JP2010001527A - Gear component - Google Patents

Gear component Download PDF

Info

Publication number
JP2010001527A
JP2010001527A JP2008161196A JP2008161196A JP2010001527A JP 2010001527 A JP2010001527 A JP 2010001527A JP 2008161196 A JP2008161196 A JP 2008161196A JP 2008161196 A JP2008161196 A JP 2008161196A JP 2010001527 A JP2010001527 A JP 2010001527A
Authority
JP
Japan
Prior art keywords
less
gear
strength
tooth
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008161196A
Other languages
Japanese (ja)
Other versions
JP5286966B2 (en
Inventor
Eri Igawa
恵里 井川
Takahiro Miyazaki
貴大 宮崎
Taiichi Koganezawa
泰一 小金沢
Kazumasa Kikuchi
一雅 菊地
Noriyuki Iwata
範之 岩田
Shunei Asano
俊英 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Nissan Motor Co Ltd
Original Assignee
Daido Steel Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Nissan Motor Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2008161196A priority Critical patent/JP5286966B2/en
Publication of JP2010001527A publication Critical patent/JP2010001527A/en
Application granted granted Critical
Publication of JP5286966B2 publication Critical patent/JP5286966B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gear component which combines dedendum strength with tooth flank strength. <P>SOLUTION: The gear component satisfying the following inequalities (1) and (2) is manufactured by forming case-hardening steel into a prescribed gear shape, then subjecting the steel to carburizing treatment, the case-hardening steel having a composition comprising 0.10 to 0.40% C, &le;1.50% Si, 0.30 to 1.80% Mn, 0.30 to 1.50% Cr, &le;0.80% Mo, &le;0.05% Ti, &le;0.05% Al, &le;0.010% N, &le;0.10% Nb, &le;0.020% P, &le;0.020% S and 0.0005 to 0.0035% B, and the balance Fe with inevitable impurities. Here, the inequality (1) is: the dedendum part: (553.53&times;S mass%)+(34.36&times;effective hardened layer depth mm)-(0.16&times;core part hardness HV)+(123.86&times;surface layer C concentration%)&le;52, and the inequality (2) is: the tooth flank part: (0.001&times;core part hardness HV)+(0.037&times;whole hardened layer depth mm)&ge;0.460. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、歯車部品、特に自動車等の駆動系に使用される歯車部品に関する。   The present invention relates to a gear component, particularly a gear component used in a drive system of an automobile or the like.

自動車等のディファレンシャルギヤに代表される歯車部品は、肌焼鋼を所定の歯車形状に鍛造成形若しくは切削加工した後、浸炭処理を施すのが一般的である。この種の歯車部品には、高い衝撃疲労強度(低サイクル衝撃曲げ疲労強度)が要求されており、例えば特許文献1には、結晶粒度と浸炭硬化層を適度にバランスさせることで衝撃疲労強度を改善する手法が提案されている。また、例えば特許文献2には、表層C濃度とC濃度0.4%深さをそれぞれ所定の値に設定することで衝撃疲労強度と共に、耐磨耗性を改善する手法が提案されている。   Generally, gear parts typified by differential gears such as automobiles are carburized after forging or cutting case-hardened steel into a predetermined gear shape. This type of gear part is required to have high impact fatigue strength (low cycle impact bending fatigue strength). For example, Patent Document 1 discloses that impact fatigue strength is achieved by appropriately balancing the crystal grain size and the carburized hardened layer. Techniques for improvement have been proposed. For example, Patent Document 2 proposes a method for improving wear resistance as well as impact fatigue strength by setting the surface layer C concentration and the C concentration 0.4% depth to predetermined values.

特開2003−96539号公報JP 2003-96539 A 特開2007−231305号公報JP 2007-231305 A

しかしながら、上記特許文献1,2に記載の手法は、衝撃疲労強度を高めるためには有効であるが、耐塑性変形性の改善という観点からは不十分であった。すなわち、歯車部品においては、その歯元部に衝撃疲労強度(歯元強度)が要求されるのに対し、その歯面部に耐塑性変形性(歯面強度)が要求される。したがって、上記特許文献1,2に記載の手法のように、歯元強度の確保を重要視し過ぎると、歯面強度が必要以上に低下して歯面部での塑性変形が助長されるおそれがある。これに対して、歯面強度の確保を重要視し過ぎると、歯元強度が必要以上に増大して衝撃入力時に歯元部でのき裂の進展が促進されるおそれがある。このように、歯車部品では、歯元強度と歯面強度とを両立させることが理想的であるが、両強度は相反する特性であるため、両強度を両立させることは困難である。   However, the methods described in Patent Documents 1 and 2 are effective for increasing the impact fatigue strength, but are insufficient from the viewpoint of improving the plastic deformation resistance. That is, in the gear part, impact fatigue strength (tooth root strength) is required for the tooth root portion, whereas plastic deformation resistance (tooth surface strength) is required for the tooth surface portion. Therefore, as in the methods described in Patent Documents 1 and 2, if it is too important to secure the tooth root strength, the tooth surface strength may be unnecessarily lowered and plastic deformation at the tooth surface may be promoted. is there. On the other hand, if the importance of ensuring the tooth surface strength is too important, the tooth root strength may increase more than necessary, and the crack progress at the tooth root portion may be promoted at the time of impact input. As described above, in the gear part, it is ideal that both the tooth root strength and the tooth surface strength are compatible. However, since both strengths are contradictory properties, it is difficult to achieve both strengths.

本発明は、上記問題に対処するためになされたものであり、その目的は、歯車部品における歯元強度と歯面強度とを両立させることが可能な歯車部品を提供することにある。   The present invention has been made to cope with the above-described problems, and an object of the present invention is to provide a gear component capable of achieving both the tooth root strength and the tooth surface strength of the gear component.

本発明者らは、上記課題を解決すべく鋭意検討を行った結果、以下の知見を得た。(a)歯車部品に求められる強度特性を歯元部と歯面部とに分けて定式化することができれば、歯元部と歯面部とに求められる各強度特性を明確に特定することができる。(b)歯元強度を向上させるためには、衝撃入力時の初期き裂長さを短くし、その後のき裂の進展を遅延化させることが有効である。(c)歯面強度を向上させるためには、歯面部の硬さを高める(歯面部の塑性変形量を抑制する)ことが有効である。   As a result of intensive studies to solve the above problems, the present inventors have obtained the following knowledge. (A) If the strength characteristics required for the gear parts can be formulated by dividing the tooth root portion and the tooth surface portion, the strength characteristics required for the tooth root portion and the tooth surface portion can be clearly specified. (B) In order to improve the tooth root strength, it is effective to shorten the initial crack length at the time of impact input and delay the subsequent crack propagation. (C) In order to improve the tooth surface strength, it is effective to increase the hardness of the tooth surface part (suppress the amount of plastic deformation of the tooth surface part).

