JP2009540409A - Temperature compensated current generator for 1V-10V interface - Google Patents
Temperature compensated current generator for 1V-10V interface Download PDFInfo
- Publication number
- JP2009540409A JP2009540409A JP2009513661A JP2009513661A JP2009540409A JP 2009540409 A JP2009540409 A JP 2009540409A JP 2009513661 A JP2009513661 A JP 2009513661A JP 2009513661 A JP2009513661 A JP 2009513661A JP 2009540409 A JP2009540409 A JP 2009540409A
- Authority
- JP
- Japan
- Prior art keywords
- transistor
- base
- resistor
- current
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000694 effects Effects 0.000 description 5
- 101100100146 Candida albicans NTC1 gene Proteins 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F3/00—Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
- G05F3/02—Regulating voltage or current
- G05F3/08—Regulating voltage or current wherein the variable is dc
- G05F3/10—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
- G05F3/16—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
- G05F3/20—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
- G05F3/22—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F3/00—Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
- G05F3/02—Regulating voltage or current
- G05F3/08—Regulating voltage or current wherein the variable is dc
- G05F3/10—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
- G05F3/16—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
- G05F3/20—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
- G05F3/22—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only
- G05F3/222—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only with compensation for device parameters, e.g. Early effect, gain, manufacturing process, or external variations, e.g. temperature, loading, supply voltage
- G05F3/225—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only with compensation for device parameters, e.g. Early effect, gain, manufacturing process, or external variations, e.g. temperature, loading, supply voltage producing a current or voltage as a predetermined function of the temperature
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Control Of Electrical Variables (AREA)
- Amplifiers (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
本発明は、ベース‐エミッタ接合領域を備えた少なくとも1つのトランジスタおよび当該のトランジスタに結合された抵抗回路網が設けられており、温度ドリフトに曝される前記ベース‐エミッタ接合領域での電圧降下と前記抵抗回路網の抵抗値とに基づいて出力電流の電流強度が定められる、入力電圧から出力電流を形成する装置に関する。本発明によれば、前記抵抗回路網はその抵抗値が温度にともなって変化する少なくとも1つの抵抗素子を含んでおり、前記出力電流の前記電流強度は前記ベース‐エミッタ接合領域での前記電圧降下の温度ドリフトから独立に一定に保持される。 The present invention includes at least one transistor having a base-emitter junction region and a resistor network coupled to the transistor, the voltage drop at the base-emitter junction region subject to temperature drift, and The present invention relates to an apparatus for forming an output current from an input voltage, wherein a current intensity of an output current is determined based on a resistance value of the resistance network. According to the present invention, the resistor network includes at least one resistance element whose resistance value varies with temperature, and the current intensity of the output current is the voltage drop in the base-emitter junction region. Is kept constant independently of temperature drift.
Description
本発明は通常1V〜10Vインタフェースと称されるインタフェースでの温度補償技術に関する。 The present invention relates to a temperature compensation technique at an interface commonly referred to as a 1V-10V interface.
関連技術の説明
こんにち1V〜10Vインタフェースは種々の産業分野において電子デバイスを制御するデファクトスタンダードとなっている。光デバイスの分野では、1V〜10Vインタフェースは例えば単純なポテンショメータまたは外部の電子制御回路を介した光源強度の調光に用いられる。一般に、光デバイスはインタフェースの電圧によって制御される。
Description of Related Art Today, the 1V-10V interface has become the de facto standard for controlling electronic devices in various industrial fields. In the field of optical devices, the 1V to 10V interface is used for dimming light source intensity via, for example, a simple potentiometer or external electronic control circuit. In general, an optical device is controlled by an interface voltage.
外部の抵抗、例えばポテンショメータの抵抗の値に比例する電圧を得る最良の手段は、インタフェース内に電流発生器を設けることである。このようにすれば、インタフェースでの電圧がオームの法則によって抵抗値に応じて定められる。単純で安価な電流発生器はトランジスタから成り、電流値は基準となるトランジスタの接合領域電圧によって定められる。ただし当該の基準電圧は温度によって大きく変動する。たいていの場合、負の影響を有する当該の温度依存性を補償しなければならない。 The best way to obtain a voltage proportional to the value of the external resistance, for example the resistance of the potentiometer, is to provide a current generator in the interface. In this way, the voltage at the interface is determined according to the resistance value according to Ohm's law. A simple and inexpensive current generator consists of a transistor whose current value is determined by the junction region voltage of the reference transistor. However, the reference voltage varies greatly with temperature. In most cases, the temperature dependence with negative effects must be compensated.
