JP2009511243A - 可燃性ガスの排気方法 - Google Patents

可燃性ガスの排気方法 Download PDF

Info

Publication number
JP2009511243A
JP2009511243A JP2008534062A JP2008534062A JP2009511243A JP 2009511243 A JP2009511243 A JP 2009511243A JP 2008534062 A JP2008534062 A JP 2008534062A JP 2008534062 A JP2008534062 A JP 2008534062A JP 2009511243 A JP2009511243 A JP 2009511243A
Authority
JP
Japan
Prior art keywords
membrane
gas stream
gas
vacuum pump
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008534062A
Other languages
English (en)
Inventor
ロバート ブルース グラント
Original Assignee
エドワーズ リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エドワーズ リミテッド filed Critical エドワーズ リミテッド
Publication of JP2009511243A publication Critical patent/JP2009511243A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/326Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 in electrochemical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/0447Concentration; Density of cathode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04552Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04731Temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/04873Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Reverberation, Karaoke And Other Acoustics (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Treating Waste Gases (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

可燃性ガスを含むガス流を排出するためのシステムは、固体酸化イオン伝導膜(20)と、ガス流を、減圧で、膜の一方の側に引くための真空ポンプ(36)と、を含む。膜の他方の側は、酸化ガスに暴露しており、反応性酸化種が膜に浸透し、可燃性ガスと反応して少なくとも水蒸気を生成するように電位差が膜に加えられる。ガス流は、続いて真空ポンプ(36)に受け入れられる。真空ポンプは、ガス流を水に暴露する排気機構を有していてもよく、水蒸気は、ガス流から凝縮される。変形例として、凝縮器(14)を、ガス流から水蒸気を凝縮するために、ポンプと膜の間に設けてもよい。