すなわち、本発明の歯車部品は、質量%で、C:0.10〜0.40%、Si:1.50%以下、Mn:0.30〜1.80%、Cr:0.30〜1.50%、Mo:0.80%以下、Ti:0.05%以下、Al:0.05%以下、N:0.010%以下、Nb:0.10%以下、P:0.020%以下、S:0.020%以下、B:0.0005〜0.0035%、を含有し、残部がFe及び不可避不純物からなる肌焼鋼が所定の歯車形状とされた後に施される浸炭処理により、下記式(1)及び(2)を満たしたものとなることを特徴とする。
歯車部品の歯元部:
(553.53×S質量%)+(34.36×有効硬化層深さmm)
−(0.16×心部硬さHV)+(123.86×表層C濃度質量%)≦52…(1)
歯車部品の歯面部:
(0.001×心部硬さHV)+(0.037×全硬化層深さmm)≧0.460…(2)
That is, the gear component of the present invention is in mass%, C: 0.10 to 0.40%, Si: 1.50% or less, Mn: 0.30 to 1.80%, Cr: 0.30 to 1 50%, Mo: 0.80% or less, Ti: 0.05% or less, Al: 0.05% or less, N: 0.010% or less, Nb: 0.10% or less, P: 0.020% Hereinafter, carburizing treatment that is performed after the case-hardened steel containing S: 0.020% or less, B: 0.0005-0.0035%, and the balance of Fe and inevitable impurities being made into a predetermined gear shape. Therefore, the following formulas (1) and (2) are satisfied.
Tooth base of gear parts:
(553.53 × S mass%) + (34.36 × effective hardened layer depth mm)
− (0.16 × Heart hardness HV) + (123.86 × surface layer C concentration% by mass) ≦ 52 (1)
Tooth surface of gear parts:
(0.001 × heart hardness HV) + (0.037 × total hardened layer depth mm) ≧ 0.460 (2)

この場合、歯車部品は、さらに質量%で、Ni:0.20〜2.50%を含有するものであるとよく、また、質量%で、Bi:0.30%以下、Ca:0.30%以下、Pb:0.30%以下のうち1種又は2種以上を含有するものであるとよい。なお、本明細書において、合金組成の範囲を示す記載、例えばC:0.10〜0.40%とは、Cの含有量が0.10質量%以上0.40質量%以下を表すものとする。   In this case, the gear part may further contain Ni: 0.20 to 2.50% by mass%, and Bi: 0.30% or less, Ca: 0.30 by mass%. % Or less, Pb: It is good to contain 1 type or 2 types or more among 0.30% or less. In addition, in this specification, the description which shows the range of an alloy composition, for example, C: 0.10-0.40% means that content of C represents 0.10 mass% or more and 0.40 mass% or less. To do.

以下、各元素の組成限定理由および限定条件について説明する。   Hereinafter, the reasons for limiting the composition of each element and the limiting conditions will be described.

(1)C:0.10〜0.40%
Cは、歯車部品の強度(心部の強度)を確保するための元素である。この効果を得るには、0.10%以上の含有が必要である。他方、過度に含有させると、靭性および衝撃疲労強度が低下してしまうため、上限を0.40%以下とする。好ましくは0.15〜0.35%である。
(1) C: 0.10 to 0.40%
C is an element for securing the strength of the gear part (strength of the core). In order to obtain this effect, a content of 0.10% or more is necessary. On the other hand, if it is contained excessively, the toughness and impact fatigue strength are lowered, so the upper limit is made 0.40% or less. Preferably it is 0.15-0.35%.

(2)Si:1.50%以下
Siは、溶製時の脱酸剤として添加される。このSiは、浸炭時における粒界酸化を助長する元素であり、衝撃疲労強度の低下をもたらす。また、過剰な含有は冷間鍛造性若しくは切削加工性を著しく損なうため、1.50%以下とする。好ましくは0.20%以下とする。なお、真空浸炭やプラズマ浸炭等の粒界酸化の抑制が可能な浸炭処理の場合は、焼もどし軟化抵抗を向上させるため、0.5%以上添加してもよい。
(2) Si: 1.50% or less Si is added as a deoxidizer during melting. This Si is an element that promotes grain boundary oxidation during carburizing, and causes a reduction in impact fatigue strength. Moreover, since excessive inclusion will remarkably impair cold forgeability or cutting workability, it is made 1.50% or less. Preferably it is 0.20% or less. In the case of carburizing treatment that can suppress grain boundary oxidation such as vacuum carburizing and plasma carburizing, 0.5% or more may be added in order to improve tempering and softening resistance.

(3)Mn:0.30〜1.80%
Mnは、浸炭時における粒界酸化を助長する元素であり、衝撃疲労強度の低下をもたらすため、その含有を極力制限する必要がある。具体的には、1.80%以下の含有とする。他方、Mnは、鋼の焼入れ性を高めるのに有効な元素であり、また、靭性向上のためには浸炭後の適度なオーステナイトの残留が必要である。これらの効果を得るには、0.30%以上の含有が必要である。
(3) Mn: 0.30 to 1.80%
Mn is an element that promotes grain boundary oxidation at the time of carburizing, and causes a reduction in impact fatigue strength. Therefore, it is necessary to limit its content as much as possible. Specifically, the content is 1.80% or less. On the other hand, Mn is an element effective for enhancing the hardenability of steel, and moderate austenite remains after carburizing in order to improve toughness. In order to obtain these effects, a content of 0.30% or more is necessary.

(4)Cr:0.30〜1.50%
Crも、Mnと同様に浸炭時における粒界酸化を助長する元素であり、衝撃疲労強度の低下をもたらし、過剰な含有は結晶粒界の脆化を招来するおそれがある。具体的には、その含有量を1.50%以下に制限する。他方、Crは、鋼の焼入れ性を高めるのに有効な元素であるから、この効果を得るには、0.30%以上の含有が必要である。
(4) Cr: 0.30 to 1.50%
Cr, like Mn, is an element that promotes grain boundary oxidation at the time of carburizing, and causes a reduction in impact fatigue strength, and excessive inclusion may lead to embrittlement of grain boundaries. Specifically, the content is limited to 1.50% or less. On the other hand, Cr is an element effective for enhancing the hardenability of steel, so to obtain this effect, it is necessary to contain 0.30% or more.

(5)Mo:0.80%以下
Moは、鋼の焼入れ性を高めるのに有効な元素であり、Cr含有量を制限したことにより不足する鋼の焼入れ性を補完するために添加する。また、浸炭された表層の靭性を向上させるのに有効な元素でもある。他方、過度の含有は、塑性加工時の硬さが高くなり過ぎ、製造性が悪化してしまうので、0.80%以下の含有とする。
(5) Mo: 0.80% or less Mo is an element effective for enhancing the hardenability of steel, and is added to supplement the hardenability of steel which is insufficient due to the limitation of the Cr content. It is also an element effective for improving the toughness of the carburized surface layer. On the other hand, excessive content increases the hardness at the time of plastic working too much and deteriorates manufacturability, so the content is made 0.80% or less.