本発明の概要
本発明の課題は、前述した問題を解決する効果的な手段を提供することである。
SUMMARY OF THE INVENTION The object of the present invention is to provide an effective means for solving the above-mentioned problems.
この課題は、本発明により、請求項1の特徴を有する装置により解決される。本発明の有利な実施形態は従属請求項に記載されている。また本発明の特徴は明細書、特許請求の範囲および図面の全てから得られ、単独でも任意に組み合わせても本発明の対象となりうる。 This object is achieved according to the invention by a device having the features of claim 1. Advantageous embodiments of the invention are described in the dependent claims. The features of the present invention can be obtained from the entire specification, claims, and drawings, and can be the subject of the present invention alone or in any combination.
図面の簡単な説明
以下に本発明を実施例に則して詳細に説明する。図1には本発明の装置の第1の実施例のブロック図が示されている。図2には本発明の装置の第2の実施例のブロック図が示されている。
BRIEF DESCRIPTION OF THE DRAWINGS The present invention will be described in detail below with reference to examples. FIG. 1 shows a block diagram of a first embodiment of the device according to the invention. FIG. 2 shows a block diagram of a second embodiment of the device according to the invention.
本発明の実施例の詳細な説明
図1,図2には本発明の電流発生器の第1の実施例および第2の実施例が示されている。
DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION FIGS. 1 and 2 show a first embodiment and a second embodiment of the current generator of the present invention.
本発明の装置では、入力電圧としての第1の実施例のDC電圧V1またはDC電圧V2から温度に対して安定な出力電流を形成し、出力端子10で利用できるようにすることを重要な目的としている。ここで、本発明の装置は外部の可変抵抗に接続されて用いられる温度安定型の電流発生器であり、ここで設定された可変の抵抗値に比例する電圧が得られる。外部の可変抵抗は例えば図示されていないポテンショメータである。当該の電圧の調整により、1V〜10Vインタフェースにおいても1V〜10Vの範囲を超える電圧を形成することができる。
In the apparatus of the present invention, it is important to form a stable output current with respect to temperature from the DC voltage V1 or the DC voltage V2 of the first embodiment as an input voltage so that it can be used at the
2つの実施例の双方において、本発明の装置はバイポーラpnpの第1のトランジスタQ1;Q2を有しており、これらのトランジスタのコレクタを介して接続された出力端子10の一方の端子へ出力電流が送出される。出力端子10の他方の端子はグラウンドGへ接続されている。
In both embodiments, the device of the present invention comprises a bipolar pnp first transistor Q1; Q2, and the output current to one terminal of the
図1では、トランジスタQ1のベースが抵抗回路網を介して入力電圧V1へ接続されており、当該の抵抗回路網の全抵抗は単一の抵抗値Req1として示されている。 In FIG. 1, the base of the transistor Q1 is connected to the input voltage V1 via a resistor network, and the total resistance of the resistor network is shown as a single resistance value R eq1 .
当該の抵抗回路網は、実際には、第1の抵抗R1、第1のNTC抵抗(負の温度係数を有する抵抗)NTC1、ならびに、第2の抵抗R2および第2のNTC抵抗NTC2の並列部を直列に接続した回路から成る。 The resistor network actually includes a first resistor R1, a first NTC resistor (a resistor having a negative temperature coefficient) NTC1, and a parallel portion of the second resistor R2 and the second NTC resistor NTC2. It consists of a circuit connected in series.
また、第1のトランジスタQ1のベースは抵抗R4を介してグラウンドGへ接続されている。 The base of the first transistor Q1 is connected to the ground G through a resistor R4.
