JP2007244058A - Capacity adjusting device of battery pack - Google Patents

Capacity adjusting device of battery pack Download PDF

Info

Publication number
JP2007244058A
JP2007244058A JP2006060936A JP2006060936A JP2007244058A JP 2007244058 A JP2007244058 A JP 2007244058A JP 2006060936 A JP2006060936 A JP 2006060936A JP 2006060936 A JP2006060936 A JP 2006060936A JP 2007244058 A JP2007244058 A JP 2007244058A
Authority
JP
Japan
Prior art keywords
current consumption
cell
discharge
capacity adjustment
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006060936A
Other languages
Japanese (ja)
Other versions
JP4770522B2 (en
Inventor
Kenta Saito
健太 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006060936A priority Critical patent/JP4770522B2/en
Publication of JP2007244058A publication Critical patent/JP2007244058A/en
Application granted granted Critical
Publication of JP4770522B2 publication Critical patent/JP4770522B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem wherein capacities between cells are not uniform even after finishing the capacity adjustment of the cell when each current consumption between a plurality of cell controllers differs from one another, and to provide a capacity adjusting device of a battery pack that makes uniform the capacities between the cells after the capacity adjustment by taking into account the difference of each current consumption of a plurality of current consumption apparatuses that operate by voltages of specified cells as voltage sources. <P>SOLUTION: A capacity variation amount between the cells is detected, and electric charges of the cells are discharged on the basis of the detected capacity variation amount and the current consumption between the cell controllers with the voltages of the specified cells as the voltage sources. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、組電池を構成する複数のセル間の容量調整を行う装置に関する。   The present invention relates to an apparatus for adjusting capacity between a plurality of cells constituting an assembled battery.

従来、組電池を構成する複数のセルごとに放電回路を設け、各セル間の容量バラツキ量に基づいて、各セルごとに放電回路の動作を制御して、各セル間の容量を均一にする容量調整装置が知られている(特許文献1参照)。この容量調整装置では、所定数のセルの電圧を電源として駆動するセルコントローラによって、対応するセルの充放電が制御される。   Conventionally, a discharge circuit is provided for each of a plurality of cells constituting an assembled battery, and the operation of the discharge circuit is controlled for each cell based on the amount of capacity variation between the cells, so that the capacity between the cells is uniform. A capacity adjusting device is known (see Patent Document 1). In this capacity adjusting device, charging / discharging of the corresponding cell is controlled by a cell controller that drives the voltage of a predetermined number of cells as a power source.

特開平10−322925号公報JP-A-10-322925

しかしながら、従来の容量調整装置において、各セルコントローラ間の消費電流が異なる場合には、容量調整終了後も、セルコントローラ間の消費電流の差に起因して、各セル間の容量が均一にならないという問題があった。   However, in the conventional capacity adjustment device, when the current consumption between the cell controllers is different, the capacity between the cells does not become uniform due to the difference in the current consumption between the cell controllers even after the capacity adjustment is completed. There was a problem.

本発明による組電池の容量調整装置は、各セル間の容量バラツキ量を検出する容量バラツキ量検出手段と、各セル間の容量バラツキ量、および、特定のセルの電圧を電圧源として作動する複数の電流消費機器の消費電流の差に基づいて、各セルの放電を行う放電手段とを備えることを特徴とする。   A battery pack capacity adjustment apparatus according to the present invention includes a capacity variation amount detecting means for detecting a capacity variation amount between cells, a capacity variation amount between cells, and a plurality of cells that operate using a voltage of a specific cell as a voltage source. Discharge means for discharging each cell based on the difference in current consumption of the current consuming devices.

本発明による組電池の容量調整装置によれば、特定のセルの電圧を電圧源として作動する複数の電流消費機器の消費電流の差を考慮して、容量調整後のセル間の容量を均一にすることができる。   According to the battery pack capacity adjustment apparatus of the present invention, the capacity between cells after capacity adjustment is made uniform in consideration of the difference in current consumption of a plurality of current consuming devices that operate using the voltage of a specific cell as a voltage source. can do.

−第1の実施の形態−
図1は、第1の実施の形態における組電池の容量調整装置の構成を示す図である。この組電池の容量調整装置は、例えば、ハイブリッド自動車に搭載されて使用される。組電池100は、例えば、リチウムイオン電池であり、充放電可能なn(n:自然数)個のセルC1〜Cnを直列に接続して構成されている。各セルC1〜Cnは4個ずつにまとめられて、モジュールM1,M2,…,Mtを構成する。
-First embodiment-
FIG. 1 is a diagram illustrating a configuration of a battery pack capacity adjustment device according to the first embodiment. This battery pack capacity adjustment device is mounted and used in, for example, a hybrid vehicle. The assembled battery 100 is, for example, a lithium ion battery, and is configured by connecting n (n: natural number) cells C1 to Cn that can be charged and discharged in series. Each of the cells C1 to Cn is grouped into four to constitute modules M1, M2,.

モジュールM1,M2,…,Mtごとに設けられているセルコントローラCC1,CC2,…,CCtは、対応するモジュール内のセルの電圧を駆動電源として、モジュールごとに、セルを管理する。例えば、セルコントローラCC1は、モジュールM1に含まれる4個のセルC1〜C4の電圧を駆動電源として、各セルC1〜C4の充放電を制御する。各セルコントローラCC1〜CCtは、直列に接続されており、隣り合うセルコントローラとの間で通信を行う。   The cell controllers CC1, CC2,..., CCt provided for each of the modules M1, M2,..., Mt manage the cells for each module using the voltage of the cell in the corresponding module as a driving power source. For example, the cell controller CC1 controls charging / discharging of each of the cells C1 to C4 using the voltages of the four cells C1 to C4 included in the module M1 as driving power. Each cell controller CC1-CCt is connected in series, and communicates between adjacent cell controllers.

バッテリコントローラ10は、CPU10a、メモリ10bおよびタイマ10cを備え、各セルコントローラCC1〜CCtを制御して、組電池100を管理する。バッテリコントローラ10の送信端子TXは、絶縁素子を介して、セルコントローラCC1の受信端子RXと接続されており、バッテリコントローラ10の受信端子RXは、絶縁素子を介して、セルコントローラCCtの送信端子TXと接続されている。すなわち、バッテリコントローラ10は、セルコントローラCC1およびCCtとの間で、通信を行う。   The battery controller 10 includes a CPU 10a, a memory 10b, and a timer 10c, and manages the assembled battery 100 by controlling the cell controllers CC1 to CCt. The transmission terminal TX of the battery controller 10 is connected to the reception terminal RX of the cell controller CC1 via an insulation element, and the reception terminal RX of the battery controller 10 is connected to the transmission terminal TX of the cell controller CCt via an insulation element. Connected with. That is, the battery controller 10 communicates with the cell controllers CC1 and CCt.

図2は、セルコントローラの詳細な回路構成を示す図である。ここでは、セルコントローラCC1およびCC2を取り上げて説明する。セルコントローラCC1は、IC11と、A/Dコンバータ12と、フォトカプラ13と、抵抗器R1〜R4と、スイッチS1〜S4とを備えている。   FIG. 2 is a diagram showing a detailed circuit configuration of the cell controller. Here, the cell controllers CC1 and CC2 are taken up and described. The cell controller CC1 includes an IC 11, an A / D converter 12, a photocoupler 13, resistors R1 to R4, and switches S1 to S4.

A/Dコンバータ12は、各セルC1〜C4の端子間電圧をデジタル信号に変換して、IC11に送信する。フォトカプラ13は、セルC1〜C4を電圧駆動源としており、セルコントローラCC1とバッテリコントローラ10との間を電気的に絶縁する。   The A / D converter 12 converts the voltage between the terminals of each of the cells C1 to C4 into a digital signal and transmits it to the IC11. The photocoupler 13 uses the cells C1 to C4 as voltage drive sources, and electrically insulates the cell controller CC1 and the battery controller 10 from each other.

