JP2009543539A - Circuit operating current balancing device and method for battery device - Google Patents

Circuit operating current balancing device and method for battery device Download PDF

Info

Publication number
JP2009543539A
JP2009543539A JP2009519382A JP2009519382A JP2009543539A JP 2009543539 A JP2009543539 A JP 2009543539A JP 2009519382 A JP2009519382 A JP 2009519382A JP 2009519382 A JP2009519382 A JP 2009519382A JP 2009543539 A JP2009543539 A JP 2009543539A
Authority
JP
Japan
Prior art keywords
circuit
voltage
cell stack
current
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009519382A
Other languages
Japanese (ja)
Other versions
JP4663811B2 (en
Inventor
イ、ダル−フン
安仁 江口
正次 谷名
キム、ジェ−ホ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Publication of JP2009543539A publication Critical patent/JP2009543539A/en
Application granted granted Critical
Publication of JP4663811B2 publication Critical patent/JP4663811B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、バッテリー装置を構成する各ユニットの回路動作電流のバランシングを行うバッテリー装置の回路動作電流バランシング装置及び方法を提供することをその目的とする。上述した本発明によれば、一つ以上のセルから構成されるセルスタックが多数備えられたバッテリー装置において、上記多数のセルスタックそれぞれに連結された上記セルスタックの状態の制御またはモニタリングを行う回路である制御回路の回路動作電流をバランシングする装置であって、対応するセルスタックの出力電圧と対応するセルスタックに連結された上記制御回路の電圧との間の電圧差を演算し出力する比較部;及び上記比較部の出力に対応して上記制御回路の回路動作電流にダミー電流を加減する電流源;を含むことを特徴とする。  An object of the present invention is to provide a circuit operating current balancing device and method for a battery device that performs balancing of circuit operating current of each unit constituting the battery device. According to the above-described present invention, in a battery device provided with a large number of cell stacks composed of one or more cells, a circuit for controlling or monitoring the state of the cell stack connected to each of the large number of cell stacks. Comparing unit for balancing the circuit operating current of the control circuit, which calculates and outputs the voltage difference between the output voltage of the corresponding cell stack and the voltage of the control circuit connected to the corresponding cell stack And a current source for adjusting a dummy current to the circuit operating current of the control circuit corresponding to the output of the comparison unit.

Description

本発明は、バッテリー装置に関するものであって、さらに詳しくは、上記バッテリー装置の各ユニット間回路動作電流のバランスを調節するバッテリー装置の回路動作電流バランシング装置及び方法に関する。   The present invention relates to a battery device, and more particularly to a circuit operation current balancing device and method for a battery device that adjusts the balance of circuit operation current between units of the battery device.

一般のバッテリー装置の概略的な構成を図1を参照しながら説明する。   A schematic configuration of a general battery device will be described with reference to FIG.

上記バッテリー装置は一つ以上の電池セルを直列に接続させた電池セルスタックC1〜CNを多数備え、上記多数の電池セルスタックC1〜CNそれぞれにはアナログ前処理回路A1〜ANが連結される。   The battery device includes a large number of battery cell stacks C1 to CN in which one or more battery cells are connected in series, and analog preprocessing circuits A1 to AN are connected to the battery cell stacks C1 to CN, respectively.

上記多数のアナログ前処理回路A1〜ANは、電圧及び電流の検出、制御、レギュレーティング機能を行い、一つのアナログ前処理回路A1〜ANに連結される電池セルはアプリケーションの種類に応じて可変可能である。   The large number of analog pre-processing circuits A1 to AN perform voltage and current detection, control, and regulating functions, and the battery cells connected to one analog pre-processing circuit A1 to AN can be changed according to the type of application. It is.

上記アナログ前処理回路A1〜ANには、各電池セルスタックC1〜CNを制御する制御部M1〜MNが連結される。   Control units M1 to MN for controlling the battery cell stacks C1 to CN are connected to the analog preprocessing circuits A1 to AN.

上述したアナログ前処理部A1〜ANは、上記各電池セルスタックC1〜CNの電圧及び電流を検出して対応する制御部M1〜MNに提供し、各制御部M1〜MNは上記検出結果に応じて各電池セルの過電圧、過電流、過放電などの状態を認知し、スイッチング素子CFET,DFETのオン/オフを制御することで、バッテリー装置を保護する。   The analog preprocessing units A1 to AN described above detect the voltages and currents of the battery cell stacks C1 to CN and provide them to the corresponding control units M1 to MN. The control units M1 to MN respond to the detection results. Thus, the battery device is protected by recognizing the state of each battery cell such as overvoltage, overcurrent, and overdischarge and controlling the on / off of the switching elements CFET and DFET.

上述したバッテリー装置において、一つの電池セルスタックと、当該電池セルスタックに連結された一つのアナログ前処理回路、当該アナログ前処理回路に連結された一つの制御部を一つのユニットと称する。   In the battery device described above, one battery cell stack, one analog preprocessing circuit connected to the battery cell stack, and one control unit connected to the analog preprocessing circuit are referred to as one unit.

上記バッテリー装置に備えられる多数のユニットのうち何れか一つのユニットに流れる回路動作電流をIccとするとき、接地(GND)を基準としてN番目ユニットの回路動作電流をIccnと称することができる。   When the circuit operating current flowing through any one of the many units included in the battery device is Icc, the circuit operating current of the Nth unit can be referred to as Iccn with reference to the ground (GND).

上記バッテリー装置の外部負荷に流れる電流は、CFET→DFET→第NセルスタックCN→…→第1セルスタック→電流検出抵抗(Rshunt)の経路で流れ、充電または放電などによって電流方向は反対になり得る。   The current flowing to the external load of the battery device flows through the path of CFET → DFET → Nth cell stack CN →... → first cell stack → current detection resistor (Rshunt), and the current direction is reversed by charging or discharging. obtain.

