JP2009508295A - 飲料水および酸素を供給する燃料電池システム - Google Patents

飲料水および酸素を供給する燃料電池システム Download PDF

Info

Publication number
JP2009508295A
JP2009508295A JP2008529548A JP2008529548A JP2009508295A JP 2009508295 A JP2009508295 A JP 2009508295A JP 2008529548 A JP2008529548 A JP 2008529548A JP 2008529548 A JP2008529548 A JP 2008529548A JP 2009508295 A JP2009508295 A JP 2009508295A
Authority
JP
Japan
Prior art keywords
fuel cell
electrolysis
cell
cell system
electrolysis cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008529548A
Other languages
English (en)
Other versions
JP2009508295A5 (ja
Inventor
クラウス ホフヤン
ハンスゲオルク シュルトジーク
Original Assignee
エアバス・ドイチュラント・ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エアバス・ドイチュラント・ゲーエムベーハー filed Critical エアバス・ドイチュラント・ゲーエムベーハー
Publication of JP2009508295A publication Critical patent/JP2009508295A/ja
Publication of JP2009508295A5 publication Critical patent/JP2009508295A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/186Regeneration by electrochemical means by electrolytic decomposition of the electrolytic solution or the formed water product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0677Environmental Control Systems comprising on board oxygen generator systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0681Environmental Control Systems with oxygen control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D41/00Power installations for auxiliary purposes
    • B64D2041/005Fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

【課題】飲料水および酸素を乗り物に供給する燃料電池システムであって、燃料電池および空気カソードを有する電解セルを含む前記燃料電池システムを提供する。
【解決手段】飲料水および酸素を乗り物に供給する燃料電池システムであって、燃料電池と、電解セルとを含み、電解セルは、空気カソードをさらに含み、燃料電池に接続され、燃料電池および電解セルは、燃料電池および電解セルは、燃料電池から供給される電源によって電解セルの必要電力が賄われるように設計される燃料電池システムである。
【選択図】図1