Description

本発明は、水素や炭化水素のような、可燃性ガスを含むガス流を排気するための方法及び装置に関する。
多くのプロセスが、水素や炭化水素のような燃料を含む潜在的引火性の混合物を使用しまたは発生させる。例えば、エピタキシャル蒸着プロセスは、シリコン及び複合半導体用途の両方のために高速半導体装置に増々使用される。エピタキシャル蒸着は、シリコン源ガス、典型的にはシラン、または、トリクロロシランまたはジクロロシランのようなクロロシラン化合物の一つを、高温、典型的には約800〜1100℃の水素雰囲気内で、且つ真空状態下で利用する。そのような蒸着プロセスでは、プロセス室内での蒸着ガスの滞留時間は、比較的短く、蒸着プロセス中、室に供給されたガスの僅かな部分だけが消費される。したがって、室に供給された蒸着ガスの大部分は、蒸着プロセスから、副生成物と共に室から排出される。
排気ガス自身は引火性ではないが、そのような混合物の排気は、配管への空気の流入がないことを保証するために、ポンプからの前方配管の及び排気配管の漏れ無欠状態に置かれるように多大な注意を必要とする。ガス混合物がその下方爆発限界(LEL)を越えると、ポンプ内のいかなる引火源も、ポンプから排気管の中へ移動する有害な火炎前面を発生させることがある。
引火性ガス流の発火を回避するのに使用される共通の技術は、ガス流に、余剰の不活性パージガス、典型的には窒素を導入してガス流をLELより下にし、続いて、ガス流を除害装置、典型的にはバーナーに運んで、ガス流を大気に放出する前に可燃性ガスを他の種に制御可能に変換することである。しかしながら、パージガスをガス流に供給することは、除害装置の効率を減じることがあり、不経済でコスト高である。さらに、可燃性ガスを分解するバーナーの使用は、可燃性ガスの分解の副生成物として、他の望ましくない化学物質の大気への放出に至らせる。
第1の側面では、本発明は、可燃性ガスを含むガス流を排気する方法を提供し、該方法は、ガス流を減圧でイオン伝導膜の一方の側に運ぶステップと、膜の他方の側を酸化ガスに暴露させるステップと、反応性酸化ガスが膜に浸透し、可燃性ガスと反応して少なくとも水蒸気を生成するように膜に電位差を加えるステップと、続いて、ガスを真空ポンプで受け入れるステップと、を含み、水蒸気は、真空ポンプの上流または真空ポンプ内でガス流から凝縮される。
潜在的爆発性ガス混合物の全圧力を減少させるので、可燃性ガス及び酸化剤を含むガス相化学反応の突発的な性質も減少する。酸素アニオンまたは基のような反応性酸化種を減圧で、好ましくは50mbarより小さい、より好ましくは10mbarより小さい圧力で可燃性ガスに運ぶことにより、ガス流を下方爆発限界以下に減ずるためにガス流に加える必要がある不活性パージガスの量を、好ましくはゼロに減ずることができ、それにより、複雑なパージガスシステム及びこれと関連したコストを回避することができる。
イットリウム安定化ジルコニウムまたはガドリニウム添加セリア酸素アニオン導体のようなイオン伝導膜の使用と関連した利点は、膜の中の酸化種の浸透を発動させるために、電位差を膜に加える必要があることであり、さもなければ、膜は酸化種を浸透させない。かくして、電源故障の場合には、酸素アニオンのガス流への移動が禁止され、それにより膜内での潜在的爆発性雰囲気の発生を回避する。膜に加えられる電位差の大きさを制御することにより、酸化種の浸透速度を制御することができ、それにより、酸化種がガス流に入る速度は、ガス流内での可燃性ガスの実質的に全てと反応するのに十分である。酸素アニオンを膜に押し通すのに使用される電流の絶対的な大きさは、一般的に、膜の側面に配置された電極の表面積、酸化ガスの分圧及びガス流内の可燃性ガスの量に依存する。膜に加えられる電位差を、膜の下流のガス流内に存在する酸素の量を測定するのに使用されるセンサの出力に応じて調整することができる。例えば、もしセンサが、酸素を検出しなければ、これは、膜への酸素アニオンの浸透が可燃性ガスの全てと反応するのに不十分である表示を提供することができ、それゆえ、電位差または電流密度を、センサがガス流れに酸素が存在することを検出するまで、徐々に増大させる。