上記バッテリー装置において、上記第1ないし第Nユニットの回路動作電流Icc1,Icc2,…,Iccn は、電池セル電圧の不均衡(unevenness)または電圧及び電流検出回路における電流の不均衡、温度特性による電圧及び電流検出回路の動作電流における不均衡などのため、常に一定には維持されない。   In the battery device, the circuit operating currents Icc1, Icc2,..., Iccn of the first to Nth units are battery cell voltage unbalance or voltage / current detection circuit current imbalance, voltage due to temperature characteristics. And because of an imbalance in the operating current of the current detection circuit, it is not always kept constant.

これを数式で表せば、下記式(1)のとおりである。   This can be expressed by the following formula (1).

Icc1≠Icc2≠Iccn (1)
このように第1ないし第Nユニットの回路動作電流は同一ではなく、このような回路動作電流の不均衡はセルスタックの放電電流に影響を及ぼして各ユニット間放電電流の不均衡を引き起こす。これは、上記回路動作電流が上記電池セルスタックの放電電流に加えられるからである。
Icc1 ≠ Icc2 ≠ Iccn (1)
As described above, the circuit operating currents of the first to Nth units are not the same, and the imbalance of the circuit operating currents affects the discharge current of the cell stack, causing the imbalance of the discharge currents between the units. This is because the circuit operating current is added to the discharge current of the battery cell stack.

このような状態が長期間維持されれば、時間の経過とともに各ユニット間残存容量に不均衡が引き起こされる。   If such a state is maintained for a long period of time, an imbalance is caused in the remaining capacity between units as time passes.

例えば、第1電池セルスタックC1の残存容量が50%、第2電池セルスタックC2の残存容量が30%、第N電池セルスタックCNの残存容量が40%であると仮定する。   For example, it is assumed that the remaining capacity of the first battery cell stack C1 is 50%, the remaining capacity of the second battery cell stack C2 is 30%, and the remaining capacity of the Nth battery cell stack CN is 40%.

このように各電池セルスタックの残存容量に不均衡が生じた状態でバッテリーパックを充電すれば、残存容量が最も大きい電池セルスタックである第1電池セルスタックC1が満充電になるときにバッテリー装置全体の充電が完了したと判断され、充電開始時の残存容量の不均衡がそのまま維持される。   If the battery pack is charged in such a state where the remaining capacity of each battery cell stack is unbalanced, the battery device when the first battery cell stack C1, which is the battery cell stack having the largest remaining capacity, is fully charged. It is determined that the entire charging has been completed, and the remaining capacity imbalance at the start of charging is maintained as it is.

このような状態で充電が終了すれば、第2電池セルスタックC2の残存容量は80%、第N電池セルスタックCNの残存容量は90%になるので、完全な満充電は不可能になってしまう。   If charging is completed in such a state, the remaining capacity of the second battery cell stack C2 is 80%, and the remaining capacity of the Nth battery cell stack CN is 90%. End up.

また、各ユニット間の回路動作電流の不均衡、すなわち回路による放電電流の不均衡は、長期保存時に各ユニットが同時に過放電領域に入らずに、あるユニットは過放電領域に早めに入っていき、あるユニットは遅めに入っていくことにして、電池セルの劣化にも不均衡が発生する原因になった。   In addition, an imbalance in circuit operating current between units, that is, an imbalance in discharge current due to circuits, is that each unit does not enter the overdischarge region at the same time during long-term storage, and a unit enters the overdischarge region early. Some units moved in late, causing the battery cells to become unbalanced.

よって、従来バッテリー装置においては、各ユニットの回路動作電流のバランシングを行う技術の開発が切実に要望された。   Therefore, in the conventional battery device, development of a technique for balancing the circuit operating current of each unit has been urgently required.

本発明は、上述した従来の問題点を克服するためのものであって、バッテリー装置を構成する各ユニットの回路動作電流のバランシングを行うバッテリー装置の回路動作電流バランシング装置及び方法を提供することを目的とする。   The present invention is intended to overcome the above-described conventional problems, and provides a circuit operating current balancing device and method for a battery device that balances circuit operating current of each unit constituting the battery device. Objective.

上記の目的を達成し従来技術の問題点を解決するための本発明によるバッテリー装置の回路動作電流バランシング装置は、一つ以上のセルから構成されるセルスタックが多数備えられたバッテリー装置において、上記多数のセルスタックそれぞれに連結された上記セルスタックの状態の制御またはモニタリングを行う回路である制御回路の回路動作電流をバランシングする装置であって、対応するセルスタックの出力電圧と対応するセルスタックに連結された上記制御回路の電圧との間の電圧差を演算し出力する比較部;及び上記比較部の出力に対応して上記制御回路の回路動作電流にダミー電流を加減する電流源;を含む。   The circuit operation current balancing device of the battery device according to the present invention for achieving the above object and solving the problems of the prior art is a battery device provided with a number of cell stacks composed of one or more cells. A device for balancing the circuit operating current of a control circuit, which is a circuit for controlling or monitoring the state of the cell stack connected to each of a large number of cell stacks, the output voltage of the corresponding cell stack and the corresponding cell stack A comparator for calculating and outputting a voltage difference from the voltage of the connected control circuit; and a current source for adding or subtracting a dummy current to the circuit operating current of the control circuit corresponding to the output of the comparator. .

本発明の他の態様によるバッテリー装置の回路動作電流バランシング方法は、一つ以上のセルから構成されるセルスタックが多数備えられたバッテリー装置において、上記多数のセルスタックそれぞれに連結された上記セルスタックの状態の制御またはモニタリングを行う回路である制御回路の回路動作電流をバランシングする方法であって、対応するセルスタックの出力電圧と対応するセルスタックに連結された上記制御回路の電圧との間の電圧差を演算し出力する段階;及び上記出力に対応して上記制御回路の回路動作電流にダミー電流を加減する段階;を含む。   According to another aspect of the present invention, there is provided a battery device circuit operation current balancing method, wherein the cell stack is connected to each of the plurality of cell stacks in a battery device including a plurality of cell stacks including one or more cells. A method for balancing circuit operating current of a control circuit, which is a circuit that controls or monitors the state of the current, between an output voltage of a corresponding cell stack and a voltage of the control circuit connected to the corresponding cell stack Calculating and outputting a voltage difference; and adding or subtracting a dummy current to a circuit operating current of the control circuit corresponding to the output.

