JP2009543068A - 高圧液体クロマトグラフィにおける試料導入時減圧作用の軽減 - Google Patents

高圧液体クロマトグラフィにおける試料導入時減圧作用の軽減 Download PDF

Info

Publication number
JP2009543068A
JP2009543068A JP2009518573A JP2009518573A JP2009543068A JP 2009543068 A JP2009543068 A JP 2009543068A JP 2009518573 A JP2009518573 A JP 2009518573A JP 2009518573 A JP2009518573 A JP 2009518573A JP 2009543068 A JP2009543068 A JP 2009543068A
Authority
JP
Japan
Prior art keywords
sample
valve unit
conduit
loop
fluid communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009518573A
Other languages
English (en)
Inventor
ウソビツチ,ジエームズ・イー
ビールズ,ペイトン・シー
ソアレス,ミゲル
Original Assignee
ウオーターズ・テクノロジーズ・コーポレイシヨン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウオーターズ・テクノロジーズ・コーポレイシヨン filed Critical ウオーターズ・テクノロジーズ・コーポレイシヨン
Publication of JP2009543068A publication Critical patent/JP2009543068A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/20Injection using a sampling valve
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/22Injection in high pressure liquid systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/20Injection using a sampling valve
    • G01N2030/201Injection using a sampling valve multiport valves, i.e. having more than two ports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/20Injection using a sampling valve
    • G01N2030/202Injection using a sampling valve rotary valves

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

流体処理方法は、試料充填状態と試料注入状態とを有するバルブユニットを含むシステムに適用される。試料充填状態は試料導管と流体連通して試料ループを配置する。試料注入状態は処理導管と流体連通して試料ループを配置する。方法は、試料の先端部がバルブユニットから出るように試料導管およびバルブユニットの両方を通して試料を移送するステップを含む。バルブユニットを試料充填状態に遷移させて試料ループを減圧した後、移送された試料の少なくとも一部が試料ループ内に充填される。流体処理機器は、バルブユニットと、機器の動作を管理する制御ユニットとを含む。制御ユニットは、例えば、上述した方法を実行するように構成される。