各セルC1〜C4にはそれぞれ、抵抗器とスイッチの直列回路が並列に接続されている。抵抗器とスイッチからなる直列回路は、それぞれのセルの容量調整回路であり、例えば、抵抗器R1およびスイッチS1からなる直列回路は、セルC1の容量調整回路を構成する。各抵抗器R1〜R4を介して、対応するセルC1〜C4の充電電荷を放電することによって、各セルの充電容量を調整することができる。スイッチS1〜S4はそれぞれ、IC11により開閉が制御される。例えば、スイッチS1が閉じられると、抵抗器R1を介してセルC1の放電が行われる。   A series circuit of a resistor and a switch is connected in parallel to each of the cells C1 to C4. A series circuit composed of a resistor and a switch is a capacity adjustment circuit for each cell. For example, a series circuit composed of a resistor R1 and a switch S1 constitutes a capacity adjustment circuit for the cell C1. The discharge capacity of the corresponding cells C1 to C4 is discharged via the resistors R1 to R4, so that the charge capacity of each cell can be adjusted. The switches S1 to S4 are controlled to be opened and closed by the IC 11, respectively. For example, when the switch S1 is closed, the cell C1 is discharged via the resistor R1.

各抵抗器R1〜R4、および、後述する抵抗器R5〜R8の抵抗値は同一であり、例えば、200Ωとする。各セルの容量調整量(放電量)は、対応して設けられているスイッチの閉路時間に依存し、スイッチの開閉時間をコントロールすることにより、容量調整量を制御する。   Each of the resistors R1 to R4 and resistors R5 to R8 described later have the same resistance value, for example, 200Ω. The capacity adjustment amount (discharge amount) of each cell depends on the closing time of the corresponding switch, and the capacity adjustment amount is controlled by controlling the switch opening and closing time.

なお、図には示していないが、セルコントローラCCtの構成も、セルコントローラCC1の構成と同様である。   Although not shown in the figure, the configuration of the cell controller CCt is the same as the configuration of the cell controller CC1.

セルコントローラCC2は、IC21と、A/Dコンバータ22と、オフセット回路23と、抵抗器R5〜R8と、スイッチS5〜8とを備えている。A/Dコンバータ22は、各セルC5〜C8の端子間電圧をデジタル信号に変換して、IC21に送信する。IC21は、オフセット回路23を介して、セルコントローラCC1との間で通信を行うとともに、図示しないセルコントローラCC3が備えるオフセット回路を介して、セルコントローラCC3との間で通信を行う。   The cell controller CC2 includes an IC 21, an A / D converter 22, an offset circuit 23, resistors R5 to R8, and switches S5 to S8. The A / D converter 22 converts the voltage between the terminals of each of the cells C5 to C8 into a digital signal and transmits it to the IC 21. The IC 21 communicates with the cell controller CC1 via the offset circuit 23, and communicates with the cell controller CC3 via an offset circuit included in the cell controller CC3 (not shown).

各抵抗器R5〜R8およびスイッチS5〜S8は、セルコントローラCC1に設けられている抵抗器R1〜R4およびスイッチS1〜S4と同様に、容量調整回路を構成している。スイッチR5〜R8の開閉は、IC21によって制御される。   Each of the resistors R5 to R8 and the switches S5 to S8 constitutes a capacity adjustment circuit similarly to the resistors R1 to R4 and the switches S1 to S4 provided in the cell controller CC1. Opening and closing of the switches R5 to R8 is controlled by the IC 21.

なお、図には示していないが、セルコントローラCC3〜CCt-1の構成も、セルコントローラCC2の構成と同様である。   Although not shown in the figure, the configurations of the cell controllers CC3 to CCt-1 are the same as the configuration of the cell controller CC2.

図3および図4は、第1の実施の形態における組電池の容量調整装置によって行われる処理内容を示すフローチャートである。バッテリコントローラ10は、車両が起動して、自身の電源がオンされると、ステップS10の処理を開始する。   FIG. 3 and FIG. 4 are flowcharts showing the contents of processing performed by the battery pack capacity adjustment apparatus in the first embodiment. The battery controller 10 starts the process of step S10 when the vehicle is activated and its power source is turned on.

ステップ10では、無負荷時のセル電圧を取得する。各セルコントローラCC1〜CCtは、組電池100が無負荷状態の時に、管理している各セルの電圧を検出する。検出したセル電圧は、隣接しているセルコントローラに順次送信され、最終的に、セルコントローラCCtを介して、バッテリコントローラ10に送信される。   In step 10, the cell voltage at the time of no load is acquired. Each cell controller CC1-CCt detects the voltage of each cell managed when the assembled battery 100 is a no-load state. The detected cell voltage is sequentially transmitted to adjacent cell controllers, and finally transmitted to the battery controller 10 via the cell controller CCt.

ステップS10に続くステップS20では、ステップS10で取得した各セルの無負荷時電圧に基づいて、セル間の容量を均一にするための容量調整時間(放電時間)を、各セルごとに算出する。図5は、セルの無負荷時電圧(開放電圧)と、SOC[%]および充電量[Ah]との関係を示す図である。バッテリコントローラ10のメモリ10bには、図5に示すようなセル電圧−充電量テーブルが予め記憶されており、ステップS10で取得したセル電圧と、メモリに記憶されているセル電圧−充電量テーブルとに基づいて、各セルの充電量[Ah]をまず求める。   In step S20 following step S10, a capacity adjustment time (discharge time) for making the capacity between cells uniform is calculated for each cell based on the no-load voltage of each cell acquired in step S10. FIG. 5 is a diagram showing the relationship between the no-load voltage (open voltage) of the cell, SOC [%], and charge amount [Ah]. A cell voltage-charge amount table as shown in FIG. 5 is stored in advance in the memory 10b of the battery controller 10, and the cell voltage acquired in step S10, the cell voltage-charge amount table stored in the memory, and First, the charge amount [Ah] of each cell is obtained.

続いて、各セルの充電量と、充電量が最も小さいセルの充電量との差を求め、求めた充電量の差に基づいて、容量調整時間を求める。例えば、セルCk(k=1〜n)の容量調整時間Tk(k=1〜n)は、求めた充電量の差と、容量調整時のバイパス電流Ik(k=1〜n)とに基づいて、次式(1)から求める。ただし、容量調整時(放電時)のバイパス電流Ikは、容量調整回路を構成している抵抗器Rkの抵抗値、および、セルCkの電圧値に基づいて算出する。
Tk=充電量の差/バイパス電流Ik (1)
Subsequently, the difference between the charge amount of each cell and the charge amount of the cell with the smallest charge amount is obtained, and the capacity adjustment time is obtained based on the obtained charge amount difference. For example, the capacity adjustment time Tk (k = 1 to n) of the cell Ck (k = 1 to n) is based on the obtained charge amount difference and the bypass current Ik (k = 1 to n) at the time of capacity adjustment. Thus, it is obtained from the following equation (1). However, the bypass current Ik at the time of capacity adjustment (during discharge) is calculated based on the resistance value of the resistor Rk constituting the capacity adjustment circuit and the voltage value of the cell Ck.
Tk = charge amount difference / bypass current Ik (1)

ステップS20に続くステップS30では、消費電流の大きいセルコントローラが管理するセルの容量調整時間を補正する。図1および図2に示す回路構成では、セルコントローラCC1およびCCtは、フォトカプラを介して、バッテリコントローラ10と通信を行っているが、各セルコントローラ間では、オフセット回路を介して通信が行われる。上述したように、フォトカプラの駆動電源を、セルコントローラが管理しているセルの電圧としているため、フォトカプラが設けられているセルコントローラCC1およびCCtの消費電流は、フォトカプラが設けられていないセルコントローラCC2〜CCt-1の消費電流よりも多くなる。   In step S30 following step S20, the cell capacity adjustment time managed by the cell controller having a large current consumption is corrected. In the circuit configuration shown in FIG. 1 and FIG. 2, the cell controllers CC1 and CCt communicate with the battery controller 10 via photocouplers, but communication between each cell controller is performed via an offset circuit. . As described above, since the driving power of the photocoupler is the cell voltage managed by the cell controller, the current consumption of the cell controllers CC1 and CCt provided with the photocoupler is not provided with the photocoupler. More than the current consumption of the cell controllers CC2 to CCt-1.