(6)Ti:0.05%以下
Tiは、浸炭鋼中のNと結合して窒化物を生成し、NがBと結合することを防止することで、固溶Bを確保してBの焼入れ性向上の効果を維持するのに有効な元素である。ただし、0.05%を超えるとTiNの大型化により冷間での加工性が低下するので、0.05%以下の含有とする。
(6) Ti: 0.05% or less Ti combines with N in carburized steel to form a nitride, and prevents N from combining with B, thereby securing solid solution B and It is an effective element for maintaining the effect of improving hardenability. However, if it exceeds 0.05%, the workability in the cold state decreases due to the enlargement of TiN, so the content is made 0.05% or less.

(7)Al(固溶Al):0.05%以下
Alは、浸炭鋼中のNと結合して窒化物を生成し、浸炭時のオーステナイト結晶粒の粗大化を防止するのに有効な元素である。ただし、0.05%を超えるとオーステナイト結晶粒の粗大化を防止する効果が飽和するので、0.05%以下の含有とする。
(7) Al (Solubility Al): 0.05% or less Al is an element effective to combine with N in carburized steel to form nitrides and prevent coarsening of austenite crystal grains during carburizing. It is. However, if it exceeds 0.05%, the effect of preventing coarsening of austenite crystal grains is saturated, so the content is made 0.05% or less.

(8)N:0.010%以下
Nは、上述したとおり、浸炭鋼中のTiやAlと反応して窒化物を形成する。ただし、0.010%を超えると大型のTiNが生成し、これが疲労破壊の起点となって疲れ特性を損なう。また、0.010%を超えると上記したオーステナイト結晶粒の粗大化を防止する効果も飽和するため、0.010%以下の含有とする。
(8) N: 0.010% or less As described above, N reacts with Ti and Al in carburized steel to form nitrides. However, if it exceeds 0.010%, large TiN is generated, which becomes a starting point of fatigue fracture and impairs fatigue characteristics. Moreover, since the effect which prevents the coarsening of an austenite crystal grain mentioned above will be saturated if it exceeds 0.010%, it is made into 0.010% or less of content.

(9)Nb:0.10%以下
Nbは、浸炭鋼中のCやNと反応して炭窒化物を形成し、浸炭時のオーステナイト結晶粒の粗大化を防止するのに有効な元素である。ただし、0.10%を超えるとその効果が飽和する。
(9) Nb: 0.10% or less Nb is an element that reacts with C and N in carburized steel to form carbonitrides and prevents coarsening of austenite crystal grains during carburizing. . However, if it exceeds 0.10%, the effect is saturated.

(10)P:0.020%以下
Pは、浸炭層の靭性を劣化させる元素である。特に、その含有量が0.020%を超えると、衝撃疲労強度の低下が著しくなる。また、Pは、不純物元素であるので、できるだけ含有量を0%に近づけることが好ましい。
(10) P: 0.020% or less P is an element that deteriorates the toughness of the carburized layer. In particular, when the content exceeds 0.020%, the impact fatigue strength is significantly reduced. Further, since P is an impurity element, the content is preferably as close to 0% as possible.

(11)S:0.020%以下
Sも、浸炭層の靭性を劣化させる元素であり、Pと同様にその含有量が0.020%を超えると、衝撃疲労強度の低下が著しくなる。また、Sは浸炭鋼中のMnと反応してMnSを生成し、このMnSがき裂伝播経路となって強度低下を引き起こす。したがって、Sは可能な限り低減することが望ましいが、0.020%以下の含有では強度低下の要因となるMnSがき裂伝播経路上に認められないことから、0.020%以下の含有とする。
(11) S: 0.020% or less S is an element that deteriorates the toughness of the carburized layer. If the content exceeds 0.020% as in the case of P, the impact fatigue strength is significantly reduced. Further, S reacts with Mn in the carburized steel to generate MnS, and this MnS becomes a crack propagation path and causes a decrease in strength. Therefore, it is desirable to reduce S as much as possible. However, if the content is 0.020% or less, MnS that causes a decrease in strength is not observed on the crack propagation path. .

(12)B(固溶B):0.0005〜0.0035%
Bは、浸炭鋼の心部の焼入れ性を向上させるのに有効な元素である。すなわち、Bの添加により、不完全焼入れによる強度低下が防止され、後述する有効硬化層深さが深くなる効果が得られる。また、Bは、浸炭層の結晶粒界に優先偏析して浸炭層の粒界を強化するのに有効な元素でもある。この効果を得るには、0.0005%以上の含有が好ましい。他方、過度の含有は、焼入れ性向上の効果が飽和するだけでなく、熱間および冷間での加工性が低下するので、0.0035%以下の含有とする。
(12) B (Solubility B): 0.0005 to 0.0035%
B is an element effective for improving the hardenability of the core of the carburized steel. That is, the addition of B prevents the strength from being lowered by incomplete quenching, and the effect of increasing the effective hardened layer depth described later can be obtained. B is also an element effective for preferential segregation at the grain boundaries of the carburized layer and strengthening the grain boundaries of the carburized layer. In order to obtain this effect, the content is preferably 0.0005% or more. On the other hand, excessive content not only saturates the effect of improving hardenability, but also decreases workability in hot and cold conditions, so the content is made 0.0035% or less.

さらに、本発明において以下の元素を添加することも可能である。
(13)Ni:0.20〜2.50%
Niは、オーステナイト生成元素であり、靭性の向上に寄与する。このような効果を得るためには、0.20%以上の含有が必要である。他方、過度の含有は焼なまし時の硬さが上昇するため、冷間加工性を劣化させる。このため、2.50%以下の含有とする。
Furthermore, in the present invention, the following elements can be added.
(13) Ni: 0.20 to 2.50%
Ni is an austenite generating element and contributes to the improvement of toughness. In order to acquire such an effect, the content of 0.20% or more is necessary. On the other hand, excessive inclusion increases the hardness during annealing, thus degrading cold workability. Therefore, the content is 2.50% or less.

(14)Bi:0.30%以下、Ca:0.30%以下、Pb:0.30%以下
Bi,Ca,Pbは、被削性を向上させるのに有効な元素である。ただし、何れも0.30%を超えると、被削性を向上させる効果が飽和するばかりでなく、靭性を低下させることもあるので、0.30%以下の含有とする。なお、Bi,Ca,Pbは、被削性に影響するのみであって、積極的な添加を省略しても疲労強度及び曲げ矯正性への影響はほとんどない。
(14) Bi: 0.30% or less, Ca: 0.30% or less, Pb: 0.30% or less Bi, Ca, and Pb are effective elements for improving machinability. However, if it exceeds 0.30%, not only the effect of improving the machinability is saturated but also the toughness may be lowered, so the content is made 0.30% or less. Note that Bi, Ca, and Pb only affect the machinability, and even if the active addition is omitted, there is almost no effect on fatigue strength and bend straightening.

