JP2009541655A - Diesel engine exhaust pipe and desulfurization method - Google Patents

Diesel engine exhaust pipe and desulfurization method Download PDF

Info

Publication number
JP2009541655A
JP2009541655A JP2009517341A JP2009517341A JP2009541655A JP 2009541655 A JP2009541655 A JP 2009541655A JP 2009517341 A JP2009517341 A JP 2009517341A JP 2009517341 A JP2009517341 A JP 2009517341A JP 2009541655 A JP2009541655 A JP 2009541655A
Authority
JP
Japan
Prior art keywords
nox trap
nox
particulate filter
exhaust gas
reformed oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009517341A
Other languages
Japanese (ja)
Inventor
フランソワ フレーヌ,
ナタリー ブウェ,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of JP2009541655A publication Critical patent/JP2009541655A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0885Regeneration of deteriorated absorbents or adsorbents, e.g. desulfurization of NOx traps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0878Bypassing absorbents or adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/30Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel reformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

ディーゼルエンジンの排気管路のNOxトラップ(6)を脱硫する方法が提供され、本方法は前記エンジンの運転中に前記NOxトラップ内に固着した硫黄化合物の少なくとも一部分を除去することを目的とし:−エンジンの燃料から、改質デバイスを介して改質油を生成するステップと、−前記NOxトラップ内の温度が所定の脱硫温度に到達するまで、エンジンの下流且つNOxトラップの上流に位置する注入点(5)において排気ガス流(1)中へ改質油を注入することにより、NOxトラップを予熱するステップと、次いで、−注入点の上流に位置する排気管路上の分岐点(2)から排気ガス流を分岐させ、NOxトラップ中への改質油の注入を継続することにより、前記脱硫を行うステップとを含み、本方法では、前記ステップの実施によりディーゼルエンジンに供給される混合体の濃度が影響を受けることがない。  A method is provided for desulfurizing a NOx trap (6) in an exhaust line of a diesel engine, the method being aimed at removing at least a portion of the sulfur compounds stuck in the NOx trap during operation of the engine:- Generating reformed oil from engine fuel via a reforming device; and an injection point located downstream of the engine and upstream of the NOx trap until the temperature in the NOx trap reaches a predetermined desulfurization temperature. Preheating the NOx trap by injecting reformate into the exhaust gas stream (1) in (5), and then exhausting from a branch point (2) on the exhaust line upstream of the injection point. Performing the desulfurization by diverting the gas flow and continuing the injection of the reformed oil into the NOx trap. Never concentration of the mixture supplied to the diesel engine is affected by facilities.

Description

本発明は、ディーゼルエンジンの排気管路と、当該排気管路のNOxトラップの脱硫方法に関し、この脱硫方法は、エンジンの運転中に前記NOxトラップ内に固着した硫黄化合物の少なくとも一部分を除去することを目的とする。   The present invention relates to an exhaust pipe of a diesel engine and a desulfurization method of a NOx trap of the exhaust pipe, and the desulfurization method removes at least a part of a sulfur compound fixed in the NOx trap during operation of the engine. With the goal.

自動車用ディーゼルエンジンの排気装置の多くは、自動車から放出される排気ガス中の酸化窒素のレベルを減少させるために、排気ガス中における過剰な酸素の存在下、すなわち1未満の濃度条件下で、酸化窒素NOxを捕捉する機能を有する、一般にNOxトラップと呼ばれる触媒デバイスを使用することができる。しかし、燃料及び潤滑油から生じる硫黄化合物、特にSOxが排気ガス中に存在しており、これが、好ましくはNOxトラップの触媒領域上で吸収されて当該領域が閉塞する結果、NOxトラップがNOxを堆積する活動を再開するために、NOxトラップの触媒の周期的な再生、すなわちSOxの排出が必要となる。
このような再生は、NOxトラップの温度を400〜900の最低脱硫温度を上回る温度、多くの場合550度を上回る温度に上げることと、NOxトラップ中へ還元ガスを注入することによって1を超える濃度条件をそこに形成することからなる。
Many exhaust systems for automotive diesel engines are used in the presence of excess oxygen in the exhaust gas, i.e., under a concentration condition of less than 1, to reduce the level of nitric oxide in the exhaust gas emitted from the vehicle. A catalytic device generally called a NOx trap having a function of capturing nitric oxide NOx can be used. However, sulfur compounds, particularly SOx, generated from the fuel and lubricating oil are present in the exhaust gas, which is preferably absorbed on the catalyst region of the NOx trap and the region is blocked, causing the NOx trap to deposit NOx. In order to resume this activity, periodic regeneration of the NOx trap catalyst, ie, SOx emission, is required.
Such regeneration is achieved by raising the temperature of the NOx trap to a temperature above the minimum desulfurization temperature of 400-900, often above 550 degrees, and injecting reducing gas into the NOx trap to a concentration greater than 1. Consists of forming conditions there.

国際公開第99/00588号には、通常運転中よりも濃度の高い混合体でエンジンを運転することによってNOxトラップの温度を上昇させることからなる再生が開示されている。この方法は、燃料消費が増加し、エンジンの運転と自動車の運転快適度に悪影響を及ぼすという欠点を有し、結果としてエンジンオイルの希釈を生じる可能性がある。EP1055806及びEP1106798も、燃料の後注入に基づく再生システムについて述べており、同じ欠点を有する。US2005/0000210には、エンジンに供給される混合体の濃度を修正することによってNOxトラップの温度を上昇させた後で、ディーゼル燃料又は改質油を注入することに基づくシステムが記載されている。FR2838770及びDE19939807は、NOxトラップの上流での水素の注入に基づくシステム、したがって特定の水素貯留容器を必要とするシステムについて記述している。   WO 99/00588 discloses regeneration consisting of raising the temperature of the NOx trap by operating the engine with a mixture having a higher concentration than during normal operation. This method has the disadvantage of increasing fuel consumption and adversely affecting engine operation and vehicle driving comfort, which can result in dilution of engine oil. EP 1055806 and EP 1106798 also describe regeneration systems based on fuel post-injection and have the same drawbacks. US 2005/0000210 describes a system based on injecting diesel fuel or reformate after raising the temperature of the NOx trap by modifying the concentration of the mixture supplied to the engine. FR 2 838 770 and DE 19939807 describe a system based on injection of hydrogen upstream of a NOx trap and thus a system requiring a specific hydrogen storage vessel.