さらに、可燃性ガスと酸化種との間の反応の生成物のうちの少なくとも1つ、または水素の場合には、全てが、凝縮可能であるから、例えば、水蒸気のような凝縮可能な種がガス流から凝縮されるとき、ガス流内に含まれる水素の各slmが、排気速度の追加的なslmを発生させるので、ガス流を排気するのに必要とされる真空ポンプのサイズを減少させることができる。
水蒸気を、膜と真空ポンプの間に配置された凝縮器内でガス流から凝縮するのがよい。変形例として、真空ポンプは、ガス流を水に暴露する排気機構を有し、水蒸気は、ガス流から凝縮される。そのような排気機構を有する真空ポンプの例は、液体リングポンプ及び液体エジェクタポンプを含む。
前述のように、電位差を、膜の前記一方の側の第1電極と膜の前記他方の側の第2電極を用いて膜に加えることができ、電極の少なくとも1つは、反応速度を改善するために、プラチナのような触媒物質からなる。
膜の温度を制御するための手段を設けてもよい。膜の性質に応じて、膜を、酸化種に必要とされる伝導度を有する高い温度に加熱する必要があるかもしれない。臨界温度(Tc)以下の温度では、電解質材料は非電導性であるが、Tc以上の温度では、電解質材料は徐々により電導性になる。加熱器を、膜を要求温度に加熱するために膜の周りに都合よく設けてもよい。
好ましい実施形態では、膜は、ボアを有する円筒の形態であり、ガス流はこのボアを通して真空ポンプによって引かれる。分解効率を増やすために、複数の前記円筒形膜を平行して設けてもよい。変形例として、膜は、プレート状の構造を有していてもよい。
酸化ガスを、酸素のガス状源から得ることができる。典型的には、大気空気が酸素のガス状源として用いられるが、他のガス構成物を用いてもよい。
第2の側面では、本発明は、可燃性ガスを含むガス流を排気するためのシステムを提供し、該システムは、イオン伝導膜と、他方の側が酸化ガスに暴露された膜の一方の側にガス流を減圧で引くための真空ポンプと、反応性酸化種が膜に浸透し、可燃性ガスと反応して少なくとも水蒸気を生成するように膜に電位差を加えるための手段と、を含み、真空ポンプは、膜からガス流を受け入れるように構成され、且つガス流を水に暴露させる排気機構を有し、水蒸気は、ガス流から凝縮される。
第3の側面では、本発明は、可燃性ガスを含むガス流を排気するためのシステムを提供し、該システムは、イオン伝導膜と、他方の側が酸化ガスに暴露された膜の一方の側にガス流を減圧で引くための真空ポンプと、反応性酸化種が膜に浸透し、可燃性ガスと反応して少なくとも水蒸気を生成するように膜に電位差を加えるための手段と、を含み、真空ポンプは、膜からガス流を受け入れるように構成され、且つガス流を水に暴露させる排気機構を有し、水蒸気は、ガス流から凝縮される。
本発明の方法の側面に関連した上述の特徴は、本発明のシステムの側面にも等しく適用可能であり、また逆も可能である。
今、本発明の好ましい特徴を、添付の図面を参照して、記載する。
図1を参照すると、可燃性ガスを含むガス流を排気するためのシステムの第1実施形態は、ガス流を電気化学セル12を通して減圧で引くための真空ポンプ10と、セル12の下流の凝縮器14と、を含む。真空ポンプ10は、ガス流を所望の減圧で、好ましくは50mbarより小さい、より好ましくは10mbarより小さい圧力で、セル12を通して排気するのに適した排気機構を有していているのがよい。真空ポンプ10は、ガス流を、大気圧でまたは大気圧近くで、若しくは他の減圧で排出してもよく、その場合には、真空ポンプから排出されたガス流を受け入れて、大気圧でまたはその近くでガスを排出するための任意の追加的な真空ポンプが、真空ポンプ10の下流に配置されてもよい。
電気化学セル12及び凝縮器14の例を、図2により詳細に示す。セル12は、ガス流を受け入れるためのフランジ付入口16と、フランジ付出口18と、を含み、セル12からフランジ付出口18を通して凝縮器14にガス流が放出される。電気化学膜20が、フランジ付入口16とフランジ付出口16の間に配置される。膜20は、ボア22を有する円筒膜の形態であり、ガス流は真空ポンプ10によってボア22を通して引かれる。この例では、膜20は、酸素アニオン導体、例えばイットリウム安定化ジルコニウムまたはガドリニウム添加セリアで形成される。
