JP2009300162A - Desalter for primary cooling system and purification method for primary cooling water in nuclear power plant with pressurized water reactor - Google Patents

Desalter for primary cooling system and purification method for primary cooling water in nuclear power plant with pressurized water reactor Download PDF

Info

Publication number
JP2009300162A
JP2009300162A JP2008152947A JP2008152947A JP2009300162A JP 2009300162 A JP2009300162 A JP 2009300162A JP 2008152947 A JP2008152947 A JP 2008152947A JP 2008152947 A JP2008152947 A JP 2008152947A JP 2009300162 A JP2009300162 A JP 2009300162A
Authority
JP
Japan
Prior art keywords
primary cooling
cooling water
exchange resin
pipe
anion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008152947A
Other languages
Japanese (ja)
Other versions
JP4938730B2 (en
Inventor
Satoshi Kasahara
里志 笠原
Hirosuke Suwa
裕亮 諏訪
Chika Kenmochi
千佳 建持
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2008152947A priority Critical patent/JP4938730B2/en
Priority to US12/483,034 priority patent/US9115010B2/en
Publication of JP2009300162A publication Critical patent/JP2009300162A/en
Application granted granted Critical
Publication of JP4938730B2 publication Critical patent/JP4938730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a desalter where neither fracture nor cracking appears in an anion exchange resin even if primary cooling water containing boric acid is brought into contact with the resin. <P>SOLUTION: The desalter for a primary cooling system 8, which purifies primary cooling water in a nuclear power plant with a pressurized water reactor, is composed by including a purification means filled with a porous anion exchange resin whose pore volume is 0.05 to 0.50 mL/g of dry resin (Cl type) and also whose average pore radius is 2 to 50 nm (Cl type). The method for purifying the primary cooling water is composed by bringing the primary cooling water in the nuclear power plant with the pressurized water reactor into contact with the porous anion exchange resin whose pore volume is 0.05 to 0.50 mL/g of dry resin (Cl type) and also whose average pore radius is 2 to 50 nm (Cl type). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は加圧水型原子力発電所の一次冷却系の脱塩装置、および、一次冷却水の浄化方法に関する。   The present invention relates to a desalination apparatus for a primary cooling system of a pressurized water nuclear power plant, and a purification method for primary cooling water.

加圧水型原子力発電所(PWR型発電所)は、原子炉を有する一次冷却系と、蒸気発生器で発生させた水蒸気を用いてタービンを駆動することにより発電を行う二次冷却系とが、蒸気発生器を介して接続され、構成されている。一次冷却系で使用される一次冷却水は、原子炉を冷却して高温、高圧となる。蒸気発生器では、高温、高圧となった一次冷却水が、二次冷却系の二次冷却水と熱交換を行い、二次冷却水を蒸発させて高圧の水蒸気を得る。そして、二次冷却系では、蒸気発生器において発生した水蒸気によりタービン駆動することにより発電を行う。
一次冷却系においては、一次冷却水に含まれる塩化物イオン、フッ化物イオン等の不純物や、131I等の核分裂生成物、および、58Co、60Co、ニッケル、鉄等の腐食生成物を除去するために、一次冷却水の一部を原子炉の外部に導き出して、化学体積制御(CVCS)系統およびホウ酸回収(BRS)系統の脱塩装置によって処理している。また、使用済燃料ピット水浄化冷却(SFPCS)系統においても、一次冷却水に含まれる塩化物イオン、フッ化物イオン等の不純物や、131I等の核分裂生成物、および、58Co、60Co、ニッケル、鉄等の腐食生成物を除去することで、一次冷却水を浄化している。
このような一次冷却水の浄化を目的とし、CVCS系統、BRS系統、SFPCS系統には、混床式の脱塩装置が設置されている。従来、前記混床式の脱塩装置の運用に関する発明がなされ、例えば、特許文献1では、陽イオン交換樹脂と陰イオン交換樹脂との混合比率についての発明が報告されている。なお、一次冷却系の脱塩装置には、陰イオン交換樹脂として、ゲル形のOH形陰イオン交換樹脂が使用されることが一般的である。
A pressurized water nuclear power plant (PWR power plant) has a primary cooling system having a nuclear reactor and a secondary cooling system that generates power by driving a turbine using steam generated by a steam generator. Connected and configured via a generator. The primary cooling water used in the primary cooling system cools the reactor and becomes high temperature and high pressure. In the steam generator, the primary cooling water at a high temperature and high pressure exchanges heat with the secondary cooling water in the secondary cooling system, and evaporates the secondary cooling water to obtain high-pressure steam. In the secondary cooling system, power is generated by driving the turbine with water vapor generated in the steam generator.
In the primary cooling system, impurities such as chloride ions and fluoride ions, fission products such as 131 I, and corrosion products such as 58 Co, 60 Co, nickel, and iron are removed from the primary cooling water. In order to do this, a part of the primary cooling water is led out of the reactor and processed by a desalinator of a chemical volume control (CVCS) system and a boric acid recovery (BRS) system. In the spent fuel pit water purification cooling (SFPCS) system, impurities such as chloride ions and fluoride ions contained in the primary cooling water, fission products such as 131 I, and 58 Co, 60 Co, The primary cooling water is purified by removing corrosion products such as nickel and iron.
For the purpose of purifying such primary cooling water, a mixed bed type desalination apparatus is installed in the CVCS system, the BRS system, and the SFPCS system. Conventionally, an invention relating to the operation of the mixed bed type desalination apparatus has been made. For example, Patent Document 1 reports an invention concerning a mixing ratio of a cation exchange resin and an anion exchange resin. In a primary cooling system desalting apparatus, a gel-type OH-type anion exchange resin is generally used as an anion exchange resin.

一次冷却水には、原子炉燃料の臨界状態の制御を目的としてホウ酸が添加されている。特に、定期点検や燃料の交換の際には、一次冷却水のホウ素濃度を上げ、燃料を未臨界状態に保っている。そして、PWR型発電所の運転再開にあたっては、一次冷却系の脱塩装置に、通常運転時よりも高いホウ素濃度の一次冷却水が通水され、ホウ酸置換が行われる。近年では、発電効率、稼働率の向上を図るため、高燃焼度燃料の使用が検討されている。かかる高燃焼度燃料を使用する場合には、PWR型発電所運転時および停止時における一次冷却水のホウ素濃度をさらに高くする必要がある。
特開2005−3598号公報
Boric acid is added to the primary cooling water for the purpose of controlling the critical state of the reactor fuel. In particular, during periodic inspections and fuel replacement, the boron concentration of the primary cooling water is increased to keep the fuel in a subcritical state. Then, when the operation of the PWR type power plant is resumed, primary cooling water having a higher boron concentration than normal operation is passed through the desalination apparatus of the primary cooling system, and boric acid replacement is performed. In recent years, the use of high burn-up fuel has been studied in order to improve power generation efficiency and availability. When such high burnup fuel is used, it is necessary to further increase the boron concentration of the primary cooling water when the PWR type power plant is operated and stopped.
Japanese Patent Laid-Open No. 2005-3598

しかしながら、PWR型発電所の一次冷却系の脱塩装置に、例えば、ホウ素濃度として3000ppmを超えるようなホウ酸溶液を通液すると、充填された陰イオン交換樹脂に割れや亀裂が生じると言う問題があった。陰イオン交換樹脂に割れや亀裂が生じると、微細化された樹脂が脱塩装置から流出し、該脱塩装置よりも後段に配置されたフィルタ差圧が上昇し、フィルタ交換頻度が増加することで、交換作業に伴う作業員の労力の増大、フィルタ廃棄に伴う放射性廃棄物量の増加という問題があった。
そこで、本発明は、ホウ酸を含む一次冷却水を接触させても、陰イオン交換樹脂に割れや亀裂が発生しない脱塩装置を目的とする。
However, when a boric acid solution having a boron concentration exceeding 3000 ppm is passed through the primary cooling system desalting apparatus of a PWR type power plant, for example, the filled anion exchange resin is cracked or cracked. was there. When cracks or cracks occur in the anion exchange resin, the refined resin flows out of the desalting apparatus, the differential pressure of the filter disposed at a later stage than the desalting apparatus increases, and the frequency of filter replacement increases. Thus, there have been problems such as an increase in the labor of the worker accompanying the replacement work and an increase in the amount of radioactive waste accompanying the filter disposal.
Then, this invention aims at the desalination apparatus which does not generate | occur | produce a crack or a crack in an anion exchange resin even if it makes primary cooling water containing a boric acid contact.