本発明の歯車部品は、自動車のディファレンシャルギヤを構成するピニオンギヤ(ディファレンシャルピニオン)10(図1(a)参照)及びサイドギヤ20(図1(b)参照)の用途に好適である。ここで、後述する式(1)における歯車部品の歯元部11a,21aとは、通常は歯11,21のピッチ円から内側の部位を意味するが、この実施例では、図2に示すように、歯底R部から心部11b,21bに渡る部位を総称するものとする。また、後述する式(2)における歯車部品の歯面部11c,21cとは、通常は歯11,21の噛み合いに預かる面の全てを意味するが、この実施例では、図2に示すように、その面のうち両ギヤのピッチ円の接点(ピッチ点)の部位を代表して取り上げた。   The gear component of the present invention is suitable for applications of a pinion gear (differential pinion) 10 (see FIG. 1 (a)) and a side gear 20 (see FIG. 1 (b)) constituting a differential gear of an automobile. Here, the tooth base portions 11a and 21a of the gear part in the expression (1) to be described later usually mean a portion inside the pitch circle of the teeth 11 and 21, but in this embodiment, as shown in FIG. In addition, parts extending from the root R part to the core parts 11b and 21b are collectively referred to. In addition, the tooth surface portions 11c and 21c of the gear part in the expression (2) described later usually mean all of the surfaces left in meshing of the teeth 11 and 21, but in this embodiment, as shown in FIG. Of these surfaces, the part of the contact point (pitch point) of the pitch circle of both gears was taken up as a representative.

(15)歯元部11a,21a:
(553.53×S質量%)+(34.36×有効硬化層深さmm)
−(0.16×心部硬さHV)+(123.86×表層C濃度質量%)≦52…(1)
(a)(553.53×S質量%)
上述したように、Sは浸炭鋼中のMnと反応してMnSを生成し、このMnSが図2に示すき裂進展方向(D1)の経路となって歯元部11a,21aの衝撃疲労強度を低下させる要因となる。したがって、S量を下げることで、き裂伝播経路となるMnSが低減し、き裂進展速度を遅くすることができるため、歯元部11a,21aの衝撃疲労強度を高めることができる。
(15) Tooth base parts 11a, 21a:
(553.53 × S mass%) + (34.36 × effective hardened layer depth mm)
− (0.16 × Heart hardness HV) + (123.86 × surface layer C concentration% by mass) ≦ 52 (1)
(A) (553.53 × S mass%)
As described above, S reacts with Mn in the carburized steel to generate MnS, and this MnS becomes a path in the crack propagation direction (D1) shown in FIG. 2 and the impact fatigue strength of the tooth root portions 11a and 21a. It becomes a factor to reduce. Therefore, by reducing the amount of S, MnS serving as a crack propagation path can be reduced and the crack growth rate can be slowed, so that the impact fatigue strength of the tooth base portions 11a and 21a can be increased.

(b)(34.36×有効硬化層深さmm)
有効硬化層深さは、限界硬さを513HVとする表面からの深さ(図2で示すき裂進展方向(D1)の深さ)を表す。歯元部11a,21aの有効効果層深さを浅くすることで、初期き裂長さを短く設定することができ、その後のき裂進展を遅延化させることができるため、歯元部11a,21aの衝撃疲労強度を高めることができる。
(B) (34.36 × effective hardened layer depth mm)
The effective hardened layer depth represents the depth from the surface where the limit hardness is 513 HV (the depth in the crack propagation direction (D1) shown in FIG. 2). By reducing the effective effect layer depth of the tooth root portions 11a and 21a, the initial crack length can be set short, and the subsequent crack propagation can be delayed. Therefore, the tooth root portions 11a and 21a. The impact fatigue strength of can be increased.

(c)−(0.16×心部硬さHV)
心部硬さは、図2の心部11b,21bに代表される母材の硬さであり、母材のC量に依存する。母材のC量が多くなるほど、心部硬さが上昇して耐塑性変形性が向上する。ただし、C量が多いほど製造性(鍛造成形性若しくは切削加工性)が悪化し、靭性低下による衝撃疲労強度の低下が生じるため、心部硬さは400〜500HV程度となることが望ましい。
(C)-(0.16 × heart hardness HV)
The core hardness is the hardness of the base material represented by the cores 11b and 21b in FIG. 2, and depends on the C amount of the base material. As the amount of C in the base material increases, the core hardness increases and the plastic deformation resistance is improved. However, as the amount of C increases, the manufacturability (forging formability or cutting workability) deteriorates and the impact fatigue strength decreases due to a decrease in toughness. Therefore, the core hardness is desirably about 400 to 500 HV.

(d)(123.86×表層C濃度質量%)
表層C濃度を下げることで、歯元部11a,21aの靭性を向上させ、き裂の発生を遅延化させることができる。ただし、表層C濃度が少なすぎると耐塑性変形性が著しく悪化するため、歯元部11a,21aの表層C濃度質量%は0.5〜0.7%程度となることが望ましい。
(D) (123.86 × surface layer C concentration by mass%)
By reducing the surface layer C concentration, the toughness of the tooth root portions 11a and 21a can be improved, and the occurrence of cracks can be delayed. However, since the plastic deformation resistance is remarkably deteriorated when the surface C concentration is too small, it is desirable that the surface layer C concentration mass% of the tooth base portions 11a and 21a is about 0.5 to 0.7%.

(16)歯面部11c,21c:
(0.001×心部硬さHV)+(0.037×全硬化層深さmm)≧0.460…(2)
(a)(0.037×全硬化層深さmm)
全硬化層深さは、表面焼入れした硬さが及ぶ範囲、すなわち母材の硬さに達するまでの表面からの深さ(図2で示す歯面11c,21cの法線方向(D2)の深さ)を表す。心部硬さを上げ、全硬化層深さを深くすることで、歯面部11c,21cの耐塑性変形性が向上するため、歯面部11c,21cの塑性変形量を抑制することができる。一般に、硬化層と母材との境界から生じる内部起点の損傷(例えばケースクラッシュ)を抑制するために、全硬化層深さを1.2mm程度付与する処理が行われているが、特に歯車部品の歯面部のように高い衝撃入力が付与される部品においては、この程度の全硬化層深さでは部品機能が損なわれるおそれがある。したがって、歯面部11c,21cの耐塑性変形性を十分に確保するために、歯面部11c,21cの全硬化層深さは1.3〜2.0mm程度となることが望ましい。これに対応して、歯面部11c,21cの有効硬化層深さは、歯元部11a,21aの有効硬化層深さよりも深くなるように設定される。
(16) Tooth surface portions 11c, 21c:
(0.001 × heart hardness HV) + (0.037 × total hardened layer depth mm) ≧ 0.460 (2)
(A) (0.037 × total hardened layer depth mm)
The depth of the total hardened layer is the range covered by the surface-hardened hardness, that is, the depth from the surface until reaching the hardness of the base material (the depth in the normal direction (D2) of the tooth surfaces 11c and 21c shown in FIG. A). By increasing the core hardness and increasing the total hardened layer depth, the plastic deformation resistance of the tooth surface portions 11c and 21c is improved, so that the amount of plastic deformation of the tooth surface portions 11c and 21c can be suppressed. In general, in order to suppress damage (for example, a case crash) of an internal starting point that occurs from the boundary between the hardened layer and the base material, a process of imparting a total hardened layer depth of about 1.2 mm is performed. In a part to which a high impact input is applied, such as a tooth surface part, the function of the part may be impaired at such a full hardened layer depth. Therefore, in order to sufficiently secure the plastic deformation resistance of the tooth surface portions 11c and 21c, it is desirable that the total hardened layer depth of the tooth surface portions 11c and 21c is about 1.3 to 2.0 mm. Correspondingly, the effective hardened layer depth of the tooth surface portions 11c and 21c is set to be deeper than the effective hardened layer depth of the tooth base portions 11a and 21a.