Description

本発明は、流体処理に関し、特に、高圧下で試料を処理する流体処理システムへの試料の注入に関する。
ガスおよび液体のクロマトグラフィは、分析化学および調合化学で使用される処理である。固定の不活性多孔質材料がカラムなどのベッセルまたは導管内で保持され、対象の試料を含む流体が多孔質材料を通過する。典型例では、固定材料は粒子を含む。
典型的な液体クロマトグラフィシステムは、例えば、移動相ポンプ、試料インジェクタ、カラム、および検出器を含む。ポンプは、インジェクタ、カラム、および検出器を通過する流体パスに沿って移動相流体を推進する。インジェクタは、流体がカラムに入る前に試料を移動相流体に導入する。
流体内に含まれる固有の化合物は、カラム内に保持される媒体に対して固有の親和性を有する場合が多い。このため、流体がクロマトグラフィカラムを通って移動する際に、種々の化合物は、カラム内の固定多孔質材料との相互作用に対応して時間の量が変化することによりカラム内への通過が遅らされる。結果として、化合物が媒体を通して運ばれる際に、化合物は、様々な時間でカラムから溶離するバンドに分離する。
したがって、試料溶液内の異なる化合物が、個々の濃度ピークの時にカラムから別個に溶離する。種々の分離された化学物質は、例えば、屈析計、吸光光度計、またはクロマトグラフィカラムから出る時に流体が流れ込む質量分析計などの他の検出装置により検出され得る。
分離カラムを含むチュービングの他に、LC(液体クロマトグラフィ)機器は、典型的に、リザーバ、ポンプ、フィルタ、逆止バルブ、試料注入バルブ、および試料化合物検出器を含む。典型的には、移動相溶媒はリザーバに貯留され、往復シリンダ系のポンプを介して必要に応じて送出される。試料材料は、シリンジ型ポンプを介して注入されることが多い。例えば、流体ベースの試料を針またはキャピラリを介して管内に、その後試料ループ内に吸引する(吸い込む)ことにより、試料を注入するLCシステムもある。次に、試料は、試料ループから分離カラムに向かう途中の移動相ストリーム内に注入される。
典型的には、チュービングは、機器の他の部品への流体接続を行うコネクタと対応しなければならない。コネクタの接続金具の設計やその使用に伴う問題は、高圧製造や高圧操作に関しては特に厄介である。例えば、液体クロマトグラフィ、例えば、高性能(高圧として知られている)液体クロマトグラフィ(HPLC)では、1000から5000ポンド/平方インチ(psi)以上の圧力が使用されることが多い。
本発明は、1つには、試料ループ内に試料を充填する前に、試料ループの減圧作用から守られたシステムのチュービングの一部に試料が配置できるという認識に基づいている。したがって、本発明のいくつかの実施形態は、試料ループの減圧作用から生じることが多いHPLCの性能低下を軽減する。減圧は、例えば、試料ループへの移送を待つ試料の界面の混合を発生させる。
いくつかの実施形態では、試料は、減圧作用を受ける位置から離れたシステム位置に移動され、試料を減圧作用から隔離することで、試料と試料前処理緩衝液などの別の溶液との界面での試料の希釈を低減する。
例えば、周囲気圧にさらされた低圧側から反対側の試料ループに試料を位置付けることで、減圧作用を試料ループの下流側で発生させることにより、例えば、試料の完全性は著しく増大する。
いくつかの実施形態は、試料と周囲気圧の試料源との間に配置された試料ループに対して下流側に試料を位置付けることにより、移動相または試料前処理緩衝液と試料との界面における減圧および/混合を低減する。例えば、HPLCシステムにおいて、試料がバルブの流入ポートの側に配置される先行技術とは異なり、試料を試料ループに充填する前に試料がバルブを通して引き込まれる。本発明の原理は、有利には、例えば、HPLCシステムなどのさまざまな高圧流体処理システムに適用できる。
例えば、本発明のいくつかの実施形態では、6ポートバルブなどの知られている試料注入バルブを含むHPLCシステムが必要である。これらの実施形態は、試料ループの減圧により引き起こされる性能低下を軽減する。本発明のいくつかの実施形態は、先行技術のシステムが有する以上の利点がある。例えば、これらの実施形態は、正確な送出、一貫した送出、過充填を抑えた量の使用および/またはより広い直線動作の範囲を提供する。