本発明の加圧水型原子力発電所の一次冷却系の脱塩装置は、加圧水型原子力発電所の一次冷却水を浄化する脱塩装置であって、細孔容積が0.05〜0.50mL/g−乾燥樹脂(Cl形)、かつ、平均細孔半径が2〜50nm(Cl形)の、多孔形陰イオン交換樹脂に、一次冷却水を接触して浄化することを特徴とする。
本発明の一次冷却系の脱塩装置は、化学体積制御系統、ホウ酸回収系統、使用済燃料ピット水浄化冷却系統の少なくとも一箇所に設置されていることが好ましい。
The primary cooling system desalination apparatus of the pressurized water nuclear power plant of the present invention is a desalination apparatus for purifying the primary cooling water of the pressurized water nuclear power plant, and has a pore volume of 0.05 to 0.50 mL / g. -Purified by contacting primary cooling water with a porous anion exchange resin having a dry resin (Cl type) and an average pore radius of 2 to 50 nm (Cl type).
The primary cooling system desalination apparatus of the present invention is preferably installed in at least one of a chemical volume control system, a boric acid recovery system, and a spent fuel pit water purification cooling system.

本発明の加圧水型原子力発電所の一次冷却水の浄化方法は、細孔容積が0.05〜0.50mL/g−乾燥樹脂(Cl形)、かつ、平均細孔半径が2〜50nm(Cl形)の多孔形陰イオン交換樹脂に、加圧水型原子力発電所の一次冷却水を接触させることを特徴とする。   The method for purifying primary cooling water of a pressurized water nuclear power plant according to the present invention has a pore volume of 0.05 to 0.50 mL / g-dry resin (Cl type) and an average pore radius of 2 to 50 nm (Cl The primary cooling water of a pressurized water nuclear power plant is brought into contact with the porous anion exchange resin.

本発明の加圧水型原子力発電所の一次冷却系の脱塩装置によれば、ホウ酸を含む一次冷却水を接触させても、充填された陰イオン交換樹脂の割れや亀裂を防止することができる。   According to the primary cooling system desalination apparatus of the pressurized water nuclear power plant of the present invention, it is possible to prevent cracking and cracking of the filled anion exchange resin even when the primary cooling water containing boric acid is brought into contact. .

本発明は、細孔容積が0.05〜0.50mL/g−乾燥樹脂(Cl形)で、かつ、平均細孔半径が2〜50nm(Cl形)の多孔形陰イオン交換樹脂(以下、多孔形陰イオン交換樹脂ということがある)に一次冷却水を接触させて浄化する一次冷却系の脱塩装置である。本発明の実施形態の一例について、図1を用いて説明する。図1は、PWR型発電所の一次冷却系8を示す模式図である。図1に示すとおり、一次冷却系8は、一次冷却水循環ライン10と、CVCS系統30と、BRS系統60と、SFPCS系統100とを有する。
「一次冷却系の脱塩装置」は、本実施形態におけるCVCS系統30の混床式脱塩塔33、ホウ素除去脱塩塔37、BRS系統60の混床式脱塩塔62、SFPCS系統100の混床式脱塩塔110である。また、「浄化手段」とは、一次冷却系の脱塩装置における、多孔形陰イオン交換樹脂の充填層を意味する。
The present invention relates to a porous anion exchange resin (hereinafter, referred to as a porous anion exchange resin having a pore volume of 0.05 to 0.50 mL / g-dry resin (Cl form) and an average pore radius of 2 to 50 nm (Cl form). This is a primary cooling system desalination device that purifies the primary cooling water by contacting it with a porous anion exchange resin). An example of an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram showing a primary cooling system 8 of a PWR type power plant. As shown in FIG. 1, the primary cooling system 8 includes a primary cooling water circulation line 10, a CVCS system 30, a BRS system 60, and an SFPCS system 100.
The “primary cooling system desalting apparatus” includes the mixed bed type desalting tower 33 of the CVCS system 30, the boron removal desalting tower 37, the mixed bed type desalting tower 62 of the BRS system 60, and the SFPCS system 100 in this embodiment. This is a mixed bed desalting tower 110. The “purifying means” means a packed bed of porous anion exchange resin in a primary cooling system desalting apparatus.

(一次冷却水循環ライン)
一次冷却水循環ライン10は、原子炉12で発生した熱を、一次冷却水を介して、蒸気発生器14の熱源として供給するものである。一次冷却水循環ライン10は、原子炉12と蒸気発生器14と、一次冷却水ポンプ16と、再生熱交換器18と配管20、21、22、24とで構成されている。原子炉12は配管20により蒸気発生器14と接続され、蒸気発生器14は配管21により一次冷却水ポンプ16と接続され、一次冷却水ポンプ16は、配管22により原子炉12と接続されている。配管21の分岐23で分岐した配管24は、再生熱交換器18に接続されている。
(Primary cooling water circulation line)
The primary cooling water circulation line 10 supplies heat generated in the nuclear reactor 12 as a heat source for the steam generator 14 via the primary cooling water. The primary coolant circulation line 10 includes a nuclear reactor 12, a steam generator 14, a primary coolant pump 16, a regenerative heat exchanger 18, and pipes 20, 21, 22, and 24. The nuclear reactor 12 is connected to the steam generator 14 by a pipe 20, the steam generator 14 is connected to a primary cooling water pump 16 by a pipe 21, and the primary cooling water pump 16 is connected to the nuclear reactor 12 by a pipe 22. . The pipe 24 branched from the branch 23 of the pipe 21 is connected to the regenerative heat exchanger 18.

原子炉12は、PWR型発電所で通常用いられる原子炉を用いることができる。
蒸気発生器14は、原子炉12で高温、高圧となった一次冷却水を熱媒体とし、二次冷却水との熱交換により、水蒸気を発生させる装置である。
再生熱交換器18は、蒸気発生器14で熱交換を行った一次冷却水と、CVCS系統30から供給される一次冷却水との熱交換を行う装置である。
As the nuclear reactor 12, a nuclear reactor normally used in a PWR type power plant can be used.
The steam generator 14 is a device that uses the primary cooling water that has become high temperature and high pressure in the nuclear reactor 12 as a heat medium, and generates water vapor by heat exchange with the secondary cooling water.
The regenerative heat exchanger 18 is a device that performs heat exchange between the primary cooling water that has been heat-exchanged by the steam generator 14 and the primary cooling water that is supplied from the CVCS system 30.