また、歯面部11c,21cの表層硬さ(表面から0.05mmの深さ位置における硬さ)は、表面強度を確保する観点から少なくとも700HVの硬さが必要である。このため、歯面部11c,21cの表層C濃度は、歯元部11a,21aの表層C濃度と比べて0.03〜0.15%程度高くなるように設定される。   Further, the surface layer hardness (hardness at a depth position of 0.05 mm from the surface) of the tooth surface portions 11c and 21c needs to be at least 700HV from the viewpoint of ensuring surface strength. For this reason, the surface layer C concentration of the tooth surface portions 11c and 21c is set to be about 0.03 to 0.15% higher than the surface layer C concentration of the tooth base portions 11a and 21a.

a.第1実施例
まず、表1に示す合金組成(残部はFe及び不可避不純物)の肌焼鋼Aを真空溶解炉を用いて溶製し、150kgのインゴットに鋳造した。次に、このインゴットを圧延してバー材にした後、このバー材を切断して図1(a)に示すピニオンギヤ10と、図1(b)に示すサイドギヤ20とをそれぞれ作成した。具体的には、ピニオンギヤ10については、切断後のバー材を球状化焼きなまし処理した後、冷間閉塞鍛造を行い、図3に示すヒートパターンで浸炭焼入れ焼戻し処理(真空浸炭)した後に仕上げ研削加工を施した。また、サイドギヤ20については、切断後のバー材を温間鍛造し、焼きならし処理した後に再圧縮(サイジング)を行い、旋削等の切削加工を施した後に図3に示すヒートパターンで浸炭焼入れ焼戻し処理を施した。この浸炭焼入れ焼戻し処理では、各ギヤ10,20における最終的な表層C濃度、有効硬化層深さ及び全硬化層深さがそれぞれ変化するように、浸炭焼入れ工程における浸炭時間又は拡散時間を適宜設定した。各ギヤ10,20のうち、ピニオンギヤ10において歯元部11aの表層C濃度及び有効硬化層深さを変化させ、歯面部11cの表層C濃度及び全硬化層深さを変化させたものをそれぞれ実施例1〜4、比較例1〜5とした。そして、歯元部11aでは図5に示す試験機を用いて衝撃試験を実施した。この試験機は、ケース101(ディファレンシャルケースに相当)を備えており、ケース101内にピニオンシャフト102を介して一対のピニオンギヤ10,10が組み込まれ、各ピニオンギヤ10とギヤ結合するようにシャフト103(アクスルシャフトに相当)を介して一対のサイドギヤ20,20が組み込まれる。各ギヤ10,20は、ケース101及びシャフト103と共にモータ104により回転駆動される。シャフト103は、その出力側端部にてブレーキ機構105により制動される。この試験機を用いて、ブレーキ機構105によるシャフト103の制動を繰り返し行い、各ギヤ10,20に衝撃荷重を入力して、ギヤ10の歯元部11aが破損に至ったときのシャフト103に生じるトルク(衝撃強度)をトルクメータ106で測定した。試験結果を表3に示す。ここでは、衝撃強度が1350Nm以上のものを良とする。
a. First Example First, case-hardened steel A having the alloy composition shown in Table 1 (the balance being Fe and inevitable impurities) was melted using a vacuum melting furnace and cast into a 150 kg ingot. Next, after rolling this ingot into a bar material, the bar material was cut to produce a pinion gear 10 shown in FIG. 1 (a) and a side gear 20 shown in FIG. 1 (b). Specifically, for the pinion gear 10, the cut bar material is subjected to spheroidizing annealing, cold closed forging, carburizing quenching tempering (vacuum carburizing) with the heat pattern shown in FIG. 3, and finish grinding Was given. For the side gear 20, the bar material after cutting is warm-forged, subjected to normalization, recompressed (sizing), and subjected to cutting such as turning, followed by carburizing and quenching with the heat pattern shown in FIG. Tempering treatment was performed. In this carburizing and tempering treatment, the carburizing time or diffusion time in the carburizing and quenching process is appropriately set so that the final surface C concentration, effective hardened layer depth, and total hardened layer depth in the gears 10 and 20 respectively change. did. Of the gears 10 and 20, the pinion gear 10 is implemented by changing the surface layer C concentration and effective hardened layer depth of the tooth root portion 11 a and changing the surface layer C concentration and total hardened layer depth of the tooth surface portion 11 c. It was set as Examples 1-4 and Comparative Examples 1-5. And in the tooth base part 11a, the impact test was implemented using the testing machine shown in FIG. The testing machine includes a case 101 (corresponding to a differential case), and a pair of pinion gears 10 and 10 is incorporated into the case 101 via a pinion shaft 102, and the shaft 103 (gear-coupled to each pinion gear 10) is coupled. A pair of side gears 20 and 20 are assembled via an axle shaft). Each gear 10 and 20 is rotationally driven by a motor 104 together with a case 101 and a shaft 103. The shaft 103 is braked by the brake mechanism 105 at its output side end. Using this testing machine, the braking of the shaft 103 by the brake mechanism 105 is repeatedly performed, and an impact load is input to each of the gears 10 and 20, and the shaft 103 is generated when the tooth base portion 11a of the gear 10 is damaged. Torque (impact strength) was measured with a torque meter 106. The test results are shown in Table 3. Here, a material having an impact strength of 1350 Nm or more is considered good.

ギヤ10の歯面部11cにおいては、図5に示す試験機を用いて塑性変形衝撃試験の一定入力で所定回数の入力を負荷した後、塑性変形量を求めた。具体的には、試験終了したギヤ10において、歯底直角に歯形方向へ形状を取得し、予め取得しておいた初期状態との比較を行うことで、塑性変形量を取得した。試験結果を表2に示す。ここでは、塑性変形量の絶対値が178μm以下を良とする。   In the tooth surface portion 11c of the gear 10, the amount of plastic deformation was obtained after a predetermined number of inputs were applied with a constant input of the plastic deformation impact test using the testing machine shown in FIG. Specifically, in the gear 10 that has been tested, the shape is obtained in the tooth profile direction perpendicular to the root, and the amount of plastic deformation is obtained by comparison with the initial state obtained in advance. The test results are shown in Table 2. Here, the absolute value of the amount of plastic deformation is 178 μm or less.

Figure 2010001527
Figure 2010001527

Figure 2010001527
Figure 2010001527

Figure 2010001527
Figure 2010001527

次に、本発明の効果を確認するために行った評価方法および試験について説明する。   Next, evaluation methods and tests performed to confirm the effects of the present invention will be described.