第1電極24が、ガス流への暴露のために膜20の内面に形成され、第2電極26が、酸化ガス、例えば空気への暴露のために膜20の外面に形成される。電極24,26は、適当な市販の「インク」を表面に真空スパッタリングする又は付与するような技術を用いて付着されるのがよい。電極の1つがインクを用いて膜20の表面に形成される場合には、全組立体は、インクの性質によって決定される適当な雰囲気内で燃やされなければならない。第1電極24は、好ましくは、炭化水素の酸化を触媒して二酸化炭素と水にし及び/又は水素の酸化を触媒して水にすることができる材料で形成される。1つの適当な例はプラチナである。第2電極26は、好ましくは、酸素または他の反応性酸化種の解離吸収を触媒することができる材料で形成される。再び、1つの適当な例は、プラチナである。空気以外のガスが酸化ガスの源として使用される場合には、セル12は、ハウジングによって取り囲まれ、ハウジングは、酸化ガスの流れを受け入れるための入口と、この流れをハウジングから噴出させるための出口と、を有する。
膜20を形成するのに使用される材料の性質に応じて、膜は、その温度を、膜20が反応性酸化種、例えば酸素アニオンを伝導することができる臨界温度Tc以上に上昇させるように加熱を必要とする。この観点では、セル12は、膜20を、再び膜26を形成するのに使用される材料に応じて、少なくとも300℃であるのがよい要求温度に加熱するための、膜20の周りに延びる加熱器28を含むのがよい。加熱器コントローラ30が、例えば、膜20の近傍に配置された熱電対から受けた温度信号に応答して加熱器28を制御するために設けられるのがよい。
低電圧電源32が、第1電極24と第2電極26の間に、かくして膜20に電位差を加えるために設けられる。電圧電流計34が、また、電極24,26の間の電位差を測定するために設けられる。ハウジングが膜20を取り囲んでいる場合、気密性電気フィードスルーにより、一定電源32及び電圧電流計34との電気接続が電極24,26に電気を通させる。
使用中、膜20の外面は、酸化ガス、都合よくは空気に暴露し、電位差が、電源32を用いて膜20に加えられる。第2電極26では、空気中の酸素が還元されて酸素アニオンを形成する。
Figure 2009511243
ここで、V0は、二重荷電酸素アニオン欠損であり、O0は、膜20内の充填酸素アニオンサイトである。膜20の温度がTc以上であるとき、酸素アニオンは、とりわけ、電極24,26の表面積、膜20の外面における酸素の分圧、及び膜20に加えられた電位差に応じた速度で膜20に浸透する。
第1電極24では、酸素アニオンは、膜のボア22を通して、かくして膜の内面に運ばれるガス流内に含まれる可燃性ガスと反応する。例えば、一般的な化学式Cxyを有する可燃性ガスについては、x≧0及びy≧2の場合、反応は、次の一般式にしたがって進んで水蒸気及び、x>1のとき、二酸化炭素を生成する。
Figure 2009511243
図3に示すように、ガスセンサ50が、セル12の下流のガス流内に存在する酸素の量を検出するために、セル12の下流に配置されてもよい。センサ50は、例えば、ガス流内に含まれる酸素の量に応じて、コントローラ52に信号を出力する。このガス流内に含まれる酸素がないとき、これは、セル12内の可燃性ガスの不完全な還元を示し、それゆえ、センサ50からの信号出力に応答して、コントローラ52は、セル12に信号を出力して、膜20に加えられる電位を増大させ、そして酸素がガス流内に検出されるまで、酸素アニオンが膜20に浸透する速度を増大させる。