Description

本出願は、2005年9月8日に出願された米国特許仮出願第60/715 277号ならびに2006年1月18日に出願された米国特許仮出願第60/759 888号および2005年9月8日に出願された独国特許出願第10 2005 042 749.9号ならびに2006年1月18日に出願された独国特許出願第10 2006 002 470.2号の優先権を主張し、これらの開示内容は援用によって本明細書の内容の一部をなす。
本発明は、飲料水および酸素を供給する燃料電池システムに関する。特に、本発明は、航空機または重航空機用の飲料水および酸素を供給する燃料電池システム、飲料水および酸素を供給する燃料電池システムを含む航空機および対応する飲料水および酸素を供給する燃料電池システムの航空機内での使用に関する。
従来の民間航空機では、乗客に供給する飲料水は、機内の貯蔵タンクに保存され、飛行中に貯蔵タンクから乗客に配られる。これは、飛行前に全必要水量をタンクに満たし、エンジン力によって飛行高度まで上げなければならないことを意味する。
さらに飛行高度で、乗客は呼吸用の空気を十分に必要とし、その空気は、航空機の空調システムによって供給される。空調システムは、エンジンの圧縮機段から次々に圧縮空気を取り出すことから、圧縮空気を得るためにエンジン力が必要となる。
乗客が客室内で円滑に移動できるようにするため、航空機は、人体が許容できる範囲に気圧を維持する与圧客室と呼ばれるものを備えている。通常、かかる与圧客室は、約750hPaの圧力範囲で操作される。この圧力範囲は、海抜2,450mの気圧にほぼ一致する。これは、高度10,000mの平均外圧が約260hPaであることから、外圧と客室内圧力との差圧は、約490hPaで維持されることを意味する。差圧は、客室によって調整または構造的に吸収する必要がある。
最新の民間航空機は、平均飛行高度が約12,000mとなることを目指している。この高度の平均外圧は、約190hPaである。したがって、従来の設計については、客室圧力および外部の気圧間の差圧は約560hPaであることが導き出される。この差圧によって、客室の構造を強化する他の対策が必要となることから、重量がさらにかかり、しいては全燃料消費量が増加することを意味する。
本発明の目的は、乗り物に飲料水および酸素を供給する効率的なシステムに提供することである。
この目的は、本願の特許請求の範囲に記載する特徴による航空機または重航空機に飲料水および酸素を供給する燃料電池システムと、飲料水および酸素を供給する燃料電池システムを含む航空機と、航空機の対応する飲料水および酸素を供給する燃料電池システムの使用によって達成される。
本発明の一実施形態によれば、上記の目的は、飲料水および酸素を航空機に供給し、燃料電池および電解セルを含む燃料電池システムによって達成される。電解セルは、空気カソードをさらに含み、燃料電池に接続される。燃料電池および電解セルは、燃料電池からの電源供給によって電解セルの必要電力を賄うように設計される。
本発明の一実施形態の基本的な考えは、燃料電池と、空気カソードを含む(すなわち空気カソードを有する電解セルを形成する)電解セルが、共に接続して燃料電池システムを形成することによって、燃料電池は、電解セルのエネルギー供給として用いることができるということである。好ましくは、燃料電池が電解セルのすべての必要電力を賄うように、電解セルと関連付けながら燃料電池を設計してもよい。
本発明の一実施形態による燃料電池システムは、航空機の客室供給に関する様々な要求を統合することができるシステムを構築することができる。また、かかる統合性が高いシステムは、純酸素を生成するために用いることができる。これは、電解セルによって生成され、酸素分圧を増加(すなわち、乗り物(航空機など)の乗客および乗員の呼吸用空気中の酸素と窒素の構成比を酸素が増えるように変更)するのに利用することができる。これにより、客室圧力が減少する傾向となり、飛行高度が高くなると発生しうる傾向と反対に作用し、客室にかかる機械的応力が減少することから、構造部材の軽量化を達成することができる。例えば、客室気圧のために酸素分圧を増加させることによって、約600hPaの値を達成することができる。これは、上記の従来の差圧(約490hPa)によって、他の構造補強やその構造補強して重量を増加しないで約15,500mの飛行高度を達成することができることを意味する。さらに、今日の通常の飛行高度を保持すると同時に、それに応じて客室の構造を軽量化することができる。双方とも、燃料を大幅に節約する一助となりうる。
また、酸素分圧を増加させると同時に二酸化炭素(CO)分圧を減少させ、750hPaの従来の客室圧力を保持すると共に乗客の快適さを増大させることもできる。呼吸用空気のCO値が増大すると、乗客に攻撃性が現れる確率がわずかに増大すると共に、頭痛および倦怠感が発症すると考えられる原因の1つとなることが医学的に知られている。
また、軽量化するために、飲料水は、貯蔵タンクに保存して飛行高度に持ち上げる必要はなく、燃料電池の水素および酸素から生成でき、乗客による消費に利用可能であることから、水素のみを保存すればよいことが考えられる。したがって、本発明の1つの効果によって、燃料電池システムは、今日の乗り物(特に航空機)内の水の消費者に供給する真水を生成できると考えられる。かかる水の消費者は、例えば、洗面領域、トイレおよび機内キッチンである。しかしながら、今後考えられる水の消費者(上記の他に例えばシャワー空気加湿システムおよび自動飲料ディスペンサ)は、本発明による燃料電池システムによって真水を得ることができる。特に、燃料電池システムによって、航空機の離陸および飛行中の水負荷の減少させることができる。
これにより、大幅に軽量化できることから、特に上昇時(他の飛行段階を含む)の必要な力を減少させ、必要燃料を大幅に減少させることができる。また、規定の水質を均一にすることができる
本発明の更なる目的、実施形態および効果は、本願の特許請求の範囲に記載する他の独立請求項および従属請求項から得ることができる。
燃料電池システムの実施形態は、以下により詳細に記載されている。
一実施形態では、燃料電池はアノード側およびカソード側を含み、電解セルはアノード側およびカソード側を含む。さらに、電解側のカソード側は、燃料電池のカソード側に接続される。
かかる接続によって、湿潤空気は、抽出ガスとして電解セルのカソード側から燃料電池のカソード側に直接送られてもよくあるいはカソード反応に必要な空気流に混合してもよい。電解セルからのカソードの過剰な空気を凝縮してもよく、カソード反応から生成される生成水を燃料電池のカソード空気流に送ってもよい。
この場合、電解セルのカソード側では、以下の反応式による反応が発生することが好ましい。
(空気)+ 2H(膜)+ 2e→HO(液体)
この場合、電解セルのアノード側では、以下の反応式による反応が発生することが好ましい。
O(液体)→1/2O(純酸素)+ 2H(膜)+2e
燃料電池システムの他の実施形態では、燃料電池はアノード側およびカソード側を含み、電解セルはアノード側およびカソード側を含む。さらに、電解セルのカソード側は、燃料電池のアノード側に接続される。
電解セルと燃料電池のかかる接続によって、電解セルの膜を通ってカソード側に送られる水素が燃料電池のアノード側に送られるため、電解セルが必要とする外部水素を減少させることができる。
別の実施形態では、水素または改質ガスがアノード側に送られるように燃料電池が配置される。
かかる配置によって、燃焼ガスとして水素または水素および二酸化炭素からなる改質ガスがアノード側に送ることができる。
燃料電池システムの他の実施形態では、電解セルは、乗り物の客室からの空気がカソード側に送られるように配置される。
この配置によって、カソード側の電解セルの膜を浸透する電解処理による水素は、客室空気中の酸素と結合することができることから、客室空気(抽出ガスとして燃料電池に送られると考えられる)が加湿される。
