JPH0266613A - Constant current circuit - Google Patents

Constant current circuit

Info

Publication number
JPH0266613A
JPH0266613A JP63217378A JP21737888A JPH0266613A JP H0266613 A JPH0266613 A JP H0266613A JP 63217378 A JP63217378 A JP 63217378A JP 21737888 A JP21737888 A JP 21737888A JP H0266613 A JPH0266613 A JP H0266613A
Authority
JP
Japan
Prior art keywords
resistor
temperature coefficient
constant current
current circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63217378A
Other languages
Japanese (ja)
Inventor
Koichi Furuta
広一 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP63217378A priority Critical patent/JPH0266613A/en
Publication of JPH0266613A publication Critical patent/JPH0266613A/en
Pending legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)
  • Thermistors And Varistors (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To avoid the influence of temperatures with a simple constitution by connecting a resistor of a positive temperature coefficient and a resistor of a negative temperature coefficient so as to cancel these temperature coefficients. CONSTITUTION:A resistor where a constant current I1 flows is obtained from a serial connection between the 1st resistor R2 of a negative temperature coefficient and a resistor R3 of a positive temperature coefficient. When the resistor R2 is made of polysilicone, the temperature coefficient is equal to -900ppm although this value differs slightly according to the semiconductor wafer process. While the temperature coefficient is equal to about +700ppm when the resistor R3 uses a diffused resistor.

Description

【発明の詳細な説明】 主粟上皇且里立国 本考案は定電流回路に関するものである。[Detailed description of the invention] Retired Emperor Shuso and established a country The present invention relates to a constant current circuit.

従来少及歪 定電流回路は集積回路において使用されることが多いが
、このような定電流回路の従来例を第3図に示す。同図
において、定電流(!、)はトランジスタ(Ql)及び
抵抗(R1)を通して接地点へ流れるが、その際に抵抗
(R1)によって(a)点に生じる電圧は演算増幅器(
1)の(−)入力端子に与えられる。この演算増幅器(
1)の(+)入力端子は温度係数が零の電圧基準源(2
)に接続され、出力端子はトランジスタ(Ql)のベー
スに接続されている。この場合、演算増幅器(1)の(
=)入力端子へ入力される電圧が(+)入力端子へ入力
される電圧と等しくなるようにトランジスタ(Ql)が
制御されることになる。
Conventional low-distortion constant current circuits are often used in integrated circuits, and a conventional example of such a constant current circuit is shown in FIG. In the same figure, a constant current (!,) flows to the ground point through the transistor (Ql) and the resistor (R1), but at this time, the voltage generated at point (a) by the resistor (R1) is transferred to the operational amplifier (
1) is applied to the (-) input terminal. This operational amplifier (
The (+) input terminal of 1) is a voltage reference source (2) with a temperature coefficient of zero.
), and its output terminal is connected to the base of the transistor (Ql). In this case, the operational amplifier (1) (
The transistor (Ql) is controlled so that the voltage input to the =) input terminal becomes equal to the voltage input to the (+) input terminal.

従って、電圧基準源(2)の電圧を(V、)とすると、
定電流(11)は、r + = v I/ R+となる
Therefore, if the voltage of the voltage reference source (2) is (V, ), then
The constant current (11) is r + = v I/R+.

8 < °   ゛と るi ところで上記従来回路では抵抗(R+)を同一集積回路
内に作成した場合、半導体のウェハープロセス固有の抵
抗体の温度係数により定電流出力の温度係数が決定され
てしまい、定電流出力の温度係数を制御することは出来
ない。そのため、温度変化に基づく定電流の変動を余儀
なくされていた。
By the way, in the above conventional circuit, when the resistor (R+) is created in the same integrated circuit, the temperature coefficient of the constant current output is determined by the temperature coefficient of the resistor specific to the semiconductor wafer process. It is not possible to control the temperature coefficient of constant current output. Therefore, the constant current has been forced to fluctuate based on temperature changes.

本発明はこのような点に鑑みなされたものであって、簡
単な構成により温度の影響を受けない定電流回路を提供
することを目的とする。
The present invention has been made in view of these points, and it is an object of the present invention to provide a constant current circuit that has a simple configuration and is not affected by temperature.

量 を”るための 上記の目的を達成するため本発明では、電流が流れるこ
とにより抵抗体に生じる電圧を前記電流を定電流とする
ための制御用電圧として使用する定電流回路において、
前記抵抗体として正の温度係数の抵抗体と負の温度係数
の抵抗体をそれらの温度係数がキャンセルされるように
接続構成している。
In order to achieve the above-mentioned object of reducing the amount of current, the present invention provides a constant current circuit that uses a voltage generated in a resistor when a current flows as a control voltage for making the current a constant current.
As the resistor, a resistor having a positive temperature coefficient and a resistor having a negative temperature coefficient are connected so that their temperature coefficients cancel each other.