したがって、一態様では、本発明は流体を処理する方法を特徴とする。例えば、方法は、試料充填状態と試料注入状態とを有するバルブユニットを含むシステムに適用される。試料充填状態は、試料導管と流体連通して試料ループを配置する。試料注入状態は、処理導管と流体連通して試料ループを配置する。方法には、試料の先端部がバルブユニットから出るように、試料導管およびバルブユニットの両方を通して試料を移送するステップが含まれる。バルブユニットを試料充填状態に遷移させた後、移送された試料の少なくとも一部が試料ループ内に充填される。
別の態様では、本発明は流体処理機器を特徴とする。機器は、上述のバルブユニットなどのバルブユニットと機器の動作を管理する制御ユニットとを含む。例えば、制御ユニットは、流体を処理する上述の方法を実行するように構成される。
図面内では、一般に、同じ参照符号は異なる図面全体を通して同じ部品を示す。また、図面は必ずしも縮尺図ではなく、むしろ、一般に本発明の原理を説明することに重点が置かれている。
本発明の一実施形態に従う流体処理システムのブロック図である。 本発明の一実施形態に従う流体を処理する方法のフロー図である。 本発明の一実施形態に従う流体を処理する方法のフロー図である。 6ポートバルブの図である。 本発明の一実施形態に従う図4のバルブの動作を示す図である。 本発明の一実施形態に従う図4のバルブの動作を示す図である。 本発明の一実施形態に従う図4のバルブの動作を示す図である。 本発明の一実施形態に従う図4のバルブの動作を示す図である。 本発明の一実施形態に従う図4のバルブの動作を示す図である。
本明細書内の用語「クロマトグラフィ」などは、化合物の分離を行うのに使用される装置および/または方法のことである。クロマトグラフィ装置は、典型的に、加圧下および/または電力下で流体を移動させる。頭文字「HPLC」は、本明細書では一般に、約1000から2000psi以上の圧力下で実行される液体クロマトグラフィのことを指す。本発明の種々の実施形態は、より大きな圧力下で実行されるHPLCやLCに適用可能である。
用語「試料ループ」は、本明細書内では、概して、注入および分離の前に一時的に試料の一部を保持する任意の適切な容器、ベッセル、導管、または管のことであり、例えば、HPLCでは当業者に知られている試料ループを含む。
状況に応じて、本明細書内の本発明のいくつかの例示的な実施形態は、用語「管」、「導管」、「キャピラリ」、および/または「パイプ」を置き換え可能に使用して説明する。状況に応じて、用語「キャピラリ」は、溶融シリカ管および/または比較的狭い管のことをいう。管は、本明細書内では管腔、穴、チャネルと置き換え可能である内部の通路を画定する。用語「カラム」は、本明細書内では、例えば、1つまたは複数の管を含むベッセルのことであり、この内部で化合物の分離が発生する。
本発明のいくつかの実施形態には、クロマトグラフィおよび質量分析モジュールの両方を含む機器が含まれる。これらの実施形態のいくつかでは、クロマトグラフィモジュールは、エレクトロスプレーイオン化インタフェースなどの適切なインタフェースの使用を通して、質量分析モジュールと流体連通して配置される。いくつかの適切なインタフェースは、時々、イオン型の分離材料を作成または維持し、典型的にはイオンを含む流体のストリームを雰囲気中にとどめ、そこでストリームが気化され、イオンが質量分析のためのオリフィスで受け取られる。
最初に図1および図2では、本発明のいくつかの実施形態は、試料ループの減圧作用が軽減された流体の処理方法およびシステムに関する。
図1は、本発明の一実施形態に従う流体処理システム100のブロック図である。システム100は、バルブユニット110、バルブユニット110と流体連通した試料ループ120、試料導管の第1の部分150Aおよび第2の部分150B、試料導管の第1の部分150Aを介してバルブユニット110と流体連通した試料源130、試料導管の第2の部分150Bを介してバルブユニット110と流体連通したシリンジなどの試料ポンプ160、処理導管の第1の部分140Aおよび第2の部分140B、処理導管の第1の部分140Aを介してバルブユニット110と流体連通した分離カラム170、処理導管の第2の部分140Bを介してバルブユニット110と流体連通した処理流体源180を含む。