セルコントローラ間の消費電流の差は、セルコントローラを構成する回路素子(フォトカプラ)の特性によって決まるので、各セルコントローラの設計値に基づいて、予め消費電流の差を求めておいて、バッテリコントローラ10のメモリ10bに記憶させておく。ステップS30では、メモリ10bに記憶されている消費電流の差のデータを用いて、次式(2)より、セルコントローラCC1およびCCtの容量調整時間を補正する。
補正後の容量調整時間=充電量の差/(バイパス電流+消費電流の差) (2)
Since the difference in current consumption between cell controllers is determined by the characteristics of circuit elements (photocouplers) constituting the cell controller, the difference in current consumption is obtained in advance based on the design value of each cell controller. 10 is stored in the memory 10b. In step S30, the capacity adjustment time of the cell controllers CC1 and CCt is corrected by the following equation (2) using the difference data of the consumption current stored in the memory 10b.
Capacity adjustment time after correction = difference in charge amount / (bypass current + difference in current consumption) (2)

すなわち、ステップS30では、セルコントローラCC2〜CCt-1と比べて、消費電流が多いセルコントローラCC1およびCCtの容量調整時間が短くなるように、容量調整時間を補正している。消費電流が多いセルコントローラCC1およびCCtの容量調整時間を補正すると、ステップS40に進む。   That is, in step S30, the capacity adjustment time is corrected so that the capacity adjustment times of the cell controllers CC1 and CCt that consume more current are shorter than those of the cell controllers CC2 to CCt-1. When the capacity adjustment times of the cell controllers CC1 and CCt with large current consumption are corrected, the process proceeds to step S40.

ステップS40では、複数のセルC1〜Cnのうち、少なくとも1つのセルの容量調整時間が0より大きいか否かを判定する。少なくとも1つのセルの容量調整時間が0より大きいと判定すると、ステップS50に進む。ステップS50では、容量調整時間が0より大きいセル、すなわち、容量調整を行うセルに対応して設けられているスイッチをオンする旨の指示信号をセルコントローラCC1に送信する。この指示信号は、セルコントローラCC1から、順次、隣接するセルコントローラを介して、セルコントローラCCtまで送信される。   In step S40, it is determined whether or not the capacity adjustment time of at least one cell among the plurality of cells C1 to Cn is greater than zero. If it is determined that the capacity adjustment time of at least one cell is greater than 0, the process proceeds to step S50. In step S50, an instruction signal to turn on a switch provided corresponding to a cell whose capacity adjustment time is longer than 0, that is, a cell whose capacity is to be adjusted, is transmitted to the cell controller CC1. This instruction signal is sequentially transmitted from the cell controller CC1 to the cell controller CCt via the adjacent cell controllers.

バッテリコントローラ10から出力される指示信号を受信した各セルコントローラCC1〜CCtは、指示信号に基づいて、容量調整時間が0より大きいセルに対応して設けられているスイッチをオンする。スイッチがオンされることにより、対応するセルの放電が開始される。   Each cell controller CC1 to CCt that has received the instruction signal output from the battery controller 10 turns on the switch provided corresponding to the cell whose capacity adjustment time is greater than 0, based on the instruction signal. When the switch is turned on, discharge of the corresponding cell is started.

ステップS50に続くステップS60では、いずれかのセルにおいて、容量調整時間が経過したか否かを判定する。各セルコントローラCC1〜CCtは、管理している各セルを対象として、容量調整時間が経過したか否か、すなわち、容量調整が終了したか否かを監視している。従って、管理しているセルのうち、容量調整時間が経過したセルがあれば、その旨の信号をバッテリコントローラ10に送信する。バッテリコントローラ10は、容量調整時間を経過したセルがないと判定すると、ステップS40に戻り、容量調整時間を経過したセルが存在すると判定すると、ステップS70に進む。   In step S60 following step S50, it is determined whether or not the capacity adjustment time has elapsed in any cell. Each cell controller CC1 to CCt monitors whether or not capacity adjustment time has passed, that is, whether or not capacity adjustment has been completed, for each managed cell. Therefore, if there is a cell whose capacity adjustment time has elapsed among the managed cells, a signal to that effect is transmitted to the battery controller 10. If the battery controller 10 determines that there is no cell that has passed the capacity adjustment time, the process returns to step S40. If the battery controller 10 determines that there is a cell that has passed the capacity adjustment time, the process proceeds to step S70.

ステップS70では、容量調整時間を経過したセルに対応して設けられているスイッチをオフする旨の指示信号をセルコントローラCC1に送信する。この指示信号は、セルコントローラCC1から、順次、隣接するセルコントローラを介して、セルコントローラCCtまで送信される。指示信号を受信した各セルコントローラCC1〜CCtは、指示信号に基づいて、容量調整時間を経過したセルに対応して設けられているスイッチをオフする。ステップS70の処理を終了すると、ステップS40に戻る。   In step S70, an instruction signal to turn off the switch provided corresponding to the cell whose capacity adjustment time has passed is transmitted to the cell controller CC1. This instruction signal is sequentially transmitted from the cell controller CC1 to the cell controller CCt via the adjacent cell controllers. Each cell controller CC1 to CCt that has received the instruction signal turns off the switch provided corresponding to the cell whose capacity adjustment time has passed, based on the instruction signal. When the process of step S70 is completed, the process returns to step S40.

一方、ステップS40において、全てのセルの容量調整時間が0であると判定されると、全てのセルの容量調整が終了したと判定して、図4に示すフローチャートのステップS80に進む。ステップS80では、タイマ10cをスタートさせて、ステップS90に進む。ステップS90では、消費電流の差の積算値を求めるために用いるカウント値Vを1だけカウントアップして、ステップS100に進む。なお、カウント値Vの初期値は0である。   On the other hand, if it is determined in step S40 that the capacity adjustment time of all the cells is 0, it is determined that the capacity adjustment of all the cells has been completed, and the process proceeds to step S80 of the flowchart shown in FIG. In step S80, the timer 10c is started and the process proceeds to step S90. In step S90, the count value V used for obtaining the integrated value of the current consumption difference is incremented by 1, and the process proceeds to step S100. Note that the initial value of the count value V is zero.

ステップS100では、次式(3)に基づいて、消費電流の差の積算値Wを求める。
W=消費電流の差×Δt×カウント値V (3)
ただし、Δtは、バッテリコントローラ10の演算周期である。
In step S100, an integrated value W of the difference in current consumption is obtained based on the following equation (3).
W = difference in current consumption × Δt × count value V (3)
However, Δt is a calculation cycle of the battery controller 10.

ステップS100に続くステップS110では、タイマ10cによって計測されている時間が所定時間Ts(例えば、10分)を経過したか否かを判定する。所定時間Tsを経過していないと判定するとステップS140に進み、所定時間Tsを経過したと判定すると、ステップS120に進む。   In step S110 following step S100, it is determined whether or not the time measured by the timer 10c has passed a predetermined time Ts (for example, 10 minutes). If it is determined that the predetermined time Ts has not elapsed, the process proceeds to step S140. If it is determined that the predetermined time Ts has elapsed, the process proceeds to step S120.

ステップS120では、消費電流の小さいセルコントローラ、すなわち、セルコントローラCC2〜CCt-1が管理するセルの容量調整時間Tbを算出する。容量調整時間Tbは、次式(4)に基づいて算出する。
Tb=W/バイパス電流 (4)
ただし、Wは、ステップS100で算出する消費電流の差の積算値である。また、バイパス電流は、容量調整を行うセルの容量調整時の放電電流であり、容量調整回路を構成している抵抗器の抵抗値、および、セルの電圧値に基づいて算出する。
In step S120, the cell capacity adjustment time Tb managed by the cell controller with low current consumption, that is, the cell controllers CC2 to CCt-1, is calculated. The capacity adjustment time Tb is calculated based on the following equation (4).
Tb = W / Bypass current (4)
However, W is an integrated value of the difference in current consumption calculated in step S100. Further, the bypass current is a discharge current at the time of capacity adjustment of the cell for which capacity adjustment is performed, and is calculated based on the resistance value of the resistor constituting the capacity adjustment circuit and the voltage value of the cell.