ガス流内の水素(数slm)または炭化水素(100slm以上)の比較的高い流量のために、可燃性ガス及び酸化ガスの両方に暴露される膜の表面積を増大させるために、膜20の数を増加させてもよい。例えば、図4に示すように、各々、それぞれの内面及び外面に形成された電極を有する円筒膜20の列が、ガス流れを受け入れるために平行に配置されてもよい。各膜20は、その一端が、フランジ付入口16に連結される入口を有する入口マニホールド(図示せず)のそれぞれの出口に連結され、その他端が、フランジ付出口17に連結される出口を有する出口マニホールド(図示せず)のそれぞれの入口に連結され、それにより、ガス流がボア22を通して運ばれる。例えば、各々、直径1cm、有効長20cmの膜20の5×5列は、約1600cm2の表面積を提供することができる。100mA/cm2の電流密度が各膜に確立されると、約5.6slmの酸素流れへのガス流を達成することができる。
図2に戻ると、フランジ付出口18を通るガス流は、セル12内の可燃性ガスの酸化からの水蒸気を含む。この例では、続いて、ガス流は、ガス流から水蒸気を凝縮する凝縮器を通して真空ポンプ10によって引かれる。凝縮器の構造および作用は、よく知られており、したがって、ここでは詳細に記載しない。凝縮器14によってガス流から凝縮された水は、凝縮器14の水収集容器38に集められ、水排出弁40を用いて凝縮器14から定期的にまたは連続的に排出される。真空ポンプ10の上流でガス流から水蒸気を凝縮することにより、真空ポンプのサイズを減少させることができ、及び/又はシステムを通るガス流の排出速度を高めることができる。
可燃性ガスを含むガス流を排出するためのシステムの第2実施形態を、図5に示す。第2実施形態は、第1実施形態の真空ポンプ10及び凝縮器14が、ガス流を水に暴露する排気機構を有する真空ポンプ60で置き換えられる限りにおいて、水蒸気がガス流から凝縮される第1実施形態と異なる。適当な真空ポンプの例は、水エジェクタポンプ、及び図6に示すような水リングポンプを含む。図6を参照すると、水リングポンプ60は、一般的に、環状ハウジング92に回転可能に設けられたロータ90を含む排気機構を有し、ロータ軸線94がハウジング92の中心軸線96に対して偏心している。ロータ90は、そこから半径方向外方に延び、ロータ90の周りに等間隔をなしたブレード98を有する。ロータ90の回転で、ブレード98は、入口100からハウジング92に入る水または他の水性溶液に接し、水または他の水性溶液をハウジング92内で環状リング102に形成する。水は、適当な源(図示せず)、例えば水タンクまたは他のリザーバからポンプ60に運ばれる。
ガス流は、ガス入口104を通ってポンプ60に入り、隣接したブレード98間の空間106に引き込まれる。ガス流内に含まれた水蒸気は、ポンプ60内に形成された環状リング102内で凝縮する。ポンプ60は、その出口側に、環状リング102からの液体、ガス流の液体可溶性成分、及びガス流から残っているガス状種を含む液体溶液の液体/ガス混合物をポンプ60から排出するための排出口108を備える。水が排出口108に運ばれると、環状リング102は、新鮮な液体を入口100を通してハウジング92に供給することによって再び満たされる。ポンプ60から排出された液体/ガス混合流は、引き続いて、ポンプ60の排出口108の下流に配置された排出分離器(図示せず)で分離されるのがよい。ガスは、大気に排出されてもよく、液体は、安全な廃棄のために集められるのがよい。変形例として、液体は、再使用のために源に戻されるように処理されてもよい。
従って、排気システムのこの第2実施形態は、真空ポンプの上流でガス流から水蒸気を凝縮するための別個の凝縮器を必要とせず、システムコストを減ずることができる。
可燃性ガスを含むガス流を排気するためのシステムの第1実施形態を示す図である。 図1のシステムの電気化学セル及び凝縮器の構造をより詳細に示す図である。 図2のセルの電気化学膜に加えられる電位差を制御するためのシステムを示す図である。 チューブ状の電気化学膜の列を有する電気化学セルの部分図である。 可燃性ガスを含むガス流を排気するためのシステムの第2実施形態を示す図である。 図5のシステムに使用するのに適したポンプの排気機構を示す図である。