バルブユニット110は、試料ループ120を試料導管の部分150A、150Bと処理導管の部分140A、140Bとに交互に接続する切り替え可能な流体接続を行う(バルブユニットの一例は、以下で図4に関して詳細に説明する)。バルブユニット110は、試料の試料ループ120への充填および充填された試料の処理導管の第1の部分140Aへの注入をサポートする。
したがって、バルブユニット110は、試料充填状態と試料注入状態とを有する。試料充填状態は試料導管の部分150Aと150Bとの間で流体連通するように試料ループ120を配置し、試料注入状態は処理導管の部分140Aと140Bとの間で流体連通して試料ループ120を配置する。
バルブユニット110は、クロマトグラフィシステム内の導管に切り替え可能に接続するための適切な任意の部品を含む。例えば、1つの代替形態では、システム100はHPLCシステムとして実施される。この場合、バルブユニット110は、例えば、HPLCシステム内の試料充填および/または注入をサポートする任意の適切な商用のバルブである。例えば、バルブユニットは、任意で6ポートまたは10ポートのループ注入バルブ(例えば、ニュージャージー州、Booton、Bio−Chem Valve/Omnifit社で購入できる)である。
試料ループ120は、任意の適切な試料保持部品であり、例えば、クロマトグラフィでは当業者に知られている試料ループである。例えば、試料ループ120は、任意の所望の容量、例えば、2、5、10、または20マイクロリットルの固定容量を有する。
試料ポンプ160は、クロマトグラフィ計量シリンジなどの知られている装置を含む、任意の適切なポンプ装置である。試料材料は、針またはキャピラリなどの任意の適切なインタフェースを介して試料導管の第1の部分150A内に引き込まれる。
分離カラム170は、任意の適切なタイプの1つまたは複数のカラムを含む。例えば、処理カラムは適切には、クロマトグラフィの分野の当業者に知られているカラムを含む任意の適切な形の構成のクロマトグラフィカラムである。
処理流体源180は、例えば移動相の処理流体を処理導管の第2の部分140Bを通して試料ループ120に送出し、試料をカラム170に送出するために試料を処理導管の第1の部分140Aに注入する。システム100の一実施形態では、処理流体源180は、加圧下で溶媒を送出する溶媒ポンプを含む。ポンプは、HPLCでは当業者に知られているポンプなどの任意の適切な単数または複数のポンプである。
機器100の動作の1つの例示的な形では、試料ポンプは弱い洗浄溶液で満たされている。バルブユニット110は試料充填状態に配置され、試料ポンプ160は試料源130から試料導管の第1の部分150A内に試料を引き込む(吸い込む)。試料を試料導管150Aに引き込む前に、空隙および/または緩衝液が任意で導管の部分150Aに引き込まれる。次に、試料はバルブユニット110内にバルブユニット110を通して引き込まれ、試料導管の第2の部分150BのS1の位置に配置される。
バルブユニット110は充填状態に切り替えられ、試料ポンプ160は試料をS1の位置から試料ループ120(S2の位置)に押し出す。バルブユニット110は注入状態に切り替えられ、処理流体源180は試料ループ120のS2の位置から処理導管の第1の部分140AのS3の位置まで試料を押し出し、その後分離カラム170内に送る。
処理導管140A、140B内の圧力は、通常、流体処理源180の動作圧力(システム100をHPLCで実施した場合、約1000psi以上)であるが、試料導管の第1の部分150Aの圧力は、通常、例えば、約14psiの環境気圧の大気圧である。したがって、一般に、試料ループ120がバルブユニット110により、処理導管140A、140Bへの接続から試料導管150A、150Bへの接続に切り替えられた時、試料ループ120内の高い圧力は大気圧に下がり、この圧力の降下は主に、試料導管の第1の部分140A内への流体の移動(および混合)を伴う。これは、好ましくは第2の部分150Bが試料ポンプ160により周囲環境から封止されるためである。したがって、少なくとも試料の一部をS1の位置に配置することで、試料導管150A内のある位置および/またはバルブユニット110の切り替え時に混合を受けるバルブユニット110の部分から試料を移動させる。
