperature Ta is higher than the predetermined temperature T, the cooling operation mode is selected. In step S3, the operation mode selected in step S2 is started, and simultaneously the operation time t is measured. In the moisture recovery operation, the evaporation temperature Te is lowered to an icing temperature TL (for example, −5 ° C.) at which moisture mixed in the refrigerant freezes.

制御部6は、ステップS4で、回収した氷粒子が大量に氷捕集器50内部に蓄積して圧力損失が増加し、圧縮機21の吸入圧力Peが吸入圧力下限Pminより低下したか否かを判定する。ステップS4の判定がYesならば、水分回収運転を終了し、判定がNoならば、ステップS5へ進む。ステップS5では、運転時間tが所定時間tsetに到達したか否かを判定する。ステップS5の判定がYesならば、水分回収運転を終了し、判定がNoならば、ステップS3に戻り、水分回収運転を継続する。   In step S4, the control unit 6 determines whether or not a large amount of the collected ice particles accumulate in the ice collector 50 and the pressure loss increases, and whether or not the suction pressure Pe of the compressor 21 has decreased below the suction pressure lower limit Pmin. Determine. If the determination in step S4 is Yes, the moisture recovery operation is terminated, and if the determination is No, the process proceeds to step S5. In step S5, it is determined whether or not the operation time t has reached a predetermined time tset. If the determination in step S5 is Yes, the moisture recovery operation is terminated. If the determination is No, the process returns to step S3 and the moisture recovery operation is continued.

上記のような水分回収運転によって、氷捕集器50を通過する冷媒の温度が水の氷結温度以下となるので、冷媒に混入している水分が凍結し、フィルタ54に捕獲される。作業者は、フィルタ54に捕獲された氷粒子の量を、サイトグラス51aを介して目視できるので、作業者自身が、水分回収運転が適切に行なわれたか否かを判断して、不十分と判断した場合は、再度、制御部6を介して、水分回収運転を実行させることもできる。   Due to the water recovery operation as described above, the temperature of the refrigerant passing through the ice collector 50 becomes equal to or lower than the freezing temperature of water, so that water mixed in the refrigerant is frozen and captured by the filter 54. Since the operator can visually observe the amount of ice particles captured by the filter 54 through the sight glass 51a, the operator himself / herself determines whether or not the moisture recovery operation has been performed properly. If it is determined, the water recovery operation can be executed again via the control unit 6.

一方、作業者が、水分回収運転が適切に行なわれたと判断したときは、第1閉鎖弁391及び第2閉鎖弁392を閉じて、氷捕集器50を取り外し、適切に乾燥させる。   On the other hand, when the operator determines that the water recovery operation has been performed appropriately, the first closing valve 391 and the second closing valve 392 are closed, and the ice collector 50 is removed and dried appropriately.

なお、本実施形態では、氷捕集器50は、脱着可能であり、水分回収運転の直前に冷媒回路10に取り付けられているが、これに限定されるものではなく、氷捕集器50を冷媒回路10に常時取り付けておき、必要に応じて制御部6に水分回収運転を実行させてもよい。   In this embodiment, the ice collector 50 is detachable and is attached to the refrigerant circuit 10 immediately before the water recovery operation. However, the present invention is not limited to this, and the ice collector 50 is not limited to this. It may be always attached to the refrigerant circuit 10 and the control unit 6 may perform a water recovery operation as necessary.

<第1実施形態の特徴>
空気調和装置1では、氷捕集器50が、冷媒回路10の低圧側配管70と並列に取り付けられている。制御部6が、水分回収運転モードを実行しているとき、冷媒に混入している水が、氷結して氷粒子となり氷捕集器50のフィルタ54に捕獲される。その結果、冷媒中の水分に起因する冷凍器油の劣化、配管腐食及び配管閉塞などの故障が未然に防止される。
<Features of First Embodiment>
In the air conditioner 1, the ice collector 50 is attached in parallel with the low-pressure side pipe 70 of the refrigerant circuit 10. When the control unit 6 is executing the moisture recovery operation mode, the water mixed in the refrigerant freezes to become ice particles and is captured by the filter 54 of the ice collector 50. As a result, failures such as deterioration of refrigerating machine oil, pipe corrosion, and pipe blockage due to moisture in the refrigerant are prevented.