本発明の目的は、エンジンを阻害せず、且つ燃料の過剰消費を最小にする脱硫方法を提供することである。   It is an object of the present invention to provide a desulfurization process that does not inhibit the engine and minimizes excessive fuel consumption.

この目的は、ディーゼルエンジンの運転中に、当該エンジンの排気管路のNOxトラップ内に固着した硫黄化合物の少なくとも一部分を除去することを目的とする、当該NOxトラップの脱硫方法によって達成され、本方法は、
− エンジンの燃料から改質デバイスを介して改質油を生成するステップと、
− 前記NOxトラップ内の温度が所定の脱硫温度に到達するまで、エンジンの下流及びNOxトラップの上流に位置する注入点において排気ガス流に前記改質油を注入することにより、前記NOxトラップを予熱するステップと、次いで
− 前記注入点の上流に位置する排気管路の分岐点から排気ガス流を分岐させ、NOxトラップ中への前記改質油の注入を継続することにより、前記脱硫を達成させるステップと
を含み、本方では、前記ステップの実行によってディーゼルエンジンに供給される混合体の濃度が影響を受けない。
This object is achieved by a method of desulfurization of the NOx trap, which aims to remove at least a part of the sulfur compounds fixed in the NOx trap of the exhaust line of the engine during operation of the diesel engine. Is
-Generating reformate from engine fuel via a reforming device;
-Preheating the NOx trap by injecting the reformate into the exhaust gas stream at injection points located downstream of the engine and upstream of the NOx trap until the temperature in the NOx trap reaches a predetermined desulfurization temperature; And then-branching the exhaust gas flow from a branch point of the exhaust pipe located upstream of the injection point, and continuing the injection of the reformed oil into the NOx trap to achieve the desulfurization. In this method, the concentration of the mixture supplied to the diesel engine by the execution of the step is not affected.

したがって、本発明による方法の実施は、NOxトラップの上流の分岐点からの迂回路と、この迂回路を介して排気ガスを分岐する、三方弁のような手段とを備えた排気管路、並びに、いわばディーゼルエンジンの燃料のような炭化水素を、CO、H2、及びN2を主成分とする改質油と呼ばれる還元ガスの混合体に変換することが可能なデバイスである改質装置を必要とする。
改質油は、既知の技術である、部分酸化改質(POX、部分酸化)、水蒸気改質、及び自動熱改質(ATR)から選択される技術によって生成することができる。
Therefore, the implementation of the method according to the invention comprises an exhaust line comprising a detour from a branch point upstream of the NOx trap and means, such as a three-way valve, for branching the exhaust gas through this detour, and In other words, there is a need for a reformer that is a device capable of converting hydrocarbons, such as fuel for diesel engines, into a mixture of reducing gas called reformed oil mainly composed of CO, H2, and N2. To do.
The reformed oil can be produced by a technique selected from known techniques, partial oxidation reforming (POX, partial oxidation), steam reforming, and automatic thermal reforming (ATR).

分岐させるステップの持続時間は予め定めることができ、特にこの持続時間を10秒〜20分とすることができる。
予熱するステップの持続時間も予め定めることができる。
The duration of the branching step can be predetermined, and in particular this duration can be 10 seconds to 20 minutes.
The duration of the preheating step can also be predetermined.

また、予熱するステップ及び分岐させるステップの少なくとも一方の持続時間は、NOxトラップの触媒領域の温度を表す温度測定値によって定めることができる。
分岐させるステップの終りに、NOxトラップ内へ排気ガスを再導入することができ、改質油の生成を停止することができる。
Further, the duration of at least one of the preheating step and the branching step can be determined by a temperature measurement value representing the temperature of the catalyst region of the NOx trap.
At the end of the branching step, exhaust gas can be reintroduced into the NOx trap and the production of reformate can be stopped.

別の実施形態によれば、改質油の生成を継続する一方で、複数回の予熱するステップと分岐させるステップを周期的に交互に実施することができる。
本発明による方法では、NOxトラップの下流の排気管路内に設置された、一般にPFと呼ばれる微粒子フィルタを再生することが同時に可能であり、この実施形態においては、改質油の流量を、微粒子フィルタの下流における温度が所定の再生温度に到達するように調節し、NOxトラップを脱硫するステップの間に分岐された排気ガスを、NOxトラップの下流且つ微粒子フィルタの上流に位置する再注入点において排気管路中へ再導入する。
According to another embodiment, while the generation of the reformed oil is continued, the preheating step and the branching step can be alternately performed periodically.
In the method according to the present invention, it is possible to regenerate a particulate filter generally called PF installed in the exhaust pipe downstream of the NOx trap. In this embodiment, the flow rate of the reformed oil The exhaust gas branched during the step of desulfurizing the NOx trap is adjusted so that the temperature downstream of the filter reaches a predetermined regeneration temperature, at a re-injection point located downstream of the NOx trap and upstream of the particulate filter. Re-introduce into the exhaust line.

この方法は、平行に取り付けられた2つのNOxトラップ、前記NOxトラップの下流に取り付けられた微粒子フィルタ、及び前記2つのNOxトラップに排気ガス流を分配する弁システムを備えた排気管路の再生に、第1のNOxトラップと第2のNOxトラップの上流に平行に配置された2つの注入点のそれぞれに改質装置から出る改質油を分配する弁システムを使用することにより、適用することができる。2つのNOxトラップの各々は、微粒子フィルタの再生の間、予熱段階と脱硫段階とを交互に繰返すことができる。
このような排気管路において、弁システムを瞬間的に切り替えることによって、一方のNOxトラップからNOxを排出しながら他方のNOxトラップを脱硫段階に置くことができる。
This method is for regeneration of an exhaust line comprising two NOx traps mounted in parallel, a particulate filter mounted downstream of the NOx trap, and a valve system that distributes the exhaust gas flow to the two NOx traps. Can be applied by using a valve system that distributes the reformed oil from the reformer to each of two injection points arranged in parallel upstream of the first NOx trap and the second NOx trap. it can. Each of the two NOx traps can alternate between a preheating stage and a desulfurization stage during regeneration of the particulate filter.
By switching the valve system instantaneously in such an exhaust line, the other NOx trap can be placed in the desulfurization stage while exhausting NOx from one NOx trap.