詐二」且 このような構成によると、例えば温度が上昇した場合、
正の温度係数の抵抗体の抵抗値は大きくなるが、負の温
度係数の抵抗体の抵抗値は小さくなるので、その合成抵
抗値は変化しないことになる。温度が低くなったときも
、正の温度係数の抵抗体の抵抗値低下が負の温度係数の
抵抗体の抵抗値増大により補償されて合成の抵抗値とし
ては変わらない。
According to such a configuration, for example, when the temperature rises,
The resistance value of the resistor with a positive temperature coefficient increases, but the resistance value of the resistor with a negative temperature coefficient decreases, so the combined resistance value does not change. Even when the temperature decreases, the decrease in resistance of the resistor with a positive temperature coefficient is compensated for by the increase in the resistance of the resistor with a negative temperature coefficient, so that the combined resistance value remains unchanged.

裏」L斑 本考案を実施した第1図において、第3図と同一部分に
は同一の符号を付して重複説明を省略する。本実施例で
は、定電流(I1)が流れる抵抗体として負の温度係数
の第1抵抗体(R8)と正の温度係数の抵抗体(R3)
を直列に接続して構成したものを使用している。ここで
、第1抵抗体(R2)をポリシリコンで形成した場合、
半導体ウェハープロセスによっても多少異なるが、温度
係数は一900ppmである。一方、第2抵抗体(R3
)を拡散抵抗で形成した場合温度係数は約+700pp
mとなる。
In FIG. 1 showing the implementation of the present invention, the same parts as in FIG. 3 are given the same reference numerals and redundant explanation will be omitted. In this embodiment, a first resistor (R8) with a negative temperature coefficient and a resistor (R3) with a positive temperature coefficient are used as resistors through which a constant current (I1) flows.
I am using a configuration made by connecting them in series. Here, if the first resistor (R2) is formed of polysilicon,
Although it varies somewhat depending on the semiconductor wafer process, the temperature coefficient is -900 ppm. On the other hand, the second resistor (R3
) is formed with a diffused resistor, the temperature coefficient is approximately +700pp.
m.

今、室温での第1.第2抵抗体(Rg) (R:l)の
抵抗値をそれぞれ(r、) (rs)とし、基準電圧を
(V+)とすると、出力電流(定電流)(I+)は、J
1=V1/ (r2+ri) となる。また、第1.第2抵抗体(R1)(R3)の合
成温度係数は、 となる0例えば温度係数が零の定電流出力を得るために
は、 I3    9 r、      7 の比になるように第1.第2抵抗体(Rz) (R3)
の値を決定すればよい。
Now, the first one at room temperature. If the resistance values of the second resistor (Rg) (R:l) are respectively (r, ) (rs) and the reference voltage is (V+), the output current (constant current) (I+) is J
1=V1/(r2+ri). Also, 1st. The combined temperature coefficient of the second resistor (R1) (R3) is 0. For example, in order to obtain a constant current output with a temperature coefficient of zero, the first... Second resistor (Rz) (R3)
All you have to do is decide the value of .

第2図は本発明の他の実施例であり、第1図と同一部分
には同一の符号を付しである。この実施例では定電流(
■、)によってカレントミラー回路(3)を駆動し、半
導体集積回路(4)に端子ピン(5)を介して外付けさ
れた容量(C)を定電流(■、)と同値の電流(I2)
により充電する構成を示している。この場合、第1.第
2抵抗体(Rz) (R3)の温度係数のキャンセル不
足分を残し、その不足分で外付けの容量(C)の温度係
数をキャンセルするように第1.第2抵抗体(Rz) 
(Rs)を設定すれば充電時間は温度に依らずに一定値
となる。
FIG. 2 shows another embodiment of the present invention, in which the same parts as in FIG. 1 are given the same reference numerals. In this example, constant current (
The current mirror circuit (3) is driven by )
The figure shows a configuration in which the battery is charged by In this case, the first. The temperature coefficient of the second resistor (Rz) (R3) is left uncancelled, and the temperature coefficient of the external capacitor (C) is canceled by the shortfall. Second resistor (Rz)
If (Rs) is set, the charging time becomes a constant value regardless of the temperature.

光肌二重来 以上の通り、本発明によれば定電流の制御用電圧を発生
する抵抗体の温度係数を零とすることができ、また第1
.第2抵抗体のキャンセル量を適当に設定することによ
り負荷との温度係数キャンセルを図ることもできる。
As described above, according to the present invention, the temperature coefficient of the resistor that generates the constant current control voltage can be made zero, and the first
.. By appropriately setting the amount of cancellation of the second resistor, it is also possible to cancel the temperature coefficient with the load.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施した定電流回路を示す回路図であ
り、第2図は本発明の他の実施例の回路図である。第3
図は従来例の回路図である。 (R1)−・・第1抵抗体(負の温度係数の抵抗体)。 (R5)・・−第2抵抗体(正の温度係数の抵抗体)。 (1+)−m一定電流。
FIG. 1 is a circuit diagram showing a constant current circuit embodying the present invention, and FIG. 2 is a circuit diagram of another embodiment of the present invention. Third
The figure is a circuit diagram of a conventional example. (R1)--First resistor (negative temperature coefficient resistor). (R5)...-Second resistor (resistor with positive temperature coefficient). (1+)-m constant current.