また、氷捕集器50の外周面には、フィルタ54を観察するためのサイトグラス51aが設けられているので、作業者は、フィルタ54による氷粒子の捕獲量を目視で確認することができる。その結果、水分回収運転を続行するか否かを作業者自身が判断することができる。   Moreover, since the sight glass 51a for observing the filter 54 is provided in the outer peripheral surface of the ice collector 50, the operator can confirm the amount of ice particles captured by the filter 54 visually. . As a result, the operator can determine whether or not to continue the moisture recovery operation.

〔第2実施形態〕
図4は、本発明の第2実施形態に係る空気調和装置の概略構成図である。なお、図1の第1実施形態と同一の部品には、同一の符号を付与して説明を省略する。図4において、氷捕集器150は、冷媒に混入した水分を、圧縮機21に吸込まれる前に凍結させて回収する目的で配置される。氷捕集器150は、圧縮機21の吸込口上流の低圧側配管70と並列に配置され、氷捕集器150の上流側及び下流側となる位置には、予め第1閉鎖弁391及び第2閉鎖弁392が取り付けられている。低圧側配管70の途中には、第3閉鎖弁393が接続されている。
[Second Embodiment]
FIG. 4 is a schematic configuration diagram of an air-conditioning apparatus according to the second embodiment of the present invention. In addition, the same code | symbol is provided to the component same as 1st Embodiment of FIG. 1, and description is abbreviate | omitted. In FIG. 4, the ice collector 150 is arranged for the purpose of freezing and collecting the moisture mixed in the refrigerant before it is sucked into the compressor 21. The ice collector 150 is arranged in parallel with the low-pressure side pipe 70 upstream of the suction port of the compressor 21, and the first shut-off valve 391 and the first stop valve 391 are provided in advance at positions upstream and downstream of the ice collector 150. Two closing valves 392 are attached. A third closing valve 393 is connected in the middle of the low-pressure side pipe 70.

図5は、第2実施形態に係る空気調和装置の氷捕集器の側面図である。図5において、氷捕集器150は、容器151、容器151の内部へ冷媒を導く冷媒導入管152、容器151の外部へ冷媒を導く冷媒出口管153、及び容器151の内部に貯えられている冷凍器油154を有している。冷媒導入管152の端部は、冷凍機油154に浸かっており、冷媒出口管153の端部は、冷凍機油154に浸かっていない。氷粒子を含んだガス冷媒は、冷媒導入管152から冷凍器油154に進入するので、冷媒中の氷粒子は冷凍器油154に吸収され、ガス冷媒のみが冷媒出口管153を通って圧縮機21の吸込側へ流れる。冷媒導入管152の外周面には、冷媒導入管152を通過するガス冷媒の状態を目視するためにサイトグラス152aが設けられている。   FIG. 5 is a side view of the ice collector of the air conditioner according to the second embodiment. In FIG. 5, the ice collector 150 is stored in a container 151, a refrigerant introduction pipe 152 that guides the refrigerant to the inside of the container 151, a refrigerant outlet pipe 153 that guides the refrigerant to the outside of the container 151, and the container 151. A refrigerating machine oil 154 is included. The end of the refrigerant introduction pipe 152 is immersed in the refrigerator oil 154, and the end of the refrigerant outlet pipe 153 is not immersed in the refrigerator oil 154. Since the gas refrigerant containing ice particles enters the refrigerating machine oil 154 from the refrigerant introducing pipe 152, the ice particles in the refrigerant are absorbed by the refrigerating machine oil 154, and only the gas refrigerant passes through the refrigerant outlet pipe 153 and is compressed into the compressor. 21 flows to the suction side. A sight glass 152 a is provided on the outer peripheral surface of the refrigerant introduction tube 152 in order to visually check the state of the gas refrigerant passing through the refrigerant introduction tube 152.

なお、冷媒回路10への氷捕集器150の装着手順及び水除去運転の制御フローは、第1実施形態と同様であるので、説明は省略する。   In addition, since the attachment procedure of the ice collector 150 to the refrigerant circuit 10 and the control flow of water removal operation are the same as that of 1st Embodiment, description is abbreviate | omitted.