本発明の他の特定の特長及び利点は、3つの実施例についての下記説明、及び添付図面から当業者に明らかになろう。   Other specific features and advantages of the present invention will become apparent to those skilled in the art from the following description of three embodiments and the accompanying drawings.

排気管路の第1の実施例の概略図である。It is the schematic of the 1st Example of an exhaust pipe line. 排気管路の第2の実施例の概略図である。It is the schematic of the 2nd Example of an exhaust pipe line. 排気管路の第3の実施例の概略図である。It is the schematic of the 3rd Example of an exhaust pipe line.

図1は、NOxトラップ6、及び改質装置4を備えた排気管路を示し、点線矢印で示す改質油の流れは、注入点5において排気管路中へ注入される。エンジンから放出される排気ガス1の流れを図1の左に実線矢印で示す。これらの排気ガスは、弁システム3によって迂回路2に向けて分岐させることができる。
予熱するステップの間に、改質油は、NOxトラップ6を通過する排気ガス流中へ注入される。これらの排気ガスは酸素を含むので、酸素によって、NOxトラップ中に含まれる触媒(貴金属)と接触する改質油のH2及びCO成分が酸化する。この反応は発熱性が高く、こうして放出された熱は、脱硫に必要な温度までNOxトラップを加熱することができる。所望の温度範囲を達成するために、改質油の流量が制御ループによって制御される。
FIG. 1 shows an exhaust line provided with a NOx trap 6 and a reformer 4, and the flow of reformed oil indicated by a dotted arrow is injected into the exhaust line at an injection point 5. The flow of the exhaust gas 1 discharged from the engine is indicated by a solid line arrow on the left side of FIG. These exhaust gases can be branched toward the bypass 2 by the valve system 3.
During the preheating step, reformate is injected into the exhaust gas stream that passes through the NOx trap 6. Since these exhaust gases contain oxygen, the H2 and CO components of the reformed oil that come into contact with the catalyst (noble metal) contained in the NOx trap are oxidized by oxygen. This reaction is highly exothermic and the heat released in this way can heat the NOx trap to the temperature required for desulfurization. To achieve the desired temperature range, the reformate flow rate is controlled by a control loop.

NOxトラップ6中への改質油の注入が継続される間に、400〜900度、例えば約650度の脱硫温度に温度が到達すると、弁3が起動されて排気ガス1を迂回管2に向けて分岐させる。このような条件下で、NOxトラップ6に、改質装置4に供給される空気/燃料混合体の濃度に等しい濃度の改質油流を通過させる。例えばディーゼルのPOxの場合、最適濃度は2.9とすることができる。このような条件下で、NOxトラップ中に存在する硫黄がH2S、COS、及びSO2等の化合物の形態で放出される。この脱硫ステップの持続時間は、一般に10秒から数分、例えば20分間とすることができる。   When the temperature reaches a desulfurization temperature of 400 to 900 degrees, for example, about 650 degrees while the injection of the reformed oil into the NOx trap 6 is continued, the valve 3 is activated and the exhaust gas 1 is transferred to the bypass pipe 2. Branch toward. Under such conditions, the reformed oil stream having a concentration equal to the concentration of the air / fuel mixture supplied to the reformer 4 is passed through the NOx trap 6. For example, in the case of diesel POx, the optimum concentration can be 2.9. Under such conditions, sulfur present in the NOx trap is released in the form of compounds such as H2S, COS, and SO2. The duration of this desulfurization step can generally be from 10 seconds to several minutes, for example 20 minutes.

第1の変形実施形態によれば、脱硫ステップの後に改質デバイスが停止され、弁システム3が、排気ガスがもう一度NOxトラップを通過するような弁システムの初期位置に戻る。
第2の変形実施形態によれば、複数のステップが連続して行われる間に、改質油がNOxトラップへ連続的に注入される。改質油の注入中に、弁システムは、NOxトラップを通過する排気ガスの流れが濃度の低い段階と高い段階との間で交互に変動するように、2つの位置の間で定期的に作動される。濃度の低い段階の間、排気ガスはNOxトラップに入り、改質油がNOxトラップの触媒表面(白金又はパラジウム)においてこれらの排気ガスと反応し、発熱性の酸化反応によってNOxトラップの温度が維持される。濃度の高い段階の間、排気ガスは迂回管2を介して経路変更され、NOxトラップから堆積された硫黄が汚染除去されるように、改質油のみがNOxトラップを通る。一般に、濃度の低い段階の持続時間は20秒から数分間とすることができ、濃度の高い段階の持続時間は10秒から数分間とすることができる。各段階の持続時間は、NOxトラップの触媒の配合及びその熱的挙動に合わせて調節される。排気ガスを連続的に迂回させる方法と比較した場合、高い濃度と低い濃度とを交互に周期的に繰り返すことによる主な利点の一つは、脱硫の間のNOxトラップ内の温度制御を改善できることである。このようにして、NOxトラップの早すぎる経年劣化を回避することができる。
According to a first variant embodiment, after the desulfurization step, the reforming device is stopped and the valve system 3 returns to the initial position of the valve system such that the exhaust gas once again passes through the NOx trap.
According to the second modified embodiment, the reformed oil is continuously injected into the NOx trap while a plurality of steps are continuously performed. During the reformate injection, the valve system operates periodically between the two positions so that the exhaust gas flow through the NOx trap alternates between the low and high concentration stages. Is done. During the low-concentration phase, the exhaust gas enters the NOx trap, the reformed oil reacts with these exhaust gases on the catalyst surface (platinum or palladium) of the NOx trap, and the temperature of the NOx trap is maintained by an exothermic oxidation reaction. Is done. During the high-concentration phase, the exhaust gas is rerouted through the bypass tube 2 and only the reformate passes through the NOx trap so that sulfur deposited from the NOx trap is decontaminated. In general, the duration of the low concentration stage can be from 20 seconds to several minutes, and the duration of the high concentration stage can be from 10 seconds to several minutes. The duration of each stage is tailored to the NOx trap catalyst formulation and its thermal behavior. One of the main advantages of cyclically alternating high and low concentrations alternately when compared to the method of continuously bypassing exhaust gas is that temperature control in the NOx trap during desulfurization can be improved. It is. In this way, premature aging of the NOx trap can be avoided.