ステップS120に続くステップS130では、カウント値Vを0にリセットするとともに、タイマ10cのタイマ値を0にリセットしてから再スタートさせて、ステップS140に進む。ステップS140の処理は、ステップS40の処理と同じである。すなわち、複数のセルC1〜Cnのうち、少なくとも1つのセルの容量調整時間が0より大きいか否かを判定する。全てのセルの容量調整時間が0であると判定するとステップS90に戻り、少なくとも1つのセルの容量調整時間が0より大きいと判定すると、ステップS150に進む。   In step S130 following step S120, the count value V is reset to 0, the timer value of the timer 10c is reset to 0 and restarted, and the process proceeds to step S140. The process of step S140 is the same as the process of step S40. That is, it is determined whether or not the capacity adjustment time of at least one cell among the plurality of cells C1 to Cn is greater than zero. If it is determined that the capacity adjustment time of all the cells is 0, the process returns to step S90. If it is determined that the capacity adjustment time of at least one cell is greater than 0, the process proceeds to step S150.

ステップS150の処理は、ステップS50の処理と同じである。すなわち、容量調整時間が0より大きいセル、換言すると、容量調整を行うセルに対応して設けられているスイッチをオンする旨の指示信号をセルコントローラCC1に送信する。この指示信号は、セルコントローラCC1から、順次、隣接するセルコントローラを介して、セルコントローラCCtまで送信される。バッテリコントローラ10から出力される指示信号を受信した各セルコントローラCC1〜CCtは、指示信号に基づいて、容量調整時間が0より大きいセルに対応して設けられているスイッチをオンする。   The process of step S150 is the same as the process of step S50. That is, an instruction signal to turn on a switch provided corresponding to a cell whose capacity adjustment time is greater than 0, in other words, a cell whose capacity is adjusted, is transmitted to the cell controller CC1. This instruction signal is sequentially transmitted from the cell controller CC1 to the cell controller CCt via the adjacent cell controllers. Each cell controller CC1 to CCt that has received the instruction signal output from the battery controller 10 turns on the switch provided corresponding to the cell whose capacity adjustment time is greater than 0, based on the instruction signal.

ステップS150に続くステップS160の処理は、ステップS60の処理と同じである。すなわち、いずれかのセルにおいて、容量調整時間が経過したか否かを判定する。容量調整時間を経過したセルがないと判定すると、ステップS90に戻り、容量調整時間を経過したセルが存在すると判定すると、ステップS170に進む。   The process of step S160 following step S150 is the same as the process of step S60. That is, it is determined whether or not the capacity adjustment time has elapsed in any cell. If it is determined that there is no cell whose capacity adjustment time has elapsed, the process returns to step S90, and if it is determined that there is a cell whose capacity adjustment time has elapsed, the process proceeds to step S170.

ステップS170の処理は、ステップS70の処理と同じである。すなわち、容量調整時間を経過したセルに対応して設けられているスイッチをオフする旨の指示信号をセルコントローラCC1に送信する。この指示信号は、セルコントローラCC1から、順次、隣接するセルコントローラを介して、セルコントローラCCtまで送信される。指示信号を受信した各セルコントローラCC1〜CCtは、指示信号に基づいて、容量調整時間を経過したセルに対応して設けられているスイッチをオフする。容量調整時間を経過したセルに対応して設けられているスイッチをオフすると、ステップS90に戻る。   The process of step S170 is the same as the process of step S70. That is, an instruction signal for turning off the switch provided corresponding to the cell whose capacity adjustment time has passed is transmitted to the cell controller CC1. This instruction signal is sequentially transmitted from the cell controller CC1 to the cell controller CCt via the adjacent cell controllers. Each cell controller CC1 to CCt that has received the instruction signal turns off the switch provided corresponding to the cell whose capacity adjustment time has passed, based on the instruction signal. When the switch provided corresponding to the cell whose capacity adjustment time has elapsed is turned off, the process returns to step S90.

上述した図3および図4に示すフローチャートの処理のうち、図3に示すフローチャートの処理は、セルコントローラ間の消費電流の差を考慮して、各セル間の容量バラツキを調整する処理である。一方、図4に示すフローチャートの処理は、セル間の容量調整終了後でも、セルコントローラ間の消費電流の差に起因して、セル間の容量にバラツキが生じるため、この容量バラツキを所定時間ごとに調整する処理である。   Among the processes of the flowcharts shown in FIGS. 3 and 4 described above, the process of the flowchart shown in FIG. 3 is a process of adjusting the capacity variation between the cells in consideration of the difference in current consumption between the cell controllers. On the other hand, since the process of the flowchart shown in FIG. 4 causes a variation in the capacity between cells due to the difference in the current consumption between the cell controllers even after the capacity adjustment between the cells is completed, this capacity variation is determined every predetermined time. It is a process to adjust to.

第1の実施の形態における組電池の容量調整装置によれば、組電池100を構成する複数のセル間の容量バラツキを検出し、検出した容量バラツキと、特定のセルの電圧を電圧源として作動するセルコントローラ間の消費電流の差とに基づいて、各セルの放電を行うので、セルコントローラ間の消費電流の差を考慮した容量調整を行うことができる。すなわち、セルコントローラ間で消費電流が異なる場合でも、容量調整後の各セルの容量を均一にすることができる。   According to the battery pack capacity adjustment apparatus in the first embodiment, the capacity variation between a plurality of cells constituting the battery pack 100 is detected, and the detected capacity variation and the voltage of a specific cell are operated as a voltage source. Since each cell is discharged based on the difference in current consumption between the cell controllers, the capacity can be adjusted in consideration of the difference in current consumption between the cell controllers. That is, even when the current consumption differs between the cell controllers, the capacity of each cell after capacity adjustment can be made uniform.

また、第1の実施の形態における組電池の容量調整装置によれば、セル間の容量バラツキ量に基づいて、各セルごとの放電量を算出し、セルコントローラ間の消費電流の差に基づいて、放電量を補正するので、容量調整後の各セルの容量を正確に均一にすることができる。特に、第1の実施の形態における組電池の容量調整装置によれば、消費電流が最も小さいセルコントローラCC2〜CCt-1を基準として、消費電流の大きいセルコントローラCC1,CCtの電圧源となっているセルの放電量が小さくなるように、放電量を補正するので、消費電流の小さいセルコントローラの電圧源となっているセルの放電量が大きくなるように、放電量を補正する場合に比べて、無駄な放電を抑制することができる。   Moreover, according to the capacity adjustment apparatus of the assembled battery in 1st Embodiment, the discharge amount for every cell is calculated based on the capacity | capacitance variation amount between cells, and based on the difference in the consumption current between cell controllers. Since the discharge amount is corrected, the capacity of each cell after capacity adjustment can be made uniform accurately. In particular, according to the battery pack capacity adjustment apparatus in the first embodiment, the cell controllers CC2 to CCt-1 having the smallest current consumption are used as reference voltage sources for the cell controllers CC1 and CCt having a large current consumption. Since the discharge amount is corrected so that the discharge amount of the cell is small, compared to the case where the discharge amount is corrected so that the discharge amount of the cell that is the voltage source of the cell controller with low current consumption is large. , Wasteful discharge can be suppressed.

また、第1の実施の形態における組電池の容量調整装置によれば、セル間の容量調整が終了した後に、所定時間ごとに、消費電流の小さいセルコントローラの電圧源となっているセルを対象として、消費電流の差に基づいた放電を行うので、セルコントローラ間の消費電流の差に起因して生じるセル間の容量バラツキを、所定時間ごとに解消することができる。   Further, according to the assembled battery capacity adjustment device in the first embodiment, after the capacity adjustment between the cells is completed, the cell serving as the voltage source of the cell controller having a small current consumption is processed every predetermined time. As described above, since the discharge is performed based on the difference in consumption current, the capacity variation between cells caused by the difference in consumption current between the cell controllers can be eliminated every predetermined time.

−第2の実施の形態−
第1の実施の形態における組電池の容量調整装置では、図3に示すフローチャートのステップS30において、消費電流の大きいセルコントローラが管理するセルの容量調整時間を補正した。第2の実施の形態における組電池の容量調整装置では、消費電流の小さいセルコントローラが管理するセルの容量調整時間を補正する。
-Second Embodiment-
In the battery pack capacity adjustment apparatus according to the first embodiment, the cell capacity adjustment time managed by the cell controller with large current consumption is corrected in step S30 of the flowchart shown in FIG. In the battery pack capacity adjustment apparatus according to the second embodiment, the capacity adjustment time of the cell managed by the cell controller with low current consumption is corrected.