<第2実施形態の特徴>
氷捕集器150は、冷媒を冷凍機油154に通して氷粒子を冷凍機油154に捕獲させるので、フィルタでも捕獲されないような超微粒の氷まで捕獲することができ、水分回収能力が向上する。
<Features of Second Embodiment>
The ice collector 150 allows the refrigerant to pass through the refrigerating machine oil 154 and captures the ice particles in the refrigerating machine oil 154, so that even ultrafine ice that cannot be captured by the filter can be captured, and the water recovery capability is improved.

また、冷媒導入管152の外周面には、サイトグラス152aが設けられているので、作業者は、水分回収運転時に、冷媒導入管を通過する冷媒から氷粒子の発生状況を目視で確認することができる。その結果、水分回収運転を続行するか否かを作業者自身が判断することができる。   Moreover, since the sight glass 152a is provided on the outer peripheral surface of the refrigerant introduction pipe 152, the operator must visually confirm the generation state of ice particles from the refrigerant passing through the refrigerant introduction pipe during the water recovery operation. Can do. As a result, the operator can determine whether or not to continue the moisture recovery operation.

〔第3実施形態〕
図6は、本発明の第3実施形態に係る空気調和装置の概略構成図である。なお、図6の第1実施形態と同一の部品には、同一の符号を付与して説明を省略する。図6において、氷捕集器250は、冷媒に混入した水分を、圧縮機21に吸込まれる前に凍結させて回収する目的で配置される。氷捕集器250は、圧縮機21の吸込口上流の低圧側配管70と並列に配置され、氷捕集器250の上流側及び下流側となる位置には、予め第1閉鎖弁391及び第2閉鎖弁392が取り付けられている。低圧側配管70の途中には、第3閉鎖弁393が接続されている。
[Third Embodiment]
FIG. 6 is a schematic configuration diagram of an air-conditioning apparatus according to the third embodiment of the present invention. In addition, the same code | symbol is provided to the component same as 1st Embodiment of FIG. 6, and description is abbreviate | omitted. In FIG. 6, the ice collector 250 is arranged for the purpose of freezing and collecting moisture mixed in the refrigerant before it is sucked into the compressor 21. The ice collector 250 is arranged in parallel with the low-pressure side pipe 70 upstream of the suction port of the compressor 21, and the first shut-off valve 391 and the first stop valve 391 are provided in advance at positions upstream and downstream of the ice collector 250. Two closing valves 392 are attached. A third closing valve 393 is connected in the middle of the low-pressure side pipe 70.

図7は、第3実施形態に係る空気調和装置の氷捕集器の側面図である。図7において、氷捕集器250は、容器251、容器251の内部へ冷媒を導く冷媒導入管252、容器251の外部へ冷媒を導く冷媒出口管253、容器251の下部に溜まった氷粒子を回収するための回収容器254、及び容器251と回収容器254との間に接続される閉鎖弁255を有している。   FIG. 7 is a side view of the ice collector of the air conditioner according to the third embodiment. In FIG. 7, the ice collector 250 includes a container 251, a refrigerant introduction pipe 252 that guides the refrigerant to the inside of the container 251, a refrigerant outlet pipe 253 that guides the refrigerant to the outside of the container 251, and ice particles accumulated in the lower part of the container 251. A recovery container 254 for recovery and a closing valve 255 connected between the container 251 and the recovery container 254 are provided.

容器251は、流体を旋回させて、その遠心力を利用して粉塵を分離する、漏斗状の容器である。冷媒導入管252は、容器251の円周壁を貫通して内部へ至り、冷媒出口管253は、容器251の円周中心から上壁を貫通して外部へ至る。したがってガス冷媒は、円周方向から渦を巻くように流れ込み、上位から出て行く。このとき、ガス冷媒中の氷粒子は、遠心分離され、重力によって落下し下部に溜まる。   The container 251 is a funnel-shaped container that swirls a fluid and separates dust using the centrifugal force. The refrigerant introduction pipe 252 penetrates the circumferential wall of the container 251 to the inside, and the refrigerant outlet pipe 253 penetrates the upper wall from the circumferential center of the container 251 to the outside. Therefore, the gas refrigerant flows in a spiral from the circumferential direction and exits from the upper level. At this time, the ice particles in the gas refrigerant are centrifuged, fall by gravity, and accumulate in the lower part.