図2の装置はバイポーラpnpの第2のトランジスタQ3を有しており、第1のトランジスタQ2のエミッタおよび第2のトランジスタQ3のベースは抵抗回路網を介して入力電圧V2へ接続されており、当該の抵抗回路網の全抵抗は単一の抵抗値Req2として示されている。 The device of FIG. 2 has a bipolar pnp second transistor Q3, the emitter of the first transistor Q2 and the base of the second transistor Q3 being connected to the input voltage V2 via a resistor network, The total resistance of the resistor network is shown as a single resistance value R eq2 .
当該の抵抗回路網は、実際には、第1の抵抗R5、第1のNTC抵抗NTC3、ならびに、第2の抵抗R6および第2のNTC抵抗NTC4の並列部を直列に接続した回路から成る。 The resistor network actually includes a circuit in which a first resistor R5, a first NTC resistor NTC3, and a parallel portion of a second resistor R6 and a second NTC resistor NTC4 are connected in series.
図示されているように、第1のトランジスタQ2のエミッタは第2のトランジスタQ3のベースに接続されており、第2のトランジスタQ3のコレクタは第1のトランジスタQ2のベースに接続されている。第2のトランジスタQ3のエミッタは入力電圧V2に接続されており、第1のトランジスタQ2のベースおよびこれに接続された第2のトランジスタQ3のコレクタは抵抗R7を介してグラウンドGに接続されている。 As shown, the emitter of the first transistor Q2 is connected to the base of the second transistor Q3, and the collector of the second transistor Q3 is connected to the base of the first transistor Q2. The emitter of the second transistor Q3 is connected to the input voltage V2, and the base of the first transistor Q2 and the collector of the second transistor Q3 connected thereto are connected to the ground G through the resistor R7. .
わかりやすくするために、2つの実施例では第1のトランジスタQ1;Q2のベース電流および第2のトランジスタQ3のベース電流を無視できるものとしている。 For the sake of clarity, the two embodiments assume that the base current of the first transistor Q1; Q2 and the base current of the second transistor Q3 are negligible.
図1の装置に戻って、第1のトランジスタQ1のベース電流を無視できるとすると、抵抗R4を介した電圧は、抵抗R4,Req1の接続部の電流に抵抗R4の抵抗値を乗算した値と等しくなる。この電流は、給電電圧V1を抵抗R4,Req1の和で除算した値に等しい。言い換えると、第1のトランジスタQ1のベース電圧は入力電圧V1を分圧器R4,Req1によって分圧した値によって表すことができる。 Returning to the apparatus of FIG. 1, assuming that the base current of the first transistor Q1 can be ignored, the voltage through the resistor R4 is obtained by multiplying the current at the connection of the resistors R4 and Req1 by the resistance value of the resistor R4. Is equal to This current is equal to the value obtained by dividing the power supply voltage V1 by the sum of the resistors R4 and Req1 . In other words, the base voltage of the first transistor Q1 can be expressed by a value obtained by dividing the input voltage V1 by the voltage dividers R4 and Req1 .
抵抗R3を介した電圧は、給電電圧V1から第1のトランジスタQ1のベース‐エミッタ接合領域の電圧および抵抗R4を介した電圧を差し引いたものに等しい。第1のトランジスタQ1のコレクタからの出力電流は抵抗R3を介した電圧を抵抗R3の抵抗値で除算した値に等しく、つまり、第1のトランジスタQ1のベース‐エミッタ接合領域の電圧降下および抵抗Req1の抵抗値の関数によって表される。 The voltage through the resistor R3 is equal to the power supply voltage V1 minus the voltage at the base-emitter junction region of the first transistor Q1 and the voltage through the resistor R4. The output current from the collector of the first transistor Q1 is equal to the voltage across the resistor R3 divided by the resistance value of the resistor R3, that is, the voltage drop in the base-emitter junction region of the first transistor Q1 and the resistance R It is represented by a function of the resistance value of eq1 .