図6は、第2の実施の形態における組電池の容量調整装置によって行われる処理を示すフローチャートであり、図3に示すフローチャートと対応している。図6に示すフローチャートが図3に示すフローチャートと異なるのは、ステップS30に対応するステップS200の処理である。従って、以下では、ステップS200の処理のみについて説明する。   FIG. 6 is a flowchart showing a process performed by the battery pack capacity adjustment apparatus in the second embodiment, and corresponds to the flowchart shown in FIG. 3. The flowchart shown in FIG. 6 differs from the flowchart shown in FIG. 3 in the process of step S200 corresponding to step S30. Therefore, only the process of step S200 will be described below.

ステップS200では、消費電流の小さいセルコントローラが管理するセル、すなわち、セルコントローラCC2〜CCt-1が管理しているセルの容量調整時間を補正する。ここでは、次式(5)に基づいて、セルコントローラCC2〜CCt-1の容量調整時間を補正する。補正後の容量調整時間=充電量の差/(バイパス電流−消費電流の差) (5)   In step S200, the capacity adjustment time of the cell managed by the cell controller with a small current consumption, that is, the cell managed by the cell controllers CC2 to CCt-1 is corrected. Here, the capacity adjustment time of the cell controllers CC2 to CCt-1 is corrected based on the following equation (5). Capacity adjustment time after correction = difference in charge amount / (difference in bypass current-current consumption) (5)

すなわち、ステップS200では、セルコントローラCC1,CCtと比べて、消費電流が少ないセルコントローラCC2〜CCt-1の容量調整時間が長くなるような補正を行っている。消費電流が少ないセルコントローラCC2〜CCt-1の容量調整時間を補正すると、ステップS40に進む。ステップS40以後の処理は、図3および図4に示すフローチャートの処理と同じである。   That is, in step S200, correction is performed such that the capacity adjustment time of the cell controllers CC2 to CCt-1 that consumes less current is longer than that of the cell controllers CC1 and CCt. When the capacity adjustment time of the cell controllers CC2 to CCt-1 with low current consumption is corrected, the process proceeds to step S40. The processing after step S40 is the same as the processing of the flowcharts shown in FIGS.

第2の実施の形態における組電池の容量調整装置によれば、消費電流が最も大きいセルコントローラCC1,CCtを基準として、消費電流の小さいセルコントローラCC2〜CCt-1の電圧源となっているセルの放電量が大きくなるように、放電量を補正するので、容量調整後の各セルの容量を均一にすることができる。   According to the battery pack capacity adjustment apparatus in the second embodiment, the cells that are the voltage sources of the cell controllers CC2 to CCt-1 with low current consumption are based on the cell controllers CC1 and CCt with the highest current consumption. Since the discharge amount is corrected so that the discharge amount increases, the capacity of each cell after capacity adjustment can be made uniform.

−第3の実施の形態−
第1および第2の実施の形態における組電池の容量調整装置では、セルコントローラ間の消費電流の差に基づいて、各セルの容量調整時間を補正することにより、各セルの容量が均一になるような容量調整を行った。第3の実施の形態における組電池の容量調整装置では、消費電流の小さいセルコントローラが管理しているセルに対して、消費電流差補正回路(抵抗器)を別途設けることにより、セルコントローラ間の消費電流の差を解消する。
-Third embodiment-
In the battery pack capacity adjustment apparatuses according to the first and second embodiments, the capacity of each cell becomes uniform by correcting the capacity adjustment time of each cell based on the difference in current consumption between the cell controllers. The capacity was adjusted as follows. In the battery pack capacity adjustment apparatus according to the third embodiment, a current consumption difference correction circuit (resistor) is separately provided for cells managed by a cell controller having a small current consumption. Eliminate the difference in current consumption.

図7は、第3の実施の形態における組電池の容量調整装置において、セルコントローラCC1およびCCtと比べて消費電流の小さいセルコントローラCC2の回路構成を示す図である。なお、図示しないが、セルコントローラCC3〜CCt-1の回路構成も同様である。   FIG. 7 is a diagram illustrating a circuit configuration of a cell controller CC2 that consumes less current than the cell controllers CC1 and CCt in the battery pack capacity adjustment apparatus according to the third embodiment. Although not shown, the circuit configurations of the cell controllers CC3 to CCt-1 are the same.

図7に示すように、セルC5の正極と、セルC8の負極との間には、スイッチ20および抵抗器30が設けられている。抵抗器30の抵抗値は、セルコントローラCC1またはCCtとの消費電流差を補正するための値に設定されており、スイッチ20がオンされると、セルコントローラCC1またはCCtとの消費電流差と同等の電流が、抵抗器30を介して流れる。   As shown in FIG. 7, a switch 20 and a resistor 30 are provided between the positive electrode of the cell C5 and the negative electrode of the cell C8. The resistance value of the resistor 30 is set to a value for correcting the current consumption difference from the cell controller CC1 or CCt. When the switch 20 is turned on, it is equivalent to the current consumption difference from the cell controller CC1 or CCt. Current flows through the resistor 30.

セルコントローラCC2〜CCt-1は、各セルの容量調整を行っている間は、スイッチ20をオンする。これにより、セルコントローラ間の消費電流差が解消されるので、容量調整後のセル間の容量を均一に保つことができる。   The cell controllers CC2 to CCt-1 turn on the switch 20 while adjusting the capacity of each cell. This eliminates the difference in current consumption between the cell controllers, so that the capacity between the cells after capacity adjustment can be kept uniform.

第3の実施の形態における組電池の容量調整装置によれば、各セル間の容量バラツキ量に基づいて各セルごとの放電量を算出し、算出した放電量に基づいて、各セルの放電を行うとともに、消費電流が最も大きいセルコントローラCC1,CCtを基準として、消費電流の小さいセルコントローラCC2〜CCt-1の電圧源となっているセルを対象として、抵抗器30を介して、消費電流の差に基づいた放電を行う。これにより、セルコントローラ間の消費電流が異なる場合でも、容量調整後の各セルの容量を均一にすることができる。   According to the battery pack capacity adjustment device in the third embodiment, the discharge amount for each cell is calculated based on the capacity variation amount between the cells, and the discharge of each cell is calculated based on the calculated discharge amount. In addition, the cell currents of the cell controllers CC2 to CCt-1 with small current consumption are targeted for the cell controllers CC1 and CCt with the largest current consumption as a reference, and the current consumption of Discharge based on the difference. Thereby, even when the current consumption between the cell controllers is different, the capacity of each cell after capacity adjustment can be made uniform.

本発明は、上述した各実施の形態に限定されることはない。例えば、特定のセルの電圧を電圧源として作動する電流消費機器の一例として、各モジュールごとに設けられているセルコントローラを挙げたが、セルコントローラ以外の機器であってもよい。   The present invention is not limited to the embodiments described above. For example, as an example of a current consuming device that operates using a voltage of a specific cell as a voltage source, a cell controller provided for each module has been described. However, devices other than the cell controller may be used.

上述した各実施の形態では、セルコントローラCC1およびCCtの消費電流が大きく、セルコントローラCC2〜CCt-1の消費電流が小さいものとして説明したが、全てのセルコントローラ間の消費電流が異なっていてもよい。この場合、第1の実施の形態における組電池の容量調整装置では、消費電流が最も小さいセルコントローラを基準として、消費電流の大きいセルコントローラの電圧源となっているセルの放電量が小さくなるように、放電量を補正すればよい。また、第2の実施の形態における組電池の容量調整装置では、消費電流が最も大きいセルコントローラを基準として、消費電流の大きいセルコントローラの電圧源となっているセルの放電量が小さくなるように、放電量を補正すればよい。   In each of the above-described embodiments, the current consumption of the cell controllers CC1 and CCt is large and the current consumption of the cell controllers CC2 to CCt-1 is small. However, even if the current consumption between all the cell controllers is different. Good. In this case, in the battery pack capacity adjustment apparatus according to the first embodiment, the discharge amount of the cell serving as the voltage source of the cell controller with the large current consumption is reduced with reference to the cell controller with the smallest current consumption. In addition, the discharge amount may be corrected. Further, in the battery pack capacity adjustment apparatus according to the second embodiment, the discharge amount of the cell serving as the voltage source of the cell controller with the large current consumption is reduced with reference to the cell controller with the largest current consumption. The discharge amount may be corrected.