処理の間、機器100の操作者は、試料導管の部分150A、150B内に連続して引き込まれる、空気、緩衝液、試料などの流体の存在や順序を望むように変更できる。次の試料を充填する前に、試料導管の部分150A、150Bの一方またはその両方およびバルブユニット110の部分は、任意で洗浄される。洗浄は、任意で、クロマトグラフィでは当業者に知られている弱い洗浄溶液で行われる。例えば、洗浄溶液は、試料ポンプ160により試料導管の第2の部分150B、バルブユニット110、試料導管の第1の部分150Aを通して押し出され、3つの部品150B、110、および150Aにより画定される流体通路を洗浄する。
代替の実施形態では、部品のいくつかまたは全ては、ミクロ流体部品である。例えば、このような部品は、任意でセラミック系のマイクロ流体基材で構成される。
図2は、流体の試料成分を分離するなどの流体を処理する方法200のフロー図である。方法200は、試料導管および試料ループと流体連通してバルブユニットを配設するステップ210と、試料の少なくとも先端部がバルブユニットから出るように試料導管およびバルブユニットを通して試料を移送するステップ220と、バルブユニットを試料充填状態に遷移させるステップ230と、移送された試料の少なくとも一部を試料ループ内に充填するステップ240とを含む。方法200は、任意で、上述した、または任意の他の適切な処理装置を備えた機器100で実施される。
好ましくは、試料は試料の後端部がバルブユニットから出るまでバルブユニットを通して移送される(220)。バルブユニットが試料充填状態に遷移した時に(230)、全試料が試料ループへの充填に使用可能で、試料ループの減圧作用から保護される。
HPLCの実施のために、方法200は、知られているまたは商用のバルブを含む、HPLCの試料注入に適した任意のバルブで実施される。方法200の1つの可能な実施形態の詳細は、図5Aから図5Eに関して以下で説明する。
図3は、図2により示された方法に関連した本発明の一実施形態に従う、流体の処理の方法300のフロー図である。方法300は、少なくとも2つの部分を有する試料導管を配設するステップ310と、試料を試料導管の第2の部分に移送するステップ320と、試料導管の第1の部分と第2の部分との間に加圧試料ループを接続するステップ330と、移送された試料の少なくとも一部を試料ループ内に充填するステップ340とを含む。加圧試料ループは、試料導管の部分に接続された時(330)に減圧される。方法300は、任意で、上述のまたは任意の他の適切な処理装置を備えた機器100で実施される。方法の以下の説明で便宜上、図1に示された部品を参照する。
試料導管の第1の部分150Aは、環境大気圧などの比較的低い圧力の環境と流体連通する第1の端部を有し、第2の部分150Bは周囲環境から実質的に封止されている。接続ステップ330は、加圧試料ループ120の各端部を試料導管のそれぞれの部分150A、150Bに流体的に接続することにより行われる。したがって、試料ループ120は、試料導管の第1の部分150A内の流体を比較的低い圧力環境と連通した導管150Aの一端部の方に変位することにより、実質的に減圧される。試料は試料ループの減圧時に実質的な界面混合から保護される。
好ましくは、全体の試料がバルブから出るまで、すなわち、試料の後端部がバルブユニットから出るまで、試料はバルブユニット110を通して移送される(220)。次に、全体の試料が保護されて充填が可能になる。
1つの例示的な試料分析手法では、試料導管150A内への試料の吸引の前に、例えば、2.5マイクロリットルの量の試料前処理緩衝液が試料導管150A内に吸引される。試料の吸引後、例えば、1.0マイクロリットルの量の試料後処理緩衝液が試料導管150A内に吸引される。試料前処理緩衝液の前に、例えば、1.0マイクロリットルの量の空隙が試料導管内に吸引される。試料の量は、任意の適切な量にして、試料材料で試料ループを完全に満たすことができるように過剰な量にしてもよい。
次に、図4、および図5Aから図5Eを参照する。上述したように、本発明のいくつかの実施形態は6ポートバルブを利用する。当業者は、代替の実施形態では、7ポート以上を有する商用バルブなどの他のバルブが使用可能であることは理解できるだろう。