Claims (1)

【特許請求の範囲】[Claims] (1)電流が流れることにより抵抗体に生じる電圧を前
記電流を定電流とするための制御用電圧として使用する
定電流回路において、前記抵抗体として正の温度係数の
抵抗体と負の温度係数の抵抗体をそれらの温度係数がキ
ャンセルされるように接続構成したことを特徴とする定
電流回路。
(1) In a constant current circuit that uses the voltage generated in a resistor when a current flows as a control voltage to make the current a constant current, the resistor is a resistor with a positive temperature coefficient and a resistor with a negative temperature coefficient. A constant current circuit characterized in that resistors are connected so that their temperature coefficients are canceled.
JP63217378A 1988-08-31 1988-08-31 Constant current circuit Pending JPH0266613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63217378A JPH0266613A (en) 1988-08-31 1988-08-31 Constant current circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63217378A JPH0266613A (en) 1988-08-31 1988-08-31 Constant current circuit

Publications (1)

Publication Number Publication Date
JPH0266613A true JPH0266613A (en) 1990-03-06

Family

ID=16703235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63217378A Pending JPH0266613A (en) 1988-08-31 1988-08-31 Constant current circuit

Country Status (1)

Country Link
JP (1) JPH0266613A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06169237A (en) * 1991-09-13 1994-06-14 Mitsubishi Electric Corp Ring oscillator circuit
JP2009005214A (en) * 2007-06-25 2009-01-08 Ricoh Co Ltd Clock phase control apparatus
US7616050B2 (en) 2004-12-14 2009-11-10 Atmel Automotive Gmbh Power supply circuit for producing a reference current with a prescribable temperature dependence
JP2009540409A (en) * 2006-06-07 2009-11-19 オスラム ゲゼルシャフト ミット ベシュレンクテル ハフツング Temperature compensated current generator for 1V-10V interface
JP2010165177A (en) * 2009-01-15 2010-07-29 Renesas Electronics Corp Constant current circuit
JP2010220178A (en) * 2009-03-19 2010-09-30 Asahi Kasei Electronics Co Ltd Delay generation circuit, and constant current source circuit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06169237A (en) * 1991-09-13 1994-06-14 Mitsubishi Electric Corp Ring oscillator circuit
US7616050B2 (en) 2004-12-14 2009-11-10 Atmel Automotive Gmbh Power supply circuit for producing a reference current with a prescribable temperature dependence
JP2009540409A (en) * 2006-06-07 2009-11-19 オスラム ゲゼルシャフト ミット ベシュレンクテル ハフツング Temperature compensated current generator for 1V-10V interface
KR101478971B1 (en) * 2006-06-07 2015-01-05 오스람 게엠베하 A temperature-compensated current generator, for instance for 1-10v interfaces
JP2009005214A (en) * 2007-06-25 2009-01-08 Ricoh Co Ltd Clock phase control apparatus
JP2010165177A (en) * 2009-01-15 2010-07-29 Renesas Electronics Corp Constant current circuit
JP2010220178A (en) * 2009-03-19 2010-09-30 Asahi Kasei Electronics Co Ltd Delay generation circuit, and constant current source circuit

Similar Documents

Publication Publication Date Title
GB1467126A (en) Current stabilizing arrangement
JPH0266613A (en) Constant current circuit
JPH01318308A (en) Logarithmic amplifier
JPH0770935B2 (en) Differential current amplifier circuit
JPH05183348A (en) Amplifier circuit
JPH0326435B2 (en)
JPH01140212A (en) Low voltage mos reference voltage circuit
JPH0140283Y2 (en)
RU2023287C1 (en) Constant voltage regulator
JPS59161192A (en) Dc bias dependability eliminating circuit
JPS59171822A (en) Temperature detecting circuit
JPS60675Y2 (en) Signal addition circuit
JP2573279B2 (en) Current conversion circuit
JPS584327Y2 (en) amplifier circuit
JPH0254608A (en) Constant current circuit
JPS6118457Y2 (en)
JPH0441611Y2 (en)
JPS6197577A (en) Current comparison circuit
JPS59183514A (en) Variable gain differential amplifier circuit
JPS5912610A (en) Ocl adapter circuit
JPH0666602B2 (en) Offset correction circuit
JPS6360433B2 (en)
JPS555559A (en) Integrated circuit
JPS6122484B2 (en)
JPS60250419A (en) Constant voltage power supply circuit