従来技術によるバッテリー装置の概略的な構成図Schematic configuration diagram of a battery device according to the prior art 本発明の望ましい実施例によるバッテリー装置の構成図1 is a block diagram of a battery device according to a preferred embodiment of the present invention. 本発明の望ましい実施例による回路動作電流バランシング装置の構成図1 is a block diagram of a circuit operating current balancing device according to a preferred embodiment of the present invention. 電圧制御型電流源の構成を示す図Diagram showing the configuration of a voltage-controlled current source 電圧制御型電流源の構成を示す図Diagram showing the configuration of a voltage-controlled current source 本発明の望ましい実施例による回路動作電流バランシング装置の動作例を示す図The figure which shows the operation example of the circuit operation current balancing apparatus by preferable Example of this invention.

上述した本発明によるバッテリー装置の回路動作電流バランシング装置の構成について、図2を参照しながら説明する。ここで、従来バッテリー装置の構成と同一の部分に対しては説明を省略する。   The configuration of the above-described circuit operating current balancing device of the battery device according to the present invention will be described with reference to FIG. Here, the description of the same parts as those of the conventional battery device is omitted.

上記バッテリー装置に備えられる多数の電池セルは、一つ以上がグループ化された第1ないし第N電池セルスタックCE1〜CENから構成される。上記第1ないし第N電池セルスタックCE1〜CENにはそれぞれ、第1ないし第Nアナログ前処理回路A1〜ANが連結される。   A number of battery cells included in the battery device includes first to Nth battery cell stacks CE1 to CEN, one or more of which are grouped. First to Nth analog pre-processing circuits A1 to AN are connected to the first to Nth battery cell stacks CE1 to CEN, respectively.

上記アナログ前処理回路は上述したように、電流の検出、制御、レギュレーティング機能を行い、上記一つのアナログ前処理回路A1〜ANに連結される電池セルはアプリケーションの種類に応じて可変可能な回路であって、多数のセルスタックそれぞれに連結された上記セルスタックの状態の制御またはモニタリングを行う回路を意味する。   As described above, the analog preprocessing circuit performs current detection, control, and regulation functions, and the battery cell connected to the one analog preprocessing circuit A1 to AN is a circuit that can be changed according to the type of application. In this case, it means a circuit for controlling or monitoring the state of the cell stack connected to each of a large number of cell stacks.

本発明を説明するに際して上記制御回路とは、上記アナログ前処理回路を含む概念であって、セルスタックの電流、電圧、抵抗または電力などの状態に対するモニタリングだけでなく上記セルスタックの制御などを担当する回路を意味し、特に言及しなければ上記アナログ前処理回路は、本発明の説明において上記制御回路の一実施形態を意味すると解釈されるべきである。   In describing the present invention, the control circuit is a concept including the analog pre-processing circuit, and is responsible not only for monitoring the state of the cell stack such as current, voltage, resistance or power but also for controlling the cell stack. Unless otherwise stated, the analog preprocessing circuit should be taken to mean one embodiment of the control circuit in the description of the invention.

上記第1ないし第Nアナログ前処理回路A1〜ANそれぞれには、本発明の望ましい実施例に従って回路動作電流バランシング装置が含まれる。上記回路動作電流バランシング装置は、比較器S1〜SN及び電流源P1〜PNから構成される。   Each of the first to Nth analog preprocessing circuits A1 to AN includes a circuit operating current balancing device according to a preferred embodiment of the present invention. The circuit operating current balancing device includes comparators S1 to SN and current sources P1 to PN.

上記比較器S1〜SNそれぞれは、対応する電池セルスタックの電圧出力端子と連結され、電池セルスタックの電圧出力端子のうち何れか一方の端子の電圧と自分が属するアナログ前処理回路の接地端子の電圧とを比較した結果、及び電池セルスタックの電圧出力端子のうち他方の端子の電圧と自分が属するアナログ前処理回路の電圧端子の電圧とを比較した結果を利用し、その比較結果に対応するダミー電流を生成するための制御電圧を出力する。   Each of the comparators S1 to SN is connected to a voltage output terminal of the corresponding battery cell stack, and the voltage of any one of the voltage output terminals of the battery cell stack and the ground terminal of the analog preprocessing circuit to which it belongs. Using the result of comparing the voltage and the result of comparing the voltage of the other voltage output terminal of the battery cell stack with the voltage of the voltage terminal of the analog preprocessing circuit to which it belongs, and corresponding to the comparison result A control voltage for generating a dummy current is output.

上記電流源P1〜PNそれぞれは、上記比較器S1〜SNが出力する制御電圧に対応するダミー電流を回路動作電流に加減する。   Each of the current sources P1 to PN adds or subtracts a dummy current corresponding to the control voltage output from the comparators S1 to SN to the circuit operating current.

すなわち、上記電流源P1〜PNそれぞれは下記式(2)のように、各ユニットの回路動作電流Icc1,Icc2,…,Iccnに、ダミー電流Idummy1,Idummy2,…,Idummynを加えて流し、各ユニットごとの回路動作電流が同一になるようにする。   That is, each of the current sources P1 to PN flows the circuit operation currents Icc1, Icc2,..., Iccn of each unit by adding the dummy currents Idummy1, Idummy2,. Each circuit operating current is made the same.