図4は、P1、P2、P3、P4、P5、P6の6ポートを有する6ポートバルブ410の平面図である。6ポートバルブ410は、例えば、上述したようなシステム100、方法200、300を実施するのに、任意で利用される。例えば、バルブ410は、任意で、図1に示されたバルブユニット110として利用される。図4に示されるように、第1のポートP1は試料源導管を介して試料源と連通し、第2のポートP2は試料ポンプ導管を介してシリンジなどの試料ポンプと連通し、第3のポートP3および第4のポートP4はそれぞれ試料ループの各端部と連通し、第5のポートP5はカラム導管を介して分離カラムと連通し、第6のポートP6は溶媒ポンプ導管を介して溶媒ポンプと連通する。
次に、図5Aから図5Eでは、バルブ410は、一例による流体を処理するための6ポートまたは他のマルチポートバルブの動作を示すのに使用される。試料の位置は、図5Aから図5Eでは破線部分で示されている。
図5Aから図5Eは、バルブ410を媒介として、処理時のバルブ410に対する試料の移動を示す。図5Aに示されるように、試料は試料源導管から引き込まれ、第1のポートP1を介してバルブ410に入る。図5Bに示されるように、いくつかの先行技術の方法とは異なり、試料を試料ループ内に充填する前に、試料はバルブ410を通して引き込まれ、第2のポートP2から出て、その結果、バルブユニット410が試料と試料源導管との間に配置されるように、試料が試料ポンプ導管に配置される。
図5Cに示されるように、次に、バルブ410は、試料ポンプ導管が2つのポートP2、P4を介して試料ループの一端部に流体的に接続されるように、試料充填状態に切り替えられる。この時、試料ループの他方端部は、2つのポートP1、P3を介して試料源導管に接続される。遷移が生じた時に、試料ループ内の加圧処理流体は、実質的に試料源導管に沿って流体移動を引き起こすことにより減圧される。
図5Dに示されるように、次に、試料は試料ポンプにより、ポートP2、P4を通して試料ポンプ導管から試料ループへ押し出される。充填後、図5Eに示されるように、バルブ410はまた試料注入状態に切り替えられる。溶媒ポンプは、溶媒および/または他の流体要素を溶媒ポンプ導管に沿ってポートP6内に試料ループを通して送り込み、ポートP5を介して試料を試料ループからカラム導管およびカラムに注入する。
図1に戻って、システム100は任意でシステム100の動作を調節する制御ユニットを含む。例えば、パーソナルコンピュータまたはワークステーションを含む制御ユニットは、例えば、バルブユニット110、処理流体源140、および/または試料ポンプ160との有線および/または無線通信を介してデータおよび/または制御信号を交換する。制御ユニットは、例えば、試料分析の自動化をサポートする。種々の代替の実施形態では、制御ユニットは、ソフトウェア、ファームウェア、および/またはハードウェア(例えば、アプリケーション特有の集積回路)を含み、必要に応じて、ユーザインタフェースを含む。制御ユニットは、任意で上述の方法200、300を実行するように構成される。
本明細書内の説明から考えると、クロマトグラフィ技術分野の当業者は、本発明の種々の実施形態が上述した特定の特徴に限定されないことを理解する。例えば、本発明のその他の実施形態は、代替として、その他の数の導管および/または導管のその他の部分、2つ以上のバルブユニット、および/または2つ以上のカラムも有する。
HPLCシステムに関する本発明のいくつかの実施形態は、試料注入に関して先行技術の方法が有する以上の複数の利点を提供する。これらの実施形態では、試料サイズが減少するにつれてより精度が維持されて、試料送出がより正確になる。
請求される本発明の精神および範囲から逸脱せずに、本明細書内で記載されている事項の変形、変更およびその他の実施が当業者には思いつく。例えば、いくつかの実施形態では、試料導管の試料入口端部は試料の吸引後に封止されて、試料が周囲環境および関連する圧力シンクから封止される。これらの実施形態のいくつかは、試料導管を大気圧より大きな圧力に加圧する。したがって、本発明は、前述の実例により限定されないが、以下の請求項の精神および範囲により限定される。