温度が上昇すると、第1のトランジスタQ1のベース‐エミッタ接合領域での電圧は低下し、インタフェース電流は増大する。同時に、温度上昇により2つのNTC抵抗(NTC1,NTC2)の抵抗値が低下し、その結果、抵抗回路網Req1の抵抗が低下して、抵抗R4を介した電圧、すなわち第1のトランジスタQ1のベース電圧が増大する。これにより第1のトランジスタQ1のエミッタ電圧は一定に保持される。よって抵抗R3を介した電圧、ひいては、第1のトランジスタQ1のコレクタからの出力電流が一定に保持される。 As the temperature increases, the voltage at the base-emitter junction region of the first transistor Q1 decreases and the interface current increases. At the same time, the resistance value of the two NTC resistors (NTC1, NTC2) decreases due to the temperature rise, and as a result, the resistance of the resistor network Req1 decreases, and the voltage across the resistor R4, that is, the first transistor Q1 The base voltage increases. As a result, the emitter voltage of the first transistor Q1 is kept constant. Therefore, the voltage via the resistor R3, and hence the output current from the collector of the first transistor Q1, is held constant.
この効果は唯一のNTC、特にNTC1を用いるのみで達成可能である。ただし、2つの固定値抵抗R1,R2と対応する2つのNTC抵抗NTC1,NTC2とを用いて、抵抗回路網Req1を形成する全ての素子の抵抗値およびNTC温度係数を適切に選択することにより、温度ドリフトの補償効果をいっそう向上させることができる。なお固定値抵抗R2はNTC抵抗NTC2に接続されている。 This effect can be achieved by using only one NTC, especially NTC1. However, by using the two fixed value resistors R1 and R2 and the corresponding two NTC resistors NTC1 and NTC2, by appropriately selecting the resistance values and NTC temperature coefficients of all elements forming the resistor network R eq1 Thus, the compensation effect of temperature drift can be further improved. The fixed value resistor R2 is connected to the NTC resistor NTC2.
図2の実施例では、第1のトランジスタQ2および第2のトランジスタQ3のベース電流を無視できるものとして、第1のトランジスタQ2のコレクタからの出力電流は同じ第1のトランジスタQ2がエミッタを介して抵抗回路網Req2から受け取る電流に等しい。当該の電流は第2のトランジスタQ3のベース‐エミッタ接合領域の電圧を抵抗回路網Req2の抵抗値で除算した値にほぼ等しい。つまり、第1のトランジスタQ2のコレクタからの出力電流は、第2のトランジスタQ3のベース‐エミッタ接合領域での電圧降下と抵抗回路網Req2の抵抗値との関数である。抵抗R7を介した電流はバイポーラの第1のトランジスタQ2および第2のトランジスタQ3を分極化するのに必要な電流である。 In the embodiment of FIG. 2, it is assumed that the base currents of the first transistor Q2 and the second transistor Q3 are negligible, and the output current from the collector of the first transistor Q2 is the same through the emitter of the first transistor Q2. Equal to the current received from the resistor network R eq2 . The current is approximately equal to the value obtained by dividing the voltage at the base-emitter junction region of the second transistor Q3 by the resistance value of the resistor network Req2 . That is, the output current from the collector of the first transistor Q2 is a function of the voltage drop at the base-emitter junction region of the second transistor Q3 and the resistance value of the resistor network R eq2 . The current through the resistor R7 is a current necessary to polarize the bipolar first transistor Q2 and the second transistor Q3.
温度が上昇すると、第2のトランジスタQ3のベース‐エミッタ接合領域での電圧降下、ひいては、抵抗回路網Req2の抵抗値が低下し、これにより出力電流は一定に保持される。 As the temperature rises, the voltage drop in the base-emitter junction region of the second transistor Q3, and hence the resistance value of the resistance network Req2 , decreases, and thereby the output current is kept constant.
この効果は唯一のNTC、例えばNTC3を用いるのみで達成可能である。ただし、2つの固定値抵抗R5,R6と対応する2つのNTC抵抗NTC3,NTC4とを用いて、抵抗回路網Req1を形成する全ての素子の抵抗値およびNTC温度係数を適切に選択することにより、温度ドリフトの補償効果をいっそう向上させることができる。なお固定値抵抗R6はNTC抵抗NTC4に接続されている。 This effect can be achieved by using only one NTC, for example NTC3. However, by using the two fixed value resistors R5 and R6 and the corresponding two NTC resistors NTC3 and NTC4, by appropriately selecting the resistance values and NTC temperature coefficients of all elements forming the resistor network Req1 Thus, the compensation effect of temperature drift can be further improved. The fixed value resistor R6 is connected to the NTC resistor NTC4.