容器251の下部には、氷粒子の溜まり具合を目視できるように、サイトグラス251aが設けられている。容器251の下部に溜まった氷粒子は、閉鎖弁255を開けることによって、回収容器254に移動させることができる。   A sight glass 251a is provided at the lower portion of the container 251 so that the accumulation of ice particles can be visually observed. The ice particles accumulated in the lower part of the container 251 can be moved to the collection container 254 by opening the closing valve 255.

なお、冷媒回路10への氷捕集器250の装着手順及び水除去運転の制御フローは、第1実施形態と同様であるので、説明は省略する。   In addition, since the installation procedure of the ice collector 250 to the refrigerant circuit 10 and the control flow of the water removal operation are the same as those in the first embodiment, description thereof will be omitted.

<第3実施形態の特徴>
氷捕集器250は、冷媒を旋回させ遠心力によって氷粒子を分離するので、フィルタにも捕獲されないような超微粒の氷まで捕獲することができ、水分回収能力が向上する。
<Features of Third Embodiment>
Since the ice collector 250 swirls the refrigerant and separates the ice particles by centrifugal force, it can capture even ultrafine ice that is not captured by the filter, and the water recovery capability is improved.

また、容器251の外周面に、サイトグラス251aが設けられているので、作業者は、水分回収運転時に、氷粒子の捕獲量を目視で確認することができる。その結果、水分回収運転を続行するか否かを作業者自身が判断することができる。   In addition, since the sight glass 251a is provided on the outer peripheral surface of the container 251, the operator can visually confirm the amount of ice particles captured during the water recovery operation. As a result, the operator can determine whether or not to continue the moisture recovery operation.

以上のように、本発明によれば、据付時に配管内へ水分が過剰に混入する可能性のある空気調和装置に有用である。   As described above, according to the present invention, it is useful for an air conditioner in which moisture may be excessively mixed into a pipe during installation.

本発明の第1実施形態に係る空気調和装置の概略構成図。The schematic structure figure of the air harmony device concerning a 1st embodiment of the present invention. 第1実施形態に係る空気調和装置の氷捕集器の斜視図。The perspective view of the ice collector of the air conditioning apparatus which concerns on 1st Embodiment. 水分回収運転モードの動作フロー。Operation flow in moisture recovery operation mode. 本発明の第2実施形態に係る空気調和装置の概略構成図。The schematic block diagram of the air conditioning apparatus which concerns on 2nd Embodiment of this invention. 第2実施形態に係る空気調和装置の氷捕集器の側面図。The side view of the ice collector of the air conditioning apparatus which concerns on 2nd Embodiment. 本発明の第3実施形態に係る空気調和装置の概略構成図。The schematic block diagram of the air conditioning apparatus which concerns on 3rd Embodiment of this invention. 第3実施形態に係る空気調和装置の氷捕集器の側面図。The side view of the ice collector of the air conditioning apparatus which concerns on 3rd Embodiment.

符号の説明Explanation of symbols

1 空気調和装置
6 制御部
10 冷媒回路
50,150,250 氷捕集器
51,151,251 容器
51a サイトグラス
54 フィルタ
DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus 6 Control part 10 Refrigerant circuit 50,150,250 Ice collector 51,151,251 Container 51a Sight glass 54 Filter

Claims (5)