Idummy1+Icc1=Idummy2+Icc2=Idummyn+Iccn=Iccttl(全電流) (2)
上述した第1ないし第Nアナログ前処理部A1〜ANに備えられる回路動作電流バランシング装置の構成及び動作は同一であるので、以下第2アナログ前処理部A2に備えられる回路動作電流バランシング装置の構成のみを詳しく説明する。
Idummy1 + Icc1 = Idummy2 + Icc2 = Idummyn + Iccn = Iccctl (total current) (2)
Since the configuration and operation of the circuit operation current balancing device provided in the first to Nth analog preprocessing units A1 to AN are the same, the configuration of the circuit operation current balancing device provided in the second analog preprocessing unit A2 is described below. Only will be described in detail.

上記比較器S2は、図3に示すように、第1及び第2比較器CA1,CA2、第1及び第2加算器AD1,AD2から構成される。   As shown in FIG. 3, the comparator S2 includes first and second comparators CA1 and CA2, and first and second adders AD1 and AD2.

上記第2比較器CA2は、回路接地電圧(GND2)と第2電池セルスタックCE2の電圧(GND2Cell)とを比較して、回路接地電圧(GND2)が大きければマイナス電圧を発生し、第2電池セルスタックCE2の電圧(GND2Cell)が大きければプラス電圧を発生する。   The second comparator CA2 compares the circuit ground voltage (GND2) with the voltage (GND2Cell) of the second battery cell stack CE2, and generates a negative voltage if the circuit ground voltage (GND2) is large. If the voltage (GND2Cell) of the cell stack CE2 is large, a positive voltage is generated.

上記第1比較器CA1は、第2電池セルスタックCE2の出力電圧(Vcs2)と回路電圧(VDD2)とを比較して、回路電圧(VDD2)が大きければプラス電圧を発生し、第2電池セルスタックCE2の出力電圧(Vcs2)が大きければマイナス電圧を発生する。   The first comparator CA1 compares the output voltage (Vcs2) of the second battery cell stack CE2 with the circuit voltage (VDD2) and generates a positive voltage if the circuit voltage (VDD2) is large. If the output voltage (Vcs2) of the stack CE2 is large, a negative voltage is generated.

第1及び第2加算器AD1,AD2は、上記第1及び第2比較器CA1,CA2の出力による電圧制御型電流源P1に対する動作点を制御するためのオフセット電圧を加算して出力する。   The first and second adders AD1 and AD2 add and output an offset voltage for controlling the operating point for the voltage-controlled current source P1 based on the outputs of the first and second comparators CA1 and CA2.

上記第1及び第2加算器AD1,AD2の出力端子は互いに連結され、上記第1及び第2加算器AD1,AD2の出力が重畳され電圧制御型電流源P1の制御電圧として上記電圧制御型電流源P1に入力される。   The output terminals of the first and second adders AD1 and AD2 are connected to each other, and the outputs of the first and second adders AD1 and AD2 are overlapped with each other to control the voltage controlled current as the control voltage of the voltage controlled current source P1. Input to source P1.

上記電圧制御型電流源P1は、上記第1及び第2加算器AD1,AD2の出力を加算した制御電圧の提供を受け、上記制御電圧に対応する電流(Idummy2)を出力する。上述した電圧制御型電流源P1は図4及び図5のように構成でき、上記図4及び図5に示す電圧制御型電流源P1の構成は公知された一般的な構成であるのでその詳細な説明は省略する。   The voltage-controlled current source P1 receives a control voltage obtained by adding the outputs of the first and second adders AD1 and AD2, and outputs a current (Idummy2) corresponding to the control voltage. The voltage-controlled current source P1 described above can be configured as shown in FIGS. 4 and 5, and the configuration of the voltage-controlled current source P1 shown in FIGS. Description is omitted.

上記第1及び第2加算器AD1,AD2の出力は、それぞれダイオードD1,D2を通して連結され、上記連結端子は抵抗Rを介して接地される。上記ダイオードD1,D2及び抵抗Rは上記第1及び第2加算器AD1,AD2の出力を安定化させるためのものである。   The outputs of the first and second adders AD1 and AD2 are connected through diodes D1 and D2, respectively, and the connection terminal is grounded through a resistor R. The diodes D1, D2 and the resistor R are for stabilizing the outputs of the first and second adders AD1, AD2.

また、第2電池セルスタックCE2と回路接地(GND2)との間に連結されたキャパシタC2は、フィードバックループの安全性と周波数特性を制限するために挿入される。   A capacitor C2 connected between the second battery cell stack CE2 and circuit ground (GND2) is inserted to limit the safety and frequency characteristics of the feedback loop.

そして、第2電池セルスタックCE2と回路接地(GND2)との間に連結されたダイオードD3は、ダミー電流を制御するとき、回路接地(GND2)が過度にマイナス電圧になる場合に、このマイナス電圧を制限するために挿入される。ここで、上記ダイオードD3はダミー電流を流す本発明の回路が正常に動作しているときには動作しない。   The diode D3 connected between the second battery cell stack CE2 and the circuit ground (GND2) has a negative voltage when the circuit ground (GND2) becomes an excessively negative voltage when controlling the dummy current. Inserted to limit. Here, the diode D3 does not operate when the circuit of the present invention through which a dummy current flows is operating normally.

また、本発明による回路動作電流バランシング装置は、ダミー電流(Idummy)が僅かである場合には、第1または第2比較器CA1,CA2のうち何れか一つのみを実装するだけでも所望の機能を実現することができる。   Further, the circuit operating current balancing device according to the present invention has a desired function even when only one of the first or second comparators CA1 and CA2 is mounted when the dummy current (Idummy) is small. Can be realized.

上述した本発明の望ましい実施例による回路動作電流バランシング装置の動作について、図6を参照しながら詳しく説明する。ここで、便宜上第2電池セルスタックCE2に連結されたアナログ前処理回路に備えられた回路動作電流バランシング装置の動作のみを例に挙げて説明する。   The operation of the circuit operating current balancing device according to the preferred embodiment of the present invention will be described in detail with reference to FIG. Here, only the operation of the circuit operation current balancing device provided in the analog preprocessing circuit connected to the second battery cell stack CE2 will be described as an example for convenience.