上述のようなNOxトラップの脱硫は、微粒子フィルタの再生と有利に組み合わせることができる。図2は、図1と同じ構成要素1〜6を備えた排気管路を示す。NOxトラップ6の下流に触媒付きの微粒子フィルタ8が取り付けられている。迂回管2に流入する排気ガスは、分岐管7を介してNOxトラップ6の下流且つ微粒子フィルタ8の上流の再注入点10に供給される。微粒子フィルタ8のわずかに下流に設けられた温度センサ9を使用して微粒子フィルタ8内の温度が測定される。この温度の値は改質装置4のコンピュータ11に送られる。このコンピュータ11は弁システム3の制御も行う。
微粒子フィルタ8の再生には、フィルタによって捕捉された煤の燃焼を開始するために約600度の温度が必要である。第1のステップにおいては、排気ガスを迂回管2内へ経路変更させる弁システム3は起動されず、その結果排気ガスはNOxトラップ6へ流入する。改質油が注入点5において注入され、この改質油は、NOxトラップ6の触媒コーティングに接触して排気ガス中に存在する酸素によって酸化される。改質油のこの発熱性の酸化によって、NOxトラップ6を脱硫するためのNOxトラップ6の加熱と、NOxトラップ6の下流の排気ガスによる微粒子フィルタ8の加熱の両方が可能になる。センサ9の温度を再生温度にするため、一般には微粒子フィルタ8内に堆積した煤の酸化を可能にするのに十分な温度である約600度に到達させるため、改質油の流量が調節される。温度がこの再生温度に到達すると、NOxトラップも脱硫に十分な温度に到達している。
NOx trap desulfurization as described above can be advantageously combined with regeneration of the particulate filter. FIG. 2 shows an exhaust line with the same components 1 to 6 as in FIG. A particulate filter 8 with a catalyst is attached downstream of the NOx trap 6. The exhaust gas flowing into the bypass pipe 2 is supplied to the reinjection point 10 downstream of the NOx trap 6 and upstream of the particulate filter 8 via the branch pipe 7. A temperature sensor 9 provided slightly downstream of the particulate filter 8 is used to measure the temperature in the particulate filter 8. This temperature value is sent to the computer 11 of the reformer 4. The computer 11 also controls the valve system 3.
Regeneration of the particulate filter 8 requires a temperature of about 600 degrees to initiate burning of soot trapped by the filter. In the first step, the valve system 3 for rerouting the exhaust gas into the bypass pipe 2 is not activated, so that the exhaust gas flows into the NOx trap 6. The reformed oil is injected at the injection point 5 and this reformed oil comes into contact with the catalyst coating of the NOx trap 6 and is oxidized by oxygen present in the exhaust gas. This exothermic oxidation of the reformed oil enables both heating of the NOx trap 6 for desulfurizing the NOx trap 6 and heating of the particulate filter 8 by exhaust gas downstream of the NOx trap 6. In order to bring the temperature of the sensor 9 to the regeneration temperature, the flow rate of the reforming oil is adjusted to reach approximately 600 degrees, which is generally sufficient to allow the soot accumulated in the particulate filter 8 to be oxidized. The When the temperature reaches this regeneration temperature, the NOx trap has also reached a temperature sufficient for desulfurization.

第2のステップにおいて、温度が微粒子フィルタ8の再生温度に到達すると、弁システム3が起動され、排気ガスがNOxトラップから経路変更されて分岐管7内へ流入する。NOxトラップ6が還元成分の濃度が高い流れに曝されて、主としてH2SとCOSとが放出されることによりNOxトラップが汚染除去されるように、改質油の注入が維持される。このステップの持続時間は10分よりも長くすることができる。
脱硫の間、改質油の大部分、又は殆どがNOxトラップ6内で反応せずにNOxトラップを出て、分岐管7から来る排気ガスと混合して微粒子フィルタ8内へ流入し、微粒子フィルタ8の触媒コーティングと接触するときに排気ガス中の酸素と反応する。この発熱性の反応により、NOxトラップ6の脱硫の間に亘って微粒子フィルタをその再生温度に維持することが可能となる。
In the second step, when the temperature reaches the regeneration temperature of the particulate filter 8, the valve system 3 is activated, the exhaust gas is rerouted from the NOx trap, and flows into the branch pipe 7. The reforming oil injection is maintained so that the NOx trap 6 is exposed to a flow having a high concentration of reducing components and the NOx trap is decontaminated mainly by releasing H2S and COS. The duration of this step can be longer than 10 minutes.
During desulfurization, most or most of the reformed oil does not react in the NOx trap 6, exits the NOx trap, mixes with the exhaust gas coming from the branch pipe 7, flows into the particulate filter 8, and enters the particulate filter. Reacts with oxygen in the exhaust gas when in contact with the 8 catalyst coating. This exothermic reaction makes it possible to maintain the particulate filter at its regeneration temperature during the desulfurization of the NOx trap 6.