(化学体積制御系統:CVCS系統)
CVCS系統30は、一次冷却系8内における核分裂生成物、腐食生成物の除去による一次冷却水の浄化、および、一次冷却水の量、ホウ素濃度、腐食抑制剤の調整を行うものである。CVCS系統30は、非再生冷却器31と、混床式脱塩塔入口フィルタ32と、混床式脱塩塔33と、陽イオン脱塩塔35と、ホウ素除去脱塩塔37と、冷却水フィルタ38と、体積制御タンク39と、純水タンク80と、薬品タンク82と、配管40、41、43、44、46、47、49、50、51、53、55、57、58、81、83と、バルブ34、36とで構成されている。
再生熱交換器18と非再生熱交換器31とは、配管40により接続されている。非再生熱交換器31と混床式脱塩塔入口フィルタ32とは、配管41で接続されている。配管41は、分岐42で配管51に分岐し、配管51は、冷却水フィルタ38と接続されている。混床式脱塩塔入口フィルタ32と混床式脱塩塔33とは、配管43で接続され、混床式脱塩塔33に接続された配管44は、分岐52で配管51と接続されている。また、配管44は、分岐45で配管46に分岐し、配管46はバルブ34を経由して、陽イオン脱塩塔35と接続されている。陽イオン脱塩塔35には配管47が接続され、配管47は配管44と接続されている。配管44は、分岐48で配管49に分岐し、配管49はバルブ36を経由してホウ素除去脱塩塔37と接続されている。ホウ素除去脱塩塔37には配管50が接続され、配管50は配管44と接続されている。
冷却水フィルタ38と体積制御タンク39とは、配管53により接続されている。配管53は、分岐54で配管70が分岐している。また、配管53には、配管58の分岐56で分岐した配管55が接続されている。体積制御タンク39は、配管57により再生熱交換器18と接続されている。配管58には、純水タンク80の配管81が接続されている。配管57には、薬品タンク82の配管83が接続されている。
(Chemical volume control system: CVCS system)
The CVCS system 30 purifies primary cooling water by removing fission products and corrosion products in the primary cooling system 8 and adjusts the amount of primary cooling water, boron concentration, and corrosion inhibitor. The CVCS system 30 includes a non-regenerative cooler 31, a mixed bed type desalting tower inlet filter 32, a mixed bed type desalting tower 33, a cation desalting tower 35, a boron removing desalting tower 37, and cooling water. Filter 38, volume control tank 39, pure water tank 80, chemical tank 82, piping 40, 41, 43, 44, 46, 47, 49, 50, 51, 53, 55, 57, 58, 81, 83 and valves 34 and 36.
The regenerative heat exchanger 18 and the non-regenerative heat exchanger 31 are connected by a pipe 40. The non-regenerative heat exchanger 31 and the mixed bed type demineralization tower inlet filter 32 are connected by a pipe 41. The pipe 41 branches into a pipe 51 at a branch 42, and the pipe 51 is connected to the cooling water filter 38. The mixed bed type desalting tower inlet filter 32 and the mixed bed type desalting tower 33 are connected by a pipe 43, and the pipe 44 connected to the mixed bed type desalting tower 33 is connected to a pipe 51 by a branch 52. Yes. The pipe 44 is branched into a pipe 46 at a branch 45, and the pipe 46 is connected to the cation demineralization tower 35 via a valve 34. A pipe 47 is connected to the cation demineralization tower 35, and the pipe 47 is connected to the pipe 44. The pipe 44 is branched into a pipe 49 at a branch 48, and the pipe 49 is connected to a boron removal desalting tower 37 via a valve 36. A pipe 50 is connected to the boron removal desalting tower 37, and the pipe 50 is connected to the pipe 44.
The cooling water filter 38 and the volume control tank 39 are connected by a pipe 53. In the pipe 53, a pipe 70 is branched at a branch 54. A pipe 55 branched from a branch 56 of the pipe 58 is connected to the pipe 53. The volume control tank 39 is connected to the regenerative heat exchanger 18 by a pipe 57. A pipe 81 of a pure water tank 80 is connected to the pipe 58. A pipe 83 of the chemical tank 82 is connected to the pipe 57.

非再生冷却器31は、再生熱交換器18を経由した一次冷却水の温度をさらに低下させる装置である。
混床式脱塩塔入口フィルタ32は、微粒子等の、イオン交換樹脂で除去できない成分を除去する装置であり、例えば、ポリプロピレン製不織布を用いたプリーツフィルタを挙げることができる。
The non-regenerative cooler 31 is a device that further reduces the temperature of the primary cooling water that has passed through the regenerative heat exchanger 18.
The mixed bed type desalting tower inlet filter 32 is a device for removing components such as fine particles that cannot be removed by an ion exchange resin, and examples thereof include a pleated filter using a polypropylene nonwoven fabric.

混床式脱塩塔33は、一次冷却水中の塩化物イオン、フッ化物イオン等の不純物や、131I等の核分裂生成物、および、58Co、60Co、ニッケル、鉄等の腐食生成物の除去を行う装置である。混床式脱塩塔33には、陰イオン交換樹脂と陽イオン交換樹脂とを混合したイオン交換樹脂が充填されている。
混床式脱塩塔33に充填される陰イオン交換樹脂の構造は、多孔形であれば、ポーラス形であっても、マクロポーラス(MR)形であっても良い。多孔形を用いることで、高濃度のホウ酸との接触による割れや亀裂を防止できる。
多孔形陰イオン交換樹脂の細孔容積は、0.05〜0.50mL/g−乾燥樹脂(Cl形)であり、0.25〜0.45mL/g−乾燥樹脂(Cl形)であることが好ましい。細孔容積が0.05mL/g−乾燥樹脂(Cl形)未満であるとホウ酸を接触させた際に、多孔形陰イオン交換樹脂に割れや亀裂が生じる場合がある。0.50mL/g−乾燥樹脂(Cl形)を超えると、荷重強度が低下するためである。
また、多孔形陰イオン交換樹脂の平均細孔半径は、2〜50nm(Cl形)であることが好ましく、5〜30nm(Cl形)であることがより好ましい。2nm(Cl形)未満であると、ホウ酸を接触させた際に、多孔形陰イオン交換樹脂に割れや亀裂が生じる場合がある。50nm(Cl形)を超えると、イオン交換容量が低下するためである。
The mixed bed desalting tower 33 is used for impurities such as chloride ions and fluoride ions in the primary cooling water, fission products such as 131 I, and corrosion products such as 58 Co, 60 Co, nickel, and iron. It is a device that performs the removal. The mixed bed desalting tower 33 is filled with an ion exchange resin obtained by mixing an anion exchange resin and a cation exchange resin.
The structure of the anion exchange resin packed in the mixed bed type desalting tower 33 may be porous or macroporous (MR) as long as it is porous. By using the porous shape, cracks and cracks due to contact with high concentration boric acid can be prevented.
The pore volume of the porous anion exchange resin is 0.05 to 0.50 mL / g-dry resin (Cl form) and 0.25 to 0.45 mL / g-dry resin (Cl form). Is preferred. When the pore volume is less than 0.05 mL / g-dry resin (Cl form), the porous anion exchange resin may be cracked or cracked when boric acid is brought into contact therewith. It is because load strength will fall when it exceeds 0.50 mL / g-dry resin (Cl form).
The average pore radius of the porous anion exchange resin is preferably 2 to 50 nm (Cl type), and more preferably 5 to 30 nm (Cl type). If it is less than 2 nm (Cl type), the porous anion exchange resin may be cracked or cracked when boric acid is brought into contact therewith. This is because if it exceeds 50 nm (Cl form), the ion exchange capacity decreases.