また、別の実施形態では、燃料電池システムは熱交換器を含む。熱交換器は、燃料電池のカソード側から送られる空気を冷却するように配置される。
燃料電池のカソード側の排気を冷却できることから、燃料電池で生成される水を凝縮することができる。この水は、水タンクに保存でき、後に航空機の水の消費者用の真水として使用することができる。
他の実施形態では、燃料電池システムは、他の熱交換器をさらに含み、熱交換器は、電解セルのアノード側から送られる空気を冷却するように配置される。
その結果、電解セルのアノード側から出る空気によって第1の酸素/水の分離(すなわちこの得られた空気または排出された空気の第1の乾燥)を実施することができる。この処理で収集される水は、電解セルのアノード側に戻してもよい。
別の実施形態では、燃料電池システムは冷却流路をさらに含み、冷却流路は燃料電池を冷却するように燃料電池に接続される。
かかる冷却流路は、例えば、冷却媒体としての外気または大気によって、必要に応じて燃料電池を冷却するために航空機で用いることができる。
また、燃料電池システムの別の実施形態では、燃料電池は低温燃料電池であり、好ましくはプロトン交換膜燃料電池(PEMFC)である。あるいは、本発明によれば、燃料電池は、他のあらゆる公知の型の燃料電池として設計されてもよい。かかる低温燃料電池は、例えば60℃〜80℃の温度で操作できるように設計してもよい。
また、燃料電池システムの別の実施形態は、高温PEM燃料電池である。あるいは、本発明によれば、燃料電池は、他のあらゆる公知の型の燃料電池として設計されてもよい。かかる高温PEM燃料電池は、例えば120℃〜300℃の温度で操作できるように設計してもよい。
また、燃料電池システムの別の実施形態では、電解セルは、触媒を有する高分子膜電解セルとして設計される。あるいは、電解セルは、下流にある燃料電池の温度に適合する別の型の電解セルとして設計されてもよい。
別の実施形態では、燃料電池システムは、複数の燃料電池および複数の電解セルをさらに含む。複数の燃料電池および電解セルを備えることによって、エネルギーまたは酸素に関してあらゆる所望の性能を得ることができる。
燃料電池システムの別の実施形態では、燃料電池および電解セルは接続されてスタックを形成し、燃料電池から電解セルに電源を直接供給する。
この場合、電解セルおよび燃料電池は、1つのスタックにする(すなわち、個々の配置要素を1つの機械的な結合体に組み合わせる)ことが可能であることから、ケーブル材を節約することができる。
燃料電池システムの別の実施形態では、燃料電池と電解セルとの出力電力比は、燃料電池からの出力電力が電解セルの必要電力に対して正確に一致するように選択される。別の方法では、燃料電池からの出力電力は、燃料電池が電解セルに供給でき、余剰電力を生成しない(すなわち、燃料電池からの出力電力は、電解セルおよび純酸素ならびに水の生成に必要な電力と一致する)ように選択される。この場合、システムの制御は、導入される媒体のみ(すなわち水、水素および客室空気)によって好ましく実施されることから、燃料電池から機内のネットワークに送達されるエネルギーを調節する電気レギュレータおよびトランスフォーマを設置する必要がなくなる。かかる燃料電池システムをまとめるか、あるいは統合して単一のスタックを形成する場合、すべての外部接続が節約されることから、ケーブル材を節約することができる。
燃料電池システムの別の実施形態によれば、燃料電池と電解セルとの出力電力比は、燃料電池からの出力電力が燃料電池システムおよび電解セルのすべての補助機器が必要とする電力に対して正確に一致するように選択される。別の方法では、燃料電池は、電解セルの消費電力に対して過剰量の電力を生成し、その量は、燃料電池システムのすべての外部の消費者(例えばポンプまたは圧縮器)を操作するの十分な量である(すなわち、燃料電池システムは、システム固有のエネルギー必要量を賄うことができる)。また、燃料電池用の燃焼ガスを生成するために、改質装置に水を供給してもよい。この設計によって、燃料電池から機内のネットワークに送達されるエネルギーを調節する電気レギュレータおよびトランスフォーマを不要にすることができる。
燃料電池システムの別の実施形態によれば、燃料電池と電解セルとの電力比は、燃料電池からの出力電力が燃料電池システムおよび電解セルのすべての補助機器が必要とする電力に対してより高くなるように選択される。好ましくは、燃料電池システムは、電力インバータおよび電圧コンバータまたは電圧トランスフォーマを含み、電力インバータおよび電圧トランスフォーマは、燃料電池から乗り物内のネットワークに電力を供給するように設計される。
これによって、乗り物内のネットワークにエネルギーを送ることができる。本明細書に記載する制限パラメータは、燃料電池の必要水分量であってよく、この必要水分量は、電解セルによって賄うことができる。本発明で第1の態様は、酸素および航空機の機内で必要とされる真水を生成するように構成され、電解セルの必要電力およびすべての補助装置が必要とする電力が燃料電池による電気エネルギーの供給によって完全に賄われ、電力が航空機内のネットワークに全く供給されないように出力電力比が選択される。この場合、電解セルは、アノードの水を電気分解して水素および酸素を生成し、航空機の客室からカソード側に導入される空気中に含まれる酸素と水素を再結合して水を生成することによって下流にある燃料電池を加湿するに利用される。好ましくは、燃料電池はPEMFC型の低温燃料電池であり、および/または、電解セルは触媒を有する高分子膜による電解セルである。電解セルは、空気カソードをさらに含み、すなわち空気カソードを有する電解セルとして設計される。
第1の態様の実施形態では、電解セルおよび燃料電池を組み合わせてスタックを形成することから、電解セルには、燃料電池からエネルギーが直接供給され、燃料電池には、電解セルからカソード側の抽出ガス「湿潤空気」が直接供給され、燃料電池には、電解セルからカソード側の抽出ガス「湿潤空気」が直接供給される。また、アノード側の燃料電池に送られる燃焼ガスは、水素または水素と二酸化炭素からなる改質ガスからなる。
本発明の第2の態様は、酸素および航空機の機内で必要とされる真水を生成するように構成され、その構成は、電解セルおよび燃料電池からなるかあるいは含み、電解セルの必要電力が燃料電池による電気エネルギーによって賄われ、さらに余剰電力が航空機内ネットワークに供給されるように、出力電力比が選択されるという事実で捕らえてもよい。この場合、電解セルは、アノードの水を電気分解して水素および酸素を生成し、航空機の客室からカソード側に導入される空気中に含まれる酸素と水素を再結合して水を生成することによって下流にある燃料電池を加湿するに利用される。好ましくは、燃料電池はPEMFC型の低温燃料電池であり、および/または、電解セルは触媒を有する高分子膜による電解セルである。電解セルは、空気カソードをさらに含み、すなわち空気カソードを有する電解セルとして設計される。
第2の態様の一実施形態では、電解セルおよび燃料電池は、スタック内で組み合わせてもよく、電解セルには、燃料電池からエネルギーが直接供給され、燃料電池には、電解セルからカソード側の抽出ガスである「湿潤空気」が直接供給される。また、アノード側の燃料電池に送られる燃焼ガスは、水素または水素と二酸化炭素からなる改質ガスからなる。
第2の態様の他の実施形態では、インバータおよび電圧トランスフォーマは、機内ネットワークにエネルギーを供給するために設けてもよく、燃料電池および供給点の間に接続され、機内ネットワークの電圧、電圧および周波数に対して燃料電池からの電気エネルギーを調節する。