まず、第2電池セルスタックCE2の接続点の電圧(Vcs2)と電圧(GND2Cell)が変化しなかったときを仮定して説明する。   First, description will be made assuming that the voltage (Vcs2) and the voltage (GND2Cell) at the connection point of the second battery cell stack CE2 have not changed.

回路の初期状態として、Idummy1+Icc1=Idummy2+Icc2=Idummyn+Iccn=Iccttlであると仮定すれば、この場合Vcs2とVDD2とは同一であり、GND2CellとGND2とも同一である。   Assuming that the initial state of the circuit is Idummy1 + Icc1 = Idummy2 + Icc2 = Idummyn + Iccn = Iccctl, in this case, Vcs2 and VDD2 are the same, and GND2Cell and GND2 are also the same.

ここで、第1ないし第3抵抗(Rcircuit1,Rcircuit2,Rcircuit3)は、各ユニットのアナログ前処理回路の抵抗成分を示す。ここで、上記抵抗のうち第2抵抗(Rcircuit2)のみが動作状態によって+または−ΔRcircuit2だけ変化したと仮定し、残りの第1及び第3抵抗(Rcircuit1,Rcircuit3)は変化しない固定値であると仮定する。   Here, the first to third resistors (Rcircuit1, Rcircuit2, Rcircuit3) indicate resistance components of the analog preprocessing circuit of each unit. Here, it is assumed that only the second resistance (Rcircuit 2) of the above resistances has changed by + or −ΔR circuit 2 depending on the operation state, and the remaining first and third resistances (R circuit 1, R circuit 3) are fixed values that do not change. Assume.

このような状態で、第2抵抗(Rcircuit2)が+ΔRcircuit2だけ変化してIcc2が減少すれば、VDD2電圧は+ΔVDD2だけ変化し、GND2電圧は−ΔGND2だけ変化できる。   In this state, if the second resistance (Rcircuit2) changes by + ΔRcircuit2 and Icc2 decreases, the VDD2 voltage changes by + ΔVDD2, and the GND2 voltage can change by -ΔGND2.

このとき、第2セルスタックCE2の電圧(Vcs2)及び接地電圧(GND2Cell)は固定されているので、第1及び第2比較器CA1,CA2は+error出力を発生する。   At this time, since the voltage (Vcs2) and the ground voltage (GND2Cell) of the second cell stack CE2 are fixed, the first and second comparators CA1 and CA2 generate + error output.

加算器ADは、動作点を調整するためにオフセット電圧と上記第1及び第2比較器CA1,CA2の出力を加算して出力する。ここで、上記加算器ADは図3の例のように、第1及び第2比較器CA1,CA2の出力それぞれに対してオフセット電圧を加算し、その結果を再び加算する方法を用いるか、上記オフセット電圧と第1及び第2比較器CA1,CA2の出力を加算する方法を用いることができる。   The adder AD adds and outputs the offset voltage and the outputs of the first and second comparators CA1 and CA2 in order to adjust the operating point. Here, the adder AD uses a method of adding an offset voltage to each of the outputs of the first and second comparators CA1 and CA2 and adding the results again, as in the example of FIG. A method of adding the offset voltage and the outputs of the first and second comparators CA1 and CA2 can be used.

上記加算器ADから出力された制御電圧は、バッファーBを通じて電圧制御型電流源P1に提供される。上記電圧制御型電流源P1は、加算器ADの出力電圧が+であればIdummy2は増加してVDD2電圧が−(マイナス)方向に変化(低下)し、GND2電圧が+(プラス)方向に変化(上昇)する。従って、VDD2が一定に制御されるネガティブフィードバックループが構成される。   The control voltage output from the adder AD is provided to the voltage controlled current source P1 through the buffer B. In the voltage control type current source P1, if the output voltage of the adder AD is +, Idummy2 increases, the VDD2 voltage changes (decreases) in the-(minus) direction, and the GND2 voltage changes in the + (plus) direction. (To rise. Therefore, a negative feedback loop in which VDD2 is controlled to be constant is configured.

上記とは異なって第2抵抗(Rcircuit2)が−ΔRcircuit2だけ変化してIcc2が減少し、VDD2電圧は−ΔVDD2だけ変化し、GND2電圧は+ΔGND2だけ変化することもできる。   Unlike the above, the second resistance (Rcircuit2) changes by −ΔRcircuit2 to decrease Icc2, the VDD2 voltage changes by −ΔVDD2, and the GND2 voltage changes by + ΔGND2.

このとき第2セルスタックCE2の電圧(Vcs2)及び接地電圧(GND2Cell)は固定されているので、第1及び第2比較器CA1,CA2は−errorを出力する。加算器ADは、オフセット電圧と上記第1及び第2比較器CA1,CA2の出力を加算して出力する。   At this time, since the voltage (Vcs2) and the ground voltage (GND2Cell) of the second cell stack CE2 are fixed, the first and second comparators CA1 and CA2 output -error. The adder AD adds the offset voltage and the outputs of the first and second comparators CA1 and CA2 and outputs the result.

上記加算器ADの出力電圧は、バッファーBを経由して電圧制御型電流源P1に供給される。上記電圧制御型電流源P1は、上記加算器ADの出力が−であればIdummy2は減少してVDD2電圧が+方向に変化(上昇)し、GND2電圧が−方向に変化(低下)する。従って、VDD2が一定に制御されるネガティブフィードバックループが構成される。   The output voltage of the adder AD is supplied to the voltage controlled current source P1 via the buffer B. In the voltage-controlled current source P1, if the output of the adder AD is-, Idmy2 decreases, the VDD2 voltage changes (increases) in the + direction, and the GND2 voltage changes (decreases) in the-direction. Therefore, a negative feedback loop in which VDD2 is controlled to be constant is configured.