Claims (27)

  1. 可燃性ガスを含むガス流を排気するための方法であって、
    減圧でガス流をイオン伝導膜の一方の側に運ぶステップと、
    膜の他方の側を酸化ガスに暴露させるステップと、
    反応性酸化種が膜に浸透し、可燃性ガスと反応して少なくとも水蒸気を生成するように膜に電位差を加えるステップと、
    続いて、真空ポンプでガスを受け入れるステップと、を含み、
    水蒸気は、真空ポンプの上流でまたは真空ポンプ内でガス流から凝縮される、
    ことを特徴とする方法。
  2. 水蒸気は、膜と真空ポンプの間に配置された凝縮器内でガス流から凝縮される、
    請求項1に記載の方法。
  3. 真空ポンプは、ガス流を水に暴露させる排気機構を有し、水蒸気はガス流から凝縮される、
    請求項1に記載の方法。
  4. 真空ポンプは、液体リングポンプ及び液体エジェクタポンプのいずれか一方からなる、
    請求項3に記載の方法。
  5. 膜の前記一方の側の第1電極と、膜の前記他方の側の第2電極とを用いて、膜に電位差を加える、
    請求項1から4の何れか1項に記載の方法。
  6. 電極の少なくとも1つは、触媒物質からなる、
    請求項5に記載の方法。
  7. 膜を、少なくとも300℃の温度に加熱する、
    請求項1から6の何れか1項に記載の方法。
  8. 膜は、ボアを有する円筒形の形態であり、ガス流がこのボアを通して真空ポンプによって引かれる、
    請求項1から7の何れか1項に記載の方法。
  9. 平行に連結された複数の前記円筒膜を含む、
    請求項8に記載の方法。
  10. 膜の下流のガス流内に存在する酸素の量を検出し、膜に加えられる電位差を、検出された酸素の量に応答して制御する、
    請求項1から9の何れか1項に記載の方法。
  11. ガス流は、50mbarより小さい圧力で膜の前記一方の側に運ばれる、
    請求項1から10の何れか1項に記載の方法。
  12. ガス流は、10mbarより小さい圧力で膜の前記一方の側に運ばれる、
    請求項1から11の何れか1項に記載の方法。
  13. 可燃性ガスを含むガス流を排気するためのシステムであって、
    イオン伝導膜と、
    他方の側が酸化ガスに暴露された膜の一方の側にガス流を運ぶ手段と、
    反応性酸化種が膜に浸透し、可燃性ガスと反応して少なくとも水蒸気を生成するように膜に電位差を加える手段と、
    膜からのガス流を受け入れて、ガス流から水蒸気を凝縮するための手段と、を含む、
    ことを特徴とするシステム。
  14. 凝縮手段は、凝縮器からなる、
    請求項13に記載のシステム。
  15. ガス流を、凝縮器を通して減圧で膜の前記一方の側に引くための、凝縮器の下流に配置された真空ポンプを含む、
    請求項14に記載のシステム。
  16. 凝縮手段は、ガス流を減圧で膜の前記一方の側に引くための真空ポンプを含み、真空ポンプは、ガス流を水に暴露させる排気機構を有し、水蒸気は、ガス流から凝縮される、
    請求項13に記載のシステム。
  17. 可燃性ガスを含むガス流を排気するためのシステムであって、
    イオン伝導膜と、
    他方の側が酸化ガスに暴露された膜の一方の側に、ガス流を減圧で引くための真空ポンプと、
    反応性酸化種が膜に浸透し、可燃性ガスと反応して少なくとも水蒸気を生成するように膜に電位差を加える手段と、を含み、
    真空ポンプは、膜からガス流を受け入れるように構成され、且つガス流を水に暴露させる排気機構を有し、水蒸気は、ガス流から凝縮される、
    ことを特徴とするシステム。
  18. ポンプは、液体リングポンプ及びエジェクタポンプのいずれか一方からなる、
    請求項15から17の何れか1項に記載のシステム。
  19. ポンプは、50mbarより小さい圧力で膜の前記一方の側にガス流を引くように構成されている、
    請求項15から18の何れか1項に記載のシステム。
  20. ポンプは、10mbarより小さい圧力で膜の前記一方の側にガス流を引くように構成されている、
    請求項15から19の何れか1項に記載のシステム。
  21. 膜に電位差を加える手段は、膜の前記一方の側の第1電極と、膜の前記他方の側の第2電極と、を含む、
    請求項13から20の何れか1項に記載のシステム。
  22. 電極の少なくとも1つは、触媒物質からなる、
    請求項21に記載のシステム。
  23. 触媒物質は、プラチナからなる、
    請求項22に記載のシステム。
  24. 膜を少なくとも300℃の温度に加熱するための手段を含む、
    請求項13から23の何れか1項に記載のシステム。
  25. 膜は、ボアを有する円筒形の形態であり、ガス流がこのボアを通して真空ポンプによって引かれる、
    請求項13から24の何れか1項に記載のシステム。
  26. 平行に連結された複数の前記円筒膜を含む、
    請求項25に記載のシステム。
  27. 膜の下流のガス流内に存在する酸素の量を検出するためのセンサと、センサからの出力に応答して、膜に加えられる電位差を制御するためのコントローラと、を含む、
    請求項13から26の何れか1項に記載のシステム。
JP2008534062A 2005-10-07 2006-08-17 可燃性ガスの排気方法 Pending JP2009511243A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0520472.2A GB0520472D0 (en) 2005-10-07 2005-10-07 Method of pumping combustible gas
PCT/GB2006/003076 WO2007042743A1 (en) 2005-10-07 2006-08-17 Electrochemical reactor comprising oxygen ion pump for after-treatment of combustible gas residues