本発明の他の態様は、効果モードを有する2つの部分からなる燃料電池システムを生成するという点で本発明を捕らえてもよい。この場合、第1の部分は、空気および水素によって操作される燃料電池であり、好ましくは低温燃料電池(例えばプロトン交換膜燃料電池(PEM燃料電池))であり、第2の部分は、電解セルであり、好ましくは、低温電解セル(例えばプロトン交換膜電解セル)である。原則として、燃料電池および電解セルは同類である。主な違いは、触媒の種類のみである。電解セルと燃料電池との大きさの比率(言わば出力電力比)は、目的の用途、(すなわち、燃料電池が、電力を燃料電池システムの電解セルのみに供給するのかあるいは他の補助装置にも供給するのか、機内ネットワークにさらに供給するか)に応じて求められる。電解セルは、空気カソードをさらに含み、すなわち空気カソードを有する電解セルとして設計される。
本発明の他の態様は、酸素および航空機の機内で必要とされる真水を生成するように構成され、その構成は、電解セルおよび燃料電池からなるかあるいは含み、電解セルの必要電力とすべての補助機器が必要とする電力は、燃料電池によって完全に賄われ、電力が航空機内のネットワークに全く供給されないように出力電力比が選択されるという事実で捕らえてもよい。本明細書では、電解セルは、アノードの水を電気分解して水素および酸素を生成するために利用でき、生成した水素は、下流にある燃料電池のアノード側に送られる。好ましくは、燃料電池は、60℃〜80℃の温度で操作するPEMFC型の低温燃料電池であるかあるいは20℃〜300℃の温度で操作するPEMFC型の高温燃料電池である。さらにまた、電解セルは、触媒を有する高分子膜による電解セルであってもよい。
このような態様の実施形態では、電解セルおよび燃料電池を組み合わせてスタックを形成してもよく、電解セルには、燃料電池からエネルギーが直接供給され、また、燃料電池のアノード側に送られる燃焼ガスは、水素または水素と二酸化炭素からなる改質ガスからなる。
本発明の他の態様は、航空機内の要件のための酸素および真水を生成するために設けられるように構成され、その構成は、電解セルおよび燃料電池からなるかあるいは含み、電解セルの必要電力が燃料電池による電気エネルギーの供給によって賄われ、さらに余剰電力が航空機内ネットワークに供給されるように、出力電力比が選択されるという事実で捕らえることができる。生成される水素と客室から空気中の酸素との再結合によって燃料電池を空気加湿するシステムと、燃料電池を空気加湿する水熱交換器を有するものの、燃料電池のアノードで生成した水素を供給するシステムの2つの異なるシステムに分割することができる。このような場合は、別々に考慮することができる。また、燃料電池は、PEMFCとは別の型の燃料電池であってもよく、この別の型の燃料電池は、燃料水素または改質ガスを有するアノードで操作することができる。さらにまた、電解セルは、触媒を有する高分子膜による電解セルであってもよくあるいは下流にある燃料電池の温度に調節される別の型の電解セルであってもよい。
このような態様の実施形態では、電解セルおよび燃料電池を組み合わせてスタックを形成してもよく、電解セルには、燃料電池からエネルギーが直接供給され、また、アノード側の燃料電池に送られる燃焼ガスは、水素または水素および二酸化炭素からなる改質ガスからなる。インバータおよび電圧トランスフォーマは、機内ネットワークにエネルギーを供給するために設けられ、燃料電池および供給点の間に接続され、機内ネットワークの電圧、電流および周波数に対して燃料電池からの電気エネルギーを調節する。
上記の実施形態または態様の1つに関して記載する特徴またはステップは、上記の他の実施形態または態様の特徴またはステップを組み合わせて用いることができるという事実に沿って参照してもよい。
本発明は、実施形態の例に基づき、図面を参照しながら以下にさらに詳述する。
以下の図の説明において、同一または同様の要素に同一または同様の符号を用いる。
図1は、本発明の一実施形態による飲料水および酸素を航空機に供給する燃料電池システムの図である。図1に示すように、燃料装置100は、アノード側102およびカソード側103を有する燃料電池101を含む。燃料電池101は、プロトン交換膜燃料電池(PEMFC)として設計される。膜104は、アノード側102およびカソード側103との間に概略的に示される。燃料電池101のアノード側102は、弁106を有する供給ライン105および弁108を有する排出ライン107を示す。燃料電池101のカソード側103は、供給路109およびバルブ111を有する排出路110を含む。図1に示していないが、さらに他の酸素送出路に供給路109を接続できることが好ましい。排出路110は、燃料電池システム100の第1の熱交換器112に接続される。また、第1の熱交換器112は、復水排出器113に接続され、復水排出器113は、第1の熱交換器112で凝縮された水を貯蔵する貯蔵タンク114に接続される。貯蔵タンク114には、排出路115が設けられ、バルブ116によって貯蔵タンク114の過剰の水を排出するときに利用される。さらに、復水排出器113は、排気を航空機(すなわち航空機の与圧客室)から放出できる放出口118にフィルタ117を介して接続される。
さらにまた、燃料電池システム100は、アノード側120およびカソード側121を有する電解セル119を含む。電解セル119のカソード側121は、空気カソードと呼ばれるものとして設計され、供給路122を含み、供給路122は、バルブ123およびフィルタ124を介して導入口125に接続され、導入口125によって、与圧客室から電解セル119のカソード側121に空気を導入できる。電解セル119のカソード側121からの排出路126は、燃料電池101のカソード側103の供給路109に接続される。電解セル119のアノード側120からの排出路127は、第2の熱交換器128に接続され、第2の熱交換器128は、ガス排出路129を含み、第3の熱交換器130およびポンプ131を介して放出口に接続され、放出口から与圧客室に酸素を導入することができる。第2の熱交換器128は、電解セル119のアノード側120の水/酸素混合気体の酸素/水を分離するために利用される。第2の熱交換器128の水排出路132は、循環ポンプ133およびバルブ134を介して電解セル119のアノード側120の導入口に接続される。さらにまた、第2の熱交換器128は、バルブ136、ポンプ137および更なるバルブ138を介して貯蔵タンク114の排出口に接続される水入口135を含む。貯蔵タンク114の排出口は、バルブ139およびポンプ140を介して航空機の飲料水システムにさらに接続される。
さらにまた、燃料電池システム100は航空機の外気に通じる冷却流路141を含む。冷却流路141は、第1の熱交換器112、第2の熱交換器128、第3の熱交換器130および燃料電池101を冷却するために利用される。
図1に示す燃料電池システムの機能は、以下に詳細に記載する。
水は、貯水ホルダとして利用される貯蔵タンク114および/または第2の熱交換器128を介して水循環路からポンプ133によって電解セル119に送られる。この水は、電解セル119にかけられる電圧によって2HおよびO(すなわち水素および酸素)に分解される。このようにして得られた酸素原子は、酸素分子Oを生成し、第2の熱交換器128によって実施され、航空機の空調システムの通風装置を介して送られ、酸素比率が増加した呼吸用空気を客室および乗客に供給する。
電解セル119のカソード側に客室からの排気が供給される。客室空気は、客室と外気の間にシステム全体に存在する差圧のために送られる。電解セル119のカソード121では、電解処理から得られる水素(電解セル119の膜を介してアノード120からカソード121へ流れる)は、客室空気に含まれる酸素と結合して水(電解セルを介して流れる客室の空気を加湿する)を生成する。ここで、電解セル119(基本的にN、OおよびHOを含む)からの湿潤空気は、燃料電池101のカソード103に送られる。さらに、他の給気口路が供給路109に接続される場合、燃料電池101のカソード側に他の空気を送ることができる。アノード102の水素を送ると同時に、例えば電解セルによって得られる電気的負荷(すなわち消費者の電気エネルギー)をかけることによってさらなる水が生成される。次に、燃料電池内の排気中のすべての水成分は、第1の熱交換器112で凝縮される。凝縮された水成分は、タンク114およびポンプ137を介して電解セルのアノード側に送られ、以下の反応式に従って再び水分損失が実施される。
O(液体)→1/2O(純酸素)+ 2H(膜)+2e
アノード側の水分損失量は、カソード側の水生成量に等しい。
記載するシステムを冷却するために、冷却流路が用いられ、1次冷却媒体として外気を用い、2次冷却媒体として図1に示す配管システムを介して冷却液を熱交換器に送り込む。主に必要とされる熱交換器は、冷却流路から廃熱を外気に放出する冷却器と、空調システムのために、所望な残留湿度まで酸素を乾燥する第3の熱交換器130と、アノード水循環路を冷却する作用を有する第2の熱交換器128と、燃料電池101のカソード排気中に存在する空気湿度の凝縮の効果を有する第1の熱交換器112である。第1の熱交換器112で生成される復水は、復水排出路113を介して貯蔵タンク114に送られ、貯蔵タンク114は、中間の貯蔵タンクの緩衝タンクとして利用され、乗客が消費する飲料水または電解セル119用の水資源として利用される。
さらに、冷却流路は、航空機の様々なシステム用の加熱機能(例えば、凍結からの水タンクを保護)を担う他の熱交換器を備えてもよい。
上記の液状冷却媒体の代わりに気体状冷却媒体、液状冷却媒体と気体状冷却媒体の組み合わせまたは液体からガスへと加熱し、ガスから液体に冷却して凝集体の状態を変化させる冷却媒体を用いてもよい。その凝集体の状態を変化させる冷却媒体の場合、凝縮温度および沸騰温度は、熱交換器の温度の範囲内となる(つまり、冷却媒体の凝集体の状態は熱交換器で変化する)ように選択される。
図2は、本発明の他の実施形態による飲料水および酸素を航空機に供給する燃料電池の図である。但し、図1の実施形態と図2の実施形態の異なる点は、電解セルのカソード側が、燃料電池のアノード側に接続されることである。図2に示すように、燃料装置200は、アノード側202およびカソード側203を有する燃料電池201を含む。燃料電池201は、プロトン交換膜燃料電池(PEMFC)として設計される。膜104は、アノード側202およびカソード側203との間に概略的に示される。燃料電池201のアノード側202は、バルブ206を有する第1の送出路205およびバルブ208を有する第2の送出路207を含む。
燃料電池201のカソード側203は、水交換器および/または熱交換器がカソード側203の給気とカソード側203の排気口の間に配置されるように水熱交換器250に接続される供給路209と排出路210を含む。このため、カソード側の送出路209は、水熱交換器250の第1側部251に接続されると同時に水熱交換器250に接続される第1の排出路であることを示す。水熱交換器250の第1側部の水熱交換器250の第1の送出路252は、水熱交換器250に客室空気を送ることができるようにバルブ253を介して客室に接続される。さらにまた、カソード側203の給気およびカソード側203の排気の水交換および/または熱交換のために、カソード側203の排出路210は、水熱交換器250の第2側部253に接続される。水熱交換器250の第2側部254の第2の排出路255は、燃料電池システム200の第1の熱交換器212に接続される。
第1の熱交換器212は、復水排出路213にも接続され、復水排出路213は、第1の熱交換器212で凝縮された水を貯蔵する貯蔵タンク214に接続される。貯蔵タンク214には、排出路215が設けられ、バルブ216によって貯蔵タンク214の過剰の水を排出するときに利用される。さらに、復水排出器213は、排気を航空機(すなわち航空機の与圧客室)から放出できる放出口218にフィルタ217を介して接続される。
さらにまた、燃料電池システム200は、アノード側220およびカソード側221を有する電解セル219を含む。電解セル219のカソード側221は、空気カソードとして知られているものとして設計され、必要に応じて、バルブ223によって水素を排出するために利用できる第1の排出路222を含む。電解セル219のカソード側221の第2の排出路は、燃料電池201のアノード側202の第2の送出路207に接続され、燃料として水素(電解セル219で生成される)を燃料電池201に送るために利用される。電解セル219のアノード側220の排出路227は、第2の熱交換器228に接続され、第2の熱交換器228は、ガス排出路229を示し、第3の熱交換器230およびポンプ231を介して放出口に接続され、放出口から与圧客室に酸素を送ることができる。第2の熱交換器228は、電解セル219のアノード側220の水/酸素混合気体の酸素/水を分離するために利用される。第2の熱交換器228の水排出路232は、循環ポンプ233およびバルブ234を介して電解セル219のアノード側220の導入口に接続される。さらにまた、第2の熱交換器128は、バルブ236、ポンプ237および更なるバルブ238を介して貯蔵タンク214の排出口に接続される水入口135を示す。貯蔵タンク214の排出口は、バルブ239およびポンプ240を介して航空機の飲料水システムにさらに接続される。
さらにまた、燃料電池システム200は冷却器242を有する冷却流路241を含み、航空機の外気に通じる。冷却流路241は、第1の熱交換器212、第2の熱交換器228、第3の熱交換器230および燃料電池201を冷却するために利用される。
図2には、燃料電池システム200のための多くの送出路および排出路を示す(矢印で概略的に示す)。排出路260は水の排出を示し、送出路261は燃料電池のカソード側への客室空気導入口を示すと共に、送出路262は燃料電池のアノード側への水素を供給することを特徴とする。さらにまた、図示する排出路263は水素が排出され、必要に応じて、電解セルのカソード側から水素を送ることができる。排出路264は、緩衝タンク214から航空機の飲料水システムへ水を送ることができる飲料水放出口を示す。排出路265は酸素放出口を示し、酸素は電解セルで生成され、航空機の空調システムに送ることができる。排出路266は、必要に応じて、燃料電池のカソード側から航空機外へ排気を送ることができる排出路を示す。最後に、図に示す送出路267は、冷却流路241に外気を送ることができる送出路を示す。
図2の燃料電池システムの機能は、図1の燃料電池システムの機能と同様である。したがって、燃料電池システム200の異なる点を簡単に記載する。
図1の燃料電池システム100と比較すると図2の燃料電池システム200の大きな違いは、電解セルのカソード側が燃料電池のアノード側に接続されるという事実にある。したがって、電解セルで生成される水素は、エネルギー生成のために燃料電池に送ることができることから、燃料電池が必要とする外部水素を減少することができる。十分な湿度の空気が燃料電池のカソード側に利用可能なことをさらに確実にすることができるように、図2の燃料電池システム200は、燃料電池で生成される水の一部が燃料電池のカソード側の給気に再び送られる他の水熱交換器250を示す。残りの水分は、図1の実施形態のように凝縮される。さらにまた、図2の実施形態では、客室空気は、図1の実施形態のように電解側のカソード側に供給されていないが、客室空気は、水熱交換器を介して燃料電池のカソード側に送られる。しかしながら、図2の実施形態の電解セルのカソード側は、送出路ではなく、2つの排出路を含み、その排出路の一方は、燃料電池のアノード側に水素を送るために用いられ、他方は、第2の排出路は、必要に応じて過剰な水素を排出するために利用される。
補足として、「含む」という用語は、他のあらゆる要素またはステップも除外せず、「1つ」は複数を除外しないことを意味する。上記の実施形態の1つに関して記載する特徴またはステップが、上記に記載する他の実施形態の特徴またはステップと組み合わせて用いることができるということを意味する。本願の特許請求の範囲に記載する請求項の符号は、限定を意味するとして解釈するべきでない。
本発明の一実施形態による燃料電池システムの概略図である。 本発明の他の実施形態による燃料電池システムの図である。

Claims (23)

  1. 飲料水および酸素を乗り物に供給する燃料電池システム(100、200)であって、
    燃料電池(101、201)と、
    電解セル(119、219)とを含み、
    前記電解セル(119、219)は、空気カソードをさらに含み、かつ前記燃料電池に接続され、
    前記燃料電池(101、201)および前記電解セル(119、219)は、前記燃料電池(101、201)から供給される電源によって前記電解セル(119、219)の必要電力が賄われるように設計される燃料電池システム。
  2. 前記燃料電池(101)は、アノード側(102)およびカソード側(103)を含み、前記電解セル(119)は、アノード側(120)およびカソード側(121)を含み、前記電解セル(119)の前記カソード側(121)は、前記燃料電池(101)の前記カソード側(103)に接続される、請求項1に記載の燃料電池システム(100)。
  3. 前記電解セル(119)は、前記航空機の客室からの空気が前記カソード側(121)に送られるように設計される、請求項2に記載の燃料電池システム(100)。
  4. 前記燃料電池(201)は、アノード側(202)およびカソード側(203)を含み、前記電解セル(219)は、アノード側(220)およびカソード側(221)を含み、前記電解セル(219)の前記カソード側(221)は、前記燃料電池(201)の前記アノード側(203)に接続される請求項1に記載の燃料電池システム(200)。
  5. 前記燃料電池(201)は、前記航空機の客室からの空気が前記カソード側(221)に送られるように設計される、請求項4に記載の燃料電池システム(200)。
  6. 前記燃料電池(101、201)は、前記アノード側に水素または改質ガスを送ることができるように設計される、請求項2〜5のいずれか1項に記載の燃料電池システム(100、200)。
  7. 熱交換器(113、213)をさらに含み、前記熱交換器(113、213)は、前記燃料電池(101、201)の前記カソード側(103、203)から送られる空気を冷却するように設計される、請求項2〜6のいずれか1項に記載の燃料電池システム(100、200)。
  8. 他の熱交換器(128、228)をさらに含み、前記熱交換器(128、228)は、前記電解セル(119、219)の前記アノード側(120、220)から送られる水/酸素混合物を冷却するように設計される、請求項2〜7のいずれか1項に記載の燃料電池システム(100、200)。
  9. 冷却流路(141、241)を含み、前記冷却流路(141、241)は、前記燃料電池(101、201)を冷却するように前記燃料電池(101、201)に接続される、請求項1〜8のいずれか1項に記載の燃料電池システム(100、200)。
  10. 前記燃料電池(101、201)は、低温燃料電池である、請求項1〜9のいずれか1項に記載の燃料電池システム(100、200)。
  11. 前記低温燃料電池(101、201)は、プロトン交換膜燃料電池である、請求項10に記載の燃料電池システム(100、200)。
  12. 前記燃料電池(101、201)は、高温PEM燃料電池である、請求項1〜9のいずれか1項に記載の燃料電池システム(100、200)。
  13. 前記高温PEM燃料電池(101、201)は、プロトン交換膜燃料電池である、請求項12に記載の燃料電池システム(100、200)。
  14. 前記電解セル(119、219)は、触媒を有する高分子膜電解セルである、請求項1〜13のいずれか1項に記載の燃料電池システム(100、200)。
  15. 前記電解セル(119、219)は、触媒を有する高分子膜電解セルでなく、前記燃料電池の温度範囲に調節されるように配置される、請求項1〜13のいずれか1項に記載の燃料電池システム(100、200)。
  16. 複数の燃料電池および複数の電解セルをさらに含む、請求項1〜15のいずれか1項に記載の燃料電池システム(100、200)。
  17. 前記燃料電池(101、201)および電解セル(119、219)は、接続されてスタックを形成し、前記電解セル(119、219)には、前記燃料電池(101、201)から電力が直接供給される、請求項1〜16のいずれか1項に記載の燃料電池システム(100、200)。
  18. 前記燃料電池(101、201)および前記電解セル(119、219)との出力電力比は、前記燃料電池(101、201)からの送出電力が前記電解セル(119、219)の必要電力に対して正確に一致するように選択される、請求項1〜17のいずれか1項に記載の燃料電池システム(100、200)。
  19. 前記燃料電池(101、201)と前記電解セル(119、219)との出力電力比は、前記燃料電池(101、201)からの送出電力が前記燃料電池システム(100、200)および前記電解セル(119、219)のすべての補助装置が必要とする電力に対して正確に一致するように選択される、請求項1〜17のいずれか1項に記載の燃料電池システム(100、200)。
  20. 前記燃料電池(101、201)と前記電解セル(119、219)との出力電力比は、前記燃料電池(101、201)からの送出電力が前記燃料電池システム(100、200)および前記電解セル(119、219)のすべての補助装置が必要とする電力に対してより高くなるように選択される、請求項1〜17のいずれか1項に記載の燃料電池システム(100、200)。
  21. インバータと電圧トランスフォーマとを含み、前記インバータおよび前記電圧コンバータは、前記燃料電池(101、201)からの電力が乗り物内のネットワークに供給されるように設計される請求項20に記載の燃料電池システム(100、200)。
  22. 請求項1〜21のいずれか1項に記載の燃料電池(100、200)システムを有する航空機。
  23. 請求項1〜21のいずれか1項に記載の燃料電池(100、200)の使用。
JP2008529548A 2005-09-08 2006-09-07 飲料水および酸素を供給する燃料電池システム Pending JP2009508295A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US71527705P 2005-09-08 2005-09-08
DE102005042749 2005-09-08
US75988806P 2006-01-18 2006-01-18
DE102006002470A DE102006002470A1 (de) 2005-09-08 2006-01-18 Brennstoffzellensystem zur Versorgung mit Trinkwasser und Sauerstoff
PCT/EP2006/008752 WO2007028622A1 (en) 2005-09-08 2006-09-07 Fuel cell system for the supply of drinking water and oxygen

Publications (2)

Publication Number Publication Date
JP2009508295A true JP2009508295A (ja) 2009-02-26
JP2009508295A5 JP2009508295A5 (ja) 2009-09-17

Family

ID=37106278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008529548A Pending JP2009508295A (ja) 2005-09-08 2006-09-07 飲料水および酸素を供給する燃料電池システム

Country Status (8)

Country Link
US (1) US20080299432A1 (ja)
EP (1) EP1922779B1 (ja)
JP (1) JP2009508295A (ja)
CN (1) CN101258634B (ja)
BR (1) BRPI0615724A2 (ja)
CA (1) CA2618676A1 (ja)
DE (1) DE102006002470A1 (ja)
WO (1) WO2007028622A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093124A1 (ja) * 2010-01-26 2011-08-04 パナソニック電工株式会社 水処理装置
JP2013091488A (ja) * 2011-10-24 2013-05-16 Ge Aviation Systems Ltd 航空機における複数の電源からの配電
JP2019129146A (ja) * 2018-01-24 2019-08-01 日本碍子株式会社 燃料電池システム
JP2019527012A (ja) * 2016-08-23 2019-09-19 中車青島四方机車車輛股▲フン▼有限公司 鉄道交通制動エネルギーリサイクルシステム及びハイブリッド鉄道交通

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006034814B4 (de) * 2006-07-27 2010-01-14 Airbus Deutschland Gmbh Nutzung von Kabinenluft zur Wassererzeugung mittels Brennstoffzellenabgasen
DE102008018779B4 (de) 2008-04-15 2010-11-11 Diehl Aerospace Gmbh Brennstoffzellensystem, insbesondere zum Einsatz an Bord eines Verkehrsflugzeuges oder Kraftfahrzeugs
US20100038236A1 (en) * 2008-08-18 2010-02-18 Alex Rivera Hydrogen-from-water on-demand supplemental vehicle fuel electrolyzer system
DE102008039782A1 (de) * 2008-08-26 2010-03-04 Airbus Deutschland Gmbh Zonentemperaturregelung an Bord eines Flugzeuges mittels Brennstoffzellenabwärme
WO2010134356A1 (ja) * 2009-05-21 2010-11-25 パナソニック株式会社 水素生成システムおよび温水生成システム
DE102010006153A1 (de) * 2010-01-29 2011-08-04 Siemens Aktiengesellschaft, 80333 Elektrisch angetriebenes Luftfahrzeug
DE102010018273A1 (de) 2010-04-26 2011-10-27 Airbus Operations Gmbh Wassersystem für ein Fahrzeug und Verfahren zur Keimreduktion in einem Wassersystem
SK50222011A3 (sk) * 2011-04-21 2014-07-02 PROGRESSIVE SOLUTIONS & UPGRADES s.r.o. Kombinovaný magnetohydrodynamický a elektrochemický spôsob výroby, najmä elektrickej energie a zariadenie
DE102011109645A1 (de) * 2011-08-05 2013-02-07 Daimler Ag Brennstoffzellensystem
DE102011109602A1 (de) * 2011-08-05 2013-02-07 Daimler Ag Brennstoffzellensystem
US10167207B2 (en) * 2011-10-05 2019-01-01 Samsung Electronics Co., Ltd. Electrolytic apparatus with circulator, reverse osmosis filter, and cooler, for producing reducing water
US20150188171A1 (en) * 2012-06-29 2015-07-02 Mag Aerospace Industries, Llc Microbiologically protected fuel cell
WO2014131550A1 (de) * 2013-02-27 2014-09-04 Bayerische Motoren Werke Aktiengesellschaft Brennstoffzellensystem für ein kraftfahrzeug und kraftfahrzeug
FR3035074B1 (fr) * 2015-04-17 2018-07-27 Safran Aircraft Engines Aeronef comprenant une pile a combustible ayant un systeme d'alimentation ameliore en oxygene
CN106059095A (zh) * 2016-06-01 2016-10-26 中国科学院工程热物理研究所 一种基于海水的能量供应系统及其应用
DE102018204828A1 (de) 2018-03-29 2019-10-02 Ford Global Technologies, Llc Verhinderung von Glatteis durch Abwasser von Kraftfahrzeugen
DE102018204827A1 (de) * 2018-03-29 2019-10-02 Ford Global Technologies, Llc Brennstoffzellensystem für ein Fahrzeug
US11866182B2 (en) * 2020-05-01 2024-01-09 General Electric Company Fuel delivery system having a fuel oxygen reduction unit
CN114715410A (zh) * 2022-05-24 2022-07-08 北京亿华通科技股份有限公司 一种航空空气系统及其控制方法
US11949133B1 (en) * 2023-06-20 2024-04-02 ZeroAvia, Inc. Liquid water from fuel cell exhaust for cabin humidity control

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3180813A (en) * 1961-05-31 1965-04-27 Consolidation Coal Co Electrolytic process for producing hydrogen from hydrocarbonaceous gases
DE3345956A1 (de) * 1982-12-27 1984-06-28 General Electric Co., Schenectady, N.Y. Brennstoffzellen-energiesystem mit oxidationsmittel- und brennstoffgas-umschaltung
US5506066A (en) * 1994-03-14 1996-04-09 Rockwell International Corporation Ultra-passive variable pressure regenerative fuel cell system
EP0718904A1 (de) * 1994-12-22 1996-06-26 Siemens Aktiengesellschaft Brennstoffzellensystem
WO2002002846A2 (en) * 2000-07-05 2002-01-10 Johnson Matthey Public Limited Company Electrochemical cell
US20020017463A1 (en) * 2000-06-05 2002-02-14 Merida-Donis Walter Roberto Method and apparatus for integrated water deionization, electrolytic hydrogen production, and electrochemical power generation
US20030064260A1 (en) * 2001-09-28 2003-04-03 Erdle Erich K. Auxiliary power supply for a vehicle with a combustion engine and method for operating same
US20040180249A1 (en) * 2003-03-12 2004-09-16 The Regents Of The University Of California System for the co-production of electricity and hydrogen

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3992271A (en) * 1973-02-21 1976-11-16 General Electric Company Method for gas generation
US4087976A (en) * 1976-08-13 1978-05-09 Massachusetts Institute Of Technology Electric power plant using electrolytic cell-fuel cell combination
US4278525A (en) * 1978-04-24 1981-07-14 Diamond Shamrock Corporation Oxygen cathode for alkali-halide electrolysis cell
US5900330A (en) * 1997-09-25 1999-05-04 Kagatani; Takeo Power device
ITMI980914A1 (it) * 1998-04-29 1999-10-29 De Nora Spa Metodo per l'integrazione di celle a combustibile con impianti elettrochimici
US6447942B1 (en) * 2000-03-13 2002-09-10 Energy Conversion Devices, Inc. Alkaline fuel cell
US6610193B2 (en) * 2000-08-18 2003-08-26 Have Blue, Llc System and method for the production and use of hydrogen on board a marine vessel
US20030230671A1 (en) * 2000-08-24 2003-12-18 Dunn James P. Fuel cell powered electric aircraft
US6924049B2 (en) * 2000-09-11 2005-08-02 Joe G. Rich, Sr. Electrolysis fuel cell energy plant
DE10053546A1 (de) * 2000-10-27 2002-05-02 Angewandte Technik Mbh Greifsw Portabler elektrochemischer Sauerstoffgenerator
EP1313161A1 (en) * 2001-11-15 2003-05-21 Ballard Power Systems AG Fuel cell system and method for operating the same
CN1265025C (zh) * 2002-05-30 2006-07-19 谌冠卿 一种制氧装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3180813A (en) * 1961-05-31 1965-04-27 Consolidation Coal Co Electrolytic process for producing hydrogen from hydrocarbonaceous gases
DE3345956A1 (de) * 1982-12-27 1984-06-28 General Electric Co., Schenectady, N.Y. Brennstoffzellen-energiesystem mit oxidationsmittel- und brennstoffgas-umschaltung
US5506066A (en) * 1994-03-14 1996-04-09 Rockwell International Corporation Ultra-passive variable pressure regenerative fuel cell system
EP0718904A1 (de) * 1994-12-22 1996-06-26 Siemens Aktiengesellschaft Brennstoffzellensystem
US20020017463A1 (en) * 2000-06-05 2002-02-14 Merida-Donis Walter Roberto Method and apparatus for integrated water deionization, electrolytic hydrogen production, and electrochemical power generation
WO2002002846A2 (en) * 2000-07-05 2002-01-10 Johnson Matthey Public Limited Company Electrochemical cell
US20030064260A1 (en) * 2001-09-28 2003-04-03 Erdle Erich K. Auxiliary power supply for a vehicle with a combustion engine and method for operating same
US20040180249A1 (en) * 2003-03-12 2004-09-16 The Regents Of The University Of California System for the co-production of electricity and hydrogen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093124A1 (ja) * 2010-01-26 2011-08-04 パナソニック電工株式会社 水処理装置
JP2013091488A (ja) * 2011-10-24 2013-05-16 Ge Aviation Systems Ltd 航空機における複数の電源からの配電
JP2019527012A (ja) * 2016-08-23 2019-09-19 中車青島四方机車車輛股▲フン▼有限公司 鉄道交通制動エネルギーリサイクルシステム及びハイブリッド鉄道交通
JP2019129146A (ja) * 2018-01-24 2019-08-01 日本碍子株式会社 燃料電池システム

Also Published As

Publication number Publication date
DE102006002470A1 (de) 2007-03-15
BRPI0615724A2 (pt) 2011-05-24
CA2618676A1 (en) 2007-03-15
WO2007028622A1 (en) 2007-03-15
CN101258634B (zh) 2012-07-25
US20080299432A1 (en) 2008-12-04
EP1922779A1 (en) 2008-05-21
EP1922779B1 (en) 2014-07-09
CN101258634A (zh) 2008-09-03

Similar Documents

Publication Publication Date Title
JP2009508295A (ja) 飲料水および酸素を供給する燃料電池システム
US10632333B2 (en) Supply system and method for providing electric energy, oxygen depleted air and water as well and aircraft having such a supply system
JP5134371B2 (ja) 航空機におけるエネルギー供給のための供給システム、航空機、及びエネルギーを航空機に供給する方法
US10293945B2 (en) Aircraft having a redundant and efficient bleed system
US8124290B2 (en) Operating fuel cell during down time on cryogenic hydrogen boil-off
EP3040275B1 (en) Aircraft having a redundant and efficient bleed system
US20090211273A1 (en) Aircraft air-conditioning unit and method for operating an aircraft air-conditioning unit
US10583935B2 (en) Supply system for providing at least oxygen depleted air and water in a vehicle and aircraft having such a supply system
JP2009514151A (ja) 燃料電池システムを有する航空機
US20170125831A1 (en) Fuel cell cathode switching for aircraft applications
US20240101269A1 (en) Pressurized inerting system
US20080014475A1 (en) Anode humidification
US20040197611A1 (en) Transportable fuel cell generator
RU2406186C2 (ru) Система топливных элементов для снабжения транспортного средства питьевой водой и кислородом и ее применение
CN115621499A (zh) 用于燃料电池系统的基于水的、组合的冷却和加湿系统
JPH0917439A (ja) 固体高分子形燃料電池
Kriewall et al. Assessment of Reformer Concepts for the Propulsion System of an Electric Regional Aircraft Powered by Chemically Bound Hydrogen
US20130252117A1 (en) Apparatus and method for humidified fluid stream delivery to fuel cell stack
US20090214925A1 (en) Fuel Cell System with a Venturi Supply of Gas
JP2005158544A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090728

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120904