(1)表層C濃度
各試験片の表層C濃度を、JIS G 1253に基づき、発光分光分析により測定した。ここでは、C量1%まで測定できるように検量線を作成した(誤差は±0.01%)。また、各試験片の表層C濃度分布を、X線マイクロアナライザー(EPMA)を用いて線分析により測定した。
(1) Surface layer C density | concentration The surface layer C density | concentration of each test piece was measured by the emission spectroscopic analysis based on JISG1253. Here, a calibration curve was prepared so that the C content could be measured up to 1% (error is ± 0.01%). Further, the surface layer C concentration distribution of each test piece was measured by line analysis using an X-ray microanalyzer (EPMA).

(2)有効硬化層深さ
各試験ギヤの有効硬化層深さを、ISO2639(2002)に準拠し荷重300gのビッカース硬度計を用いて測定した。ただし、有効硬化層深さの限界硬さを513HVとした。
(2) Effective Hardened Layer Depth The effective hardened layer depth of each test gear was measured using a Vickers hardness tester with a load of 300 g in accordance with ISO2639 (2002). However, the limit hardness of the effective hardened layer depth was set to 513HV.

(3)全硬化層深さ
各試験ギヤの全硬化層深さを、JIS G 0577(2006)に準拠した方法で表面から内部にかけて推移曲線を作成し、硬化層生地と区別できなくなるまでの深さを全硬化層深さとした。硬さは荷重300gのビッカース硬度計を用いて測定した。
(3) Total Hardened Layer Depth The depth until the hardened layer depth of each test gear is indistinguishable from the hardened layer fabric by creating a transition curve from the surface to the inside using a method in accordance with JIS G 0577 (2006). This is the total hardened layer depth. The hardness was measured using a Vickers hardness tester with a load of 300 g.

(4)心部硬さ
各試験ギヤの心部硬さを、JIS Z 2244に準拠し、図2に示す心部11b,21bにおける歯断面の硬さをビッカース硬度計を用いて測定した。
(4) Core Hardness The core hardness of each test gear was measured according to JIS Z 2244, and the hardness of the tooth cross-section at the cores 11b and 21b shown in FIG. 2 was measured using a Vickers hardness meter.

表2によると、実施例1〜4に示すように、式(1)の左項が0.460以上である場合に、塑性変形量の絶対値が178μm以下となることがわかる。比較例1,2は、実施例1〜4に比して心部硬さが低く(376HV,383HV)、また全硬化層深さが浅いため(0.87mm,1.09mm)、式(1)の左項が何れも0.460を下回っており(0.408,0.423)、塑性変形量の絶対値が増大している(311.3,279.4)。また、比較例3に示すように、心部硬さ及び全硬化層深さが共に大きくなく(407HV,1.40mm)、式(1)の左項が0.460を下回る場合も(0.459)、塑性変形量の絶対値が178μmを超えることがわかる(191.2)。   According to Table 2, as shown in Examples 1 to 4, it can be seen that the absolute value of the amount of plastic deformation is 178 μm or less when the left term of Formula (1) is 0.460 or more. Comparative Examples 1 and 2 have lower core hardness (376 HV, 383 HV) than Examples 1 to 4 and the total hardened layer depth is shallow (0.87 mm, 1.09 mm). ) Is less than 0.460 (0.408, 0.423), and the absolute value of the amount of plastic deformation is increased (311.3, 279.4). Further, as shown in Comparative Example 3, both the core hardness and the total hardened layer depth are not large (407 HV, 1.40 mm), and the left term of the formula (1) is less than 0.460 (0. 459), the absolute value of the amount of plastic deformation exceeds 178 μm (191.2).

表3によると、実施例1〜4に示すように、式(2)の左項が52以下である場合に、衝撃強度が1350Nm以上となることがわかる。比較例4,5は、実施例1〜4に比して表層C濃度が高いため(0.73%,0.75%)、式(2)の左項が何れも52を超えており(56.2,61.2)、衝撃強度が低下している(1269Nm,1171Nm)。   According to Table 3, as shown in Examples 1 to 4, it can be seen that when the left term of Formula (2) is 52 or less, the impact strength is 1350 Nm or more. In Comparative Examples 4 and 5, since the surface layer C concentration is higher than those in Examples 1 to 4 (0.73%, 0.75%), the left term of the formula (2) exceeds 52 ( 56.2, 61.2), impact strength is reduced (1269 Nm, 1171 Nm).

b.第2実施例
次に、合金組成の影響を判断するために、表4に示す合金組成(残部はFe及び不可避不純物)として、第1実施例と同様の試験ギヤを作成した後、図4に示すヒートパターンで浸炭焼入れ焼戻し処理を施した。なお、浸炭焼入れ焼戻し処理では、浸炭焼入れ工程における浸炭期(930℃)での保持時間を9時間とし、拡散期(850℃)での保持時間を0.5時間とした後、油冷した。また、その後の浸炭焼戻し工程では180℃に2時間保持した後、空冷した。これによって実施例5〜14、比較例6〜11を作製した。そして、これらの試験ギヤについても、上記第1実施例と同じ評価方法および試験を行った。以上の試験結果を表5,6に示す。
b. Second Example Next, in order to determine the influence of the alloy composition, a test gear similar to that of the first example was prepared as the alloy composition shown in Table 4 (the balance being Fe and unavoidable impurities), and then FIG. Carburizing, quenching, and tempering were performed with the heat pattern shown. In the carburizing and tempering treatment, the holding time in the carburizing period (930 ° C.) in the carburizing and quenching process was set to 9 hours, the holding time in the diffusion period (850 ° C.) was set to 0.5 hours, and then oil cooling was performed. Further, in the subsequent carburizing and tempering step, the steel was kept at 180 ° C. for 2 hours and then air-cooled. This produced Examples 5-14 and Comparative Examples 6-11. And also about these test gears, the same evaluation method and test as the said 1st Example were done. The above test results are shown in Tables 5 and 6.