微粒子フィルタ8を完全に再生するためには、注入は一般に約20分間に亘って行なわれる。脱硫に要する持続時間が微粒子フィルタの再生に要する持続時間よりもはるかに短い場合、脱硫の終了後に迂回を停止することができる。このとき、改質油の注入が維持されることにより微粒子フィルタ8の再生が継続される。この改質油は、
− 迂回が停止された場合はNOxトラップの触媒表面上で、又は
− 迂回が継続されている場合は微粒子フィルタの直接触媒表面上で、
排気ガスによって酸化され、その結果、微粒子フィルタ8が再生温度に維持される。第2の選択肢(迂回が維持される)によって得られる利点は、改質装置に供給される燃料の過剰消費が最小化されることである。具体的には、微粒子フィルタ上での改質油の酸化と、微粒子フィルタの煤の再生とを同時に行なうことにより、改質油の発熱性の酸化反応によって放出されるエネルギーを直ちに使用することができ、したがって、第1の選択肢によって処理を行った場合にNOxトラップと微粒子フィルタの間に生じる熱損失を最小化することができる。このような処理により、改質装置に燃料を供給することによる燃料に関する不利益を最適化することができる。
脱硫の間、自動車の直近の環境においてH2Sの臭気が不快なにおいを生じさせる場合があった。しかし、H2S及びCOSが微粒子フィルタ8内で排気ガスによって酸化されるため、この問題は解決される。
In order to completely regenerate the particulate filter 8, the injection is generally performed for about 20 minutes. If the duration required for desulfurization is much shorter than the duration required for regeneration of the particulate filter, detouring can be stopped after the end of desulfurization. At this time, regeneration of the particulate filter 8 is continued by maintaining the injection of the modified oil. This modified oil
-On the catalyst surface of the NOx trap if detouring is stopped, or-on the direct catalyst surface of the particulate filter if detouring continues,
Oxidized by the exhaust gas, as a result, the particulate filter 8 is maintained at the regeneration temperature. The advantage gained by the second option (diversion is maintained) is that the over-consumption of fuel supplied to the reformer is minimized. Specifically, it is possible to immediately use the energy released by the exothermic oxidation reaction of the reformed oil by simultaneously oxidizing the reformed oil on the particulate filter and regenerating the soot of the particulate filter. Therefore, the heat loss that occurs between the NOx trap and the particulate filter can be minimized when processing is performed according to the first option. Such a process can optimize the fuel-related disadvantages caused by supplying fuel to the reformer.
During desulfurization, the odor of H2S may cause an unpleasant odor in the immediate environment of an automobile. However, since H2S and COS are oxidized by the exhaust gas in the particulate filter 8, this problem is solved.

微粒子フィルタの再生は一般に、自動車の走行距離500kmごとに行うことができ、NOxトラップの脱硫が同時に行われる。
本発明による方法は、平行に取り付けられた2つのNOxトラップを備える排気管路に適用することができる。このような排気管路を図3に概略的に示す。この排気管路においては、改質装置4から出る改質油を2つの注入点5及び5bに分配する機能を有する弁システム12を使用して、2つのNOxトラップ6及び6bそれぞれの上流に改質油を注入することができる。弁システム3は、次の位置の間で切り換えることができる。
− 位置1:排気ガスが全てNOxトラップ6内へ流入する
− 位置2:排気ガスが全てNOxトラップ6b内へ流入する
− 位置3:排気ガスがNOxトラップ6及び6bの間で等分に分配される。
In general, the regeneration of the particulate filter can be performed every 500 km of the automobile traveled, and the NOx trap is desulfurized at the same time.
The method according to the invention can be applied to an exhaust line comprising two NOx traps mounted in parallel. Such an exhaust line is shown schematically in FIG. In this exhaust pipe, a valve system 12 having a function of distributing the reformed oil coming out of the reformer 4 to the two injection points 5 and 5b is used to improve the upstream of the two NOx traps 6 and 6b. Quality oil can be injected. The valve system 3 can be switched between the following positions.
-Position 1: All exhaust gas flows into NOx trap 6-Position 2: All exhaust gas flows into NOx trap 6b-Position 3: Exhaust gas is equally divided between NOx traps 6 and 6b The

再生は次のように行われる。
第1のステップにおいて、弁システム3は、排気ガスが全てNOxトラップ6内へ流入する位置1にある。改質油は、注入点5において注入されて、NOxトラップ6の触媒表面上で排気ガスに含まれる酸素によって酸化される。この発熱性の反応により、NOxトラップ6及び微粒子フィルタ8の両方が、それぞれ脱硫温度及び再生温度まで加熱される。微粒子フィルタ8の下流のセンサ9において、温度が微粒子フィルタ8内の煤を酸化させるのに十分な温度、一般に約600度に到達するように、改質油の流量が調節される。温度がこの温度に到達すると、弁システム3が位置2へ切り換わり、排気ガスをNOxトラップ6b内へ経路変更させ、排気ガスはそこから分岐管7bを介して微粒子フィルタ8内へ流入する。
Reproduction is performed as follows.
In the first step, the valve system 3 is in position 1 where all the exhaust gas flows into the NOx trap 6. The reformed oil is injected at the injection point 5 and is oxidized by oxygen contained in the exhaust gas on the catalyst surface of the NOx trap 6. By this exothermic reaction, both the NOx trap 6 and the particulate filter 8 are heated to the desulfurization temperature and the regeneration temperature, respectively. In the sensor 9 downstream of the particulate filter 8, the flow rate of the reforming oil is adjusted so that the temperature reaches a temperature sufficient to oxidize the soot in the particulate filter 8, generally about 600 degrees. When the temperature reaches this temperature, the valve system 3 switches to position 2, causing the exhaust gas to be rerouted into the NOx trap 6b, from which the exhaust gas flows into the particulate filter 8 via the branch pipe 7b.

弁システム3を切換えた後も、NOxトラップ6内への改質油の注入が維持され、脱硫温度において、主としてH2SとCOSとが放出されることにより、NOxトラップ6から堆積した硫黄が汚染除去される。NOxトラップ6を確実に完全に脱硫するために、システム3は約10分以上に亘ってこの位置に維持される。
NOxトラップ6を脱硫するこの段階の間、排気ガス中に存在するNOxがNOx6b内に堆積する。NOxトラップ6bがNOxで飽和するのを防止するために、NOxトラップ6bからNOxを排出することができる。即ち、弁システム3が位置1へ瞬間的に切り替えられ、改質油がNOxトラップ6b内へ注入される。
Even after switching the valve system 3, the injection of the reformed oil into the NOx trap 6 is maintained, and at the desulfurization temperature, mainly H2S and COS are released, so that the sulfur accumulated from the NOx trap 6 is decontaminated. Is done. In order to ensure complete desulfurization of the NOx trap 6, the system 3 is maintained in this position for more than about 10 minutes.
During this stage of desulfurizing the NOx trap 6, NOx present in the exhaust gas accumulates in the NOx 6b. In order to prevent the NOx trap 6b from being saturated with NOx, NOx can be discharged from the NOx trap 6b. That is, the valve system 3 is instantaneously switched to position 1 and the reformed oil is injected into the NOx trap 6b.