図1の実施例に対する図2の実施例の主な利点は、出力電流が供給電圧V2によって変化しないということである。 The main advantage of the embodiment of FIG. 2 over the embodiment of FIG. 1 is that the output current does not vary with the supply voltage V2.
本発明を幾つかの実施例に則して説明したが、本発明はこれらの実施例に限定されるものではない。したがって、本発明の範囲から離れることなく、明細書、特許請求の範囲および図面に規定された本発明の種々の特徴を変更することができる。 Although the present invention has been described with reference to several embodiments, the present invention is not limited to these embodiments. Accordingly, various features of the invention may be changed which are defined in the specification, claims and drawings without departing from the scope of the invention.
Claims (12)
入力電圧から出力電流を形成する装置において、
前記抵抗回路網はその抵抗値が温度にともなって変化する少なくとも1つの抵抗素子を含んでおり、前記出力電流の前記電流強度は前記ベース‐エミッタ接合領域での前記電圧降下の温度ドリフトから独立に一定に保持される
ことを特徴とする入力電圧から出力電流を形成する装置。 At least one transistor having a base-emitter junction region and a resistor network coupled to the transistor are provided, the voltage drop in the base-emitter junction region subject to temperature drift and the resistance network The current intensity of the output current is determined based on the resistance value,
In a device that forms an output current from an input voltage,
The resistor network includes at least one resistance element whose resistance value varies with temperature, and the current intensity of the output current is independent of a temperature drift of the voltage drop in the base-emitter junction region. A device for generating an output current from an input voltage, characterized by being held constant.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06425386A EP1865398A1 (en) | 2006-06-07 | 2006-06-07 | A temperature-compensated current generator, for instance for 1-10V interfaces |
PCT/EP2007/055454 WO2007141231A1 (en) | 2006-06-07 | 2007-06-04 | A temperature-compensated current generator, for instance for 1-10v interfaces |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009540409A true JP2009540409A (en) | 2009-11-19 |
Family
ID=36954095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009513661A Pending JP2009540409A (en) | 2006-06-07 | 2007-06-04 | Temperature compensated current generator for 1V-10V interface |
Country Status (9)
Country | Link |
---|---|
US (1) | US7800430B2 (en) |
EP (1) | EP1865398A1 (en) |
JP (1) | JP2009540409A (en) |
KR (1) | KR101478971B1 (en) |
CN (1) | CN101460904B (en) |
AU (1) | AU2007255433B2 (en) |
CA (1) | CA2659090A1 (en) |
TW (1) | TW200819948A (en) |
WO (1) | WO2007141231A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010151754A2 (en) * | 2009-06-26 | 2010-12-29 | The Regents Of The University Of Michigan | Reference voltage generator having a two transistor design |
TWI405068B (en) * | 2010-04-08 | 2013-08-11 | Princeton Technology Corp | Voltage and current generator with an approximately zero temperature coefficient |
CN103875120B (en) * | 2011-09-30 | 2016-05-25 | 株式会社村田制作所 | Battery outer structure |
DE102014220753A1 (en) | 2014-10-14 | 2016-04-14 | Tridonic Gmbh & Co Kg | Sensor for a control gear for bulbs |
KR102662446B1 (en) * | 2019-03-19 | 2024-04-30 | 삼성전기주식회사 | Bias circuit and amplifying device having temperature compensation function |
JP2021069080A (en) * | 2019-10-28 | 2021-04-30 | 株式会社三社電機製作所 | Gate drive circuit |
US11636322B2 (en) * | 2020-01-03 | 2023-04-25 | Silicon Storage Technology, Inc. | Precise data tuning method and apparatus for analog neural memory in an artificial neural network |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5465355A (en) * | 1977-11-01 | 1979-05-25 | Toshiba Corp | Constant current circuit |
JPS5617519A (en) * | 1979-07-24 | 1981-02-19 | Toshiba Corp | Frequency modulator |