Claims (21)

  1. 試料充填状態が試料導管と流体連通して試料ループを配置し、
    試料注入状態が処理導管と流体連通して試料ループを配置する、
    試料充填状態と試料注入状態とを少なくとも有するバルブユニットを配設するステップと、
    バルブユニットが試料注入状態である間、試料の先端部がバルブユニットから出るように試料導管およびバルブユニットの両方を通して試料を移送するステップと、
    バルブユニットを試料充填状態に遷移させるステップと、
    移送された試料の少なくとも一部を試料ループに充填するステップと
    を含む、流体を処理するための方法。
  2. バルブユニットを遷移させるステップが、処理導管の圧力レベルから試料導管のより低い圧力レベルへの試料ループの減圧を伴う、請求項1に記載の方法。
  3. 試料導管の圧力レベルが環境大気圧と関連する、請求項2に記載の方法。
  4. 試料ループの減圧が、試料導管の流体の変位および混合を伴う、請求項1に記載の方法。
  5. 試料を移送するステップが、試料の先端部をバルブユニットより遠位に配置し、試料の後端部をバルブユニットの近位に配置することを含む、請求項1に記載の方法。
  6. 試料の後端部が、バルブユニットの出口ポートに近接して配置される、請求項5に記載の方法。
  7. 充填するステップが、少なくとも一部の試料を押し出すことを含む、請求項1に記載の方法。
  8. 試料を移送する前に、試料前処理緩衝液を試料導管内に移送するステップをさらに含む、請求項1に記載の方法。
  9. バルブユニットが6ポート注入バルブを含む、請求項1に記載の方法。
  10. 試料導管の第1の端部がバルブユニットの第1のポートに取り付けられ、試料ループの第1および第2の端部がバルブユニットの第2および第3のポートにそれぞれ取り付けられ、処理導管の第1の端部がバルブユニットの第4のポートに取り付けられる、請求項1に記載の方法。
  11. 処理導管の第2の端部と流体連通してクロマトグラフィカラムを配設するステップをさらに含む、請求項1に記載の方法。
  12. 試料を移送するステップが、シリンジによりバルブユニットを通して試料を引き込むことを含む、請求項1に記載の方法。
  13. バルブユニットが試料注入状態にある時には溶媒ポンプが試料ループと流体連通する、溶媒ポンプを配設するステップをさらに含む、請求項1に記載の方法。
  14. 試料ループが、約2マイクロリットルから約20マイクロリットルの試料容積容量を有する、請求項1に記載の方法。
  15. 試料ループが管を含む、請求項1に記載の方法。
  16. 試料ループが固定試料ループを含む、請求項15に記載の方法。
  17. 周囲環境と流体連通した第1の端部を有する第1の部分と、周囲環境から封止された第1の端部を有する第2の部分との2つの部分を含む試料導管を配設するステップと、
    試料を試料導管の第2の部分に移送するステップと、
    加圧試料ループの第1の端部を第1の部分の第2の端部に流体的に接続し、加圧試料ループの第2の端部を第2の部分の第2の端部に流体的に接続するステップであって、これにより、試料導管の第1の部分の流体を周囲環境と流体連通した第1の端部の方へ変位させることにより実質的に試料ループが減圧できるステップと、
    移送された試料の少なくとも一部を試料ループ内に充填するステップと
    を含む、液体クロマトグラフィシステムにおいて試料を処理する方法。
  18. 試料充填状態が試料導管と流体連通して試料ループを配置し、
    試料注入状態が処理導管と流体連通して試料ループを配置する、
    試料充填状態と試料注入状態とを少なくとも有するバルブユニットと、
    バルブユニットが試料注入状態である間、試料の先端部がバルブユニットから出るように試料導管およびバルブユニットの両方を通して試料を移送するステップ、
    バルブユニットを試料充填状態に遷移させるステップ、および
    移送された試料の少なくとも一部を試料ループ内に充填するステップ
    を実行するように構成された制御ユニットとを含む、流体処理機器。
  19. 試料を移送するステップが、試料の先端部をバルブユニットから遠位に配置し、試料の後端部をバルブユニットの近位に配置するステップを含む、請求項18に記載の機器。
  20. 処理導管と流体連通したクロマトグラフィカラムをさらに含む、請求項18に記載の機器。
  21. バルブユニットを流体連通したシリンジをさらに含む機器であって、試料を移送するステップがシリンジによりバルブユニットを通して試料を引き込むステップを含む、請求項18に記載の機器。
JP2009518573A 2006-06-30 2007-06-29 高圧液体クロマトグラフィにおける試料導入時減圧作用の軽減 Withdrawn JP2009543068A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US81799006P 2006-06-30 2006-06-30
PCT/US2007/072498 WO2008005845A2 (en) 2006-06-30 2007-06-29 Mitigation of sample-introduction decompression effects in high-pressure liquid chromatography