蒸気圧縮式の冷媒回路(10)と、
前記冷媒回路(10)の低圧側に取り付けられ、冷媒に含まれる氷粒子を捕獲する氷捕集器(50,150,250)と、
前記氷捕集器(50,150,250)を通過する前記冷媒の温度を水の氷結温度以下にして運転する水分回収運転モードを実行する制御部(6)と、
を備えた空気調和装置(1)。
A vapor compression refrigerant circuit (10);
An ice collector (50, 150, 250) attached to the low pressure side of the refrigerant circuit (10) and capturing ice particles contained in the refrigerant;
A controller (6) that executes a moisture recovery operation mode in which the temperature of the refrigerant passing through the ice collector (50, 150, 250) is set to be equal to or lower than the freezing temperature of water;
An air conditioner (1) comprising:
前記氷捕集器(50)は、
前記冷媒を通過させる容器(51)と、
前記容器(51)内部を前記冷媒の流れ方向と交差するように仕切るフィルタ(54)と、
を有する、
請求項1に記載の空気調和装置(1)。
The ice collector (50)
A container (51) through which the refrigerant passes;
A filter (54) for partitioning the inside of the container (51) so as to intersect the flow direction of the refrigerant;
Having
The air conditioner (1) according to claim 1.
前記容器(51)の外周面には、前記フィルタ(54)を観察するためのサイトグラス(51a)が設けられている、
請求項2に記載の空気調和装置(1)。
A sight glass (51a) for observing the filter (54) is provided on the outer peripheral surface of the container (51).
The air conditioner (1) according to claim 2.
前記氷捕集器(150)が、前記冷媒を冷凍機油に通して前記氷粒子を前記冷凍機油に捕獲させる貯油器である、
請求項1に記載の空気調和装置(1)。
The ice collector (150) is an oil reservoir that passes the refrigerant through refrigerating machine oil and captures the ice particles in the refrigerating machine oil.
The air conditioner (1) according to claim 1.
前記氷捕集器(250)が、前記冷媒を旋回させ遠心力によって前記氷粒子を分離する旋回式分離器である、
請求項1に記載の空気調和装置(1)。
The ice collector (250) is a swivel separator that swirls the refrigerant and separates the ice particles by centrifugal force.
The air conditioner (1) according to claim 1.
JP2008162059A 2008-06-20 2008-06-20 Air conditioning apparatus Pending JP2010002136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008162059A JP2010002136A (en) 2008-06-20 2008-06-20 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008162059A JP2010002136A (en) 2008-06-20 2008-06-20 Air conditioning apparatus

Publications (1)

Publication Number Publication Date
JP2010002136A true JP2010002136A (en) 2010-01-07

Family

ID=41584001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008162059A Pending JP2010002136A (en) 2008-06-20 2008-06-20 Air conditioning apparatus

Country Status (1)

Country Link
JP (1) JP2010002136A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013059307A3 (en) * 2011-10-17 2013-10-10 Temptronic Corporation Temperature system having an impurity filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013059307A3 (en) * 2011-10-17 2013-10-10 Temptronic Corporation Temperature system having an impurity filter
CN104114973A (en) * 2011-10-17 2014-10-22 天普桑尼克公司 Temperature system having an impurity filter
US9335080B2 (en) 2011-10-17 2016-05-10 Temptronic Corporation Temperature system having an impurity filter

Similar Documents

Publication Publication Date Title
JP5871880B2 (en) Refrigeration cycle equipment
CN106440593A (en) Frequency converter cooling system, air conditioner unit and control method
JP3882841B2 (en) Air conditioner, heat source unit, and method of updating air conditioner
JP2020537106A (en) Operation and shutdown of the vapor compression system purge unit, which is at least partially based on the conditions in the vapor compression system condenser
WO2004090442A1 (en) Refrigeration device
JP3714305B2 (en) Refrigeration apparatus and refrigerant charging method for refrigeration apparatus
JP2010002136A (en) Air conditioning apparatus
JP6361258B2 (en) Refrigeration equipment
JP4289901B2 (en) Oil recovery method for air conditioner and air conditioner
JP2017142017A (en) Air conditioner
JP3714304B2 (en) Refrigeration equipment
JP5320977B2 (en) Air conditioner
JP2008190790A (en) Refrigerating device
JP2003021436A (en) Pipeline cleaning method, air conditioner and renewal method thereof
JP2013124792A (en) Refrigerating device
JP2017142016A (en) Air conditioner
JP2010060174A (en) Air conditioning device
JP5583134B2 (en) Heat source unit and refrigeration air conditioner
WO2007105425A1 (en) Method of recovering refrigerator oil
KR20160096947A (en) An air conditioning system and a method for controlling the same
KR20080089962A (en) Airconditioner
JP3835365B2 (en) Refrigeration apparatus and piping cleaning method for refrigeration apparatus
JP2005009839A (en) Freezing device
JP5574638B2 (en) Refrigeration air conditioner
JP2004308934A (en) Freezing apparatus and method of washing piping