上述した本発明の電圧制御型電流源は、Iccnの回路消費電流が0mAから5mAまで変化するとすれば、上記変化範囲がカバーできるものを採用することが望ましい。   As the voltage-controlled current source of the present invention described above, it is desirable to adopt a voltage control type current source that can cover the above change range if the circuit current consumption of Iccn changes from 0 mA to 5 mA.

また、上記動作点を調整するために提供されるオフセット電圧の設定は次の二つの方法に設定できる。   Further, the offset voltage provided for adjusting the operating point can be set in the following two methods.

そのうち一つは、小さいオフセット電圧に設定し、ある程度のΔVDD2の電圧とΔGND2の電圧の変化を許容しながら電流をバランス制御する方法であり、これはIdummyが常には流れていないので、消費電流を低く抑制できる。   One of them is a method in which a small offset voltage is set and the current is balanced while allowing a certain amount of change in the voltage of ΔVDD2 and ΔGND2, and this is because Idmy does not always flow. It can be suppressed low.

他の一つは、大きいオフセット電圧に設定し、ΔVDD2の電圧とΔGND2の電圧を一定に維持しながらバランス制御する方法であり、これはIdummyが常に流れているので消費電流は増加するが、VDD2=Vcs2,GND2=GND2Cellの条件が維持できる。   The other is a method in which a large offset voltage is set and balance control is performed while maintaining the voltage of ΔVDD2 and the voltage of ΔGND2 constant. This is because current consumption increases because Idmym is always flowing, but VDD2 = Vcs2, GND2 = GND2Cell.

上述したように、本発明は、バッテリー装置を構成する各ユニットの回路動作電流のバランシングを行うことで、バッテリー装置に備えられる多数の電池セルの満充電を可能とすることは勿論、電池セルの劣化を予め防止し、バッテリー装置を構成する各ユニットごとに回路動作電流にダミー電流を加減することで、各ユニットの回路動作電流が同一になるようにバランシングする。   As described above, according to the present invention, it is possible to fully charge a large number of battery cells provided in the battery device by balancing circuit operating currents of the units constituting the battery device. Deterioration is prevented in advance, and a dummy current is added to or subtracted from the circuit operating current for each unit constituting the battery device, thereby balancing the circuit operating current of each unit to be the same.

以上のように、本発明は、たとえ限定された実施例と図面とによって説明されたが、本発明は上記実施例によって限定されず、これは本発明が属する技術分野において通常の知識を持つ者によりこのような記載より多様な修正及び変形が可能である。   As described above, the present invention has been described with reference to the limited embodiments and drawings. However, the present invention is not limited to the above-described embodiments, and those having ordinary knowledge in the technical field to which the present invention belongs. Therefore, various modifications and variations can be made from the above description.

したがって、本発明思想は以下に記載した特許請求の範囲によって把握されるべきであり、これの均等または等価的変形の全ては本発明思想の範疇に属すると言える。   Therefore, the present invention should be understood by the claims described below, and all equivalent or equivalent modifications thereof belong to the category of the present invention.

Claims (10)