Figure 2010001527
Figure 2010001527

Figure 2010001527
Figure 2010001527

Figure 2010001527
Figure 2010001527

表5によると、実施例5〜14に示すように、式(1)の左項が0.460以上である場合に、塑性変形量の絶対値が178μm以下となることがわかる。特に、実施例12では、Niの添加によって心部硬さが高くなり(462HV)、塑性変形量の絶対値が極めて小さくなっている(4.4)。比較例6は、実施例5〜14に比してC量が少ない(0.09質量%)。このため、心部硬さが低くなって(272HV)、式(1)の左項が0.460を下回り(0.334)、塑性変形量の絶対値が増大している(528.0)。比較例7は、実施例5〜14に比してSi量が多い(1.61質量%)。このため、全硬化層深さが浅めとなって(1.63mm)、式(1)の左項が0.460を下回り(0.456)、塑性変形量の絶対値が増大している(186.3)。比較例8は、実施例5〜14に比してCr量が少なく(0.25質量%)、比較例9は、実施例5〜14に比してCr量が多い(1.54質量%)。何れの場合も心部硬さが低くなって(383HV,394HV)、式(1)の左項が0.460を下回り(0.446,0.458)、塑性変形量の絶対値が増大している(216.3,181.7)。また比較例11は、実施例5〜13に比してB量が少ない(0.0003質量%)。このため、心部硬さが低くなって(377HV)、式(1)の左項が0.460を下回り(0.440)、塑性変形量の絶対値が増大している(232.7)。   According to Table 5, as shown in Examples 5 to 14, it can be seen that the absolute value of the amount of plastic deformation is 178 μm or less when the left term of the formula (1) is 0.460 or more. In particular, in Example 12, the core hardness is increased by the addition of Ni (462 HV), and the absolute value of the amount of plastic deformation is extremely reduced (4.4). Comparative Example 6 has a smaller amount of C (0.09% by mass) than Examples 5-14. For this reason, the core hardness is reduced (272 HV), the left term of equation (1) is below 0.460 (0.334), and the absolute value of the plastic deformation amount is increased (528.0). . Comparative Example 7 has a larger amount of Si (1.61% by mass) than Examples 5-14. For this reason, the total hardened layer depth is shallow (1.63 mm), the left term of formula (1) is less than 0.460 (0.456), and the absolute value of the amount of plastic deformation increases ( 186.3). Comparative Example 8 has a smaller Cr amount (0.25% by mass) than Examples 5 to 14 and Comparative Example 9 has a larger Cr amount (1.54% by mass) than Examples 5 to 14. ). In either case, the core hardness becomes low (383 HV, 394 HV), the left term of equation (1) falls below 0.460 (0.446, 0.458), and the absolute value of the amount of plastic deformation increases. (216.3, 181.7). Moreover, the comparative example 11 has little B amount (0.0003 mass%) compared with Examples 5-13. For this reason, the core hardness is lowered (377 HV), the left term of the formula (1) is less than 0.460 (0.440), and the absolute value of the plastic deformation amount is increased (232.7). .

表6によると、実施例5〜14に示すように、式(2)の左項が52以下である場合に、衝撃強度が1350Nm以上となることがわかる。比較例6は、実施例5〜14に比してC量が少なく(0.09質量%)、心部硬さが極めて低いため(272HV)、式(2)の左項が52を超えており(56.0)、衝撃強度が低下している(1273Nm)。比較例10は、実施例5〜14に比してS量が多いため(0.026質量%)、式(2)の左項が52を超えており(54.1)、衝撃強度が低下している(1310Nm)。なお、比較例11は、式(2)の左項が52以下であるが(46.7)、実施例5〜14に比してB量が少ないため(0.0003質量%)、衝撃強度が低下している(1310Nm)。   According to Table 6, as shown in Examples 5-14, when the left term of Formula (2) is 52 or less, it turns out that impact strength becomes 1350 Nm or more. In Comparative Example 6, the amount of C is small (0.09% by mass) compared to Examples 5 to 14 and the core hardness is extremely low (272 HV), so the left term of Formula (2) exceeds 52. (56.0), impact strength is reduced (1273 Nm). Since Comparative Example 10 has a larger amount of S compared to Examples 5 to 14 (0.026% by mass), the left term of Formula (2) exceeds 52 (54.1), and the impact strength decreases. (1310 Nm). In Comparative Example 11, although the left term of Formula (2) is 52 or less (46.7), the amount of B is small as compared with Examples 5 to 14 (0.0003 mass%). Has decreased (1310 Nm).

以上の結果、本発明では、歯元部における衝撃強度と、歯面部における耐塑性変形性とが優れていることが確認された。したがって、本発明をディファレンシャルギヤに適用することによって、その歯元強度と歯面強度とを共に向上させることが可能である。   As a result, in the present invention, it was confirmed that the impact strength at the tooth root portion and the plastic deformation resistance at the tooth surface portion were excellent. Therefore, by applying the present invention to a differential gear, it is possible to improve both the tooth root strength and the tooth surface strength.

以上、本発明による歯車部品をディファレンシャルギヤに適用した一例について説明したが、歯車部品の適用範囲はこれに限らず、例えばスプライン形状の歯形を有するスプラインシャフト等にも適用することができる。   As mentioned above, although the example which applied the gear component by this invention to the differential gear was demonstrated, the application range of a gear component is not restricted to this, For example, it can apply also to the spline shaft etc. which have a spline-shaped tooth profile.

(a)は本発明の歯車部品の一実施形態に係るディファレンシャルギヤを構成するピニオンギヤの縦断面図。(b)は本発明の歯車部品の一実施形態に係るディファレンシャルギヤを構成するサイドギヤの縦断面図。(A) is a longitudinal cross-sectional view of the pinion gear which comprises the differential gear which concerns on one Embodiment of the gear components of this invention. (B) is a longitudinal cross-sectional view of the side gear which comprises the differential gear which concerns on one Embodiment of the gear components of this invention. 図1の各ギヤの歯元部及び歯面部の説明図。Explanatory drawing of the tooth base part and tooth surface part of each gear of FIG. 第1実施例に係る浸炭焼入れ焼戻し処理を示す説明図。Explanatory drawing which shows the carburizing quenching tempering process which concerns on 1st Example. 第2実施例に係る浸炭焼入れ焼戻し処理を示す説明図。Explanatory drawing which shows the carburizing quenching tempering process which concerns on 2nd Example. 図1のギヤを試験対象とする試験機の構造を示す概略図。Schematic which shows the structure of the testing machine which makes the gear of FIG. 1 a test object.

符号の説明Explanation of symbols

10 ピニオンギヤ(歯車部品)
20 サイドギヤ(歯車部品)
11,21 歯
11a,21a 歯元部
11b,21b 心部
11c,21c 歯面部
10 Pinion gear (gear parts)
20 Side gear (gear parts)
11, 21 tooth 11a, 21a tooth base part 11b, 21b core part 11c, 21c tooth surface part

Claims (3)

質量%で、
C:0.10〜0.40%、
Si:1.50%以下、
Mn:0.30〜1.80%、
Cr:0.30〜1.50%、
Mo:0.80%以下、
Ti:0.05%以下、
Al:0.05%以下、
N:0.010%以下、
Nb:0.10%以下、
P:0.020%以下、
S:0.020%以下、
B:0.0005〜0.0035%、
を含有し、残部がFe及び不可避不純物からなる肌焼鋼が所定の歯車形状に形成された後に施される浸炭処理により、下記式(1)及び(2)を満たしたものとなることを特徴とする歯車部品。
前記歯車部品の歯元部:
(553.53×S質量%)+(34.36×有効硬化層深さmm)
−(0.16×心部硬さHV)+(123.86×表層C濃度質量%)≦52…(1)
前記歯車部品の歯面部:
(0.001×心部硬さHV)+(0.037×全硬化層深さmm)≧0.460…(2)
% By mass
C: 0.10 to 0.40%,
Si: 1.50% or less,
Mn: 0.30 to 1.80%,
Cr: 0.30 to 1.50%,
Mo: 0.80% or less,
Ti: 0.05% or less,
Al: 0.05% or less,
N: 0.010% or less,
Nb: 0.10% or less,
P: 0.020% or less,
S: 0.020% or less,
B: 0.0005 to 0.0035%,
And carburizing treatment that is performed after the case-hardened steel comprising Fe and inevitable impurities is formed into a predetermined gear shape, and satisfies the following formulas (1) and (2): Gear parts.
Tooth base part of the gear part:
(553.53 × S mass%) + (34.36 × effective hardened layer depth mm)
− (0.16 × Heart hardness HV) + (123.86 × surface layer C concentration% by mass) ≦ 52 (1)
Tooth surface portion of the gear part:
(0.001 × heart hardness HV) + (0.037 × total hardened layer depth mm) ≧ 0.460 (2)
さらに、質量%で、
Ni:0.20〜2.50%を含有する請求項1に記載の歯車部品。
Furthermore, in mass%,
The gear part according to claim 1, containing Ni: 0.20 to 2.50%.
さらに、質量%で、
Bi:0.30%以下、
Ca:0.30%以下、
Pb:0.30%以下、
のうち1種又は2種以上を含有する請求項1又は2に記載の歯車部品。
Furthermore, in mass%,
Bi: 0.30% or less,
Ca: 0.30% or less,
Pb: 0.30% or less,
The gear part of Claim 1 or 2 containing 1 type, or 2 or more types.
JP2008161196A 2008-06-20 2008-06-20 Gear parts Active JP5286966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008161196A JP5286966B2 (en) 2008-06-20 2008-06-20 Gear parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008161196A JP5286966B2 (en) 2008-06-20 2008-06-20 Gear parts