図3に示すフローチャートのステップS10では、車両の起動時に、組電池100が無負荷の状態において、各セル電圧を検出したが、車両の走行時において、組電池の充放電電流が低電流の時のセル電圧を検出するようにしてもよい。すなわち、ステップS10では、組電池100が無負荷状態であるとみなせる時のセル電圧を検出すればよい。   In step S10 of the flowchart shown in FIG. 3, each cell voltage is detected when the assembled battery 100 is in an unloaded state when the vehicle is started. However, when the charging / discharging current of the assembled battery is low during the traveling of the vehicle. The cell voltage may be detected. That is, in step S10, the cell voltage when the assembled battery 100 can be regarded as being in a no-load state may be detected.

第1および第2の実施の形態では、容量調整が終了した後に、所定時間ごとに、消費電流の小さいセルコントローラの電圧源となっているセルを対象として、消費電流の差に基づいた放電を行うようにした。しかし、消費電流の差の積算値が所定値に達する度に、消費電流の差に基づいた放電を行うようにしてもよいし、所定のタイミングで、消費電流の差に基づいた放電を行うようにしてもよい。   In the first and second embodiments, after the capacity adjustment is completed, discharge based on the difference in current consumption is performed for a cell that is a voltage source of a cell controller having a small current consumption every predetermined time. I did it. However, every time the integrated value of the current consumption difference reaches a predetermined value, the discharge based on the current consumption difference may be performed, or the discharge based on the current consumption difference may be performed at a predetermined timing. It may be.

第3の実施の形態では、セルコントローラ間の消費電流の差を解消するために、消費電流の小さいセルコントローラの電圧源となっているセルの放電を行うための抵抗器30を別途設けた。しかし、放電を行うことができるものであれば、抵抗器に限られず、他の電流消費回路を設けても良い。   In the third embodiment, in order to eliminate the difference in current consumption between the cell controllers, a resistor 30 is separately provided for discharging a cell that is a voltage source of the cell controller having a small current consumption. However, as long as it can discharge, it is not limited to a resistor, and another current consumption circuit may be provided.

特許請求の範囲の構成要素と第1〜第3の実施の形態の構成要素との対応関係は次の通りである。すなわち、セルコントローラCC1〜CCtおよびバッテリコントローラ10が容量バラツキ量検出手段を、バッテリコントローラ10が放電量算出手段、放電量補正手段および消費電流差積算手段を、抵抗器R1〜Rnが放電手段をそれぞれ構成する。なお、以上の説明はあくまで一例であり、発明を解釈する上で、上記の実施形態の構成要素と本発明の構成要素との対応関係に何ら限定されるものではない。   The correspondence between the constituent elements of the claims and the constituent elements of the first to third embodiments is as follows. That is, the cell controllers CC1 to CCt and the battery controller 10 are capacity variation amount detecting means, the battery controller 10 is a discharge amount calculating means, a discharge amount correcting means and a consumption current difference integrating means, and the resistors R1 to Rn are discharging means. Constitute. In addition, the above description is an example to the last, and when interpreting invention, it is not limited to the correspondence of the component of said embodiment and the component of this invention at all.

第1の実施の形態における組電池の容量調整装置の構成を示す図The figure which shows the structure of the capacity | capacitance adjustment apparatus of the assembled battery in 1st Embodiment. セルコントローラの詳細な回路構成を示す図Diagram showing detailed circuit configuration of cell controller 第1の実施の形態における組電池の容量調整装置によって行われる処理内容を示すフローチャートThe flowchart which shows the processing content performed by the capacity adjustment apparatus of the assembled battery in 1st Embodiment. 図3に示すフローチャートの処理に続く処理内容を示すフローチャートThe flowchart which shows the processing content following the process of the flowchart shown in FIG. セルの無負荷時電圧(開放電圧)と、SOC(%)および充電量(Ah)との関係を示す図The figure which shows the relationship between the no-load voltage (open circuit voltage) of a cell, SOC (%), and charge amount (Ah). 第2の実施の形態における組電池の容量調整装置によって行われる処理を示すフローチャートThe flowchart which shows the process performed by the capacity adjustment apparatus of the assembled battery in 2nd Embodiment. 第3の実施の形態における組電池の容量調整装置において、セルコントローラCC1およびCCtと比べて消費電流の小さいセルコントローラCC2の回路構成を示す図The figure which shows the circuit structure of cell controller CC2 with small consumption current compared with cell controller CC1 and CCt in the capacity adjustment apparatus of the assembled battery in 3rd Embodiment.

符号の説明Explanation of symbols

10…バッテリコントローラ、11…IC、12…A/Dコンバータ、13…フォトカプラ、20…スイッチ、30…抵抗器、R1〜Rn…抵抗器、S1〜Sn…スイッチ、100…組電池、C1〜Cn…セル、M1〜Mt…モジュール、CC1〜CCt…セルコントローラ DESCRIPTION OF SYMBOLS 10 ... Battery controller, 11 ... IC, 12 ... A / D converter, 13 ... Photocoupler, 20 ... Switch, 30 ... Resistor, R1-Rn ... Resistor, S1-Sn ... Switch, 100 ... Assembly battery, C1- Cn ... cell, M1-Mt ... module, CC1-CCt ... cell controller

Claims (7)