一つ以上のセルから構成されるセルスタックが多数備えられたバッテリー装置において、上記多数のセルスタックそれぞれに連結された上記セルスタックの状態の制御またはモニタリングを行う回路である制御回路の回路動作電流をバランシングする装置であって、
対応するセルスタックの出力電圧と対応するセルスタックに連結された上記制御回路の電圧との間の電圧差を演算し出力する比較部;及び
上記比較部の出力に対応して上記制御回路の回路動作電流にダミー電流を加減する電流源を含むことを特徴とするバッテリー装置の回路動作電流バランシング装置。
In a battery device provided with a large number of cell stacks composed of one or more cells, a circuit operating current of a control circuit, which is a circuit for controlling or monitoring the state of the cell stack connected to each of the many cell stacks A device for balancing
A comparator that calculates and outputs a voltage difference between an output voltage of the corresponding cell stack and a voltage of the control circuit connected to the corresponding cell stack; and a circuit of the control circuit corresponding to the output of the comparator A circuit operating current balancing device for a battery device, comprising a current source for adjusting a dummy current to an operating current.
上記比較部の出力に所定のオフセット電圧を加算して上記電流源に提供する加算器がさらに含まれる請求項1に記載のバッテリー装置の回路動作電流バランシング装置。   The circuit operation current balancing device of claim 1, further comprising an adder that adds a predetermined offset voltage to the output of the comparison unit and provides the output to the current source. 上記比較部は、
上記セルスタックの両端の電圧のうち何れか一方の電圧と上記制御回路の両端の電圧のうち何れか一方の電圧とを比較する第1比較部;
上記セルスタックの両端の電圧のうち他方の電圧と上記制御回路の両端の電圧のうち他方の電圧とを比較する第2比較部;及び
上記第1及び第2比較部の出力を加算し上記電流源に提供する加算部を含む請求項1に記載のバッテリー装置の回路動作電流バランシング装置。
The comparison part
A first comparison unit that compares one of the voltages across the cell stack with one of the voltages across the control circuit;
A second comparison unit that compares the other voltage of the voltage across the cell stack with the other voltage of the voltage across the control circuit; and adding the outputs of the first and second comparison units to add the current The circuit operation current balancing device of the battery device according to claim 1, further comprising an adding unit provided to the source.
上記加算部は、
上記第1比較部の出力と所定オフセット電圧とを加算し、
上記第2比較部の出力と所定オフセット電圧とを加算し、
上記加算結果を再び加算する請求項3に記載のバッテリー装置の回路動作電流バランシング装置。
The adder is
Adding the output of the first comparator and the predetermined offset voltage;
Add the output of the second comparison unit and the predetermined offset voltage,
The circuit operation current balancing device of the battery device according to claim 3, wherein the addition results are added again.
上記加算部は、
上記第1比較部の出力と上記第2比較部の出力と所定オフセット電圧とを加算する請求項3に記載のバッテリー装置の回路動作電流バランシング装置。
The adder is
The circuit operation current balancing device of the battery device according to claim 3, wherein the output of the first comparison unit, the output of the second comparison unit, and a predetermined offset voltage are added.
一つ以上のセルから構成されるセルスタックが多数備えられたバッテリー装置において、上記多数のセルスタックそれぞれに連結された上記セルスタックの状態の制御またはモニタリングを行う回路である制御回路の回路動作電流をバランシングする方法であって、
対応するセルスタックの出力電圧と対応するセルスタックに連結された上記制御回路の電圧との間の電圧差を演算し出力する段階;及び
上記出力に対応して上記制御回路の回路動作電流にダミー電流を加減する段階を含むことを特徴とするバッテリー装置の回路動作電流バランシング方法。
In a battery device provided with a large number of cell stacks composed of one or more cells, a circuit operating current of a control circuit, which is a circuit for controlling or monitoring the state of the cell stack connected to each of the many cell stacks Is a method of balancing
Calculating and outputting a voltage difference between an output voltage of the corresponding cell stack and a voltage of the control circuit connected to the corresponding cell stack; and a dummy circuit operation current of the control circuit corresponding to the output A circuit operation current balancing method for a battery device, comprising a step of adjusting current.
上記比較結果に所定のオフセット電圧を加算して上記ダミー電流生成の動作点を調整する請求項6に記載のバッテリー装置の回路動作電流バランシング方法。   The circuit operation current balancing method for a battery device according to claim 6, wherein the operation point for generating the dummy current is adjusted by adding a predetermined offset voltage to the comparison result. 上記出力段階は、
上記セルスタックの両端の電圧のうち何れか一方の電圧と上記制御回路の両端の電圧のうち何れか一方の電圧とを比較する段階;
上記セルスタックの両端の電圧のうち他方の電圧と上記制御回路の両端の電圧のうち他方の電圧とを比較する段階;及び
上記二つの比較結果を加算して最終比較結果として出力する段階;を含む請求項6に記載のバッテリー装置の回路動作電流バランシング方法。
The output stage is
Comparing one of the voltages at both ends of the cell stack with one of the voltages at both ends of the control circuit;
Comparing the other of the voltages across the cell stack with the other of the voltages across the control circuit; and adding the two comparison results and outputting as a final comparison result; The circuit operation current balancing method of the battery device according to claim 6.
上記比較段階は、
上記比較結果それぞれに所定オフセット電圧を加算した後、再びその加算結果を加算して最終比較結果として出力する請求項8に記載のバッテリー装置の回路動作電流バランシング方法。
The comparison stage is
9. The circuit device operating current balancing method according to claim 8, wherein a predetermined offset voltage is added to each of the comparison results, and then the addition result is added again and output as a final comparison result.
上記比較段階は、
上記二つの比較結果及び所定オフセット電圧を加算して最終比較結果として出力する請求項8に記載のバッテリー装置の回路動作電流バランシング方法。
The comparison stage is
9. The circuit device operating current balancing method according to claim 8, wherein the two comparison results and a predetermined offset voltage are added and output as a final comparison result.
JP2009519382A 2006-07-13 2007-07-13 Circuit operating current balancing device and method for battery device Active JP4663811B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020060066034A KR100905663B1 (en) 2006-07-13 2006-07-13 Circuit current balancing method and apparatus for battery apparatus
PCT/KR2007/003407 WO2008007924A1 (en) 2006-07-13 2007-07-13 Circuit current balancing method and apparatus for battery apparatus

Publications (2)

Publication Number Publication Date
JP2009543539A true JP2009543539A (en) 2009-12-03
JP4663811B2 JP4663811B2 (en) 2011-04-06

Family

ID=38923440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009519382A Active JP4663811B2 (en) 2006-07-13 2007-07-13 Circuit operating current balancing device and method for battery device

Country Status (6)

Country Link
US (1) US8283895B2 (en)
EP (1) EP2050178B1 (en)
JP (1) JP4663811B2 (en)
KR (1) KR100905663B1 (en)
CN (1) CN101501955B (en)
WO (1) WO2008007924A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043589A1 (en) * 2010-09-30 2012-04-05 三洋電機株式会社 Power supply device
KR20180080633A (en) * 2017-01-04 2018-07-12 한국전자통신연구원 Battery module and electronic device including the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4237804B2 (en) * 2007-03-28 2009-03-11 株式会社東芝 Battery pack protection device and battery pack device
KR101091352B1 (en) * 2008-05-28 2011-12-07 주식회사 엘지화학 Apparatus for balancing of battery pack having function of prevention of over-discharge
JP5602353B2 (en) * 2008-09-24 2014-10-08 三洋電機株式会社 Power supply for vehicle
JP5275198B2 (en) * 2009-09-30 2013-08-28 株式会社東芝 Assembled battery system
CN102859837A (en) 2010-12-06 2013-01-02 科达汽车公司 Electrochemical cell balancing circuits and methods
US9575135B2 (en) * 2011-06-01 2017-02-21 Datang Nxp Semiconductors Co., Ltd. Battery monitoring circuit, apparatus and method
JP2013192394A (en) * 2012-03-14 2013-09-26 Ricoh Co Ltd Charging control circuit and battery device
CN104283248B (en) * 2013-07-12 2016-12-28 凹凸电子(武汉)有限公司 Battery module, current balance method and circuit
JP5888459B1 (en) * 2015-06-18 2016-03-22 ミツミ電機株式会社 Overcurrent detection voltage correction method and battery protection integrated circuit
TWI597917B (en) * 2016-12-28 2017-09-01 Forevergrow Trading Co Ltd Series battery charging monitoring method
TWI738024B (en) * 2019-07-10 2021-09-01 國立勤益科技大學 Power management method and power management circuit thereof
CN110896240B (en) * 2019-11-30 2022-08-05 Tcl移动通信科技(宁波)有限公司 Charging control method and device, computer readable storage medium and terminal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017134A (en) * 2001-06-27 2003-01-17 Osaka Gas Co Ltd Accumulator management system
JP2007244058A (en) * 2006-03-07 2007-09-20 Nissan Motor Co Ltd Capacity adjusting device of battery pack