JPS62231322A (en) * | 1986-03-31 | 1987-10-09 | Toshiba Corp | Constant current circuit |
JPH0266613A (en) * | 1988-08-31 | 1990-03-06 | Sharp Corp | Constant current circuit |
JPH0334708A (en) * | 1989-06-30 | 1991-02-14 | Nippon Dempa Kogyo Co Ltd | Compensation voltage generating circuit for temperature compensation oscillator |
JPH0526207B2 (en) * | 1980-04-08 | 1993-04-15 | Sony Corp | |
JPH0543131B2 (en) * | 1986-12-19 | 1993-06-30 | Matsushita Electric Ind Co Ltd | |
JPH0685563A (en) * | 1992-09-04 | 1994-03-25 | Nec Kansai Ltd | Constant current circuit |
JPH0784658A (en) * | 1993-08-13 | 1995-03-31 | Tektronix Inc | Current source |
JPH082738Y2 (en) * | 1990-08-05 | 1996-01-29 | 新日本無線株式会社 | Constant current circuit |
JP2000124744A (en) * | 1998-10-12 | 2000-04-28 | Texas Instr Japan Ltd | Constant voltage generation circuit |
JP2002116831A (en) * | 2000-10-05 | 2002-04-19 | Sharp Corp | Constant current generating circuit |
JP2004234477A (en) * | 2003-01-31 | 2004-08-19 | Fujitsu Ltd | Semiconductor device and temperature compensated oscillator |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3148337A (en) * | 1962-10-01 | 1964-09-08 | Hewlett Packard Co | Temperature compensated signal-controlled current source |
US3956661A (en) * | 1973-11-20 | 1976-05-11 | Tokyo Sanyo Electric Co., Ltd. | D.C. power source with temperature compensation |
JPS5492094A (en) * | 1977-12-29 | 1979-07-20 | Seiko Epson Corp | Power supply method for liquid crystal display substance |
EP0521175B1 (en) * | 1991-06-28 | 1993-04-21 | Siemens Aktiengesellschaft | Circuit arrangement for temperature compensation of coil quality factor |
US6023185A (en) * | 1996-04-19 | 2000-02-08 | Cherry Semiconductor Corporation | Temperature compensated current reference |
CN1154032C (en) * | 1999-09-02 | 2004-06-16 | 深圳赛意法微电子有限公司 | Band-gap reference circuit |
JP4240691B2 (en) * | 1999-11-01 | 2009-03-18 | 株式会社デンソー | Constant current circuit |
US6865150B1 (en) | 2000-04-06 | 2005-03-08 | Cisco Technology, Inc. | System and method for controlling admission of voice communications in a packet network |
US6407621B1 (en) * | 2000-10-11 | 2002-06-18 | Intersil Americas Inc. | Mechanism for generating precision user-programmable parameters in analog integrated circuit |
US6556082B1 (en) * | 2001-10-12 | 2003-04-29 | Eic Corporation | Temperature compensated current mirror |
KR100654646B1 (en) * | 2004-10-11 | 2006-12-08 | 아바고테크놀로지스코리아 주식회사 | A temperature compensated bias circuit for a power amplifier |
-
2006
- 2006-06-07 EP EP06425386A patent/EP1865398A1/en not_active Withdrawn
-
2007
- 2007-06-04 JP JP2009513661A patent/JP2009540409A/en active Pending
- 2007-06-04 US US12/226,501 patent/US7800430B2/en not_active Expired - Fee Related
- 2007-06-04 AU AU2007255433A patent/AU2007255433B2/en not_active Ceased
- 2007-06-04 CN CN2007800207132A patent/CN101460904B/en not_active Expired - Fee Related
- 2007-06-04 WO PCT/EP2007/055454 patent/WO2007141231A1/en active Application Filing
- 2007-06-04 CA CA002659090A patent/CA2659090A1/en not_active Abandoned
- 2007-06-04 KR KR20097000263A patent/KR101478971B1/en not_active IP Right Cessation
- 2007-06-05 TW TW096120033A patent/TW200819948A/en unknown
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5465355A (en) * | 1977-11-01 | 1979-05-25 | Toshiba Corp | Constant current circuit |
JPS5617519A (en) * | 1979-07-24 | 1981-02-19 | Toshiba Corp | Frequency modulator |
JPH0526207B2 (en) * | 1980-04-08 | 1993-04-15 | Sony Corp | |
JPS62231322A (en) * | 1986-03-31 | 1987-10-09 | Toshiba Corp | Constant current circuit |
JPH0543131B2 (en) * | 1986-12-19 | 1993-06-30 | Matsushita Electric Ind Co Ltd | |