Publications (1)

Publication Number Publication Date
JP2009543068A true JP2009543068A (ja) 2009-12-03

Family

ID=38895362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009518573A Withdrawn JP2009543068A (ja) 2006-06-30 2007-06-29 高圧液体クロマトグラフィにおける試料導入時減圧作用の軽減

Country Status (3)

Country Link
EP (1) EP2035788A2 (ja)
JP (1) JP2009543068A (ja)
WO (1) WO2008005845A2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252718A (ja) * 2010-05-31 2011-12-15 Shimadzu Corp 液体試料導入装置及び液体試料導入方法
JP2020038205A (ja) * 2018-08-27 2020-03-12 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト サンプルインジェクタ

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008006266B4 (de) 2008-01-25 2011-06-09 Dionex Softron Gmbh Probengeber für die Flüssigkeitschromatographie, insbesondere für die Hochleistungsflüssigkeitschromatographie
EP2196801B1 (en) 2008-12-11 2017-08-23 Spark Holland B.V. Method and apparatus for injecting a liquid sample in an HPLC analyzing device, and valve assembly for use therein.
WO2010139359A1 (en) 2009-06-03 2010-12-09 Agilent Technologies, Inc. Sample injector with metering device balancing pressure differences in an intermediate valve state
DE202016100451U1 (de) 2015-06-25 2016-02-16 Dionex Softron Gmbh Probengeber für die Flüssigkeitschromatographie, insbesondere für die Hochleistungsflüssigkeitschromatographie

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4957009A (en) * 1988-09-23 1990-09-18 Spectra-Physics, Inc. Pushloop liquid sampling method
US5010921A (en) * 1989-07-17 1991-04-30 Spectra-Physics, Inc. Nonsymmetrical valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252718A (ja) * 2010-05-31 2011-12-15 Shimadzu Corp 液体試料導入装置及び液体試料導入方法
JP2020038205A (ja) * 2018-08-27 2020-03-12 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト サンプルインジェクタ

Also Published As

Publication number Publication date
WO2008005845A2 (en) 2008-01-10
EP2035788A2 (en) 2009-03-18
WO2008005845A3 (en) 2008-07-31

Similar Documents

Publication Publication Date Title
CN107449851B (zh) 利用流体驱动单元与样品容纳空间之间的流体连接进行样品注入
CN107449852B (zh) 以对源流路小影响的方式对流体样品分流
JP5433580B2 (ja) 試料注入システム
CN102460145B (zh) 使中间阀状态的压力差平衡的计量装置的样品注射器
JP5114471B2 (ja) クロマトグラフィシステムにおける圧力および流れの乱れを低減する装置および方法
JP2009543068A (ja) 高圧液体クロマトグラフィにおける試料導入時減圧作用の軽減
WO2012073713A1 (ja) 液体クロマトグラフ、液体クロマトグラフ用試料導入装置、および液体クロマトグラフ用試料導入装置の洗浄方法
JP2011089955A (ja) 液体試料分析装置及び液体試料導入装置
CN112243497B (zh) 自动进样装置、色谱仪、自动进样方法以及分析方法
EP1536228A1 (en) Dual loop autosampling
CN112888941A (zh) 用于多维样品分离设备的注入器
JP2009080012A (ja) 液体クロマトグラフ分析装置及び試料導入装置
US20060045810A1 (en) Sample injector for liquid analysis
JP4613279B2 (ja) 高スループットオートサンプラー
CN112295265B (zh) 具有流体样品容留的样品分配
US20240060939A1 (en) Sample metering and injection for liquid chromatography
JP2007512515A5 (ja)
US20210302396A1 (en) Large volume sample injection for liquid chromatography
GB2588635A (en) Sample injector with fluidic sample mixing
US20240011957A1 (en) Testing a sampling unit fluidically coupled to a source
US20230039500A1 (en) Fluid separation with sampling unit selectively coupling upstream and downstream of separation unit
US20230112993A1 (en) Bracketing fluidic sample using strong solvent
JP2012247440A (ja) 液体試料分析装置及び液体試料導入装置
JP7119400B2 (ja) 液体クロマトグラフシステムおよびそれを用いた分析方法
JP2007502996A (ja) 検体溶液の画分を取り出すための装置および方法

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100907