Publications (2)

Publication Number Publication Date
JP2010001527A true JP2010001527A (en) 2010-01-07
JP5286966B2 JP5286966B2 (en) 2013-09-11

Family

ID=41583473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008161196A Active JP5286966B2 (en) 2008-06-20 2008-06-20 Gear parts

Country Status (1)

Country Link
JP (1) JP5286966B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140007725A1 (en) * 2011-03-22 2014-01-09 Hispano Suiza Method for treating a component such as a gearwheel
WO2014203610A1 (en) * 2013-06-20 2014-12-24 アイシン・エィ・ダブリュ株式会社 Gear and process for producing same
JP2017210656A (en) * 2016-05-26 2017-11-30 高周波熱錬株式会社 Method of manufacturing steel for carburization
CN110129653A (en) * 2019-05-21 2019-08-16 柳州钢铁股份有限公司 A kind of production method of soft 20CrMnTi round steel
JP2021028415A (en) * 2019-08-09 2021-02-25 日本製鉄株式会社 Steel for carburized gear, carburized gear, and manufacturing method of carburized gear

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241821A (en) * 1996-03-06 1997-09-16 Sumitomo Metal Ind Ltd Carburized gear
JPH1171654A (en) * 1997-08-28 1999-03-16 Sumitomo Metal Ind Ltd Carburized gear
JP2003096539A (en) * 2001-07-17 2003-04-03 Daido Steel Co Ltd Case hardening steel, and carburized part using the same
JP2006169637A (en) * 2001-05-14 2006-06-29 Sanyo Special Steel Co Ltd Method for manufacturing high-strength carburized part

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241821A (en) * 1996-03-06 1997-09-16 Sumitomo Metal Ind Ltd Carburized gear
JPH1171654A (en) * 1997-08-28 1999-03-16 Sumitomo Metal Ind Ltd Carburized gear
JP2006169637A (en) * 2001-05-14 2006-06-29 Sanyo Special Steel Co Ltd Method for manufacturing high-strength carburized part
JP2003096539A (en) * 2001-07-17 2003-04-03 Daido Steel Co Ltd Case hardening steel, and carburized part using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140007725A1 (en) * 2011-03-22 2014-01-09 Hispano Suiza Method for treating a component such as a gearwheel
US9915335B2 (en) * 2011-03-22 2018-03-13 Hispano Suiza Method for treating a component such as a gearwheel
WO2014203610A1 (en) * 2013-06-20 2014-12-24 アイシン・エィ・ダブリュ株式会社 Gear and process for producing same
CN105358874A (en) * 2013-06-20 2016-02-24 爱信艾达株式会社 Gear and process for producing same
JPWO2014203610A1 (en) * 2013-06-20 2017-02-23 アイシン・エィ・ダブリュ株式会社 Gear and manufacturing method thereof
JP2017210656A (en) * 2016-05-26 2017-11-30 高周波熱錬株式会社 Method of manufacturing steel for carburization
CN110129653A (en) * 2019-05-21 2019-08-16 柳州钢铁股份有限公司 A kind of production method of soft 20CrMnTi round steel
CN110129653B (en) * 2019-05-21 2020-12-01 柳州钢铁股份有限公司 Production method of low-hardness 20CrMnTi round steel
CN112553538A (en) * 2019-05-21 2021-03-26 柳州钢铁股份有限公司 Low-hardness 20CrMnTi round steel
CN112553538B (en) * 2019-05-21 2021-10-29 柳州钢铁股份有限公司 Low-hardness 20CrMnTi round steel
JP2021028415A (en) * 2019-08-09 2021-02-25 日本製鉄株式会社 Steel for carburized gear, carburized gear, and manufacturing method of carburized gear
JP7368697B2 (en) 2019-08-09 2023-10-25 日本製鉄株式会社 Steel for carburized gears, carburized gears, and method for manufacturing carburized gears

Also Published As

Publication number Publication date
JP5286966B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP4956146B2 (en) Case-hardened steel excellent in forgeability and prevention of grain coarsening, its manufacturing method, and carburized parts
JP6098732B2 (en) Manufacturing method of carburized steel parts and carburized steel parts
JP5669339B2 (en) Manufacturing method of high strength carburized parts
JP4729135B2 (en) Nitriding steel and nitriding parts
JP2008280610A (en) Carburized and high-frequency hardened part having high strength
JP2007231305A (en) Carburized component and carburized gear
JP2006213951A (en) Steel for carburized component excellent in cold workability, preventing coarsening of crystal grains in carburizing impact resistance and impact fatigue resistance
JP6292765B2 (en) Soft nitriding crankshaft and manufacturing method thereof
JP5286966B2 (en) Gear parts
JP2006299296A (en) Rolled bar steel for case hardening having excellent fatigue property and crystal grain coarsening resistance, and method for producing the same
JP5100433B2 (en) Carburized parts with excellent low cycle fatigue characteristics
JP3915710B2 (en) Carburized differential gear with excellent low cycle impact fatigue resistance
JP3932102B2 (en) Case-hardened steel and carburized parts using the same
JP5912778B2 (en) Gears with excellent peel resistance and impact fatigue resistance
JP4807949B2 (en) Rolled steel bar for case hardening with excellent high-temperature carburizing characteristics
WO2017170540A1 (en) Carbonitrided component having excellent surface fatigue strength and bending fatigue strength, and method for manufacturing same
JPH09241821A (en) Carburized gear
JP2000273574A (en) Steel for carburizing or carbonitriding treatment
JP7436779B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JP2016188422A (en) Carburized component
JP3623313B2 (en) Carburized gear parts
JPS62196322A (en) Manufacture of parts for mechanical structure
JP2007231411A (en) Method of manufacturing machine structure component
JP7123098B2 (en) Differential hypoid gears, pinion gears, and hypoid gear pairs that combine these
CN107532252B (en) Case hardening steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110411

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110411

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R150 Certificate of patent or registration of utility model

Ref document number: 5286966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150