ここで、細孔容積および平均細孔半径とは、以下の測定方法により求められる。
陰イオン交換樹脂15mLに対して、塩酸水溶液(1mol/L)を9〜10mL/minで接触させて、塩化物イオン形とする。その後、メタノール、トルエン、イソオクタンの順に置換し、真空乾燥機を用い、60℃、8時間乾燥させる。乾燥させた陰イオン交換樹脂を測定セルに入れ、水銀を充填し、セル内部を加圧して、細孔に水銀を進入させる。この時の圧力と水銀進入量を測定し、細孔容積を求める。また、細孔を円筒形と仮定して、細孔半径を求める。加えられた圧力と、その圧力で水銀が進入可能な細孔径の関係は下記(1)式(Washburnの式)で表される。細孔容積および平均細孔半径の測定機器としては、例えば、水銀ポロシメータ(オートポアIV9520、株式会社島津製作所製)を挙げることができる。
Here, the pore volume and the average pore radius are determined by the following measuring method.
A 15 mL of anion exchange resin is brought into contact with an aqueous hydrochloric acid solution (1 mol / L) at 9 to 10 mL / min to obtain a chloride ion form. Then, it substitutes in order of methanol, toluene, and isooctane, and it is made to dry at 60 degreeC for 8 hours using a vacuum dryer. The dried anion exchange resin is placed in a measurement cell, filled with mercury, and the inside of the cell is pressurized to allow mercury to enter the pores. The pressure and mercury intrusion amount at this time are measured to determine the pore volume. Further, assuming that the pore is cylindrical, the pore radius is obtained. The relationship between the applied pressure and the pore diameter through which mercury can enter at that pressure is expressed by the following equation (1) (Washburn's equation). Examples of the measuring device for the pore volume and the average pore radius include a mercury porosimeter (Autopore IV9520, manufactured by Shimadzu Corporation).

−4σcosθ=PD ・・・(1)
σ:水銀の表面張力(0.475N/m)
θ:接触角(140°)
D:細孔直径(m)
P:圧力(Pa)
−4σ cos θ = PD (1)
σ: Surface tension of mercury (0.475 N / m)
θ: Contact angle (140 °)
D: pore diameter (m)
P: Pressure (Pa)

前記陰イオン交換樹脂は強塩基性陰イオン交換樹脂であっても、弱塩基性陰イオン交換樹脂であっても良いが、強塩基性陰イオン交換樹脂であることが好ましい。
このような多孔形陰イオン交換樹脂としては、アンバーライト(商品名)IRA900、アンバージェット(商品名)9090(以上、ローム・アンド・ハース社製)等を挙げることができる。
The anion exchange resin may be a strong base anion exchange resin or a weak base anion exchange resin, but is preferably a strong base anion exchange resin.
Examples of such porous anion exchange resins include Amberlite (trade name) IRA900, AmberJet (trade name) 9090 (above, manufactured by Rohm and Haas).

混床式脱塩塔33に充填されている陽イオン交換樹脂は、イオン形がLi形の陽イオン交換樹脂である。前記Li形の陽イオン交換樹脂の構造は特に限定されず、ゲル形であっても、多孔形であっても良い。また、強酸性陽イオン交換樹脂であっても、弱酸性陽イオン交換樹脂であっても良いが、強酸性陽イオン交換樹脂であることが好ましい。
混床式脱塩塔33における、陰イオン交換樹脂と陽イオン交換樹脂との混合比率は特に限定されないが、陰イオン交換樹脂と陽イオン交換樹脂とは、イオン交換容量比で1:1とすることが好ましい。
The cation exchange resin packed in the mixed bed desalting tower 33 is a cation exchange resin having an ion form of 7 Li. The structure of the Li-type cation exchange resin is not particularly limited, and may be a gel type or a porous type. Moreover, although it may be a strong acid cation exchange resin or a weak acid cation exchange resin, it is preferably a strong acid cation exchange resin.
The mixing ratio of the anion exchange resin and the cation exchange resin in the mixed bed type desalting tower 33 is not particularly limited, but the anion exchange resin and the cation exchange resin are set to have an ion exchange capacity ratio of 1: 1. It is preferable.

陽イオン脱塩塔35は、主に一次冷却水中のリチウム濃度の制御と、混床式脱塩塔33では除去困難なセシウム濃度の低減を目的とする装置である。陽イオン脱塩塔35には、陽イオン交換樹脂が充填されている。陽イオン脱塩塔35に充填されている陽イオン交換樹脂は、H形の陽イオン交換樹脂である。   The cation desalting tower 35 is an apparatus mainly intended for controlling the lithium concentration in the primary cooling water and reducing the cesium concentration that is difficult to remove by the mixed bed desalting tower 33. The cation desalting tower 35 is filled with a cation exchange resin. The cation exchange resin packed in the cation desalting tower 35 is an H-type cation exchange resin.

ホウ素除去脱塩塔37は、主に一次冷却水中のホウ酸を除去し、濃度を調製する装置である。ホウ素除去脱塩塔37には、多孔形陰イオン交換樹脂が充填されている。ホウ素除去脱塩塔37に充填されている陰イオン交換樹脂は、混床式脱塩塔33に充填されている陰イオン交換樹脂と同様である。   The boron removal desalting tower 37 is an apparatus that mainly removes boric acid in the primary cooling water to adjust the concentration. The boron removal desalting tower 37 is filled with a porous anion exchange resin. The anion exchange resin packed in the boron removal desalting tower 37 is the same as the anion exchange resin packed in the mixed bed desalting tower 33.

冷却水フィルタ38は、イオン交換樹脂で除去できない金属腐食生成物等の懸濁物や、混床式脱塩塔33、陽イオン脱塩塔35、ホウ素除去脱塩塔37から漏洩した微粒子を除去する装置である。冷却水フィルタ38は、混床式脱塩塔入口フィルタ32と同様である。
体積制御タンク39は特に限定されず、通常のPWR式発電所で使用されるものを用いることができる。
The cooling water filter 38 removes suspensions such as metal corrosion products that cannot be removed by the ion exchange resin, and fine particles leaked from the mixed bed desalting tower 33, the cation desalting tower 35, and the boron removing desalting tower 37. It is a device to do. The cooling water filter 38 is the same as the mixed bed type desalting tower inlet filter 32.
The volume control tank 39 is not particularly limited, and a tank used in a normal PWR type power plant can be used.

純水タンク80は、一次冷却水に使用する純水を貯水するものである。薬品タンク82は、一次冷却水のpH調整のためのリチウム添加、および、起動時の酸素除去のためのヒドラジン添加、ならびに、停止時の過酸化水素添加に使用する。   The pure water tank 80 stores pure water used for primary cooling water. The chemical tank 82 is used for addition of lithium for adjusting the pH of the primary cooling water, addition of hydrazine for removing oxygen at start-up, and addition of hydrogen peroxide at the time of stop.

(ホウ酸回収系統:BRS系統)
BRS系統60は、一次冷却水中のホウ酸を分離回収し、再利用するものである。BRS系統60は、冷却水貯蔵タンク61と、混床式脱塩塔62と、冷却水フィルタ63と、ホウ酸回収装置64と、冷却器65と、混床式脱塩塔66と、ホウ酸タンク67と、ホウ酸フィルタ68と、配管70、71、72、73、74、76、77とで構成されている。
(Boric acid recovery system: BRS system)
The BRS system 60 separates and recovers boric acid in the primary cooling water and reuses it. The BRS system 60 includes a cooling water storage tank 61, a mixed bed type desalting tower 62, a cooling water filter 63, a boric acid recovery device 64, a cooler 65, a mixed bed type desalting tower 66, and boric acid. The tank 67, the boric acid filter 68, and pipes 70, 71, 72, 73, 74, 76, 77 are configured.

CVCS系統30の配管53の分岐54で分岐した配管70は、冷却水貯蔵タンク61に接続されている。冷却水貯蔵タンク61と混床式脱塩塔62とは配管71により接続され、混床式脱塩塔62と冷却水フィルタ63とは配管72により接続され、冷却水フィルタ63とホウ酸回収装置64とは配管73により接続されている。ホウ酸回収装置64には、配管74と配管76とが接続されている。配管74は、冷却器65を経由して混床式脱塩塔66と接続されている。配管76は、ホウ酸タンク67と接続され、ホウ酸タンク67とホウ酸フィルタ68とは配管77により接続されている。ホウ酸フィルタ68は、配管58により、配管57と接続されている。   A pipe 70 branched from a branch 54 of the pipe 53 of the CVCS system 30 is connected to a cooling water storage tank 61. The cooling water storage tank 61 and the mixed bed type desalting tower 62 are connected by a pipe 71, and the mixed bed type desalting tower 62 and the cooling water filter 63 are connected by a pipe 72, and the cooling water filter 63 and the boric acid recovery device are connected. 64 is connected by a pipe 73. A piping 74 and a piping 76 are connected to the boric acid recovery device 64. The pipe 74 is connected to the mixed bed desalting tower 66 via the cooler 65. The piping 76 is connected to the boric acid tank 67, and the boric acid tank 67 and the boric acid filter 68 are connected by a piping 77. The boric acid filter 68 is connected to the pipe 57 by a pipe 58.

混床式脱塩塔62は、混床式脱塩塔33と同様である。
冷却水フィルタ63は、微粒子のようなイオン交換樹脂で除去できない成分を除去する装置であり、混床式脱塩塔入口フィルタ32と同様である。
The mixed bed desalting tower 62 is the same as the mixed bed desalting tower 33.
The cooling water filter 63 is a device that removes components such as fine particles that cannot be removed by an ion exchange resin, and is the same as the mixed bed type desalting tower inlet filter 32.

ホウ酸回収装置64は、一次冷却水中のホウ酸を濃縮して、ホウ酸濃縮液と水とに分離する装置である。
冷却器65は、ホウ酸回収装置64で分離された水を凝縮する装置である。
混床式脱塩塔66は、ホウ酸回収装置64で分離された水を除去して浄化する装置である。混床式脱塩塔66に充填される陰イオン交換樹脂の構造は特に限定されず、ゲル形であっても多孔形であっても良い。また、陰イオン交換樹脂の種類は、強塩基性陰イオン交換樹脂であっても良いし、弱塩基性陰イオン交換樹脂であっても良い。混床式脱塩装置66に充填される陽イオン交換樹脂は特に限定されず、混床式脱塩塔33と同様のものを用いることができる。
ホウ酸フィルタ68は、ホウ酸濃縮液中に含まれる微粒子等を除去する装置である。
The boric acid recovery device 64 is a device that concentrates boric acid in the primary cooling water and separates it into a boric acid concentrate and water.
The cooler 65 is a device that condenses the water separated by the boric acid recovery device 64.
The mixed bed desalting tower 66 is a device that removes and purifies the water separated by the boric acid recovery device 64. The structure of the anion exchange resin packed in the mixed bed type desalting tower 66 is not particularly limited, and may be a gel type or a porous type. Further, the type of anion exchange resin may be a strong basic anion exchange resin or a weak basic anion exchange resin. The cation exchange resin charged in the mixed bed desalting apparatus 66 is not particularly limited, and the same cation exchange resin as that used in the mixed bed desalting tower 33 can be used.
The boric acid filter 68 is a device that removes fine particles contained in the boric acid concentrate.

(使用済燃料ピット水浄化冷却系統:SFPCS系統)
SFPCS系統100は、ピットに貯蔵されている使用済み燃料の崩壊熱除去、および、ピット水の浄化を行う系統である。SFPCS系統100は、燃料ピット104と、混床式脱塩塔110と、使用済燃料ピットフィルタ111と、冷却器112と、配管120、122、123、124、125とで構成されている。
(Spent fuel pit water purification cooling system: SFPCS system)
The SFPCS system 100 is a system that performs decay heat removal of spent fuel stored in a pit and purifies pit water. The SFPCS system 100 includes a fuel pit 104, a mixed bed type desalting tower 110, a spent fuel pit filter 111, a cooler 112, and pipes 120, 122, 123, 124, and 125.

燃料ピット104は、原子炉ウェル101と、隔壁103と、使用済燃料ピット102とで構成されている。原子炉ウェル101と使用済燃料ピット102には、一次冷却水が貯留されている。
原子炉12の上部には原子炉ウェル101が設置され、原子炉ウェル101と隔壁103を介して使用済燃料ピット102が設置されている。使用済燃料ピット102と冷却器112とは、配管120により接続されている。冷却器112は、配管125により、配管124と接続されている。配管120は、分岐121で配管122に分岐し、配管122は、混床式脱塩塔110と接続されている。混床式脱塩塔110と使用済燃料ピットフィルタ111とは、配管123により接続されている。使用済燃料ピットフィルタ111には配管124が接続され、配管124は、使用済燃料ピット102と接続されている。
The fuel pit 104 includes a reactor well 101, a partition wall 103, and a spent fuel pit 102. Primary cooling water is stored in the reactor well 101 and the spent fuel pit 102.
A reactor well 101 is installed in the upper part of the reactor 12, and a spent fuel pit 102 is installed through the reactor well 101 and the partition wall 103. The spent fuel pit 102 and the cooler 112 are connected by a pipe 120. The cooler 112 is connected to the pipe 124 by a pipe 125. The pipe 120 branches into a pipe 122 at a branch 121, and the pipe 122 is connected to the mixed bed type desalting tower 110. The mixed bed desalting tower 110 and the spent fuel pit filter 111 are connected by a pipe 123. A pipe 124 is connected to the spent fuel pit filter 111, and the pipe 124 is connected to the spent fuel pit 102.

燃料ピット104は特に限定されず、PWR型発電所で通常使用されるものを用いることができる。
混床式脱塩塔110は、混床式脱塩塔33と同様である。
使用済燃料ピットフィルタ111は、微粒子のようなイオン交換樹脂で除去できない成分を除去する装置であり、混床式脱塩塔入口フィルタ32と同様である。
冷却器112は、使用済燃料により発生した崩壊熱を除去するものである。
The fuel pit 104 is not particularly limited, and a fuel pit 104 that is normally used in a PWR type power plant can be used.
The mixed bed desalting tower 110 is the same as the mixed bed desalting tower 33.
The spent fuel pit filter 111 is a device that removes components such as fine particles that cannot be removed by an ion exchange resin, and is the same as the mixed bed type desalting tower inlet filter 32.
The cooler 112 removes decay heat generated by the spent fuel.

以下、一次冷却水の浄化方法について、説明する。
なお、本発明における「浄化」とは、一次冷却水から、塩化物イオン、フッ化物イオン等の不純物や、131I等の核分裂生成物、および、58Co、60Co、ニッケル、鉄等の腐食生成物を取り除くことを言う。
一次冷却水は、一次冷却水ポンプ16により、一次冷却水循環ライン10内を循環する。一次冷却水は、原子炉12を冷却して、高温、高圧(例えば、温度322℃、圧力15.4MPa)となる。高温、高圧となった一次冷却水は、配管20を経由して蒸気発生器14に送られる。蒸気発生器14に送られた一次冷却水は、蒸気発生器14の熱交換器を介して、二次冷却水との熱交換により、発電用の蒸気を発生させる。蒸気発生器14で熱交換をした一次冷却水は、配管21を経由して一次冷却水ポンプ16に送られ、一次冷却水ポンプ16から配管22を経由して原子炉12へ至る。一方、蒸気発生器14で熱交換をした一次冷却水の一部は、配管21の分岐23から配管24を経由して、再生熱交換器18へ送られる。再生熱交換器18に送られた配管24を経由した一次冷却水は、CVCS系統30から送られる一次冷却水と熱交換が行われた後、非再生型熱交換器31に送られる。
Hereinafter, the purification method of the primary cooling water will be described.
In the present invention, “purification” refers to corrosion of impurities such as chloride ions and fluoride ions, fission products such as 131 I, and 58 Co, 60 Co, nickel, iron, and the like from primary cooling water. Say to remove the product.
The primary cooling water is circulated in the primary cooling water circulation line 10 by the primary cooling water pump 16. The primary cooling water cools the reactor 12 and becomes high temperature and high pressure (for example, temperature 322 ° C., pressure 15.4 MPa). The primary cooling water having a high temperature and a high pressure is sent to the steam generator 14 via the pipe 20. The primary cooling water sent to the steam generator 14 generates steam for power generation through heat exchange with the secondary cooling water via the heat exchanger of the steam generator 14. The primary cooling water heat-exchanged by the steam generator 14 is sent to the primary cooling water pump 16 via the pipe 21 and reaches the nuclear reactor 12 via the piping 22 from the primary cooling water pump 16. On the other hand, a part of the primary cooling water exchanged by the steam generator 14 is sent from the branch 23 of the pipe 21 to the regenerative heat exchanger 18 via the pipe 24. The primary cooling water that has passed through the pipe 24 sent to the regenerative heat exchanger 18 is subjected to heat exchange with the primary cooling water sent from the CVCS system 30 and then sent to the non-regenerative heat exchanger 31.

次いで、バルブ34、36を閉とした状態で、非再生型熱交換器31で冷却された一次冷却水は、配管41、混床式脱塩塔入口フィルタ32、配管43を経由して、混床式脱塩塔33に送られる。一次冷却水は、混床式脱塩塔33中の多孔形陰イオン交換樹脂に接触して、塩化物イオン、フッ化物イオン、硫酸イオン等の陰イオンが除去される。また、陽イオン交換樹脂と接触して、ニッケルイオン、鉄イオン、コバルトイオン等の陽イオンが除去される。その後、一次冷却水は、配管44を経由して、分岐52で、配管51に至る。   Next, the primary cooling water cooled by the non-regenerative heat exchanger 31 with the valves 34 and 36 closed is mixed with the pipe 41, the mixed bed type demineralization tower inlet filter 32, and the pipe 43. It is sent to the floor type desalting tower 33. The primary cooling water comes into contact with the porous anion exchange resin in the mixed bed desalting tower 33, and anions such as chloride ions, fluoride ions and sulfate ions are removed. Further, in contact with the cation exchange resin, cations such as nickel ions, iron ions and cobalt ions are removed. Thereafter, the primary cooling water reaches the pipe 51 at the branch 52 via the pipe 44.

一次冷却水中のリチウム濃度、セシウム濃度の調整を行なう場合には、バルブ34を開、バルブ36を閉とし、混床式脱塩塔33を流通した一次冷却水を陽イオン脱塩塔35に流通させる。さらに、PWR型発電所の運転停止からの再開時等、一次冷却水中のホウ素濃度を低下させる場合には、バルブ36を開として、ホウ素除去脱塩塔37を流通させ、一次冷却水中のホウ酸を除去する。このようにして一次冷却水の浄化が行なわれる。   When adjusting the lithium concentration and cesium concentration in the primary cooling water, the valve 34 is opened, the valve 36 is closed, and the primary cooling water that has circulated through the mixed bed demineralization tower 33 is circulated to the cation demineralization tower 35. Let Further, when reducing the boron concentration in the primary cooling water, such as when restarting from the shutdown of the PWR type power plant, the valve 36 is opened and the boron removal and desalting tower 37 is circulated so that boric acid in the primary cooling water is circulated. Remove. In this way, the primary cooling water is purified.

浄化された一次冷却水は、配管44、分岐52、配管51、冷却水フィルタ38、配管53を順に経由して、体積制御タンク39に貯留される。そして、体積制御タンク39に貯留された一次冷却水は、薬品タンク82から任意の薬品濃度となるように薬品の供給を受け、また、純水タンク80の純水、BRS系統60で回収されたホウ酸の供給を受け、配管57、再生熱交換器18を経由して、一次冷却水循環ライン10に至る(以上、CVCS系統30)。   The purified primary cooling water is stored in the volume control tank 39 through the pipe 44, the branch 52, the pipe 51, the cooling water filter 38, and the pipe 53 in this order. The primary cooling water stored in the volume control tank 39 is supplied with chemicals from the chemical tank 82 so as to have an arbitrary chemical concentration, and is recovered by pure water in the pure water tank 80 and the BRS system 60. The supply of boric acid is received and the primary cooling water circulation line 10 is reached via the pipe 57 and the regenerative heat exchanger 18 (the CVCS system 30).

また、核分裂生成物や腐食生成物等が除去された一次冷却水の一部は、配管53の分岐54から、配管70を経由して冷却水貯蔵タンク61に貯留される。冷却水貯蔵タンク61の一次冷却水は、配管71を経由して混床式脱塩塔62を流通する。この間、一次冷却水中の核分裂生成物や腐食生成物等が、さらに除去される。その後、配管72、冷却水フィルタ63、配管73を経由して、ホウ酸回収装置64に送られる。ホウ酸回収装置64で濃縮されたホウ酸濃縮液は、配管76を経由してホウ酸タンク67に貯留される。その後、配管77、ホウ酸フィルタ68、配管58を経由し、純水タンク80の純水で適宜希釈されて、配管57に至る。また、純水で希釈されたホウ酸濃縮液の一部は、配管58の分岐56から、配管55を経由して、体積制御タンク39の一次側に送られる。一方、ホウ酸回収装置64で分離された水は、配管74、冷却器65を経由して混床式脱塩塔66を流通し、さらに浄化される(以上、BRS系統60)。   A part of the primary cooling water from which fission products, corrosion products, and the like are removed is stored in the cooling water storage tank 61 from the branch 54 of the pipe 53 via the pipe 70. The primary cooling water of the cooling water storage tank 61 flows through the mixed bed type desalting tower 62 via the pipe 71. During this time, fission products, corrosion products, etc. in the primary cooling water are further removed. Thereafter, the solution is sent to the boric acid recovery device 64 via the pipe 72, the cooling water filter 63, and the pipe 73. The boric acid concentrate concentrated by the boric acid recovery device 64 is stored in the boric acid tank 67 via the pipe 76. Thereafter, the water is appropriately diluted with pure water in the pure water tank 80 via the pipe 77, the boric acid filter 68, and the pipe 58, and reaches the pipe 57. A part of the boric acid concentrate diluted with pure water is sent from the branch 56 of the pipe 58 to the primary side of the volume control tank 39 via the pipe 55. On the other hand, the water separated by the boric acid recovery device 64 flows through the mixed bed type desalting tower 66 through the pipe 74 and the cooler 65, and is further purified (hereinafter referred to as the BRS system 60).

原子炉12で使用済となった燃料は、原子炉12から原子炉ウェル101に取り出され、燃料ピット104の隔壁103を開き、原子炉ウェル101から使用済燃料ピット102に移される。使用済燃料は使用済燃料ピット102で、一次冷却水に浸漬される。使用済燃料ピット102の一次冷却水は、配管120により冷却器112に送られ、冷却された後、配管125、124を経由して使用済燃料ピット102に送られる。一次冷却水の一部は、配管120、分岐121、配管122を経由して混床式脱塩塔110に送られ、浄化される。そして、配管123、使用済燃料ピットフィルタ111、配管124を経由して、使用済燃料ピット102に送られる。こうして、浄化と冷却がなされた一次冷却水を使用済燃料ピット102に供給する(以上、SFPCS系統100)。   The spent fuel in the reactor 12 is taken out from the reactor 12 to the reactor well 101, the partition wall 103 of the fuel pit 104 is opened, and the fuel is transferred from the reactor well 101 to the spent fuel pit 102. The spent fuel is immersed in the primary cooling water in the spent fuel pit 102. The primary cooling water of the spent fuel pit 102 is sent to the cooler 112 through the pipe 120, cooled, and then sent to the spent fuel pit 102 via the pipes 125 and 124. A part of the primary cooling water is sent to the mixed bed desalting tower 110 via the pipe 120, the branch 121, and the pipe 122 and purified. Then, it is sent to the spent fuel pit 102 via the pipe 123, the spent fuel pit filter 111, and the pipe 124. Thus, the purified and cooled primary cooling water is supplied to the spent fuel pit 102 (the SFPCS system 100).

一次冷却系8の脱塩装置の、ホウ酸形陰イオン交換樹脂に接触させる一次冷却水のホウ素濃度は特に限定されず、例えば、500〜10000ppmの範囲で運用される。本発明は3000ppm以上のホウ素濃度で運用される場合がより有効であり、3500ppm以上のホウ素濃度で運用される場合が特に有効である。   The boron concentration of the primary cooling water that is brought into contact with the boric acid type anion exchange resin in the demineralizer of the primary cooling system 8 is not particularly limited, and is operated in the range of, for example, 500 to 10,000 ppm. The present invention is more effective when operated at a boron concentration of 3000 ppm or higher, and particularly effective when operated at a boron concentration of 3500 ppm or higher.

上述のように、一次冷却系8の脱塩装置に、多孔形陰イオン交換樹脂を用いることで、高い濃度のホウ酸溶液を接触させても、該陰イオン交換樹脂に割れや亀裂等の破損が生じない。このため、脱塩装置から陰イオン交換樹脂由来の粒子の漏洩を極めて少なくすることができ、各脱塩装置の後段に設置したフィルタ等を早期に閉塞させるようなことを防止することができる。従来使用されているゲル形の陰イオン交換樹脂では、高い濃度のホウ酸溶液を接触させると、イオン形の変化、および、浸透圧差により樹脂が急激に収縮するために、体積変化に樹脂が耐えられず、割れや亀裂が生じると考えられる。一方、多孔形の樹脂は急激な収縮時に、樹脂が有する孔により緩衝されるため、割れや亀裂の発生が防止できると考えられる。   As described above, by using a porous anion exchange resin for the desalination apparatus of the primary cooling system 8, even if a high-concentration boric acid solution is brought into contact with the anion exchange resin, the anion exchange resin is broken or broken. Does not occur. For this reason, the leakage of the anion exchange resin-derived particles from the desalting apparatus can be extremely reduced, and it is possible to prevent the filter or the like installed at the subsequent stage of each desalting apparatus from being blocked at an early stage. In the conventional gel-type anion exchange resin, when a high concentration boric acid solution is brought into contact, the resin withstands the volume change because the resin contracts rapidly due to the ionic shape change and osmotic pressure difference. It is thought that cracks and cracks occur. On the other hand, since the porous resin is buffered by the pores of the resin at the time of rapid contraction, it is considered that generation of cracks and cracks can be prevented.

上述の一次冷却系8では、混床式脱塩塔33、ホウ素除去脱塩塔37、混床式脱塩塔62、混床式脱塩塔110の全ての脱塩装置に、多孔形陰イオン交換樹脂が充填されている。しかし、本発明は、これに限られることはなく、各脱塩装置の一部に多孔形陰イオン交換樹脂が充填されていても良い。   In the primary cooling system 8 described above, all of the demineralizers of the mixed bed type desalting tower 33, the boron removing desalting tower 37, the mixed bed type desalting tower 62, and the mixed bed type desalting tower 110 have porous anions. The exchange resin is filled. However, the present invention is not limited to this, and a part of each desalting apparatus may be filled with a porous anion exchange resin.

以下、本発明について実施例を挙げて具体的に説明するが、実施例に限定されるものではない。
(実施例1)
多孔形陰イオン交換樹脂であるアンバージェット(商品名)9090(細孔容積:0.16mL/g−乾燥樹脂(Cl形)、平均細孔半径:17nm(Cl形)、ローム・アンド・ハース社製)の破損率を測定した(通水前の破損率)。次いで、15mLのアンバージェット(商品名)9090を内径21mmのガラス製カラムに充填し、陰イオン交換塔Aを作製した。得られた陰イオン交換塔Aに、ホウ素として4700ppmのホウ酸水溶液をSV(空間速度)=20で1時間通液した。通水後、多孔形陰イオン交換樹脂Aを取り出し、樹脂の破損率を測定した(通水後の破損率)。測定した結果を表1に示す。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, it is not limited to an Example.
(Example 1)
Amberjet (trade name) 9090 which is a porous anion exchange resin (pore volume: 0.16 mL / g-dry resin (Cl form), average pore radius: 17 nm (Cl form), Rohm and Haas Product) was measured (damage rate before water flow). Next, 15 mL of amber jet (trade name) 9090 was packed in a glass column having an inner diameter of 21 mm, and an anion exchange tower A was produced. 4700 ppm boric acid aqueous solution as boron was passed through the obtained anion exchange tower A at SV (space velocity) = 20 for 1 hour. After passing water, the porous anion exchange resin A was taken out and the damage rate of the resin was measured (damage rate after passing water). Table 1 shows the measurement results.

(比較例1)
陰イオン交換樹脂をOH形のゲル形陰イオン交換樹脂であるアンバーライト(商品名)PCA1(ローム・アンド・ハース社製)とした以外は、実施例1と同様にして、通水前の樹脂の破損率と通水後の樹脂の破損率とを測定した。測定した結果を表1に示す。
(Comparative Example 1)
Resin before passing water in the same manner as in Example 1 except that the anion exchange resin was Amberlite (trade name) PCA1 (manufactured by Rohm and Haas), which is an OH gel anion exchange resin. The breakage rate of the resin and the breakage rate of the resin after water flow were measured. Table 1 shows the measurement results.

(比較例2)
陰イオン交換樹脂をOH形のゲル形陰イオン交換樹脂であるダイヤイオン(商品名)SAN1(三菱化学株式会社製)とした以外は、実施例1と同様にして、通水前の樹脂の破損率と通水後の樹脂の破損率とを測定した。測定した結果を表1に示す。
(Comparative Example 2)
Damage to the resin before passing water in the same manner as in Example 1 except that Diaion (trade name) SAN1 (manufactured by Mitsubishi Chemical Corporation), which is an OH gel anion exchange resin, was used as the anion exchange resin. The rate and the failure rate of the resin after water flow were measured. Table 1 shows the measurement results.

(破損率の測定)
任意の樹脂300個について顕微鏡観察(25倍)を行い、割れ、ヒビ等の破損が生じている破損樹脂の個数を計測した。破損率は、下記(2)式で求められる百分率で表した。
破損率(%)=破損樹脂の個数÷300個×100% ・・・(2)
(Measurement of damage rate)
300 arbitrary resins were observed with a microscope (25 times), and the number of broken resins in which breakage such as cracks and cracks occurred was measured. The breakage rate was expressed as a percentage determined by the following equation (2).
Damage rate (%) = number of damaged resins / 300 × 100% (2)

Figure 2009300162
Figure 2009300162

表1に示すとおり、多孔形陰イオン交換樹脂を用いた実施例1では、通水前の破損率および通水後の破損率が1%未満であった。これに対し、OH形のゲル形陰イオン交換樹脂を用いた比較例1、および比較例2では、通水前の破損率が1%未満であったのに対し、通水後の破損率が20%を超えていた。このことから、多孔形陰イオン交換樹脂は、ホウ酸の接触による破損が発生しにくいことが判った。   As shown in Table 1, in Example 1 using the porous anion exchange resin, the breakage rate before passing water and the breakage rate after passing water were less than 1%. On the other hand, in Comparative Example 1 and Comparative Example 2 using the OH-type gel-type anion exchange resin, the breakage rate before passing water was less than 1%, whereas the breakage rate after passing water was lower. It was over 20%. From this, it was found that the porous anion exchange resin is hardly damaged by contact with boric acid.

本発明の実施形態の一例であるPWR型発電所の一次冷却系を示す模式図である。It is a schematic diagram which shows the primary cooling system of the PWR type | mold power plant which is an example of embodiment of this invention.

符号の説明Explanation of symbols

8 一次冷却系
30 化学体積制御系統
33、62、110 混床式脱塩塔
37 ホウ素除去脱塩塔
60 ホウ酸回収系統
100 使用済燃料ピット水浄化冷却系統
8 Primary cooling system 30 Chemical volume control system 33, 62, 110 Mixed bed type desalting tower 37 Boron removal desalting tower 60 Boric acid recovery system 100 Spent fuel pit water purification cooling system

Claims (3)

加圧水型原子力発電所の一次冷却水を浄化する脱塩装置であって、
細孔容積が0.05〜0.50mL/g−乾燥樹脂(Cl形)、かつ、平均細孔半径が2〜50nm(Cl形)の、多孔形陰イオン交換樹脂が充填された浄化手段を有する、加圧水型原子力発電所の一次冷却系の脱塩装置。
A desalinator for purifying primary cooling water of a pressurized water nuclear power plant,
Purifying means filled with a porous anion exchange resin having a pore volume of 0.05 to 0.50 mL / g-dry resin (Cl type) and an average pore radius of 2 to 50 nm (Cl type) A desalination system for a primary cooling system of a pressurized water nuclear power plant.
化学体積制御系統、ホウ酸回収系統、使用済燃料ピット水浄化冷却系統の少なくとも一箇所に設置されていることを特徴とする、請求項1に記載の一次冷却系の脱塩装置。   The desalination apparatus for a primary cooling system according to claim 1, wherein the desalination apparatus is disposed in at least one of a chemical volume control system, a boric acid recovery system, and a spent fuel pit water purification cooling system. 細孔容積が0.05〜0.50mL/g−乾燥樹脂(Cl形)、かつ、平均細孔半径が2〜50nm(Cl形)の多孔形陰イオン交換樹脂に、加圧水型原子力発電所の一次冷却水を接触させる、加圧水型原子力発電所の一次冷却水の浄化方法。   A porous anion exchange resin having a pore volume of 0.05 to 0.50 mL / g-dry resin (Cl type) and an average pore radius of 2 to 50 nm (Cl type) is added to a pressurized water nuclear power plant. A method for purifying primary cooling water of a pressurized water nuclear power plant, in which primary cooling water is contacted.
JP2008152947A 2008-06-11 2008-06-11 Demineralizer for primary cooling system of pressurized water nuclear power plant and purification method of primary cooling water Active JP4938730B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008152947A JP4938730B2 (en) 2008-06-11 2008-06-11 Demineralizer for primary cooling system of pressurized water nuclear power plant and purification method of primary cooling water
US12/483,034 US9115010B2 (en) 2008-06-11 2009-06-11 Demineralizer of primary coolant system in pressurized-water reactor power plant and method for purifying primary cooling water in pressurized-water reactor power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008152947A JP4938730B2 (en) 2008-06-11 2008-06-11 Demineralizer for primary cooling system of pressurized water nuclear power plant and purification method of primary cooling water

Publications (2)

Publication Number Publication Date
JP2009300162A true JP2009300162A (en) 2009-12-24
JP4938730B2 JP4938730B2 (en) 2012-05-23

Family

ID=41547230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008152947A Active JP4938730B2 (en) 2008-06-11 2008-06-11 Demineralizer for primary cooling system of pressurized water nuclear power plant and purification method of primary cooling water

Country Status (1)

Country Link
JP (1) JP4938730B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109166636A (en) * 2018-08-06 2019-01-08 广东核电合营有限公司 A kind of system and method that compacted clay liners primary Ioops uninterruptedly purify
CN113140343A (en) * 2021-03-29 2021-07-20 中国核电工程有限公司 Comprehensive boric acid management system and method for nuclear power plant
CN115193490A (en) * 2022-06-30 2022-10-18 江苏核电有限公司 VVER unit primary circuit purification system and use method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003597A (en) * 2003-06-13 2005-01-06 Nippon Rensui Co Ltd Method for evaluating performance of strongly acidic positive ion exchanging resin in mixed bed condensate polisher of primary cooling water system at pressurized-water nuclear power generating plant
JP2005003598A (en) * 2003-06-13 2005-01-06 Nippon Rensui Co Ltd Desalination tower of mix bed type in pressurized water nuclear power plant, and operation method thereof
JP2007216094A (en) * 2006-02-14 2007-08-30 Japan Organo Co Ltd Anion exchange resin and apparatus using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003597A (en) * 2003-06-13 2005-01-06 Nippon Rensui Co Ltd Method for evaluating performance of strongly acidic positive ion exchanging resin in mixed bed condensate polisher of primary cooling water system at pressurized-water nuclear power generating plant
JP2005003598A (en) * 2003-06-13 2005-01-06 Nippon Rensui Co Ltd Desalination tower of mix bed type in pressurized water nuclear power plant, and operation method thereof
JP2007216094A (en) * 2006-02-14 2007-08-30 Japan Organo Co Ltd Anion exchange resin and apparatus using it

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109166636A (en) * 2018-08-06 2019-01-08 广东核电合营有限公司 A kind of system and method that compacted clay liners primary Ioops uninterruptedly purify
CN109166636B (en) * 2018-08-06 2023-08-25 广东核电合营有限公司 System and method for uninterrupted purification of primary circuit of pressurized water reactor nuclear motor unit
CN113140343A (en) * 2021-03-29 2021-07-20 中国核电工程有限公司 Comprehensive boric acid management system and method for nuclear power plant
CN113140343B (en) * 2021-03-29 2022-03-22 中国核电工程有限公司 Comprehensive boric acid management system and method for nuclear power plant
CN115193490A (en) * 2022-06-30 2022-10-18 江苏核电有限公司 VVER unit primary circuit purification system and use method
CN115193490B (en) * 2022-06-30 2023-08-15 江苏核电有限公司 One-loop purification system of VVER unit and use method

Also Published As

Publication number Publication date
JP4938730B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
US5980716A (en) Water treatment apparatus for a fuel cell system
JP2009281875A (en) Method and device for condensate demineralization
JP4938730B2 (en) Demineralizer for primary cooling system of pressurized water nuclear power plant and purification method of primary cooling water
JP2001215294A (en) Condensate demineralizer
US9115010B2 (en) Demineralizer of primary coolant system in pressurized-water reactor power plant and method for purifying primary cooling water in pressurized-water reactor power plant
JP2009300163A (en) Desalter for primary cooling system in nuclear power plant with pressurized water reactor, method for preparing anion exchange resin of boric acid type and purification method for primary cooling water
JP2005066544A (en) Method for recovering monoethanolamine
CN112321035A (en) Method for purifying circulating water of SCAL type indirect air cooling unit
JP2009066525A (en) Filling method for ion exchange resin, and condensate demineralizer
CN216472550U (en) Device for removing silicon element in reactor coolant
JP4931107B2 (en) Electrodeionization device and secondary line water treatment device for pressurized water nuclear power plant using the same
JP5039569B2 (en) Makeup water supply facility for pressurized water nuclear power plant
JP2009162514A (en) System for purifying system water in secondary system of nuclear power plant with pressurized water reactor
JP6578134B2 (en) Water treatment equipment and nuclear equipment
CN113636674A (en) Device for removing silicon element in reactor coolant and treatment method thereof
JP2015081891A (en) Method and apparatus for purifying nuclear-power-generation used fuel pool water, and method and apparatus for treating used fuel pool water
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
JP4367815B2 (en) Operation method of condensate demineralizer
JP2009279519A (en) Condensate demineralization method and condensate demineralizer
JP6137972B2 (en) Method and apparatus for inhibiting corrosion of nuclear reactor structure
JP7261711B2 (en) Ultrapure water production system and ultrapure water production method
JPH11216372A (en) Treatment method for preventing oxidative deterioration of cation exchange resin by oxidizing agent
JP2003315487A (en) Water treating method for removing iron component from water supply for steam generator, water supply for reactor, water supply for boiler, or heater drain water in electric power plant
JPH08313692A (en) Recovery method and device for ion exchange resin in demineralizing device
KR20230126259A (en) Ultrapure Water Production Facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110912

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4938730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250