脱硫の間、改質油の大部分がNOxトラップを出て微粒子フィルタ8の触媒表面上で酸化され、その結果微粒子フィルタが再生時間中ずっと煤の酸化に十分な温度に維持される。約20分に及びうる微粒子フィルタの再生が終了すると、改質装置4の計算機であるコンピュータ11が注入を中止し、弁システムが位置3に切り替わって、排気ガスの流れが2つのNOxトラップに分配され、NOxが処理される。
一般に自動車の走行距離500kmごとに生じる微粒子フィルタの再生作業中、弁システム12及び3の位置を転換することによって、2つのNOxトラップの各々を順次に脱硫することが可能であるか、又はこれらNOxトラップのうち一方のみを脱硫し、次の脱硫作業中に他方の微粒子フィルタを脱硫することを交互に行うことが可能である。
During desulfurization, the majority of the reformate exits the NOx trap and is oxidized on the catalyst surface of the particulate filter 8 so that the particulate filter is maintained at a temperature sufficient for soot oxidation throughout the regeneration period. When regeneration of the particulate filter, which can take about 20 minutes, is completed, the computer 11 which is the computer of the reformer 4 stops the injection, the valve system is switched to position 3, and the exhaust gas flow is distributed to the two NOx traps. And NOx is processed.
It is possible to desulfurize each of the two NOx traps in sequence by changing the position of the valve systems 12 and 3 during the regeneration operation of the particulate filter, which typically occurs every 500 km of automobile travel. It is possible to alternately desulfurize only one of the traps and desulfurize the other particulate filter during the next desulfurization operation.

Claims (14)