JPH0266613A (en) * | 1988-08-31 | 1990-03-06 | Sharp Corp | Constant current circuit |
JPH0334708A (en) * | 1989-06-30 | 1991-02-14 | Nippon Dempa Kogyo Co Ltd | Compensation voltage generating circuit for temperature compensation oscillator |
JPH082738Y2 (en) * | 1990-08-05 | 1996-01-29 | 新日本無線株式会社 | Constant current circuit |
JPH0685563A (en) * | 1992-09-04 | 1994-03-25 | Nec Kansai Ltd | Constant current circuit |
JPH0784658A (en) * | 1993-08-13 | 1995-03-31 | Tektronix Inc | Current source |
JP2000124744A (en) * | 1998-10-12 | 2000-04-28 | Texas Instr Japan Ltd | Constant voltage generation circuit |
JP2002116831A (en) * | 2000-10-05 | 2002-04-19 | Sharp Corp | Constant current generating circuit |
JP2004234477A (en) * | 2003-01-31 | 2004-08-19 | Fujitsu Ltd | Semiconductor device and temperature compensated oscillator |
Also Published As
Publication number | Publication date |
---|---|
TW200819948A (en) | 2008-05-01 |
US7800430B2 (en) | 2010-09-21 |
KR20090018718A (en) | 2009-02-20 |
KR101478971B1 (en) | 2015-01-05 |
EP1865398A1 (en) | 2007-12-12 |
AU2007255433B2 (en) | 2011-04-07 |
WO2007141231A1 (en) | 2007-12-13 |
CA2659090A1 (en) | 2007-12-13 |
CN101460904A (en) | 2009-06-17 |
CN101460904B (en) | 2011-04-13 |
AU2007255433A1 (en) | 2007-12-13 |
US20090079493A1 (en) | 2009-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110716602B (en) | Pole-Zero Tracking Compensation Network for Voltage Regulator | |
JP2009540409A (en) | Temperature compensated current generator for 1V-10V interface | |
US10209732B2 (en) | Bandgap reference circuit with tunable current source | |
US20150048879A1 (en) | Bandgap reference voltage circuit and electronic apparatus thereof | |
TW202111465A (en) | Bandgap reference voltage generating circuit | |
JPS59195718A (en) | Current stabilizing circuit | |
US6710586B2 (en) | Band gap reference voltage circuit for outputting constant output voltage | |
US3536986A (en) | Low level costant current source | |
TWI451385B (en) | A system and method for current matching of light emitting diode (LED) strings | |
JP4522299B2 (en) | Constant current circuit | |
US10353414B2 (en) | Bandgap reference circuit with inverted bandgap pairs | |
JP2714269B2 (en) | Equivalent inductance circuit | |
JP5437110B2 (en) | Automatic bias adjustment circuit for FET | |
JP2014002458A (en) | Constant voltage circuit | |
KR101603707B1 (en) | Bandgap reference voltage generating circuit | |
JP4163861B2 (en) | Semiconductor device | |
KR101231248B1 (en) | static voltage generating circuit | |
JP3813428B2 (en) | Output circuit of A / D converter | |
US9588538B2 (en) | Reference voltage generation circuit | |
JPS59144209A (en) | Offset voltage trimming circuit of operational amplifier | |
JPH04106606A (en) | Reference-voltage source circuit | |
JP4313298B2 (en) | Division circuit | |
JP2003241842A (en) | Dc stabilized power supply apparatus | |
JPH0664504B2 (en) | Level shift circuit | |
JP2003167638A (en) | Semiconductor integrated circuit device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20101228 Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20101227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110525 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20110822 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20110829 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20110926 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20111003 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20111025 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20111101 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120711 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20121207 |