組電池を構成する複数のセル間の容量調整を行う組電池の容量調整装置において、
各セル間の容量バラツキ量を検出する容量バラツキ量検出手段と、
前記容量バラツキ量検出手段によって検出される容量バラツキ量、および、特定のセルの電圧を電圧源として作動する複数の電流消費機器の消費電流の差に基づいて、各セルの放電を行う放電手段とを備えることを特徴とする組電池の容量調整装置。
In a capacity adjustment device for an assembled battery that performs capacity adjustment between a plurality of cells constituting the assembled battery,
Capacity variation amount detecting means for detecting the capacity variation amount between the cells;
Discharging means for discharging each cell based on a difference in capacity variation detected by the capacity variation amount detecting means and a current consumption of a plurality of current consuming devices that operate using a voltage of a specific cell as a voltage source; A capacity adjustment device for a battery pack, comprising:
請求項1に記載の組電池の容量調整装置において、
前記容量バラツキ量検出手段によって検出される容量バラツキ量に基づいて、各セルごとの放電量を算出する放電量算出手段と、
前記複数の電流消費機器の消費電流の差に基づいて、前記放電量算出手段によって算出された放電量を補正する放電量補正手段とをさらに備え、
前記放電手段は、前記放電量算出手段によって算出された放電量、および、前記放電量補正手段によって補正された放電量に基づいて、各セルの放電を行うことを特徴とする組電池の容量調整装置。
The capacity adjustment apparatus for an assembled battery according to claim 1,
A discharge amount calculating means for calculating a discharge amount for each cell based on the capacity variation amount detected by the capacity variation amount detecting means;
A discharge amount correcting means for correcting the discharge amount calculated by the discharge amount calculating means based on a difference in current consumption of the plurality of current consuming devices;
The discharge means performs discharge of each cell based on the discharge amount calculated by the discharge amount calculation means and the discharge amount corrected by the discharge amount correction means. apparatus.
請求項2に記載の組電池の容量調整装置において、
前記放電量補正手段は、消費電流が最も小さい電流消費機器を基準として、消費電流の大きい電流消費機器の電圧源となっているセルの放電量が小さくなるように、前記放電量算出手段によって算出された放電量を補正することを特徴とする組電池の容量調整装置。
The capacity adjustment device for an assembled battery according to claim 2,
The discharge amount correction means is calculated by the discharge amount calculation means so that a discharge amount of a cell serving as a voltage source of a current consumption device having a large current consumption becomes small with reference to a current consumption device having the smallest current consumption. A capacity adjustment device for an assembled battery, wherein the discharged amount is corrected.
請求項2に記載の組電池の容量調整装置において、
前記放電量補正手段は、消費電流が最も大きい電流消費機器を基準として、消費電流の小さい電流消費機器の電圧源となっているセルの放電量が大きくなるように、前記放電量算出手段によって算出された放電量を補正することを特徴とする組電池の容量調整装置。
The capacity adjustment device for an assembled battery according to claim 2,
The discharge amount correction means is calculated by the discharge amount calculation means so that a discharge amount of a cell serving as a voltage source of a current consumption device having a small current consumption is increased with reference to a current consumption device having the largest current consumption. A capacity adjustment device for an assembled battery, wherein the discharged amount is corrected.
請求項2〜4のいずれか一項に記載の組電池の容量調整装置において、
前記放電手段による放電が終了してからの経過時間に基づいて、消費電流が最も大きい電流消費機器を基準として、消費電流の小さい電流消費機器の消費電流の差を積算する消費電流差積算手段をさらに備え、
前記放電手段は、消費電流の小さい電流消費機器の電圧源となっているセルを対象として、所定時間ごとに、前記消費電流差積算手段によって積算された消費電流差に基づいた放電を行うことを特徴とする組電池の容量調整装置。
In the capacity adjustment apparatus of the assembled battery as described in any one of Claims 2-4,
Based on the elapsed time from the end of the discharge by the discharge means, a current consumption difference integrating means for integrating the current consumption difference of the current consumption equipment with a small current consumption on the basis of the current consumption equipment with the largest current consumption. In addition,
The discharge means performs discharge based on the consumption current difference accumulated by the consumption current difference accumulation means at predetermined time intervals for a cell serving as a voltage source of a current consumption apparatus having a small consumption current. A battery pack capacity adjustment device.
請求項2〜4のいずれか一項に記載の組電池の容量調整装置において、
前記放電手段による放電が終了してからの経過時間に基づいて、消費電流が最も大きい電流消費機器を基準として、消費電流の小さい電流消費機器の消費電流の差を積算する消費電流差積算手段をさらに備え、
前記放電手段は、消費電流の小さい電流消費機器の電圧源となっているセルを対象として、前記消費電流差積算手段によって積算された消費電流差が所定値に達する度に、前記消費電流差積算手段によって積算された消費電流差に基づいた放電を行うことを特徴とする組電池の容量調整装置。
In the capacity adjustment apparatus of the assembled battery as described in any one of Claims 2-4,
Based on the elapsed time from the end of the discharge by the discharge means, a current consumption difference integrating means for integrating the current consumption difference of the current consumption equipment with a small current consumption on the basis of the current consumption equipment with the largest current consumption. In addition,
The discharge unit is configured to integrate the consumption current difference every time the consumption current difference accumulated by the consumption current difference accumulation unit reaches a predetermined value for a cell serving as a voltage source of a current consumption device having a small consumption current. A battery pack capacity adjustment device that performs discharge based on a difference in current consumption accumulated by the means.
請求項1に記載の組電池の容量調整装置において、
前記容量バラツキ量検出手段によって検出される容量バラツキ量に基づいて、各セルごとの放電量を算出する放電量算出手段をさらに備え、
前記放電手段は、前記放電量算出手段によって算出された放電量に基づいて、各セルの放電を行う第1の放電手段と、消費電流が最も大きい電流消費機器を基準として、消費電流の小さい電流消費機器の電圧源となっているセルを対象として、前記消費電流の差に基づいた放電を行う第2の放電手段とを備えることを特徴とする組電池の容量調整装置。
The capacity adjustment apparatus for an assembled battery according to claim 1,
A discharge amount calculating means for calculating a discharge amount for each cell based on the capacity variation amount detected by the capacity variation amount detecting means;
The discharge means includes a first discharge means for discharging each cell based on the discharge amount calculated by the discharge amount calculation means, and a current with a small current consumption based on the current consumption device with the largest current consumption. A battery pack capacity adjustment device comprising: a second discharge unit that discharges a cell that is a voltage source of a consumer device based on the difference in current consumption.
JP2006060936A 2006-03-07 2006-03-07 Battery pack capacity adjustment device Expired - Fee Related JP4770522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006060936A JP4770522B2 (en) 2006-03-07 2006-03-07 Battery pack capacity adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006060936A JP4770522B2 (en) 2006-03-07 2006-03-07 Battery pack capacity adjustment device

Publications (2)

Publication Number Publication Date
JP2007244058A true JP2007244058A (en) 2007-09-20
JP4770522B2 JP4770522B2 (en) 2011-09-14

Family

ID=38589025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006060936A Expired - Fee Related JP4770522B2 (en) 2006-03-07 2006-03-07 Battery pack capacity adjustment device

Country Status (1)

Country Link
JP (1) JP4770522B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067520A (en) * 2006-09-07 2008-03-21 Sanyo Electric Co Ltd Power supply unit
JP2009089486A (en) * 2007-09-28 2009-04-23 Hitachi Ltd Multiple series battery control system
WO2009106952A1 (en) * 2008-02-27 2009-09-03 Nissan Motor Co., Ltd. Battery pack control apparatus
JP2009543539A (en) * 2006-07-13 2009-12-03 エルジー・ケム・リミテッド Circuit operating current balancing device and method for battery device
JP2010081692A (en) * 2008-09-24 2010-04-08 Sanyo Electric Co Ltd Power supply device for vehicle
JP2010081731A (en) * 2008-09-26 2010-04-08 Mazda Motor Corp Method of controlling battery of automobile and its apparatus
JP2010283918A (en) * 2009-06-02 2010-12-16 Mitsubishi Motors Corp Battery module of electric automobile
JP2011030399A (en) * 2009-07-29 2011-02-10 Primearth Ev Energy Co Ltd Battery pack manager
JP2011061955A (en) * 2009-09-09 2011-03-24 Nissan Motor Co Ltd Device for adjusting capacity of battery pack
JP2011072157A (en) * 2009-09-28 2011-04-07 Nissan Motor Co Ltd Capacity adjusting device for assembled battery
JP2011078201A (en) * 2009-09-30 2011-04-14 Toshiba Corp Battery pack system
JP2011101573A (en) * 2009-10-05 2011-05-19 Primearth Ev Energy Co Ltd Battery pack manager
JP2011172433A (en) * 2010-02-22 2011-09-01 Denso Corp Battery voltage monitoring device
JP2011182550A (en) * 2010-03-01 2011-09-15 Denso Corp Battery voltage monitoring device
WO2011135868A1 (en) * 2010-04-28 2011-11-03 三洋電機株式会社 Battery module, mobile body provided with same, power storage device, power supply device, and electric apparatus
JP2011222309A (en) * 2010-04-09 2011-11-04 Ihi Corp Power source monitoring control apparatus
WO2011155034A1 (en) * 2010-06-09 2011-12-15 トヨタ自動車株式会社 Vehicle battery-pack equalization system and vehicle battery-pack equalization method
WO2012002002A1 (en) * 2010-06-28 2012-01-05 日立ビークルエナジー株式会社 Power storage unit control circuit and power storage apparatus
JP2012010562A (en) * 2010-06-28 2012-01-12 Hitachi Vehicle Energy Ltd Battery control circuit
WO2012043589A1 (en) * 2010-09-30 2012-04-05 三洋電機株式会社 Power supply device
CN102918742A (en) * 2010-06-04 2013-02-06 日产自动车株式会社 Battery cell control system and method
JP2013179751A (en) * 2012-02-28 2013-09-09 Omron Automotive Electronics Co Ltd Battery pack control device
EP2690743A1 (en) * 2011-03-25 2014-01-29 NEC Energy Devices, Ltd. Energy storage system and rechargeable battery control method
JP2019088066A (en) * 2017-11-02 2019-06-06 Tdk株式会社 Assembled battery
EP2516234B1 (en) * 2009-12-21 2020-02-19 SK Innovation Co., Ltd. A battery management apparatus of high voltage battery for hybrid vehicle
JP2020162411A (en) * 2011-04-28 2020-10-01 ゾール サーキュレイション インコーポレイテッドZOLL Circulation,Inc. Battery management system for control of lithium power cells

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102319239B1 (en) 2016-12-21 2021-10-28 삼성에스디아이 주식회사 Battery pack
CN109435778B (en) * 2017-08-31 2022-03-18 比亚迪股份有限公司 Battery equalization method, system, vehicle, storage medium and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017134A (en) * 2001-06-27 2003-01-17 Osaka Gas Co Ltd Accumulator management system
JP2004282960A (en) * 2003-03-18 2004-10-07 Yamaha Motor Co Ltd Capacity variation suppressing circuit
JP2005318751A (en) * 2004-04-30 2005-11-10 Shin Kobe Electric Mach Co Ltd Multi-serial battery control system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017134A (en) * 2001-06-27 2003-01-17 Osaka Gas Co Ltd Accumulator management system
JP2004282960A (en) * 2003-03-18 2004-10-07 Yamaha Motor Co Ltd Capacity variation suppressing circuit
JP2005318751A (en) * 2004-04-30 2005-11-10 Shin Kobe Electric Mach Co Ltd Multi-serial battery control system