ディーゼルエンジンの排気管路のNOxトラップ(6)を脱硫する方法であって、前記エンジンの運転中に前記NOxトラップ内に固着した硫黄化合物の少なくとも一部分を除去することを目的とし、
− 前記エンジンの燃料から改質デバイス(4)を介して改質油を生成するステップと、
− 前記NOxトラップ内の温度が所定の脱硫温度に到達するまで、エンジンの下流且つNOxトラップの上流に位置する注入点(5)において排気ガス流中に前記改質油を注入することにより、前記NOxトラップを予熱するステップと、次いで
− 前記注入点の上流に位置する排気管路の分岐点から排気ガス流を分岐させ、前記NOxトラップ中への改質油の注入を継続することにより前記脱硫を行うステップと
を含むことと、前記方法のステップを実行することによって前記ディーゼルエンジンに供給される混合体の濃度が影響されないこととを特徴とする、方法。
A method of desulfurizing a NOx trap (6) in an exhaust pipe of a diesel engine, the objective is to remove at least a portion of sulfur compounds fixed in the NOx trap during operation of the engine,
-Producing reformed oil from the engine fuel via a reforming device (4);
-By injecting the reformate into the exhaust gas stream at an injection point (5) located downstream of the engine and upstream of the NOx trap until the temperature in the NOx trap reaches a predetermined desulfurization temperature; Preheating the NOx trap, and then-branching the exhaust gas flow from the branch point of the exhaust line located upstream of the injection point, and continuing the injection of the reformed oil into the NOx trap to prevent the desulfurization. And the concentration of the mixture supplied to the diesel engine is not affected by performing the steps of the method.
分岐させるステップの持続時間を予め定めること、特に分岐させるステップの持続時間を10秒〜20分とすることを特徴とする、請求項1に記載の方法。   The method according to claim 1, characterized in that the duration of the branching step is predetermined, in particular the duration of the branching step is between 10 seconds and 20 minutes. 予熱するステップの持続時間を予め定めることを特徴とする、請求項1又は2に記載の方法。   3. A method according to claim 1 or 2, characterized in that the duration of the preheating step is predetermined. 予熱するステップ及び分岐させるステップの少なくとも一方の持続時間を、温度測定値によって定めることを特徴とする、請求項1に記載の方法。   The method of claim 1, wherein the duration of at least one of the preheating step and the branching step is determined by a temperature measurement. 前記分岐させるステップの最後に前記NOxトラップ(6)に排気ガスを再導入することと、改質油の生成を停止することとを特徴とする、請求項1ないし4のいずれか一項に記載の方法。   5. The method according to claim 1, wherein exhaust gas is reintroduced into the NOx trap (6) at the end of the branching step and generation of reformed oil is stopped. 6. the method of. 複数の予熱するステップ及び分岐させるステップを周期的に交互に実施することと、前記周期の間に改質油の生成を継続することとを特徴とする、請求項1なしい4のいずれか一項に記載の方法。   5. The method according to claim 1, wherein the plurality of preheating steps and the branching steps are alternately performed periodically, and the generation of the reformed oil is continued during the cycle. The method according to item. 部分酸化改質、水蒸気改質及び自動熱改質から選択される技術によって改質油を生成することを特徴とする、請求項1ないし6のいずれか一項に記載の方法。   The method according to any one of claims 1 to 6, wherein the reformed oil is produced by a technique selected from partial oxidation reforming, steam reforming and automatic thermal reforming. 前記NOxトラップ(6)の下流の前記排気管路内に設置された微粒子フィルタを同時に再生するための方法であって、前記NOxトラップ(6)を予熱するステップの間に、改質油の流量を調節することにより、前記微粒子フィルタの下流で温度を所定の再生温度に到達させることと、前記NOxトラップを脱硫するステップの間に、前記NOxトラップの下流且つ前記微粒子フィルタの上流に位置する再注入点(10)において排気ガスを排気管路中へ再導入することとを特徴とする、請求項1ないし7のいずれか一項に記載の方法。   A method for simultaneously regenerating a particulate filter installed in the exhaust line downstream of the NOx trap (6), wherein the flow rate of the reformed oil during the step of preheating the NOx trap (6) Between the step of bringing the temperature downstream of the particulate filter to a predetermined regeneration temperature and the step of desulfurizing the NOx trap, the repositioning located downstream of the NOx trap and upstream of the particulate filter. 8. A method according to any one of the preceding claims, characterized in that exhaust gas is reintroduced into the exhaust line at the injection point (10). 平行に取り付けられた2つのNOxトラップ(6、6b)、前記2つのNOxトラップの下流に取り付けられた微粒子フィルタ(8)、及び排気ガス流を前記2つのNOxトラップに分配するための弁システム(3)を備えた排気管路の再生に、請求項8に記載の方法を使用する方法であって、改質デバイス(4)から出る改質油を、それぞれ第1のNOxトラップ及び前記第2のNOxトラップの上流に平行に配置された2つの注入点(5、5b)に分配するための弁システム(12)の使用を特徴とする、使用方法。   Two NOx traps (6, 6b) mounted in parallel, a particulate filter (8) mounted downstream of the two NOx traps, and a valve system for distributing an exhaust gas stream to the two NOx traps ( A method of using the method of claim 8 to regenerate the exhaust line comprising 3), wherein the reformed oil exiting from the reforming device (4) is fed into the first NOx trap and the second, respectively. Method of use, characterized by the use of a valve system (12) for distributing to two injection points (5, 5b) arranged in parallel upstream of the NOx trap. 微粒子フィルタ(8)の再生の間、2つのNOxトラップ(6、6b)の各々に予熱段階及び脱硫段階を交互に行うことを特徴とする、請求項9に記載の使用方法。   Use according to claim 9, characterized in that during the regeneration of the particulate filter (8), each of the two NOx traps (6, 6b) is alternately subjected to a preheating stage and a desulfurization stage. 前記弁システム(3、12)を瞬間的に切り替えることによって、一方のNOxトラップからNOxを排出する間に他方のNOxトラップに脱硫段階を行うことを特徴とする、請求項9又は10に記載の使用方法。   11. The desulfurization stage of the other NOx trap is performed while exhausting NOx from one NOx trap by momentarily switching the valve system (3, 12). how to use. NOxトラップ(6)、及び前記NOxトラップの下流に配置された微粒子フィルタ(8)を備えたディーゼルエンジンの排気管路であって、前記NOxトラップの上流の弁システム(3)及び分岐管(7)が存在することにより、排気ガスが前記NOxトラップを迂回して前記微粒子フィルタの上流(10)に再注入されることが可能であることと、改質デバイス(4)が存在することと、請求項8に記載の方法を制御できるコンピュータ(11)が存在することとを特徴とする、ディーゼルエンジンの排気管路。   An exhaust pipe of a diesel engine including a NOx trap (6) and a particulate filter (8) disposed downstream of the NOx trap, the valve system (3) and the branch pipe (7) upstream of the NOx trap ), The exhaust gas can bypass the NOx trap and be reinjected upstream (10) of the particulate filter, the presence of the reforming device (4), An exhaust line for a diesel engine, characterized in that there is a computer (11) capable of controlling the method according to claim 8. 請求項9ないし11のいずれか一項に記載の方法を実現するためのディーゼルエンジンの排気管路であって、平行に取り付けられた2つのNOxトラップ(6、6b)、前記2つのNOxトラップの下流に取り付けられた微粒子フィルタ(8)、及び排気ガス流を2つのNOxトラップに分配するための弁システム(3)を備え、改質デバイス(4)が存在することと、前記改質デバイス(4)から出る改質油を、それぞれ第1のNOxトラップ及び前記第2のNOxトラップの上流に平行に配置された2つの注入点(5、5b)に分配するための弁システム(12)が存在することと、前記方法を実施するコンピュータ(11)が存在することとを特徴とする、排気管路。   An exhaust line of a diesel engine for implementing the method according to any one of claims 9 to 11, comprising two NOx traps (6, 6b) mounted in parallel, of the two NOx traps. A particulate filter (8) mounted downstream, and a valve system (3) for distributing the exhaust gas stream to two NOx traps, the presence of the reforming device (4), and the reforming device ( 4) a valve system (12) for distributing the reformed oil from 4) to two injection points (5, 5b) arranged in parallel upstream of the first NOx trap and the second NOx trap, respectively. Exhaust line characterized in that it exists and that there is a computer (11) for carrying out said method. 請求項12に記載のディーゼルエンジンの排気管路の微粒子フィルタ(8)を再生する方法であって、
− 前記エンジンの燃料から前記改質デバイス(4)を介して改質油を生成し、前記弁システム(3)の下流で前記排気管路中に前記改質油を注入するステップと、
− 前記分岐管(7)中へ排気ガス流を分岐させ、微粒子フィルタ(8)に前記ガスを再注入するステップと、
− 微粒子フィルタの活性表面において排気ガスにより改質油を酸化するステップと
を特徴とする、方法。
A method for regenerating a particulate filter (8) in an exhaust line of a diesel engine according to claim 12,
-Generating reformate from the engine fuel via the reforming device (4) and injecting the reformate into the exhaust line downstream of the valve system (3);
-Branching the exhaust gas flow into the branch pipe (7) and reinjecting the gas into the particulate filter (8);
Oxidising the reformate with exhaust gas on the active surface of the particulate filter.
JP2009517341A 2006-06-27 2007-04-12 Diesel engine exhaust pipe and desulfurization method Pending JP2009541655A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0605767A FR2902828B1 (en) 2006-06-27 2006-06-27 EXHAUST LINE OF A DIESEL ENGINE AND METHOD OF DESULFATATION
PCT/FR2007/051095 WO2008000976A1 (en) 2006-06-27 2007-04-12 Exhaust line of a diesel engine and desulfation method

Publications (1)

Publication Number Publication Date
JP2009541655A true JP2009541655A (en) 2009-11-26

Family

ID=37734890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009517341A Pending JP2009541655A (en) 2006-06-27 2007-04-12 Diesel engine exhaust pipe and desulfurization method

Country Status (6)

Country Link
US (1) US20090308057A1 (en)
EP (1) EP2032811A1 (en)
JP (1) JP2009541655A (en)
FR (1) FR2902828B1 (en)
RU (1) RU2429354C2 (en)
WO (1) WO2008000976A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI2198132T1 (en) * 2007-08-30 2011-06-30 Energy Conversion Technology As Exhaust gas apparatus and method for the regeneration of a nox trap and a particle filter
JP5081635B2 (en) * 2008-01-08 2012-11-28 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
FR2933446B1 (en) * 2008-07-01 2011-10-14 Renault Sas COMBINED REGENERATION AND DESULFURIZATION MANAGEMENT FOR MOTOR VEHICLE
GB2468159B (en) * 2009-02-27 2011-11-09 Energy Conversion Technology As Exhaust gas cleaning apparatus and method for cleaning an exhaust gas
CN102341573B (en) * 2009-03-05 2015-07-22 马克卡车公司 Diesel engine system and method and apparatus for handling diesel engine exhaust
GB2490934A (en) * 2011-05-19 2012-11-21 Gm Global Tech Operations Inc Method of desulphurisation of a Lean NOx Trap
US9016046B2 (en) * 2012-01-02 2015-04-28 Ford Global Technologies, Llc Internal combustion engine with exhaust-gas aftertreatment arrangement and method for operating an internal combustion engine of said type
GB2510171B (en) 2013-01-28 2015-01-28 Cool Flame Technologies As Method and cleaning apparatus for removal of SOx and NOx from exhaust gas
DE102013212801B4 (en) * 2013-07-01 2016-02-25 Ford Global Technologies, Llc Arrangement for exhaust aftertreatment for an internal combustion engine and method for operating an internal combustion engine
US9555372B2 (en) * 2015-01-09 2017-01-31 Caterpillar Inc. Fuel reformer for De-NOx trap
US10544720B2 (en) * 2016-02-05 2020-01-28 Cummins Inc. System and method for managing contaminant storage in a storage catalyst
US10344642B2 (en) * 2017-06-02 2019-07-09 GM Global Technology Operations LLC Systems and methods for controlling exhaust flow through dual after treatment device
CN109113839B (en) * 2018-09-11 2020-12-08 中船动力有限公司 Bypass device for after-treatment of tail gas of marine diesel engine and use method
US12070721B1 (en) * 2023-10-03 2024-08-27 Ford Global Technologies, Llc Engine cold start system and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004044514A (en) * 2002-07-12 2004-02-12 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2005048772A (en) * 2003-07-28 2005-02-24 Arvin Technologies Inc Device and method of operating fuel reforming device for regenerating dpnr device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2309309A1 (en) 1999-05-28 2000-11-28 Ford Global Technologies, Inc. Nox trap and particulate filter system for an internal combustion engine
DE19939807C2 (en) 1999-08-21 2001-11-29 Bosch Gmbh Robert Method and device for exhaust gas aftertreatment of the exhaust gas generated by an internal combustion engine and its use
JP3757856B2 (en) * 2001-12-07 2006-03-22 トヨタ自動車株式会社 Exhaust gas purification device
US7021048B2 (en) * 2002-01-25 2006-04-04 Arvin Technologies, Inc. Combination emission abatement assembly and method of operating the same
FR2838770B1 (en) * 2002-04-17 2005-11-25 Renault Sa EXHAUST GAS DELEGATION SYSTEM OF A DIESEL ENGINE AND METHOD OF IMPLEMENTING THE SAME
US6832473B2 (en) * 2002-11-21 2004-12-21 Delphi Technologies, Inc. Method and system for regenerating NOx adsorbers and/or particulate filters
DE102004024370A1 (en) * 2004-05-17 2005-12-15 Volkswagen Ag Combustion engine comprises an auxiliary energy unit and an exhaust gas cleaning system having a nitrogen oxide storage-reduction unit arranged in the exhaust gas pipe
US7213395B2 (en) * 2004-07-14 2007-05-08 Eaton Corporation Hybrid catalyst system for exhaust emissions reduction
US7036489B1 (en) * 2005-05-17 2006-05-02 Delphi Technologies, Inc. Exhaust system and methods of NOx adsorber desulfation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004044514A (en) * 2002-07-12 2004-02-12 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2005048772A (en) * 2003-07-28 2005-02-24 Arvin Technologies Inc Device and method of operating fuel reforming device for regenerating dpnr device

Also Published As

Publication number Publication date
RU2009102504A (en) 2010-08-10
FR2902828B1 (en) 2008-09-26
EP2032811A1 (en) 2009-03-11
FR2902828A1 (en) 2007-12-28
US20090308057A1 (en) 2009-12-17
RU2429354C2 (en) 2011-09-20
WO2008000976A1 (en) 2008-01-03

Similar Documents

Publication Publication Date Title
JP2009541655A (en) Diesel engine exhaust pipe and desulfurization method
US7624570B2 (en) Optimal fuel profiles
US7562522B2 (en) Enhanced hybrid de-NOx system
JP4608347B2 (en) Exhaust gas purification device
US20080006025A1 (en) LNT regeneration during transient operation
CN101187326A (en) Purification device for decreasing particulate matter and nitrogen oxides in diesel engine
JP2007138866A (en) Regeneration control method for exhaust emission control system, and exhaust emission control system
KR101269383B1 (en) Exhaust gas pyrification device
JP2011506823A (en) Transmission shift signal for post-processor control
JPWO2013190635A1 (en) Exhaust gas purification device for internal combustion engine
JP4148254B2 (en) An exhaust purification system for an internal combustion engine and a method for regenerating the purification ability of the exhaust purification device.
JP4135757B2 (en) Exhaust gas purification system for internal combustion engine
JP2007009718A (en) Exhaust emission control device
JP2009150279A (en) Exhaust gas treatment device
JP5177441B2 (en) Exhaust gas purification device for internal combustion engine
KR101210660B1 (en) Method for controlling exhaust gas purification apparatus
JP2010005552A (en) Exhaust gas purifying apparatus of internal combustion engine
JP2006022741A (en) Exhaust emission control system for internal combustion engine
JP2006250001A (en) Exhaust emission control system of internal combustion engine
JP7125664B2 (en) Exhaust purification device
JP6838384B2 (en) Exhaust gas purification system and poison control method for exhaust gas purification system
JP2007315242A (en) Exhaust emission control system of internal combustion engine
US20210189940A1 (en) Exhaust gas purification system for vehicle
JP2009216021A (en) Exhaust emission control device
JP2009221922A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120522