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5742148A (en) * 1992-11-24 1998-04-21 Seiko Instruments Inc. Charge/discharge control circuit and chargeable electric power source apparatus
JP3577751B2 (en) 1993-12-24 2004-10-13 ソニー株式会社 Battery charging device, battery pack, and battery charging method
JPH1066276A (en) 1996-08-21 1998-03-06 Japan Tobacco Inc Charge protector and charger
US5952815A (en) * 1997-07-25 1999-09-14 Minnesota Mining & Manufacturing Co. Equalizer system and method for series connected energy storing devices
US6018227A (en) * 1998-06-22 2000-01-25 Stryker Corporation Battery charger especially useful with sterilizable, rechargeable battery packs
JP3874150B2 (en) 1999-04-23 2007-01-31 株式会社日立超エル・エス・アイ・システムズ Secondary battery protection circuit
US6114835A (en) 1999-07-26 2000-09-05 Unitrode Corporation Multi-cell battery pack charge balancing circuit
JP3681624B2 (en) * 2000-08-31 2005-08-10 富士通株式会社 Charging circuit, charging / discharging circuit, and battery pack
US7061207B2 (en) * 2002-08-09 2006-06-13 H2Eye (International ) Limited Cell equalizing circuit
US7081737B2 (en) * 2003-06-19 2006-07-25 O2Micro International Limited Battery cell monitoring and balancing circuit
JP3944855B2 (en) 2003-11-07 2007-07-18 株式会社リコー Capacitor charging semiconductor device
JP2005151720A (en) 2003-11-17 2005-06-09 Mitsubishi Heavy Ind Ltd Cell balance correcting device, secondary battery, method of correcting cell balance and cell balance correcting program
JP4135676B2 (en) * 2004-04-28 2008-08-20 ミツミ電機株式会社 Battery protection device, battery protection system using the same, and battery protection method
US20050269989A1 (en) * 2004-06-05 2005-12-08 Geren Michael D Cell balancing circuit
US7126312B2 (en) * 2004-07-28 2006-10-24 Enerdel, Inc. Method and apparatus for balancing multi-cell lithium battery systems
US7508165B2 (en) * 2004-10-19 2009-03-24 Denso Corporation Cell voltage equalization apparatus for combined battery pack including circuit driven by power supplied by the combined battery pack
JP4220953B2 (en) 2004-10-27 2009-02-04 三菱重工業株式会社 Cell balance apparatus and method, and program
JP4611387B2 (en) 2004-12-24 2011-01-12 エルジー・ケム・リミテッド Voltage balance control system for lithium ion battery and control method thereof
US7352155B2 (en) * 2006-06-12 2008-04-01 O2Micro International Ltd. Apparatus and method for detecting battery pack voltage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017134A (en) * 2001-06-27 2003-01-17 Osaka Gas Co Ltd Accumulator management system
JP2007244058A (en) * 2006-03-07 2007-09-20 Nissan Motor Co Ltd Capacity adjusting device of battery pack

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043589A1 (en) * 2010-09-30 2012-04-05 三洋電機株式会社 Power supply device
KR20180080633A (en) * 2017-01-04 2018-07-12 한국전자통신연구원 Battery module and electronic device including the same
KR102221618B1 (en) 2017-01-04 2021-03-02 한국전자통신연구원 Battery module and electronic device including the same

Also Published As

Publication number Publication date
KR100905663B1 (en) 2009-06-30
US20090315514A1 (en) 2009-12-24
CN101501955A (en) 2009-08-05
US8283895B2 (en) 2012-10-09
WO2008007924A1 (en) 2008-01-17
EP2050178A1 (en) 2009-04-22
CN101501955B (en) 2012-06-27
EP2050178A4 (en) 2011-08-03
EP2050178B1 (en) 2017-12-27
KR20080006821A (en) 2008-01-17
JP4663811B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
JP4663811B2 (en) Circuit operating current balancing device and method for battery device
JP7174285B2 (en) Secondary battery protection circuit, secondary battery protection integrated circuit and battery pack
JP4598815B2 (en) Secondary battery charging circuit
JP4400536B2 (en) Capacity adjustment device and capacity adjustment method for battery pack
US8395359B2 (en) Charge controller
US20080018308A1 (en) Power processing unit and related method for controlling voltage fluctuations across an energy storage device
JP2008220167A (en) Equalizer system and method for series connected energy storage device
WO2013161512A1 (en) Charge control apparatus and charge control method
US20110089909A1 (en) Electric energy storage module control device
JPWO2019187692A1 (en) Battery pack and its charge control method
JP2015186331A (en) balance correction circuit, power storage module and balance correction method
TW201308832A (en) Battery pack with balancing management
JP4878573B2 (en) Battery protection circuit and battery pack
JP5489779B2 (en) Lithium-ion battery charging system and charging method
JP2018117438A (en) Power source module with lithium ion capacitor
JP2012029382A (en) Power storage device and energy balance adjusting method
TW201217937A (en) Circuits for generating reference signals, battery management circuit and method thereof
JP6214577B2 (en) Power supply system for float charging with balance function
JP2008054415A (en) Voltage compensator, voltage compensation system and method
US11031791B2 (en) Electronic adjusting device for electric energy storing apparatus of the type provided with batteries
JP2000236631A (en) Battery charge control circuit
JP6211017B2 (en) Power supply system for float charging
JP2014121196A (en) Secondary battery charging apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110105

R150 Certificate of patent or registration of utility model

Ref document number: 4663811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250