Publications (1)

Publication Number Publication Date
JP2009511243A true JP2009511243A (ja) 2009-03-19

Family

ID=35430024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008534062A Pending JP2009511243A (ja) 2005-10-07 2006-08-17 可燃性ガスの排気方法

Country Status (8)

Country Link
US (1) US20090321271A1 (ja)
EP (1) EP1937389B1 (ja)
JP (1) JP2009511243A (ja)
CN (1) CN101287535B (ja)
AT (1) ATE550087T1 (ja)
GB (1) GB0520472D0 (ja)
TW (1) TW200714805A (ja)
WO (1) WO2007042743A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0617498D0 (en) * 2006-09-06 2006-10-18 Boc Group Plc Method of pumping gas
US20080184892A1 (en) * 2007-02-06 2008-08-07 Ctp Hydrogen Corporation Architectures for electrochemical systems
CN113082949B (zh) * 2021-05-14 2023-03-21 云南绿宝香精香料股份有限公司 桉叶油戊醛分离回收除臭系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3315879A (en) * 1966-04-22 1967-04-25 Irving C Jennings Evacuation system
US3650934A (en) * 1969-11-14 1972-03-21 Westinghouse Electric Corp Oxygen control and measuring apparatus
US4743439A (en) * 1984-01-16 1988-05-10 General Chemical Corporation Wet calcination of alkali metal bicarbonates in hydrophobic media
US4551197A (en) * 1984-07-26 1985-11-05 Guilmette Joseph G Method and apparatus for the recovery and recycling of condensable gas reactants
US5306411A (en) * 1989-05-25 1994-04-26 The Standard Oil Company Solid multi-component membranes, electrochemical reactor components, electrochemical reactors and use of membranes, reactor components, and reactor for oxidation reactions
ES2177706T3 (es) * 1989-12-27 2002-12-16 Standard Oil Co Componentes de utilidad en celulas electroquimicas y su uso en la separacion de oxigeno.
US5360635A (en) * 1992-01-02 1994-11-01 Air Products And Chemicals, Inc. Method for manufacturing inorganic membranes by organometallic chemical vapor deposition
US20020022568A1 (en) * 1993-12-08 2002-02-21 Richard Mackay Ceramic membranes for use in catalytic membrane reactors with high ionic conductivities and improved mechanical properties
US5611898A (en) * 1994-12-08 1997-03-18 International Business Machines Corporation Reaction chamber having in situ oxygen generation
US7029775B2 (en) * 1997-12-22 2006-04-18 Kabushikikaisha Equos Research Fuel cell system
KR100319947B1 (ko) * 1998-04-06 2002-01-09 마츠시타 덴끼 산교 가부시키가이샤 탄화수소 센서
FR2796861B1 (fr) * 1999-07-26 2001-11-09 Air Liquide Nouvelle membrane ceramique conductrice par ions oxyde, utilisation de ladite membrane pour separer l'oxygene de l' air ou d'un melange gazeux en contenant
US6641643B2 (en) * 2000-10-10 2003-11-04 Generon Igs Inc. Ceramic deoxygenation hybrid systems for the production of oxygen and nitrogen gases
US7125528B2 (en) * 2002-05-24 2006-10-24 Bp Corporation North America Inc. Membrane systems containing an oxygen transport membrane and catalyst
US6652719B1 (en) * 2002-06-03 2003-11-25 Skydon Corp. Electrolysis system
DE10228998B4 (de) * 2002-06-28 2004-05-13 Advanced Micro Devices, Inc., Sunnyvale Vorrichtung und Verfahren zum elektrochemischen Behandeln eines Substrats bei reduzierter Metallkorrosion
GB0617498D0 (en) * 2006-09-06 2006-10-18 Boc Group Plc Method of pumping gas

Also Published As

Publication number Publication date
US20090321271A1 (en) 2009-12-31
EP1937389A1 (en) 2008-07-02
TW200714805A (en) 2007-04-16
ATE550087T1 (de) 2012-04-15
WO2007042743A1 (en) 2007-04-19
GB0520472D0 (en) 2005-11-16
CN101287535B (zh) 2012-06-20
EP1937389B1 (en) 2012-03-21
CN101287535A (zh) 2008-10-15

Similar Documents

Publication Publication Date Title
JP4849493B2 (ja) 接触燃焼式ガスセンサの製造方法
CA2606733C (en) Method and apparatus for converting oxidized mercury into elemental mercury
US8080083B2 (en) Method and apparatus for converting oxidized mercury into elemental mercury
Farmer et al. Destruction of Chlorinated Organics by Cobalt (III)‐Mediated Electrochemical Oxidation
EP1493200A2 (en) Controlling gas transport in a fuel cell
JP2009511243A (ja) 可燃性ガスの排気方法
US8394179B2 (en) Method of treating a gas stream
CN100376054C (zh) 运转燃料电池的方法及供电系统
EP2059328B1 (en) Method of pumping gas
US20230264146A1 (en) System for the removal of hydrogen/oxygen in a gaseous stream
CN110546433A (zh) 排气的减压除害方法及其设备
US20230420708A1 (en) Vessel for a fuel cell, a fuel cell system, and a method for maintaining a non-explosive atmosphere in a vessel for a fuel cell
KR20130010433A (ko) 공정 챔버로부터 배출되는 폐기 가스를 이용한 발전 장치
TWI669151B (zh) 排氣之減壓除害方法及其裝置
FI126249B (fi) Polttomenetelmä ja poltin
JP2003192322A (ja) 二酸化炭素分解装置
JP2005327678A (ja) 水素分離膜型燃料電池流路からの不純物除去