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4663811B2 (en) * 2006-07-13 2011-04-06 エルジー・ケム・リミテッド Circuit operating current balancing device and method for battery device
JP2009543539A (en) * 2006-07-13 2009-12-03 エルジー・ケム・リミテッド Circuit operating current balancing device and method for battery device
JP2008067520A (en) * 2006-09-07 2008-03-21 Sanyo Electric Co Ltd Power supply unit
JP2009089486A (en) * 2007-09-28 2009-04-23 Hitachi Ltd Multiple series battery control system
JP2014014265A (en) * 2007-09-28 2014-01-23 Hitachi Ltd Multi-series battery control system
WO2009106952A1 (en) * 2008-02-27 2009-09-03 Nissan Motor Co., Ltd. Battery pack control apparatus
JP2009232671A (en) * 2008-02-27 2009-10-08 Nissan Motor Co Ltd Controller of battery pack
US8666687B2 (en) 2008-02-27 2014-03-04 Nissan Motor Co., Ltd. Battery pack control apparatus
JP2010081692A (en) * 2008-09-24 2010-04-08 Sanyo Electric Co Ltd Power supply device for vehicle
JP2010081731A (en) * 2008-09-26 2010-04-08 Mazda Motor Corp Method of controlling battery of automobile and its apparatus
JP2010283918A (en) * 2009-06-02 2010-12-16 Mitsubishi Motors Corp Battery module of electric automobile
JP2011030399A (en) * 2009-07-29 2011-02-10 Primearth Ev Energy Co Ltd Battery pack manager
JP2011061955A (en) * 2009-09-09 2011-03-24 Nissan Motor Co Ltd Device for adjusting capacity of battery pack
JP2011072157A (en) * 2009-09-28 2011-04-07 Nissan Motor Co Ltd Capacity adjusting device for assembled battery
JP2011078201A (en) * 2009-09-30 2011-04-14 Toshiba Corp Battery pack system
JP2011101573A (en) * 2009-10-05 2011-05-19 Primearth Ev Energy Co Ltd Battery pack manager
EP2516234B1 (en) * 2009-12-21 2020-02-19 SK Innovation Co., Ltd. A battery management apparatus of high voltage battery for hybrid vehicle
JP2011172433A (en) * 2010-02-22 2011-09-01 Denso Corp Battery voltage monitoring device
JP2011182550A (en) * 2010-03-01 2011-09-15 Denso Corp Battery voltage monitoring device
US8878491B2 (en) 2010-03-01 2014-11-04 Denso Corporation Battery voltage monitoring apparatus
JP2011222309A (en) * 2010-04-09 2011-11-04 Ihi Corp Power source monitoring control apparatus
WO2011135868A1 (en) * 2010-04-28 2011-11-03 三洋電機株式会社 Battery module, mobile body provided with same, power storage device, power supply device, and electric apparatus
US9261564B2 (en) 2010-06-04 2016-02-16 Nissan Motor Co., Ltd. Battery cell control system and method
EP2577842A4 (en) * 2010-06-04 2015-12-09 Nissan Motor Battery cell control system and method
CN102918742A (en) * 2010-06-04 2013-02-06 日产自动车株式会社 Battery cell control system and method
WO2011155034A1 (en) * 2010-06-09 2011-12-15 トヨタ自動車株式会社 Vehicle battery-pack equalization system and vehicle battery-pack equalization method
EP2582010A1 (en) * 2010-06-09 2013-04-17 Toyota Jidosha Kabushiki Kaisha Vehicle battery-pack equalization system and vehicle battery-pack equalization method
JP5316709B2 (en) * 2010-06-09 2013-10-16 トヨタ自動車株式会社 Vehicle assembled battery equalization system and vehicle assembled battery equalization method
KR101424908B1 (en) 2010-06-09 2014-08-01 도요타 지도샤(주) Vehicle battery-pack equalization system and vehicle battery-pack equalization method
EP2582010A4 (en) * 2010-06-09 2015-01-07 Toyota Motor Co Ltd Vehicle battery-pack equalization system and vehicle battery-pack equalization method
US8957636B2 (en) 2010-06-09 2015-02-17 Toyota Jidosha Kabushiki Kaisha Vehicle battery-pack equalization system and vehicle battery-pack equalization method
CN102959827A (en) * 2010-06-28 2013-03-06 日立车辆能源株式会社 Power storage unit control circuit and power storage apparatus
US9362759B2 (en) 2010-06-28 2016-06-07 Hitachi Vehicle Energy, Ltd. Battery control circuit and battery device
JP2012010563A (en) * 2010-06-28 2012-01-12 Hitachi Vehicle Energy Ltd Capacitor control circuit and electric storage device
US8736229B2 (en) 2010-06-28 2014-05-27 Hitachi Vehicle Energy, Ltd. Battery control circuit for reducing power consumption
US9356451B2 (en) 2010-06-28 2016-05-31 Hitachi Automotive Systems, Ltd. Battery control circuit having multiple adjusting units
JP2012010562A (en) * 2010-06-28 2012-01-12 Hitachi Vehicle Energy Ltd Battery control circuit
WO2012002002A1 (en) * 2010-06-28 2012-01-05 日立ビークルエナジー株式会社 Power storage unit control circuit and power storage apparatus
WO2012043589A1 (en) * 2010-09-30 2012-04-05 三洋電機株式会社 Power supply device
EP2690743A4 (en) * 2011-03-25 2014-10-22 Nec Energy Devices Ltd Energy storage system and rechargeable battery control method
EP2690743A1 (en) * 2011-03-25 2014-01-29 NEC Energy Devices, Ltd. Energy storage system and rechargeable battery control method
US9368992B2 (en) 2011-03-25 2016-06-14 Nec Energy Devices, Ltd. Power storage system and secondary battery control method
JP2020162411A (en) * 2011-04-28 2020-10-01 ゾール サーキュレイション インコーポレイテッドZOLL Circulation,Inc. Battery management system for control of lithium power cells
JP2013179751A (en) * 2012-02-28 2013-09-09 Omron Automotive Electronics Co Ltd Battery pack control device
JP2019088066A (en) * 2017-11-02 2019-06-06 Tdk株式会社 Assembled battery

Also Published As

Publication number Publication date
JP4770522B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP4770522B2 (en) Battery pack capacity adjustment device
US6100670A (en) Multi-functional battery management module operable in a charging mode and a battery pack mode
JP4065232B2 (en) How to charge the battery
US9142981B2 (en) Cell balance control unit
US8120319B2 (en) Set battery control method and set battery control circuit as well as charging circuit and battery pack having the set battery control circuit
JP2008058260A (en) Battery control device, battery control method, power source control device, and electronic apparatus
WO2014061153A1 (en) Battery pack monitoring device
JP4569460B2 (en) Battery pack capacity adjustment device
JP2007325324A (en) Charging system, battery pack and its charging method
JP2009153238A (en) Portable device and battery pack used for the same
JP2011019329A (en) Secondary battery device and vehicle
JP7117378B2 (en) Battery management device
JP2015070653A (en) Battery voltage equalization control device and method
US9755453B2 (en) Cell controller and battery-monitoring device
JP2009081949A (en) Device for protecting battery pack and battery pack system including the device
JP7087110B2 (en) Cell controller, battery management system and battery system
WO2014133009A1 (en) Storage battery, storage battery control method, control device, and control method
JP2022513955A (en) Battery controller, wireless battery control system, battery pack and battery balancing method
JP2021520773A (en) Battery balancing device and battery pack containing it
JP4627489B2 (en) Uninterruptible power supply system and battery charging method
KR102259965B1 (en) Charging control apparatus and method for the same
CN110915095A (en) Battery pack management
JP2005010032A (en) Battery power detecting method, small electrical equipment using the method and battery pack
JP2009239989A (en) Charger
JP2011010448A (en) Control unit

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080624

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080605

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4770522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees