JP2009302081A - Method for producing molded interconnect device - Google Patents

Method for producing molded interconnect device Download PDF

Info

Publication number
JP2009302081A
JP2009302081A JP2008151217A JP2008151217A JP2009302081A JP 2009302081 A JP2009302081 A JP 2009302081A JP 2008151217 A JP2008151217 A JP 2008151217A JP 2008151217 A JP2008151217 A JP 2008151217A JP 2009302081 A JP2009302081 A JP 2009302081A
Authority
JP
Japan
Prior art keywords
substrate
plating
electroless plating
catalyst
coating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008151217A
Other languages
Japanese (ja)
Other versions
JP5166980B2 (en
Inventor
Kunio Mori
邦夫 森
Kiyomasa Takahashi
清正 高橋
Tetsuo Yumoto
哲男 湯本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Electronics Ltd
Sankyo Kasei Co Ltd
Sulfur Chemical Inst Inc
Original Assignee
Toa Electronics Ltd
Sankyo Kasei Co Ltd
Sulfur Chemical Inst Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Electronics Ltd, Sankyo Kasei Co Ltd, Sulfur Chemical Inst Inc filed Critical Toa Electronics Ltd
Priority to JP2008151217A priority Critical patent/JP5166980B2/en
Publication of JP2009302081A publication Critical patent/JP2009302081A/en
Application granted granted Critical
Publication of JP5166980B2 publication Critical patent/JP5166980B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To form a precise three-dimensional conductive circuit which exhibits excellent adhesion properties without roughening the surface of a substrate, and saves on the resource of precious noble metals contained in a catalyst. <P>SOLUTION: An OH group 1a is formed on the surface of a first substrate 1, and then the first substrate is coated with a functional molecular adhesive 2 consisting of a thiol-reactive alkoxysilane compound and then heated and dried. After the non-reacted functional molecular adhesive 2 is removed by alcoholic cleaning, a coating material 3 consisting of polyglycolic acid is applied partially to form a second substrate 4. After a catalyst 5 is imparted to the surface of the second substrate 4, the catalyst remaining on the surface of the coating material 3 is washed with water and removed. The part not coated with the coating material 3 is then subjected to electroless plating A of acid or neutral bath composition, and the coating material 3 is removed by an alkaline aqueous solution. The functional molecular adhesive 2 is chemically bonded to the OH group on the surface of the first substrate 1 to form a thiol group, and the thiol group is chemically bonded to the electroless plating A firmly through the catalyst 5. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、絶縁材からなる基体に、三次元的な導電性回路を形成した成形回路部品の製造方法に関し、特に絶縁材からなる基体に機能性分子接着剤を付与し、この機能性分子接着剤を介して、基体に無電解めっき等による導電性回路を形成する成形回路部品の製造方法に関する。   The present invention relates to a method of manufacturing a molded circuit component in which a three-dimensional conductive circuit is formed on a base made of an insulating material, and in particular, a functional molecular adhesive is applied to the base made of an insulating material. The present invention relates to a method for manufacturing a molded circuit component in which a conductive circuit is formed on a substrate by electroless plating or the like via an agent.

従来より絶縁材からなる基体の表面に、無電解めっきによって、選択的に導電性回路を形成する成形回路部品の製造方法が各種提案されている。これらの製造方法においては、無電解めっき層と、被めっき体である基体との密着性を確保することが必要である。そこで従来より、無電解めっき層と基体との密着性を確保する手段として、予め基体の表面をアルカリ溶液等によってエッチングして、粗面化しておく手段が提案されている(例えば特許文献1、2、及び3参照。)。   Conventionally, various methods of manufacturing a molded circuit component have been proposed in which a conductive circuit is selectively formed on the surface of a base made of an insulating material by electroless plating. In these manufacturing methods, it is necessary to ensure the adhesion between the electroless plating layer and the base body to be plated. Therefore, conventionally, as a means for ensuring the adhesion between the electroless plating layer and the base, a means for etching the surface of the base in advance with an alkaline solution or the like to roughen the surface has been proposed (for example, Patent Document 1, 2 and 3).

これらの成形回路部品の製造方法は、いずれも粗化した基体の表面を被覆材で部分的に被覆して、触媒を付与した後に被覆材を除去する。そして被覆材で被覆されていなかったために触媒が付着した基体の表面部分に、無電解めっきを行って導電性回路を形成するものである。したがってこの被覆材は、触媒付与後の工程において、簡単に溶出して除去できるものが望ましい。このため特許文献1および2に記載の製造方法では、被覆材として、容易に水に溶出して除去できる高分子材料であるポリビニルアルコール系樹脂を使用している。また特許文献3に記載の製造方法では、容易にアルカリ性溶液で加水分解して除去できる高分子材料であるポリ乳酸等を使用している。   In any of these methods for producing molded circuit components, the surface of the roughened substrate is partially coated with a coating material, and after the catalyst is applied, the coating material is removed. And since it was not coat | covered with the coating | covering material, the electroconductive plating is performed to the surface part of the base | substrate to which the catalyst adhered, and a conductive circuit is formed. Therefore, it is desirable that the coating material can be easily eluted and removed in the step after applying the catalyst. For this reason, in the manufacturing methods described in Patent Documents 1 and 2, a polyvinyl alcohol-based resin, which is a polymer material that can be easily dissolved in water and removed, is used as the coating material. In the production method described in Patent Document 3, polylactic acid, which is a polymer material that can be easily hydrolyzed and removed with an alkaline solution, is used.

また無電解めっき層と基体との密着性を確保する他の手段として、チオール反応性アルコキシシラン化合物である機能性分子接着剤を付与する手段が提供されている(特許文献4参照。)。この手段は、基体の表面にプラズマ処理等によってOH基を生成した後に、機能性分子接着剤を付与して加熱乾燥する。この加熱乾燥によって、アルコキシシラン化合物のアルコキシシリル基は、基体の表面に生成したOH基と反応して化学結合すると共に、この基体の表面に反応性チオール基(SH基)を導入する。次に、このSH基を導入した基体を、導電性回路を形成すべき部分からなる樹脂等のマスクで覆って紫外線を照射する。紫外線を照射したSH基は、ジスルフィド基(SS基)に変化するが、マスクで覆われて紫外線の照射に曝されなかった導電性回路を形成すべき部分は、SH基の状態がそのまま保持される。   Further, as another means for ensuring the adhesion between the electroless plating layer and the substrate, there is provided means for applying a functional molecular adhesive that is a thiol-reactive alkoxysilane compound (see Patent Document 4). In this means, after generating OH groups on the surface of the substrate by plasma treatment or the like, a functional molecular adhesive is applied and dried by heating. By this heat drying, the alkoxysilyl group of the alkoxysilane compound reacts with the OH group generated on the surface of the substrate to chemically bond, and a reactive thiol group (SH group) is introduced to the surface of the substrate. Next, the substrate into which the SH group has been introduced is covered with a mask made of resin or the like made of a portion where a conductive circuit is to be formed, and is irradiated with ultraviolet rays. The SH group irradiated with ultraviolet rays changes to a disulfide group (SS group), but the SH group state is maintained as it is in a portion that should be formed with a mask and not exposed to ultraviolet irradiation. The

次にマスクを外して、上記基体に触媒を付与する。触媒は基体の表面に導入されたSH基と化学的に結合するが、紫外線を照射したSS基とは結合しない。そこで水洗すると、導電性回路を形成すべき部分以外に付着した触媒は、容易に脱落し、導電性回路を形成すべき部分にのみ触媒が残存する。このように触媒を付与した基体を無電解めっき液に浸漬すると、触媒が残存する導電性回路を形成すべき部分にのみ、無電解めっきが析出する。この無電解めっきは、触媒を介して、基体の表面に導入されたSH基との化学結合により基体と強固に結合する。
特開平11−145583号公報(1〜4頁) 特開2000−80480号公報(1〜8頁) 特開2002−344116号公報(1〜4頁) 特開2008−005041号公報(1〜14頁)
Next, the mask is removed and a catalyst is applied to the substrate. The catalyst chemically bonds with the SH group introduced on the surface of the substrate, but does not bond with the SS group irradiated with ultraviolet rays. When washed with water, the catalyst adhering to the portion other than the portion where the conductive circuit is to be formed easily drops off, and the catalyst remains only in the portion where the conductive circuit is to be formed. Thus, when the base | substrate which provided the catalyst is immersed in the electroless-plating liquid, electroless-plating will precipitate only in the part which should form the electroconductive circuit with which a catalyst remains. This electroless plating is firmly bonded to the substrate through chemical bonds with SH groups introduced onto the surface of the substrate via a catalyst.
JP-A-11-145583 (pages 1 to 4) JP 2000-80480 A (pages 1 to 8) JP 2002-344116 A (pages 1 to 4) JP 2008-005041 A (pages 1 to 14)

本願発明者は、絶縁材からなる基体の全表面に、上述した機能性分子接着剤を付与し、この機能性分子接着剤の表面を、射出成形による被覆材によって部分的に被覆して、被覆されない部分に、無電解めっきによる三次元的な導電性回路を形成する成形回路部品の製造方法の着想を得た。しかるにこの製造方法には、次の解決すべき課題があることが判明した。すなわち上述した特許文献1及び2に記載の方法においては、いずれも被覆材として、後工程において溶出除去が容易な、水溶性のポリビニルアルコール系樹脂等の高分子材料を使用しているため、触媒付与の工程において、この被覆材の表面が膨潤して親水性となり、その結果、被覆材の表面に付着した触媒が、洗浄しても除去できないという問題がある。このため、後工程において被覆材を溶解除去するときに、触媒も一緒に溶解液に混入し、溶解液の廃却と共に、混入した触媒も廃棄される。しかるに触媒には、パラジウムや金等の希少金属が用いられるため、これらの貴重な貴金属に対する省資源化を図る必要がある。   The inventor of the present application applies the above-described functional molecular adhesive to the entire surface of the base made of an insulating material, and partially covers the surface of the functional molecular adhesive with a coating material by injection molding. The idea of the manufacturing method of the molded circuit component which forms the three-dimensional electroconductive circuit by electroless plating in the part which is not carried out was obtained. However, it has been found that this manufacturing method has the following problems to be solved. That is, in the methods described in Patent Documents 1 and 2 described above, a catalyst material is used as the coating material because a polymer material such as a water-soluble polyvinyl alcohol resin that can be easily removed and removed in the subsequent process is used as the coating material. In the application step, the surface of the coating material swells to become hydrophilic, and as a result, there is a problem that the catalyst attached to the surface of the coating material cannot be removed even by washing. For this reason, when the coating material is dissolved and removed in the subsequent step, the catalyst is also mixed into the solution, and the mixed catalyst is discarded along with the disposal of the solution. However, since rare metals such as palladium and gold are used for the catalyst, it is necessary to save resources for these precious metals.

また上記特許文献3に記載の方法においては、被覆材として、加水分解性のポリ乳酸や脂肪族ポリエステル等の高分子材料を使用し、触媒を付与した後に、加水分解を促進するアルカリ性溶液を用いて被覆材を除去するため、この被覆材の除去工程において、被覆材で被覆されていない基体の表面部分、すなわち導電性回路を形成する部分に付与された触媒までもが、このアルカリ性溶液の洗浄効果によって脱落し、その結果、この導電性回路を形成する部分に、無電解めっきが十分析出しないという問題がある。   Further, in the method described in Patent Document 3, a polymer material such as hydrolyzable polylactic acid or aliphatic polyester is used as a coating material, and after applying a catalyst, an alkaline solution that promotes hydrolysis is used. In order to remove the coating material, in this coating material removal process, even the catalyst applied to the surface portion of the substrate that is not coated with the coating material, that is, the portion that forms the conductive circuit, is washed with this alkaline solution. As a result, there is a problem that electroless plating is not sufficiently deposited on the portion where the conductive circuit is formed.

さらに上述した特許文献1〜4の手段では、いずれも被覆材を除去後に無電解めっきを行なっているため、いわゆる通常行なわれるバレルめっき(すなわち基体を容器内にバラバラな状態で投入し、容器をめっき浴槽内で回転させる。)では、無電解めっきの初期段階において、触媒付与面が互いに擦れ合って触媒が脱落し、めっきの未着不良が生じ易い。   Further, in each of the means of Patent Documents 1 to 4 described above, since electroless plating is performed after removing the covering material, so-called barrel plating (that is, the substrate is placed in a container in a disjointed state) In the initial stage of electroless plating, the catalyst-applied surfaces rub against each other and the catalyst falls off, and plating failure is likely to occur.

そこで本願発明の目的は、絶縁材からなる基体との密着性に優れる三次元的な導電性回路が容易に形成できると共に、触媒に含まれる貴重な貴金属の省資源化が可能な、環境性に優れる成形回路部品の製造方法を提供することにある。   Accordingly, the object of the present invention is to provide an environment that can easily form a three-dimensional conductive circuit excellent in adhesion to a substrate made of an insulating material, and can save resources of precious metals contained in the catalyst. An object of the present invention is to provide a method for manufacturing an excellent molded circuit component.

本願発明による成形回路部品の製造方法の特徴は、基体の表面を粗化する替わりに、機能性分子接着剤を介して、この基体の表面と無電解めっきとを強固に密着させること、機能性分子接着剤付与前に、基体の表面にOH基を生成すること、導電性回路を形成するために、基体の表面を部分的に覆う被覆材として耐酸性の樹脂を用いること、触媒付与後に被覆材の表面に残存する触媒を水洗除去すること、無電解めっきを酸性または中性のいずれかの浴組成で行なうこと、被覆材の除去は、無電解めっき後に行なうことにある。   The feature of the method for producing a molded circuit component according to the present invention is that, instead of roughening the surface of the substrate, the surface of the substrate and the electroless plating are firmly adhered via a functional molecular adhesive. Generate OH groups on the surface of the substrate before applying the molecular adhesive, use an acid-resistant resin as a covering material that partially covers the surface of the substrate to form a conductive circuit, and coat after applying the catalyst The catalyst remaining on the surface of the material is removed by washing with water, the electroless plating is performed with an acidic or neutral bath composition, and the coating material is removed after the electroless plating.

すなわち、この成形回路部品の製造方法の第1の特徴は、絶縁体からなる第1の基体を成形する第1工程と、この第1の基体の表面に、OH基を生成する第2工程と、このOH基を生成した第1の基体の表面に、下記一般式(化1)で表わされるチオール反応性アルコキシシラン化合物の一種または2種以上である機能性分子接着剤を付与する第3工程と、この機能性分子接着剤を付与した第1の基体を加熱または減圧のいずれかによって乾燥する第4工程と、この乾燥させた第1の基体を、アルコール洗浄する第5工程と、このアルコール洗浄した第1の基体の表面に、ポリグリコール酸、若しくはポリ乳酸の単体、またはポリ乳酸と脂肪族ポリエステルとの混合体、若しくは共重合体からなる被覆材を、部分的に被覆して第2の基体を形成する第6工程と、上記第2の基体の表面に触媒を付与する第7工程と、上記被覆材の表面に残存する上記触媒を、水洗除去する第8工程と、上記第2の基体の表面であって、上記被覆材で被覆されていない部分に、浴組成が酸性または中性のいずれかの無電解めっきAをする第9工程と、上記被覆材を除去する第10工程とを備えることにある。   That is, the first feature of the method of manufacturing a molded circuit component is that a first step of forming a first base made of an insulator and a second step of generating OH groups on the surface of the first base are provided. The third step of applying a functional molecular adhesive that is one or more of the thiol-reactive alkoxysilane compounds represented by the following general formula (Formula 1) to the surface of the first substrate on which the OH group is generated A fourth step of drying the first substrate to which the functional molecular adhesive has been applied by either heating or decompressing, a fifth step of washing the dried first substrate with alcohol, and the alcohol The surface of the cleaned first substrate is partially coated with a coating material made of polyglycolic acid or polylactic acid alone, a mixture of polylactic acid and aliphatic polyester, or a copolymer. Shaped substrate A sixth step of applying a catalyst to the surface of the second substrate, an eighth step of removing the catalyst remaining on the surface of the coating material with water, and a surface of the second substrate. In addition, a ninth step of performing electroless plating A whose bath composition is either acidic or neutral on a portion not covered with the coating material and a tenth step of removing the coating material are provided. It is in.

Figure 2009302081
Figure 2009302081

(上記化学式におて、Rは、水素原子または炭化水素基を示し、Rは炭化水素鎖または異種原子もしくは官能基が介在してもよい炭化水素鎖を示し、Xは、水素原子または炭化水素基を示し、Yはアルコキシ基を示し、nは1から3までの整数あり、Mはアルカリ金属である。) (In the above chemical formula, R 1 represents a hydrogen atom or a hydrocarbon group, R 2 represents a hydrocarbon chain or a hydrocarbon chain in which a hetero atom or a functional group may be interposed, and X represents a hydrogen atom or A hydrocarbon group, Y represents an alkoxy group, n is an integer from 1 to 3, and M is an alkali metal.)

この成形回路部品の製造方法の第2の特徴は、前記第6工程を、前記第2工程と第3工程との間に移動したことにある。   The second feature of the method of manufacturing the molded circuit component is that the sixth step is moved between the second step and the third step.

この成形回路部品の製造方法の第3の特徴は、前記Rが、硫黄原子、窒素原子、またはカルバモイル基もしくはウレア基のいずれかの1を介在させた炭化水素鎖であることにある。 A third feature of this method for producing a molded circuit component is that R 2 is a hydrocarbon chain in which one of a sulfur atom, a nitrogen atom, or a carbamoyl group or a urea group is interposed.

この成形回路部品の製造方法の第4の特徴は、前記Rが、H−,CH−,C−,n−C−,CH=CHCH−,n−C−、C−,またはC11−のいずれかの1であり、前記Rは、−CHCH−,−CHCHCH−,−CHCHCHCHCHCH−,−CHCHSCHCH−,−CHCHCHSCHCHCH,−CHCHNHCHCHCH2−,−(CHCH)NCHCHCH−,−C−,−C−,−CHCH−,−CHCHCHCHCHCHCHCHCHCH−,−CHCHOCONHCHCHCH−,−CHCHNHCONHCHCHCH−,または−(CHCH)CHOCONHCHCHCH−のいずれかの1であり、前記Xが、H−,CH−,C−n−C−,i−C, n−C−,i−C−,またはt−C−のいずれかの1であり、前記Yが、CHO−,CO−,n−CO−,i−CO−,n−CO−,i−CO−,またはt−CO−のいずれかの1であり、前記Mが、Li,Na, K,またはCsのいずれかの1であることにある。 A fourth aspect of the manufacturing method of the molded circuit component, wherein R 1 is, H-, CH 3 -, C 2 H 5 -, n-C 3 H 7 -, CH 2 = CHCH 2 -, n-C 4 H 9 —, C 6 H 5 —, or C 6 H 11 —, and R 2 represents —CH 2 CH 2 —, —CH 2 CH 2 CH 2 —, —CH 2 CH. 2 CH 2 CH 2 CH 2 CH 2 —, —CH 2 CH 2 SCH 2 CH 2 —, —CH 2 CH 2 CH 2 SCH 2 CH 2 CH 2 , —CH 2 CH 2 NHCH 2 CH 2 CH 2 —, — (CH 2 CH 2) 2 NCH 2 CH 2 CH 2 -, - C 6 H 4 -, - C 6 H 4 C 6 H 4 -, - CH 2 C 6 H 4 CH 2 -, - CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 -, - CH 2 C 2 OCONHCH 2 CH 2 CH 2 - , - CH 2 CH 2 NHCONHCH 2 CH 2 CH 2 -, or - (CH 2 CH 2) 2 CHOCONHCH 2 CH 2 CH 2 - is any one of the X is, H-, CH 3 -, C 2 H 5 -n-C 3 H 7 -, i-C 3 H 7, n-C 4 H 9 -, i-C 4 H 9 - or t-C 4 H 9, - is any one of the Y is, CH 3 O-, C 2 H 5 O-, n-C 3 H 7 O-, i-C 3 H 7 O-, n-C 4 H 9 O -, i-C 4 H 9 O-, or a t-C 4 H 9 O- 1 of any of the M is, some Li, Na, K or be any one of Cs, .

この成形回路部品の製造方法の第5の特徴は、前記第1〜4の特徴のいずれかの1において、前記第9工程と第10工程との間に、前記無電解めっきAの表面に、浴組成が酸性または中性のいずれかの電解めっきAを積層する第9.5A工程を備えることにある。   A fifth feature of the method of manufacturing a molded circuit component is that, in any one of the first to fourth features, between the ninth step and the tenth step, on the surface of the electroless plating A, The object is to include a 9.5A step of laminating the electrolytic plating A having either an acidic or neutral bath composition.

この成形回路部品の製造方法の第6の特徴は、前記第1〜第4の特徴のいずれかの1において、前記第10工程の後に、前記無電解めっきAの表面に、浴組成が酸性、中性、またはアルカリ性のいずれかの1の電解めっきB、または無電解めっきBのいずれかを積層する第11A工程を備えることにある。   The sixth feature of the method for producing a molded circuit component is that, in any one of the first to fourth features, the bath composition is acidic on the surface of the electroless plating A after the tenth step, The object is to include an 11A step of laminating either one of the neutral or alkaline electrolytic plating B or the electroless plating B.

この成形回路部品の製造方法の第7の特徴は、前記第1〜第4、または第6の特徴のいずれかの1において、前記第9工程と第10工程との間に、前記無電解めっきAの表面に、浴組成が酸性または中性のいずれかの無電解めっきCを積層する第9.5B工程を備えることにある。   A seventh feature of the method of manufacturing a molded circuit component is that, in any one of the first to fourth or sixth features, the electroless plating is performed between the ninth step and the tenth step. The object is to include a 9.5B step of laminating the electroless plating C having either an acidic or neutral bath composition on the surface of A.

この成形回路部品の製造方法の第8の特徴は、前記第5の特徴において、前記第10工程の後に、前記電解めっきAの表面に、浴組成が酸性、中性、若しくはアルカリ性のいずれかの1の電解めっきD、または無電解めっきDのいずれかを積層する第11B工程を備えることにある。   An eighth feature of the method of manufacturing a molded circuit component is that, in the fifth feature, after the tenth step, the bath composition is either acidic, neutral, or alkaline on the surface of the electrolytic plating A. There is an 11B step of laminating either one of the electroplating D or electroless plating D.

ここで「絶縁体からなる第1の基体」は、3次元的な立体形状のものに限らず、平板状のものであってもよく、表裏面等の相異なる面を開口孔で連結したものも含む。「絶縁体」としては、熱可塑性樹脂が望ましいが、熱硬化性樹脂であってもよい。かかる樹脂としては、例えば芳香族系液晶ポリマー、ポリスルホン、ポリエーテルポリスルホン、ポリアリールスルホン、ポリエーテルイミド、ポリエステル、アクリロニトリル・ブタジエン・スチレン共重合樹脂、ポリアミド、変性ポリフェニレンオキサイド樹脂、ノルボルネン樹脂、フェノール樹脂、エポキシ樹脂が該当する。   Here, the “first substrate made of an insulator” is not limited to a three-dimensional solid shape, and may be a flat plate shape, in which different surfaces such as front and back surfaces are connected by an opening hole. Including. The “insulator” is preferably a thermoplastic resin, but may be a thermosetting resin. Examples of the resin include aromatic liquid crystal polymer, polysulfone, polyether polysulfone, polyarylsulfone, polyetherimide, polyester, acrylonitrile / butadiene / styrene copolymer resin, polyamide, modified polyphenylene oxide resin, norbornene resin, phenol resin, Epoxy resin is applicable.

これらの樹脂には、所要の性質、機能を付加するための各種の配合または添加成分を含有してもよい。たとえば、熱による変形を防ぐため補強する場合には、カーボンブラック、炭酸カルシウム、タルク、クレー、カオリン、湿式及び乾式シリカなどの充填剤やレーヨン、ナイロン、ポリエステル、ビニロン、スチール、ケブラ(デュポン社の商品名)、炭素繊維、あるいはガラス繊維などの繊維や布を入れたり、過酸化物などの架橋剤や多官能性モノマーを加えたりしてもよい。   These resins may contain various blends or additive components for adding required properties and functions. For example, when reinforcing to prevent deformation due to heat, fillers such as carbon black, calcium carbonate, talc, clay, kaolin, wet and dry silica, rayon, nylon, polyester, vinylon, steel, Kevlar (from DuPont) (Trade name), carbon fiber or fiber such as glass fiber or cloth may be added, or a crosslinking agent such as peroxide or a polyfunctional monomer may be added.

「OH基を生成する」手段には、例えばコロナ放電処理、大気圧プラズマ処理、あるいはUV照射のような公知の手段を使用することができる。また「機能性分子接着剤を付与する」手段としては、例えば機能性分子接着剤の溶液に浸漬、あるいはこの溶液を噴霧したり刷毛塗りしたりする手段が該当する。なおここで機能性分子接着剤の溶液とは、機能性分子接着剤を、水をはじめ、メタノール、エタノール、イソプロパノール、エチレングリコール、若しくはジエチレングリコールなどのアルコール類、アセトン若しくはメチルエチルケトンなどのケトン類、酢酸エチルなどのエステル類、塩化メチレンなどのハロゲン化物、ブタン若しくはヘキサンなどのオレフィン類、テトラヒドロフラン若しくはブチルエーテルなどのエーテル類、ベンゼン若しくはトルエンなどの芳香族類、ジメチルホルムアミド若しくはメチルピロリドンなどのアミド類等、またはこれらを混合した溶剤に溶解したものを意味する。   As means for “generating OH groups”, known means such as corona discharge treatment, atmospheric pressure plasma treatment, or UV irradiation can be used. The “applying a functional molecular adhesive” means, for example, a means of immersing in a functional molecular adhesive solution, or spraying or brushing the solution. Here, the functional molecular adhesive solution refers to functional molecular adhesives such as water, alcohols such as methanol, ethanol, isopropanol, ethylene glycol or diethylene glycol, ketones such as acetone or methyl ethyl ketone, and ethyl acetate. Esters such as, halides such as methylene chloride, olefins such as butane or hexane, ethers such as tetrahydrofuran or butyl ether, aromatics such as benzene or toluene, amides such as dimethylformamide or methylpyrrolidone, or the like Means dissolved in a mixed solvent.

「ポリグリコール酸」とは、例えば、株式会社クレハ製の図17に示す化学構造式のものが該当する。「ポリ乳酸」とは、例えば、三井化学株式会社製のレイシア♯H−100J/Fが該当する。「脂肪族ポリエステル」とは、例えば、ポリヒドロキシカルボン酸、ヒドロキシカルボン酸、脂肪族多価塩基酸とからなる脂肪族ポリエステル、ヒドロキシカルボン酸や脂肪族多価アルコールから選ばれた複数種のモノマー成分と、脂肪族多価塩基酸から選ばれる複数種のモノマー成分とからなるランダム共重合体やブロック共重合体などが該当する。   “Polyglycolic acid” corresponds to the chemical structural formula shown in FIG. “Polylactic acid” corresponds to, for example, Lacia # H-100J / F manufactured by Mitsui Chemicals. “Aliphatic polyester” refers to, for example, an aliphatic polyester composed of polyhydroxycarboxylic acid, hydroxycarboxylic acid, and aliphatic polybasic acid, and a plurality of monomer components selected from hydroxycarboxylic acid and aliphatic polyhydric alcohol And a random copolymer or a block copolymer comprising a plurality of monomer components selected from aliphatic polybasic acids.

このポリ乳酸と脂肪族ポリエステルとの混合量、共重合量は、混合体又は共重合体の全量に対して1〜10重量%程度がよい。アルカリ分解促進剤を、混合体全量に対して1〜100重量%程度、混合してもよい。また必要に応じてアルカリ分解促進剤、有機無機充填剤、着色剤などの、合成樹脂に使用できる汎用の添加剤を混合してもよい。   The amount of polylactic acid and aliphatic polyester mixed and copolymerized is preferably about 1 to 10% by weight based on the total amount of the mixture or copolymer. You may mix an alkali decomposition accelerator about 1 to 100 weight% with respect to the whole mixture. Moreover, you may mix the general purpose additive which can be used for synthetic resins, such as an alkali decomposition accelerator, an organic inorganic filler, and a coloring agent, as needed.

「部分的に被覆する」とは、後工程において導電性回路を形成すべき部分以外の部分を、選択的に被覆するということを意味している。「第2の基体」とは、第1の基体と、この第1の基体の表面に付与して加熱処理等をした機能性分子剤接着剤と、この機能性分子剤接着剤を部分的に被覆した被覆材とからなる部材を意味する。「触媒」とは、後工程における無電解めっきを最初に析出させる金属を意味し、パラジウム、金、あるいは銀等の貴金属が該当する。   “Partially covering” means that a part other than a part where a conductive circuit is to be formed in a subsequent process is selectively covered. The “second substrate” refers to a first substrate, a functional molecular agent adhesive applied to the surface of the first substrate and subjected to heat treatment, and the functional molecular agent adhesive. It means a member composed of a coated covering material. “Catalyst” means a metal on which electroless plating in a subsequent process is first deposited, and corresponds to a noble metal such as palladium, gold, or silver.

「水洗除去」とは、疎水性を維持している被覆材の表面に残存している触媒を、水洗によって洗い流すことを意味する。この水洗は、pH7以上の中性からアルカリ組成の洗浄水を使用し、例えば15〜70℃の洗浄水に、第2の基体を5〜120秒間浸して攪拌したり、100〜170℃の洗浄水の蒸気を、第2の基体に高圧で噴き付けたりして行なう。「浴組成」とは、無電解めっき液のpH(水素イオン濃度)を意味しており、「浴組成が酸性または中性」とは、無電解めっき液、または電解めっき液のpHが7以下であることを意味する。なお本願発明においては、無電解めっきの「浴組成」が、7〜7.5程度の弱アルカリ性であっても、酸性または中性の浴組成と同様に作用するが、無電解めっき液の劣化を早めるため注意が必要である。   “Removal by washing with water” means washing away the catalyst remaining on the surface of the coating material maintaining hydrophobicity by washing with water. In this water washing, neutral to alkaline washing water having a pH of 7 or more is used. For example, the second substrate is immersed in washing water at 15 to 70 ° C. for 5 to 120 seconds and stirred, or washed at 100 to 170 ° C. Water vapor is sprayed on the second substrate at a high pressure. “Bath composition” means the pH (hydrogen ion concentration) of the electroless plating solution, and “bath composition is acidic or neutral” means that the pH of the electroless plating solution or electrolytic plating solution is 7 or less. It means that. In the present invention, even if the “bath composition” of electroless plating is weakly alkaline of about 7 to 7.5, it acts in the same manner as an acidic or neutral bath composition, but the electroless plating solution is deteriorated. Care must be taken to speed up.

被覆材として、加水分解によって容易に除去でき、かつ触媒液によって膨潤することなく疎水性を維持できるポリグリコール酸、若しくはポリ乳酸の単体、またはポリ乳酸と脂肪族ポリエステルとの混合体、若しくは共重合体を使用することによって、触媒付与の際に、触媒が被覆材に強固に密着することを防止できる。そして触媒付与後に水洗浄の工程を設けることによって、被覆材の疎水性の表面に残存する触媒を、容易かつ確実に除去できるので、この洗浄水に洗い出された触媒を容易に分離回収可能となり、高価な貴金属の省資源化が可能となる。また上記被覆材は耐酸性を有するので、無電解めっき若しくは電解めっきを、酸性または中性のいずれかの浴組成で行なうことによって、この被覆材の溶解等を防止して、導電性回路を精密に形成することができる。   As a coating material, polyglycolic acid that can be easily removed by hydrolysis and can maintain hydrophobicity without swelling by a catalyst solution, or a simple substance of polylactic acid, a mixture of polylactic acid and aliphatic polyester, or co-polymer By using the coalescence, it is possible to prevent the catalyst from being firmly adhered to the coating material when the catalyst is applied. By providing a water washing step after applying the catalyst, the catalyst remaining on the hydrophobic surface of the coating material can be easily and reliably removed, so that the catalyst washed out in the washing water can be easily separated and recovered. This makes it possible to save resources on expensive precious metals. In addition, since the coating material has acid resistance, by performing electroless plating or electrolytic plating with either an acidic or neutral bath composition, dissolution of the coating material is prevented, and a conductive circuit is precisely formed. Can be formed.

さらに被覆材の溶解除去を、導電性回路を形成する部分に無電解めっきを形成した後に行うことによって、無電解めっき前に被覆材の溶解除去をする従来手法の問題点、すなわち被覆材の除去に用いるアルカリ性の溶解液によって、被覆材で被覆されていない第1の基体の表面に付与した触媒までもが脱落してしまうという問題を回避できるので、無電解めっきを十分に析出させることができる。また被覆材を除去した後は、被覆材の溶解等を考慮する必要がなくなるため、浴組成が酸性、中性、またはアルカリ性のいずれであっても、この被覆材の除去前に行った電解めっき、または無電解めっきに重ねて、さらに電解めっき、または無電解めっきを積層することができる。   Furthermore, the coating material is dissolved and removed after the electroless plating is formed on the part where the conductive circuit is formed, so that the problem with the conventional method of dissolving and removing the coating material before the electroless plating, that is, the removal of the coating material. The alkaline solution used in the step can avoid the problem that even the catalyst applied to the surface of the first substrate that is not coated with the coating material falls off, so that the electroless plating can be sufficiently deposited. . In addition, after removing the coating material, it is no longer necessary to consider the dissolution of the coating material. Therefore, even if the bath composition is acidic, neutral, or alkaline, the electrolytic plating performed before the removal of the coating material is performed. Alternatively, an electrolytic plating or an electroless plating can be further laminated on the electroless plating.

また無電解めっき、または電解めっきの上に、重ねて無電解めっき、または電解めっきを積層することによって、成形回路の厚みや強度等を増大させることができる。また材質の異なるめっきを積層することによって、成形回路に半田付け性の向上等、他の有用な特性を付与することができる。さらに被覆材の溶解除去を、無電解めっきを形成した後に行うことによって、無電解めっきの際には、導電性回路を形成する部分の周囲を、被覆材の壁で取囲まれた状態にすることができる。このためバレルめっきを行なう場合にも、被覆材の壁によって、触媒付与が付与された導電性回路を形成する部分が、相互に擦れ合うことを回避でき、めっきの未着不良が生じることが防止できる。   Moreover, the thickness, intensity | strength, etc. of a molded circuit can be increased by laminating | stacking electroless plating or electrolytic plating on electroless plating or electrolytic plating. Further, by stacking platings of different materials, other useful characteristics such as improved solderability can be imparted to the molded circuit. Further, the covering material is dissolved and removed after the electroless plating is formed, so that in the case of the electroless plating, the periphery of the portion where the conductive circuit is formed is surrounded by the wall of the covering material. be able to. For this reason, even when barrel plating is performed, it is possible to prevent the portions forming the conductive circuit provided with the catalyst from being rubbed against each other by the wall of the covering material, thereby preventing the occurrence of defective plating adhesion. .

以上の本願発明に特有の効果に加え、第1の基体の表面に、機能性分子接着剤を介して無電解めっきを積層することによって、次の公知の作用効果も、併せて発揮することができる。すなわち機能性分子接着剤によって、第1の基体と無電解めっきとを強固に密着させることができるため、従来のように第1の基体の表面を、六価クロム酸によるエッチングにより粗化する必要がなくなる。したがって環境管理物資である六価クロム酸を排除することができる。また従来の六価クロム酸によるエッチングは湿式工程であるため、生成回路部品の製造工程の途中で、その他の乾式工程を行なう工場から、一旦湿式工程を行なう工場に搬出する必要がある。しかるにこの湿式工程を削除することによって、乾式工程の工場内で生成回路部品の製造が可能となるため、大幅な製造コストの削減が可能となる。   In addition to the effects peculiar to the present invention as described above, by laminating electroless plating on the surface of the first substrate via a functional molecular adhesive, the following known functions and effects can also be exhibited. it can. That is, the first substrate and the electroless plating can be firmly adhered to each other with the functional molecular adhesive, so that it is necessary to roughen the surface of the first substrate by etching with hexavalent chromic acid as in the past. Disappears. Therefore, hexavalent chromic acid, which is an environmental management material, can be eliminated. Moreover, since the conventional etching with hexavalent chromic acid is a wet process, it is necessary to carry it out from the factory that performs the other dry process to the factory that performs the wet process in the middle of the production process of the generated circuit component. However, by eliminating this wet process, it becomes possible to manufacture the generated circuit components in the factory of the dry process, so that the manufacturing cost can be greatly reduced.

また第1の基体の表面を粗化しないため、疲労強度の向上と、無電解めっき表面の平滑性の向上とが得られる。   Further, since the surface of the first substrate is not roughened, an improvement in fatigue strength and an improvement in the smoothness of the electroless plating surface can be obtained.

図1〜図17を参照しつつ、本発明による成形回路部品の製造方法の具体例を説明する。さて図1に示すように、第1工程として、絶縁体からなる熱可塑性樹脂を射出成形して、ブロック形状の第1の基体1を形成する。ここで熱可塑性樹脂としては、芳香族系液晶ポリマーを使用する。次に図2に示すように、第2工程として、第1の基体1の全表面に、大気圧プラズマ処理を施して、OH基1aを導入、結合させる。なお大気圧プラズマ処理は、公知の大気圧プラズマ発生装置(例えば、松下電工(株)製、Aiplasuma)等を使用し、例えばプラズマ処理速度:10〜100mm/s、電源:200又は220 V AC(30A)、圧縮エア:0.5MPa(1NL/min)、電力:100W、照射時間:0.1秒〜60秒の処理条件で行う。   A specific example of a method for manufacturing a molded circuit component according to the present invention will be described with reference to FIGS. As shown in FIG. 1, as a first step, an insulating thermoplastic resin is injection-molded to form a block-shaped first substrate 1. Here, an aromatic liquid crystal polymer is used as the thermoplastic resin. Next, as shown in FIG. 2, as a second step, the entire surface of the first substrate 1 is subjected to atmospheric pressure plasma treatment to introduce and bond OH groups 1a. The atmospheric pressure plasma treatment uses a known atmospheric pressure plasma generator (for example, Aiplasuma manufactured by Matsushita Electric Works Co., Ltd.) and the like, for example, plasma treatment speed: 10 to 100 mm / s, power source: 200 or 220 V AC ( 30A), compressed air: 0.5 MPa (1 NL / min), power: 100 W, irradiation time: 0.1 to 60 seconds.

次に図3に示すように、第3工程として、OH基1aを生成した第1の基体1の表面に、機能性分子接着剤2を付与する。すなわち機能性分子接着剤2は、図14に示す化学式(化2)を有するトリエトキシシリルプロピルトリアジンジチオール(Triethoxysiyl Propyl Triazinedithiols:TESTD)であって、その0.1gを、エタノール/水混合溶媒100ml(エタノール95g:水5g)に溶解した溶液に、OH基1aを生成した第1の基体1を、溶液温度を20℃にして1分間浸漬する。次に図4に示すように、第4工程として、機能性分子接着剤2を付与した第1の基体1を、オーブン、ドライヤー、または高周波加熱等のいずれかを用いて、温度範囲:50〜200℃にて、1〜60分間、加熱乾燥する。   Next, as shown in FIG. 3, as a third step, a functional molecular adhesive 2 is applied to the surface of the first substrate 1 on which the OH groups 1a are generated. That is, the functional molecular adhesive 2 is triethoxysilylpropyl triazinedithiols (TESTD) having the chemical formula (Chemical Formula 2) shown in FIG. 14, and 0.1 g of the functional molecular adhesive 2 is 100 ml of ethanol / water mixed solvent ( The first substrate 1 on which the OH groups 1a are generated is immersed in a solution dissolved in ethanol (95 g: water 5 g) at a solution temperature of 20 ° C. for 1 minute. Next, as shown in FIG. 4, as the fourth step, the temperature of the first substrate 1 provided with the functional molecular adhesive 2 is set to 50 to 50 ° C. using either an oven, a dryer, high-frequency heating, or the like. Heat to dry at 200 ° C. for 1-60 minutes.

加熱乾燥した後は、図15に示すように、機能性分子接着剤2は、そのアルコキシシル基が、第1の基体1の表面に生成されたOH基1aと反応して、強固に化学結合すると共に、反応性チオール基(SH基)が導入される。次いで図5に示すように、第5工程として、加熱乾燥した第1の基体1をアルコール洗浄すると、OH基1aと接触しない上層部の未反応の機能性分子接着剤2が除去される。なお未反応の機能性分子接着剤2を除去した後には、第1の基体1の表面と強固に化学結合した、厚さが1〜数nm程度の極めて薄い機能性分子接着剤2の層が、この第1の基体の表面に形成される。   After the heat drying, as shown in FIG. 15, the functional molecular adhesive 2 has a strong chemical bond because its alkoxysyl group reacts with the OH group 1 a generated on the surface of the first substrate 1. At the same time, a reactive thiol group (SH group) is introduced. Next, as shown in FIG. 5, in the fifth step, when the heat-dried first substrate 1 is washed with alcohol, the unreacted functional molecular adhesive 2 in the upper layer portion that does not come into contact with the OH groups 1a is removed. After the unreacted functional molecular adhesive 2 is removed, an extremely thin layer of the functional molecular adhesive 2 having a thickness of about 1 to several nm, which is firmly chemically bonded to the surface of the first substrate 1, is formed. , Formed on the surface of the first substrate.

さて次に図6に示すように、第6工程として、機能性分子接着剤2を付与した第1の基体1の表面に、被覆材3を部分的に被覆して、第2の基体4を形成する。被覆材3としては、ポリグリコール酸の単体を使用するが、これに限らず、ポリ乳酸の単体、またはポリ乳酸と脂肪族ポリエステルとの混合体、若しくは共重合体を使用してもよい。これらの樹脂は、アルカリ水溶液で加水分解する性質を有し、酸性水溶液に対して耐性を示す性質がある。被覆の方法としては、射出成形金型内に、機能性分子接着剤2を付与した第1の基体1をセットして、この第1の基体の表面のうち、所定の導電性回路が形成されるべき部分2bを金型等で覆い、それ以外の部分、すなわち導電性回路を形成しない部分2aの表面に形成されるキャビティ内に、ポリ乳酸樹脂を注入することにより、被覆材3を一体的に形成する。なお被覆材3の厚さは、0.1〜1mmが望ましく、0.3〜0.5mmが、さらに望ましい。   Next, as shown in FIG. 6, as a sixth step, the surface of the first substrate 1 to which the functional molecular adhesive 2 is applied is partially coated with a coating material 3, and the second substrate 4 is formed. Form. As the covering material 3, a single unit of polyglycolic acid is used, but not limited thereto, a single unit of polylactic acid, a mixture of polylactic acid and aliphatic polyester, or a copolymer may be used. These resins have a property of hydrolyzing with an alkaline aqueous solution and have a property of being resistant to an acidic aqueous solution. As a coating method, the first substrate 1 provided with the functional molecular adhesive 2 is set in an injection mold, and a predetermined conductive circuit is formed on the surface of the first substrate. The covering material 3 is integrally formed by covering the portion 2b to be covered with a mold or the like and injecting polylactic acid resin into the cavity formed on the surface of the other portion, that is, the portion 2a where the conductive circuit is not formed. To form. The thickness of the covering material 3 is preferably 0.1 to 1 mm, and more preferably 0.3 to 0.5 mm.

次に図7に示すように、第7工程として、第2の基体4の全表面に、触媒5を付与する。触媒5の付与は、例えば室温の塩化パラジウム溶液中に、第2の基体4を5分間程度浸漬して行なう。なお触媒5の付与手段は、上述したパラジウム塩の水溶液に限らず、金塩、白金塩、銀塩、または塩化錫等のいずれかの1の水溶液に、第2の基体4を浸漬等してもよい。   Next, as shown in FIG. 7, as a seventh step, the catalyst 5 is applied to the entire surface of the second substrate 4. The application of the catalyst 5 is performed, for example, by immersing the second substrate 4 in a palladium chloride solution at room temperature for about 5 minutes. The means for applying the catalyst 5 is not limited to the above-described aqueous solution of palladium salt, but the second substrate 4 is immersed in any one aqueous solution such as gold salt, platinum salt, silver salt, or tin chloride. Also good.

次に図8に示すように、第8工程として、触媒5を付与した第2の基体4を水洗浄すると、被覆材3は疎水性であるため、この被覆材の表面に残存する触媒5aは、全て脱落除去できる。一方被覆材3で覆われていない、導電性回路が形成されるべき部分に付与された触媒5bは、図16に示すように、機能性分子接着剤2の反応性チオール基(SH基)と、強固に化学的に結合するため、水洗浄によっても脱落することはない。したがって水洗浄後は、図8に示すように、被覆材3で覆われていない、導電性回路が形成されるべき部分にだけ触媒5bが残存する。なおこの水洗浄は、第2の基体4を、温度15〜25℃の水槽に浸して、5〜30秒間、ワークを遥動して行なう。   Next, as shown in FIG. 8, when the second substrate 4 to which the catalyst 5 has been applied is washed with water as the eighth step, the coating material 3 is hydrophobic, so that the catalyst 5a remaining on the surface of the coating material is All can be removed. On the other hand, the catalyst 5b applied to the portion where the conductive circuit is not formed, which is not covered with the covering material 3, has a reactive thiol group (SH group) of the functional molecular adhesive 2 as shown in FIG. Since it is strongly chemically bonded, it does not fall off even when washed with water. Therefore, after washing with water, as shown in FIG. 8, the catalyst 5b remains only in a portion where the conductive circuit is to be formed, which is not covered with the covering material 3. This water cleaning is performed by immersing the second substrate 4 in a water tank having a temperature of 15 to 25 ° C. and swinging the workpiece for 5 to 30 seconds.

次に図9に示すように、第9工程として、第2の基体4の表面であって、被覆材3で被覆されていない部分、すなわち触媒5bが残存する部分に、無電解めっきAとして、浴組成が酸性の無電解ニッケルめっき6を行い、導電性回路を形成する。無電解ニッケルめっき6は、例えば、pH4.7、温度90℃の酸性浴に、35分間浸漬して行なう。無電解めっきAは、上述したように、第1の基体1と強固に化学結合した触媒5を核として析出するため、この第1の基体1の表面に強固に密着する。   Next, as shown in FIG. 9, as the ninth step, as the electroless plating A on the surface of the second substrate 4 that is not coated with the coating material 3, that is, the portion where the catalyst 5 b remains. An electroless nickel plating 6 having an acidic bath composition is performed to form a conductive circuit. For example, the electroless nickel plating 6 is performed by immersing in an acidic bath having a pH of 4.7 and a temperature of 90 ° C. for 35 minutes. As described above, since the electroless plating A is deposited with the catalyst 5 firmly bonded to the first substrate 1 as a nucleus, it adheres firmly to the surface of the first substrate 1.

次に図10に示すように、第10工程として、第2の基体4の表面を被覆した被覆材3を、アルカリ性溶液によって除去する。上述したように被覆材3のポリ乳酸等は、酸性水溶液に対して耐性を示すが、アルカリ水溶液では簡単に加水分解するので、第2の基体4を、濃度2〜15重量%、温度25〜70℃の苛性アルカリ(NaOH、KOHなど)水溶液中に、1〜120分程度浸漬して、被覆材3を除去する。したがって手作業によるマスク除去に比べ作業効率が著しく向上する。かかる場合、被覆材3で被覆されていない部分は、既に、無電解ニッケルめっき6による導電性回路が形成されているので、この部分の触媒が、この被覆材を加水分解するアルカリ性の溶液によって脱落するという従来の問題点とは、全く無縁となる。   Next, as shown in FIG. 10, as a tenth step, the covering material 3 covering the surface of the second substrate 4 is removed with an alkaline solution. As described above, the polylactic acid or the like of the covering material 3 is resistant to an acidic aqueous solution, but is easily hydrolyzed by an alkaline aqueous solution. The coating material 3 is removed by dipping in a caustic (NaOH, KOH, etc.) aqueous solution at 70 ° C. for about 1 to 120 minutes. Therefore, the working efficiency is remarkably improved as compared with the manual mask removal. In this case, since the conductive circuit by the electroless nickel plating 6 has already been formed in the portion not covered with the coating material 3, the catalyst in this portion is removed by the alkaline solution that hydrolyzes the coating material. It is completely unrelated to the conventional problem of doing.

さて図11に示すように、上述した第9工程(無電解めっきA)と、第10工程(被覆材3の除去)との間に、この無電解めっきAの表面に、浴組成が酸性または中性の電解めっきAからなる電解銅めっき7を行なって、二次めっき層を形成する第9.5A工程を挿入することができる。電解銅めっきを行う場合、酸性の硫酸銅浴の浴組成は、例えばCuSO・5HO(75g)/lHSO(190g)/lCl(60ppm)/添加剤(適量)とする。また陽極材料を含リン銅として、浴温度は25℃に設定し、陰極電流密度を2.5A/dm2とする。 Now, as shown in FIG. 11, the bath composition is acidic on the surface of the electroless plating A between the ninth step (electroless plating A) and the tenth step (removal of the covering material 3). An electrolytic copper plating 7 made of neutral electrolytic plating A is performed, and a 9.5A step of forming a secondary plating layer can be inserted. When performing electrolytic copper plating, the bath composition of the acidic copper sulfate bath is, for example, CuSO 4 .5H 2 O (75 g) / lH 2 SO 4 (190 g) / lCl (60 ppm) / additive (appropriate amount). The anode material is phosphorous copper, the bath temperature is set to 25 ° C., and the cathode current density is 2.5 A / dm 2.

このように第10の工程の前、すなわち被覆材3の除去前に、浴組成が酸性または中性の電解銅めっき7を行なう9.5A工程を挿入しても、この被覆材は、耐酸性を有するので、この電解銅めっきの溶液に溶解することはなく、無電解めっき6を形成した導電性回路の表面上に、正確に二次めっき層を形成することができる。   As described above, even if the 9.5A step in which the electrolytic copper plating 7 having a bath composition is acidic or neutral is inserted before the tenth step, that is, before the removal of the coating material 3, the coating material is not resistant to acid. Therefore, the secondary plating layer can be accurately formed on the surface of the conductive circuit on which the electroless plating 6 is formed without being dissolved in the electrolytic copper plating solution.

また図11において、電解めっきAに替えて、無電解めっきCからなる無電解銅めっき7を行なうこともできる。すなわち上述した第9工程(無電解めっきAからなる無電解ニッケルめっき6)と、第10工程(被覆材3の除去)との間に、この無電解めっきAの表面に、浴組成が酸性または中性の無電解めっきCからなる無電解銅めっき7を行なって、二次めっき層を形成する第9.5B工程を挿入することができる。   In FIG. 11, electroless copper plating 7 made of electroless plating C can be performed instead of electrolytic plating A. That is, between the ninth step (electroless nickel plating 6 made of electroless plating A) and the tenth step (removal of coating material 3), the bath composition is acidic or An electroless copper plating 7 made of neutral electroless plating C can be performed to insert a 9.5B step of forming a secondary plating layer.

さて図12は、図10に示す無電解めっきA、すなわち第10工程において被覆材3を除去した後の無電解ニッケルめっき6の上に、重ねて電解めっきBからなる電解銅めっき6、または無電解めっきBからなる無電解銅めっき6のいずれかを積層する第11A工程を示している。この電解めっきBまたは無電解めっきBは、いずれも第10工程において被覆材3を除去した後に行なうものであるため、浴組成は、酸性または中性に限らず、アルカリ性であってもよい。   Now, FIG. 12 shows the electroless plating A shown in FIG. 10, that is, the electrolytic copper plating 6 made of the electrolytic plating B on the electroless nickel plating 6 after the coating material 3 is removed in the tenth step, or the non-electrolytic plating 6. The 11th A process of laminating any of electroless copper plating 6 which consists of electroplating B is shown. Since this electrolytic plating B or electroless plating B is performed after removing the covering material 3 in the tenth step, the bath composition is not limited to acidic or neutral, and may be alkaline.

次に図13は、被覆材3を除去する第10工程の前後において共に、電解めっき、または無電解めっきのいずれかを行なったものを示している。すなわち無電解めっきA(電解ニッケルめっき6)を行なう第9工程と、被覆材3を除去する第10工程との間に、上述した第9.5B工程による無電解めっきC(無電解銅めっき8)を行い、その後に上述した第10工程によって被覆材3を除去する。そして被覆材3を除去した後に、上述した第11A工程による電解めっきB(電解銅めっき9)、または無電解めっきB(無電解銅めっき9)のいずれかを行なう。あるいは、この第9.5B工程による無電解めっきCの替わりに、上述した第9.5A工程による電解めっきA(電解銅めっき8)を行い、被覆材3を除去した後に、第11B工程による電解めっきD(電解銅めっき9)、または無電解めっきD(無電解銅めっき9)のいずれかを行なうこともできる。   Next, FIG. 13 shows the result of performing either electroplating or electroless plating both before and after the tenth step of removing the covering material 3. That is, between the ninth step of performing the electroless plating A (electrolytic nickel plating 6) and the tenth step of removing the covering material 3, the electroless plating C (electroless copper plating 8) according to the above-mentioned 9.5B step. After that, the covering material 3 is removed by the tenth step described above. And after removing the coating | covering material 3, either the electrolytic plating B (electrolytic copper plating 9) by the 11th A process mentioned above or the electroless plating B (electroless copper plating 9) is performed. Alternatively, instead of the electroless plating C in the 9.5B step, the electrolytic plating A (electrolytic copper plating 8) in the 9.5A step described above is performed, and after the covering material 3 is removed, the electrolysis in the 11B step is performed. Either plating D (electrolytic copper plating 9) or electroless plating D (electroless copper plating 9) can be performed.

なお上述した第11A工程による電解めっきB若しくは無電解めっきB、または第11B工程による電解めっきD若しくは無電解めっきDは、いずれも第10工程において被覆材3を除去した後に行なうものであるため、浴組成は、酸性または中性に限らず、アルカリ性であってもよい。   The electrolytic plating B or electroless plating B in the 11A step described above, or the electrolytic plating D or electroless plating D in the 11B step is performed after removing the covering material 3 in the 10th step. The bath composition is not limited to acidic or neutral, and may be alkaline.

なお上述した第9.5B工程の無電解めっきC、第11A工程の無電解めっきB、及び第11B工程の無電解めっきDは、いずれも無電解銅めっき8、9に替えて、無電解金めっき等の他の金属めっきを行なうこともできる。   In addition, the electroless plating C in the 9.5B step, the electroless plating B in the 11A step, and the electroless plating D in the 11B step described above are all replaced with the electroless copper platings 8 and 9 and electroless gold. Other metal plating such as plating can also be performed.

本発明による成形回路部品の製造方法は、絶縁材からなる基体との密着性に優れる三次元的な導電性回路が容易に形成できると共に、触媒に含まれる貴重な貴金属の省資源化が可能で、かつ環境性に優れるため、電子機器等に関する産業に広く利用可能である。   The method of manufacturing a molded circuit component according to the present invention can easily form a three-dimensional conductive circuit excellent in adhesion to a base made of an insulating material, and can save resources of a precious metal contained in a catalyst. In addition, since it has excellent environmental properties, it can be widely used in industries related to electronic devices and the like.

第1の基体を形成する第1工程を示す図である。It is a figure which shows the 1st process of forming a 1st base | substrate. 第1の基体の表面にOH基を生成する第2工程を示す図である。It is a figure which shows the 2nd process which produces | generates OH group on the surface of a 1st base | substrate. OH基を生成した第1の基体の表面に機能性分子接着剤を塗布する第3工程を示す図である。It is a figure which shows the 3rd process of apply | coating a functional molecular adhesive agent on the surface of the 1st base | substrate which produced | generated OH group. 機能性分子接着剤を塗布した第1の基体を加熱乾燥する第4工程を示す図である。It is a figure which shows the 4th process of heat-drying the 1st base | substrate which apply | coated the functional molecular adhesive agent. 加熱乾燥した第1の基体をアルコール洗浄して、未反応の機能性分子接着剤を除去する第5工程を示す図である。It is a figure which shows the 5th process of removing the unreacted functional molecular adhesive agent by alcohol-washing the 1st base | substrate dried by heating. 未反応の機能性分子接着剤を除去した第1の基体を被覆材で被覆して、第2の基体を形成する第6工程を示す図である。It is a figure which shows the 6th process which coat | covers the 1st base | substrate which removed the unreacted functional molecular adhesive agent with a coating | covering material, and forms a 2nd base | substrate. 第2の基体に触媒を付与する第7工程を示す図である。It is a figure which shows the 7th process of providing a catalyst to a 2nd base | substrate. 触媒を付与した第2の基体を水洗して、被覆材の表面に残留する触媒を除去する第8工程を示す図である。It is a figure which shows the 8th process of washing the 2nd base | substrate which provided the catalyst with water, and removing the catalyst which remains on the surface of a coating | covering material. 第2の基体の触媒が付与された部分に無電解めっきを行なう第9工程を示す図である。It is a figure which shows the 9th process of performing electroless plating to the part to which the catalyst of the 2nd base | substrate was provided. 第2の基体の表面に形成した被覆材を除去する第10工程を示す図である。It is a figure which shows the 10th process of removing the coating | covering material formed in the surface of a 2nd base | substrate. 無電解めっきを行なう第9工程と被覆材を除去する第10工程との間に、電解めっき、または無電解めっきのいずれかを行なう第9.5A工程、または第9.5C工程のいずれかを示す図である。Between the ninth step of performing electroless plating and the tenth step of removing the covering material, either the 9.5A step or the 9.5C step of performing either electrolytic plating or electroless plating is performed. FIG. 第9工程によって無電解めっきを行ない、次いで第10工程よって被覆材を除去した後に、電解めっき、または無電解めっきのいずれかを行なう第11A工程を示す図である。It is a figure which shows the 11A process of performing either electroplating or electroless-plating after performing electroless plating by a 9th process and then removing a coating | covering material by a 10th process. 第9工程によって無電解めっきを行なった後で、第9.5Aによる電解めっき、または第9.5Bによる無電解めっきを行ない、次いで第10工程よって被覆材を除去した後に、電解めっき、または無電解めっきのいずれかを行なう第11A工程または第11B工程のいずれかを示す図である。After the electroless plating is performed in the ninth step, the electrolytic plating by 9.5A or the electroless plating by 9.5B is performed, and then the coating material is removed by the tenth step. It is a figure which shows either the 11A process or the 11B process which performs either of electroplating. 機能性分子接着剤の1例であるトリエトキシシリルプロピルトリアジンジチオールの化学式(化2)である。It is a chemical formula (Chemical Formula 2) of triethoxysilylpropyltriazinedithiol which is an example of a functional molecular adhesive. トリエトキシシリルプロピルトリアジンジチオールがOH基を生成した第1の基体と化学結合した状態を示す説明図である。It is explanatory drawing which shows the state which the triethoxy silyl propyl triazine dithiol chemically bonded with the 1st base | substrate which produced | generated OH group. トリエトキシシリルプロピルトリアジンジチオールのチオール基(SH基)が触媒と化学結合した状態を示す説明図である。It is explanatory drawing which shows the state which the thiol group (SH group) of triethoxysilylpropyl triazine dithiol was chemically bonded with the catalyst. ポリグリコール酸の化学構造式である。It is a chemical structural formula of polyglycolic acid.

符号の説明Explanation of symbols

1 第1の基体
1a OH基
2 トリエトキシシリルプロピルトリアジンジチオール(機能性分子接着剤)
2a 被覆材で被覆されていない部分
3 被覆材
4 第2の基体
5 触媒
5a 被覆材に付着した触媒
6 無電解ニッケルめっき(無電解めっきA)
7 電解銅めっき、または無電解銅めっき(電解めっきA、または無電解めっきC)
8 電解銅めっき、または無電解銅めっき(電解めっきB、または無電解めっきB)
9 電解銅めっき、または無電解銅めっき(電解めっきB若しくは無電解めっきB、または電解めっきD若しくは無電解めっきD)
1 First substrate 1a OH group 2 Triethoxysilylpropyltriazine dithiol (functional molecular adhesive)
2a Part not covered with coating material 3 Coating material 4 Second substrate 5 Catalyst 5a Catalyst attached to coating material 6 Electroless nickel plating (electroless plating A)
7 Electrolytic copper plating or electroless copper plating (electrolytic plating A or electroless plating C)
8 Electrolytic copper plating or electroless copper plating (electrolytic plating B or electroless plating B)
9 Electrolytic copper plating or electroless copper plating (electrolytic plating B or electroless plating B, or electrolytic plating D or electroless plating D)

Claims (8)

絶縁体からなる第1の基体を成形する第1工程と、
上記第1の基体の表面に、OH基を生成する第2工程と、
上記OH基を生成した第1の基体の表面に、下記一般式(化1)で表わされるチオール反応性アルコキシシラン化合物の一種または2種以上である機能性分子接着剤を付与する第3工程と、
上記機能性分子接着剤を付与した第1の基体を加熱または減圧のいずれかによって乾燥する第4工程と、
上記乾燥させた第1の基体を、アルコール洗浄する第5工程と、
上記アルコール洗浄した第1の基体の表面に、ポリグリコール酸、若しくはポリ乳酸の単体、またはポリ乳酸と脂肪族ポリエステルとの混合体、若しくは共重合体からなる被覆材を、部分的に被覆して第2の基体を形成する第6工程と、
上記第2の基体の表面に触媒を付与する第7工程と、
上記被覆材の表面に残存する上記触媒を水洗除去する第8工程と、
上記第2の基体の表面であって上記被覆材で被覆されていない部分に、浴組成が酸性または中性のいずれかの無電解めっきAをする第9工程と、
上記被覆材を除去する第10工程とを備える
ことを特徴とする成形回路部品の製造方法。
Figure 2009302081
(上記化学式において、Rは、水素原子または炭化水素基を示し、Rは炭化水素鎖または異種原子もしくは官能基が介在してもよい炭化水素鎖を示し、Xは、水素原子または炭化水素基を示し、Yはアルコキシ基を示し、nは1から3までの整数あり、Mはアルカリ金属である。)
A first step of forming a first substrate made of an insulator;
A second step of generating OH groups on the surface of the first substrate;
A third step of applying a functional molecular adhesive that is one or more of the thiol-reactive alkoxysilane compounds represented by the following general formula (Formula 1) to the surface of the first substrate on which the OH group is generated; ,
A fourth step of drying the first substrate provided with the functional molecular adhesive by either heating or decompression;
A fifth step of washing the dried first substrate with alcohol;
The surface of the first substrate cleaned with alcohol is partially coated with a coating material comprising polyglycolic acid or polylactic acid alone, a mixture of polylactic acid and aliphatic polyester, or a copolymer. A sixth step of forming a second substrate;
A seventh step of applying a catalyst to the surface of the second substrate;
An eighth step of washing and removing the catalyst remaining on the surface of the coating material;
A ninth step in which electroless plating A having either an acidic or neutral bath composition is applied to a portion of the surface of the second substrate that is not covered with the covering material;
A method for producing a molded circuit component, comprising: a tenth step of removing the covering material.
Figure 2009302081
(In the above chemical formula, R 1 represents a hydrogen atom or a hydrocarbon group, R 2 represents a hydrocarbon chain or a hydrocarbon chain in which a different atom or functional group may be interposed, and X represents a hydrogen atom or a hydrocarbon group. And Y represents an alkoxy group, n is an integer from 1 to 3, and M is an alkali metal.)
請求項1において、前記第6工程を、前記第2工程と第3工程との間に移動した
ことを特徴とする成形回路部品の製造方法。
In Claim 1, The said 6th process was moved between the said 2nd process and the 3rd process. The manufacturing method of the molded circuit component characterized by the above-mentioned.
請求項1または2のいずれかにおいて、前記Rは、硫黄原子、窒素原子、またはカルバモイル基もしくはウレア基のいずれかの1を介在させた炭化水素鎖である
ことを特徴とする成形回路部品の製造方法。
3. The molded circuit component according to claim 1, wherein the R 2 is a sulfur atom, a nitrogen atom, or a hydrocarbon chain having any one of a carbamoyl group or a urea group interposed therebetween. Production method.
請求項1〜3のいずれかの1において、前記Rは、H−,CH−,C−,n−C−,CH=CHCH−,n−C−、C−,またはC11−のいずれかの1であり、
前記Rは、−CHCH−,−CHCHCH−,
−CHCHCHCHCHCH−,−CHCHSCHCH−,
−CHCHCHSCHCHCH,−CHCHNHCHCHCH2−,
−(CHCH)NCHCHCH−,−C−,−C−,
−CHCH−,−CHCHCHCHCHCHCHCHCHCH−,
−CHCHOCONHCHCHCH−,
−CHCHNHCONHCHCHCH−,または
−(CHCH)CHOCONHCHCHCH−のいずれかの1であり、
前記Xは、H−,CH−,C−n−C−,i−C, n−C−,
i−C−,またはt−C−のいずれかの1であり、
前記Yは、CHO−,CO−,n−CO−,i−CO−,
n−CO−,i−CO−,またはt−CO−のいずれかの1であり、
前記Mは、Li,Na, K,またはCsのいずれかの1である
ことを特徴とする成形回路部品の製造方法。
In any one of claims 1 to 3, wherein R 1 is, H-, CH 3 -, C 2 H 5 -, n-C 3 H 7 -, CH 2 = CHCH 2 -, n-C 4 H 9 −, C 6 H 5 —, or C 6 H 11 —.
R 2 represents —CH 2 CH 2 —, —CH 2 CH 2 CH 2 —,
-CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 -, - CH 2 CH 2 SCH 2 CH 2 -,
-CH 2 CH 2 CH 2 SCH 2 CH 2 CH 2, -CH 2 CH 2 NHCH 2 CH 2 CH 2 -,
- (CH 2 CH 2) 2 NCH 2 CH 2 CH 2 -, - C 6 H 4 -, - C 6 H 4 C 6 H 4 -,
-CH 2 C 6 H 4 CH 2 -, - CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 -,
-CH 2 CH 2 OCONHCH 2 CH 2 CH 2 -,
-CH 2 CH 2 NHCONHCH 2 CH 2 CH 2 -, or - (CH 2 CH 2) 2 CHOCONHCH 2 CH 2 CH 2 - is one of either,
Wherein X is, H-, CH 3 -, C 2 H 5 -n-C 3 H 7 -, i-C 3 H 7, n-C 4 H 9 -,
i-C 4 H 9 -, or t-C 4 H 9 - is any one of,
Wherein Y is, CH 3 O-, C 2 H 5 O-, n-C 3 H 7 O-, i-C 3 H 7 O-,
n-C 4 H 9 O-, i-C 4 H 9 O-, or t-C 4 H 9 O- is any one of,
Said M is one of Li, Na, K, or Cs. The manufacturing method of the molded circuit component characterized by the above-mentioned.
請求項1〜4のいずれかの1において、前記第9工程と第10工程との間に、前記無電解めっきAの表面に、浴組成が酸性または中性のいずれかの電解めっきAを積層する第9.5A工程を備える
ことを特徴とする成形回路部品の製造方法。
5. The electroplating A having either an acidic or neutral bath composition is laminated on the surface of the electroless plating A between the ninth step and the tenth step. The manufacturing method of the molded circuit component characterized by including the 9.5A process to do.
請求項1〜4のいずれかの1において、前記第10工程の後に、前記無電解めっきAの表面に、浴組成が酸性、中性、またはアルカリ性のいずれかの1の電解めっきBまたは無電解めっきBのいずれかを積層する第11A工程を備える
ことを特徴とする成形回路部品の製造方法。
5. The electroplating B or electroless one of any one of acidic, neutral, and alkaline bath compositions on the surface of the electroless plating A after the tenth step. The manufacturing method of the molded circuit component characterized by including the 11th A process which laminates | stacks either plating B.
請求項1〜4、または6のいずれかの1において、前記第9工程と第10工程との間に、前記無電解めっきAの表面に、浴組成が酸性または中性のいずれかの無電解めっきCを積層する第9.5B工程を備える
ことを特徴とする成形回路部品の製造方法。
7. The electroless apparatus according to claim 1, wherein the bath composition is either acidic or neutral on the surface of the electroless plating A between the ninth step and the tenth step. The manufacturing method of the molded circuit component characterized by including the 9.5B process of laminating | stacking the plating C.
請求項5において、前記第10工程の後に、前記電解めっきAの表面に、浴組成が酸性、中性、若しくはアルカリ性のいずれかの1の電解めっきD、または無電解めっきDのいずれかを積層する第11B工程を備える
ことを特徴とする成形回路部品の製造方法。
6. The method according to claim 5, wherein after the tenth step, any one of electrolytic plating D having an acid, neutral or alkaline bath composition or electroless plating D is laminated on the surface of the electrolytic plating A. The manufacturing method of the molded circuit component characterized by including the 11B process to do.
JP2008151217A 2008-06-10 2008-06-10 Manufacturing method of molded circuit components Expired - Fee Related JP5166980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008151217A JP5166980B2 (en) 2008-06-10 2008-06-10 Manufacturing method of molded circuit components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008151217A JP5166980B2 (en) 2008-06-10 2008-06-10 Manufacturing method of molded circuit components

Publications (2)

Publication Number Publication Date
JP2009302081A true JP2009302081A (en) 2009-12-24
JP5166980B2 JP5166980B2 (en) 2013-03-21

Family

ID=41548722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008151217A Expired - Fee Related JP5166980B2 (en) 2008-06-10 2008-06-10 Manufacturing method of molded circuit components

Country Status (1)

Country Link
JP (1) JP5166980B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245658A (en) * 2010-05-24 2011-12-08 Kanto Gakuin Univ Surface Engineering Research Institute Molding method of selective electroless plating layer
WO2012046651A1 (en) * 2010-10-04 2012-04-12 株式会社いおう化学研究所 Process for forming metal film, and product equipped with metal film
CN103898484A (en) * 2014-04-09 2014-07-02 永星化工(上海)有限公司 Novel metallization technique for directly forming workpiece by laser
WO2015133248A1 (en) * 2014-03-06 2015-09-11 名東電産株式会社 Printed wiring board in which aluminum is formed into electroconductive pattern, and method for manufacturing said board
JP2016090795A (en) * 2014-11-04 2016-05-23 株式会社豊光社 Circuit pattern formation method, photomask, photomask production method, and production method of electric electronic apparatus
JP2016216757A (en) * 2015-05-14 2016-12-22 アルプス電気株式会社 Conductor layer separation method and circuit body production method
US9595646B2 (en) 2014-07-31 2017-03-14 Kabushiki Kaisha Toshiba Electronic component and electronic unit
CN111050929A (en) * 2017-08-28 2020-04-21 Agc株式会社 Laminate and method for producing same
JP2022075630A (en) * 2020-11-05 2022-05-18 国立大学法人岩手大学 Process for producing laminate, laminate, electrical and electronic appliance, transportation machine, and production machinery
CN115087541A (en) * 2020-01-31 2022-09-20 三井化学株式会社 Anisotropic conductive sheet, electrical inspection device, and electrical inspection method
JP2022145295A (en) * 2021-03-19 2022-10-03 地方独立行政法人 岩手県工業技術センター Method for manufacturing three-dimensional molded circuit component

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269696A (en) * 1985-09-24 1987-03-30 太田 敏行 Electrolessly plating method for printed circuit board
JPH11307934A (en) * 1998-04-24 1999-11-05 Hitachi Ltd Multi-layer printed circuit board and its manufacturing method
JP2002094218A (en) * 2000-09-18 2002-03-29 Sankyo Kasei Co Ltd Method of manufacturing molded circuit component
JP2002344116A (en) * 2001-05-16 2002-11-29 Sankyo Kasei Co Ltd Method of manufacturing circuit components
JP2006287077A (en) * 2005-04-04 2006-10-19 Sankyo Kasei Co Ltd Method of manufacturing circuit board
JP2007080974A (en) * 2005-09-12 2007-03-29 Sankyo Kasei Co Ltd Component with formed circuit and method of manufacturing same
JP2008050541A (en) * 2006-08-28 2008-03-06 Iwate Univ Functional molecular adhesive, molecular adhesive resin surface, its preparation method and manufacturing process of plated resin product or printed wiring board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269696A (en) * 1985-09-24 1987-03-30 太田 敏行 Electrolessly plating method for printed circuit board
JPH11307934A (en) * 1998-04-24 1999-11-05 Hitachi Ltd Multi-layer printed circuit board and its manufacturing method
JP2002094218A (en) * 2000-09-18 2002-03-29 Sankyo Kasei Co Ltd Method of manufacturing molded circuit component
JP2002344116A (en) * 2001-05-16 2002-11-29 Sankyo Kasei Co Ltd Method of manufacturing circuit components
JP2006287077A (en) * 2005-04-04 2006-10-19 Sankyo Kasei Co Ltd Method of manufacturing circuit board
JP2007080974A (en) * 2005-09-12 2007-03-29 Sankyo Kasei Co Ltd Component with formed circuit and method of manufacturing same
JP2008050541A (en) * 2006-08-28 2008-03-06 Iwate Univ Functional molecular adhesive, molecular adhesive resin surface, its preparation method and manufacturing process of plated resin product or printed wiring board

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245658A (en) * 2010-05-24 2011-12-08 Kanto Gakuin Univ Surface Engineering Research Institute Molding method of selective electroless plating layer
US9593423B2 (en) 2010-10-04 2017-03-14 Kunio Mori Process for forming metal film, and product equipped with metal film
WO2012046651A1 (en) * 2010-10-04 2012-04-12 株式会社いおう化学研究所 Process for forming metal film, and product equipped with metal film
JP4936344B1 (en) * 2010-10-04 2012-05-23 邦夫 森 Metal film forming method and product having metal film
KR101276648B1 (en) * 2010-10-04 2013-06-19 구니오 모리 Process for forming metal film, and product equipped with metal film
US8753748B2 (en) 2010-10-04 2014-06-17 Kunio Mori Process for forming metal film, and product equipped with metal film
WO2015133248A1 (en) * 2014-03-06 2015-09-11 名東電産株式会社 Printed wiring board in which aluminum is formed into electroconductive pattern, and method for manufacturing said board
JP2015170703A (en) * 2014-03-06 2015-09-28 名東電産株式会社 Printed wiring board using aluminum as conductive pattern and method of manufacturing the same
CN103898484A (en) * 2014-04-09 2014-07-02 永星化工(上海)有限公司 Novel metallization technique for directly forming workpiece by laser
US9595646B2 (en) 2014-07-31 2017-03-14 Kabushiki Kaisha Toshiba Electronic component and electronic unit
JP2016090795A (en) * 2014-11-04 2016-05-23 株式会社豊光社 Circuit pattern formation method, photomask, photomask production method, and production method of electric electronic apparatus
JP2016216757A (en) * 2015-05-14 2016-12-22 アルプス電気株式会社 Conductor layer separation method and circuit body production method
CN111050929A (en) * 2017-08-28 2020-04-21 Agc株式会社 Laminate and method for producing same
CN115087541A (en) * 2020-01-31 2022-09-20 三井化学株式会社 Anisotropic conductive sheet, electrical inspection device, and electrical inspection method
CN115087541B (en) * 2020-01-31 2024-03-26 三井化学株式会社 Anisotropic conductive sheet, electrical inspection device, and electrical inspection method
JP2022075630A (en) * 2020-11-05 2022-05-18 国立大学法人岩手大学 Process for producing laminate, laminate, electrical and electronic appliance, transportation machine, and production machinery
JP2022145295A (en) * 2021-03-19 2022-10-03 地方独立行政法人 岩手県工業技術センター Method for manufacturing three-dimensional molded circuit component
JP7437658B2 (en) 2021-03-19 2024-02-26 地方独立行政法人 岩手県工業技術センター Manufacturing method for three-dimensional molded circuit components

Also Published As

Publication number Publication date
JP5166980B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5166980B2 (en) Manufacturing method of molded circuit components
JP4527196B2 (en) Composite and production method thereof
JP5135575B2 (en) Functional molecular adhesives and molecular adhesive resin surfaces, methods for producing them, and methods for producing resin-plated products or printed wiring boards
EP2823084B1 (en) Method for promoting adhesion between dielectric substrates and metal layers
WO2006134868A1 (en) Surface treated copper foil, process for producing surface treated copper foil, and surface treated copper foil with very thin primer resin layer
EP2645830B1 (en) Method for manufacture of fine line circuitry
JP4738308B2 (en) Method for producing cycloolefin polymer material with metal film and cycloolefin polymer material with metal film obtained by using the method
JP2007050630A (en) Complex and its manufacturing method
KR20120107515A (en) Method of producing formed circuit component
JP5663739B2 (en) Copper surface conditioning composition and surface treatment method
JP2007119919A (en) Method for etching non-conductive substrate surface
EP0391201B1 (en) Method for treating polyetherimide substrates and articles obtained therefrom
JPH0326549B2 (en)
EP1236760B1 (en) Solvent swell for texturing resinous material and desmearing and removing resinous material
US20050214448A1 (en) Compositions containing heterocyclic nitrogen compounds and glycols for texturing resinous material and desmearing and removing resinous meterial
JP2006070319A (en) Resin plating method
CN110139946A (en) Chrome-free plating etching on plastics
JP5750009B2 (en) Manufacturing method of laminate
JP4036571B2 (en) Substrate partial plating method
JP5332058B2 (en) Manufacturing method of molded circuit components
JP5628496B2 (en) Manufacturing method of three-dimensional molded circuit components
CN104204294B (en) Promote the method for sticky limit between dielectric substrate and metal layer
KR20230121047A (en) Etching liquid for silver and manufacturing method of printed wiring board using the same
WO2007138795A1 (en) Catalytic agent for electroless plating
JPH05259611A (en) Production of printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110601

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees