JP2007216094A - Anion exchange resin and apparatus using it - Google Patents

Anion exchange resin and apparatus using it Download PDF

Info

Publication number
JP2007216094A
JP2007216094A JP2006036617A JP2006036617A JP2007216094A JP 2007216094 A JP2007216094 A JP 2007216094A JP 2006036617 A JP2006036617 A JP 2006036617A JP 2006036617 A JP2006036617 A JP 2006036617A JP 2007216094 A JP2007216094 A JP 2007216094A
Authority
JP
Japan
Prior art keywords
exchange resin
anion exchange
pss
neutral salt
condensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006036617A
Other languages
Japanese (ja)
Other versions
JP4883676B2 (en
Inventor
Chika Kenmochi
千佳 建持
Yusuke Nagata
祐輔 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2006036617A priority Critical patent/JP4883676B2/en
Publication of JP2007216094A publication Critical patent/JP2007216094A/en
Application granted granted Critical
Publication of JP4883676B2 publication Critical patent/JP4883676B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anion exchange resin excellent in an eluate adsorption removal performance from a cation exchange resin suitably used for a condensate demineralizer in a power plant requiring for a water quality of higher purity. <P>SOLUTION: The anion exchange resin is provided, in which a neutral salt decomposition capacity is 1.2 eq/L (per anion exchange resin) or more and a pore volume is 0.15 mL/g or more or/and an average porous diameter is 5 nm or more, and the device (especially the condensate deminiralizer) using it is provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、アニオン交換樹脂およびそれを用いた装置に関し、とくに、発電所の復水脱塩装置等に用いて好適なアニオン交換樹脂、およびそれをカチオン交換樹脂との混床形態等の最適な形態で充填した、復水脱塩装置を代表とする各種装置に関する。   The present invention relates to an anion exchange resin and an apparatus using the same, and in particular, an anion exchange resin suitable for use in a condensate demineralizer for a power plant, and an optimum form such as a mixed bed form with a cation exchange resin. The present invention relates to various devices represented by a condensate demineralizer filled in a form.

発電所における復水脱塩装置には、通常、カチオン交換樹脂とアニオン交換樹脂の混床形態でイオン交換樹脂が使用されている。例えば、PWR発電所(加圧水型原子力発電所)では、従来から膨潤収縮耐性の高い(多孔性カチオン交換樹脂/多孔性アニオン交換樹脂)の混床形態、BWR発電所(沸騰水型原子力発電所)では、交換容量の大きい(ゲル形カチオン交換樹脂/ゲル形アニオン交換樹脂)の混床形態が使用されていた。近年では、カチオン交換樹脂からの溶出物低減の観点から、(高架橋度ゲル形カチオン交換樹脂/多孔性アニオン交換樹脂)の混床形態も使用されている。このように、カチオン樹脂からの溶出物低減化、さらにはプラント構成材の改善改良等により水質の高純度化が図られている。しかし、発電所等では更なる復水水質の高純度化が求められており、復水脱塩装置のイオン交換樹脂にも一層の溶出物低減、とくにカチオン樹脂からの溶出物に起因する硫酸イオン濃度の低減が求められている。   In a condensate desalination apparatus in a power plant, an ion exchange resin is usually used in a mixed bed form of a cation exchange resin and an anion exchange resin. For example, in a PWR power plant (pressurized water nuclear power plant), a mixed bed configuration (porous cation exchange resin / porous anion exchange resin) having a high resistance to swelling and shrinkage, BWR power plant (boiling water nuclear power plant) has been used. However, a mixed bed configuration having a large exchange capacity (gel cation exchange resin / gel anion exchange resin) was used. In recent years, from the viewpoint of reducing the effluent from the cation exchange resin, a mixed bed form of (highly crosslinked gel type cation exchange resin / porous anion exchange resin) is also used. As described above, the purification of water quality is achieved by reducing the amount of eluate from the cationic resin and further improving and improving the plant components. However, further refinement of the condensate quality is required at power plants, etc., and the ion exchange resin of the condensate demineralizer further reduces the effluent, especially sulfate ions caused by the effluent from the cation resin. There is a need to reduce the concentration.

カチオン樹脂からの溶出物低減のために、アニオン交換樹脂の層を復水脱塩塔の最下流層として配置し、カチオン樹脂からの溶出物を吸着するようにした方法も知られているが(例えば、特許文献1)、益々増大する復水水質の高純度化要求に応えるには、この方法だけでは不十分になるおそれがあり、イオン交換樹脂自身のさらなる改善が求められつつある。
特開2000−167551号公報
In order to reduce the effluent from the cation resin, a method is also known in which an anion exchange resin layer is disposed as the most downstream layer of the condensate demineralization tower to adsorb the effluent from the cation resin ( For example, Patent Document 1), there is a possibility that this method alone may be insufficient to meet the increasing demand for higher quality condensate water, and further improvement of the ion exchange resin itself is being demanded.
JP 2000-167551 A

そこで本発明の課題は、このような実情に鑑み、より高純度の水質が要求される発電所における復水脱塩装置用等に用いて好適な、カチオン交換樹脂からの溶出物吸着除去性能に優れたアニオン交換樹脂を提供するとともに、これとカチオン樹脂を混床で用いることにより、更に復水中の硫酸イオンを低減し、プラントの安定性を高めることにある。   Therefore, in view of such circumstances, the problem of the present invention is the eluent adsorption removal performance from the cation exchange resin, which is suitable for use in condensate demineralizers in power plants that require higher purity water quality. In addition to providing an excellent anion exchange resin, the use of this and a cation resin in a mixed bed further reduces sulfate ions in the condensate and enhances plant stability.

上記課題を解決するために、本発明に係るイオン交換装置は、中性塩分解容量が1.2eq/L(アニオン交換樹脂あたり)以上、かつ、細孔容積が0.15mL/g以上であることを特徴とするものからなる(第1のアニオン交換樹脂)。   In order to solve the above problems, the ion exchange apparatus according to the present invention has a neutral salt decomposition capacity of 1.2 eq / L (per anion exchange resin) or more and a pore volume of 0.15 mL / g or more. It consists of what is characterized (first anion exchange resin).

また、本発明に係るイオン交換装置は、中性塩分解容量が1.2eq/L(アニオン交換樹脂あたり)以上、かつ、平均細孔径が5nm以上であることを特徴とするものからなる(第2のアニオン交換樹脂)。   The ion exchange apparatus according to the present invention is characterized in that the neutral salt decomposition capacity is 1.2 eq / L (per anion exchange resin) or more and the average pore diameter is 5 nm or more (second) Anion exchange resin).

さらに、本発明に係るアニオン交換樹脂は、中性塩分解容量が1.2eq/L(アニオン交換樹脂あたり)以上、細孔容積が0.15mL/g以上、かつ、平均細孔径が5nm以上であることを特徴とするものからなる(第3のアニオン交換樹脂)。   Furthermore, the anion exchange resin according to the present invention has a neutral salt decomposition capacity of 1.2 eq / L (per anion exchange resin) or more, a pore volume of 0.15 mL / g or more, and an average pore diameter of 5 nm or more. (Third anion exchange resin).

本発明は、このようなアニオン交換樹脂を充填した装置も提供する。とくに、上記のようなアニオン交換樹脂がカチオン交換樹脂との混床形態で充填されると、本発明による効果を高めることができる。中でも、ゲル形カチオン交換樹脂との組み合わせが好適である。   The present invention also provides an apparatus filled with such an anion exchange resin. In particular, when the anion exchange resin as described above is filled in a mixed bed form with the cation exchange resin, the effect of the present invention can be enhanced. Among these, a combination with a gel-type cation exchange resin is preferable.

また、充填層が少なくとも2層ある場合には、最下流層が上記アニオン交換樹脂からなる層に形成されていることが好ましい。   Moreover, when there are at least two packed layers, it is preferable that the most downstream layer is formed as a layer made of the anion exchange resin.

このような本発明に係る装置は、各種分野における脱塩装置として好適なものであり、とくに、発電所における復水脱塩装置として最適なものである。   Such an apparatus according to the present invention is suitable as a desalination apparatus in various fields, and is particularly suitable as a condensate desalination apparatus in a power plant.

本発明に係るアニオン交換樹脂を使用することにより、とくに、カチオン交換樹脂からわずかに溶出する有機物(主として、ポリスチレンスルホン酸であることが知られている。以下、ポリスチレンスルホン酸をPSSと略記することもある。)を効率よく、吸着除去することができ、発電所における復水脱塩装置として用いられる場合に、復水中の硫酸イオン濃度を抑えることができる。   By using the anion exchange resin according to the present invention, in particular, it is known that the organic substance slightly eluted from the cation exchange resin (mainly polystyrene sulfonic acid. Hereinafter, polystyrene sulfonic acid is abbreviated as PSS. Can be efficiently adsorbed and removed, and when used as a condensate demineralizer in a power plant, the concentration of sulfate ions in the condensate can be suppressed.

中性塩分解容量=交換基の数は、比較的低分子量のPSSをイオン交換に類似したメカニズムで吸着していると考えられる。従って、本発明に係るアニオン交換樹脂においては、まず、中性塩分解容量を大きくすることで、つまり中性塩分解容量を1.2eq/L(アニオン交換樹脂あたり)以上とすることで、低分子PSSの除去率を高めることができる。しかし、分子量が大きなPSSでは、樹脂の細孔容積、細孔径が捕捉量を決める因子であると考えられる。従って、細孔容積、細孔径を大きくすることで、高分子PSSの除去率を高めることができる。ここで、中性塩分解容量と細孔容積、細孔径の関係を考えると、一般的には、孔を大きくするほど中性塩分解容量が小さくなることは明白であるから、現実的には、両方のバランスが重要となる。   Neutral salt decomposition capacity = the number of exchange groups is considered to adsorb relatively low molecular weight PSS by a mechanism similar to ion exchange. Therefore, in the anion exchange resin according to the present invention, first, by increasing the neutral salt decomposition capacity, that is, by setting the neutral salt decomposition capacity to 1.2 eq / L or more (per anion exchange resin), the low molecular weight The removal rate of PSS can be increased. However, in PSS having a large molecular weight, it is considered that the pore volume and pore diameter of the resin are factors determining the trapping amount. Therefore, the removal rate of the polymer PSS can be increased by increasing the pore volume and the pore diameter. Here, considering the relationship between the neutral salt decomposition capacity, the pore volume, and the pore diameter, in general, it is clear that the neutral salt decomposition capacity decreases as the pore size increases. , The balance of both becomes important.

従来のアニオン交換樹脂は、大別すると、ゲル形、多孔形に分けられる。本発明に係るアニオン交換樹脂は、例えば、ロームアンドハース社製の”アンバーライト”IRA900よりは小さい細孔径、細孔容積に抑え、中性塩分解容量を増やし、両者のバランスをはかったものである。多孔形イオン交換樹脂でも、合成方法はメーカーによって異なり、例えば三菱化学社製の”ダイヤイオン”PA312では細孔容積、細孔径とも、上記”アンバーライト”のMR形(巨大網目構造形)よりも小さく、PSSの除去率は小さい。   Conventional anion exchange resins are roughly classified into a gel form and a porous form. The anion exchange resin according to the present invention has a smaller pore diameter and pore volume than the “Amberlite” IRA900 manufactured by Rohm and Haas, for example, and increases the neutral salt decomposition capacity, balancing the two. is there. Even with porous ion exchange resins, the synthesis method differs depending on the manufacturer. For example, “Diaion” PA312 manufactured by Mitsubishi Chemical Co., Ltd. has a pore volume and pore diameter that are larger than the above-mentioned “Amberlite” MR type (giant network structure type). Small, PSS removal rate is small.

本発明に係る多孔性アニオン交換樹脂は、カチオン交換樹脂からの溶出物の分子量分布を調べ、実際に除去すべき分子量に合わせた細孔となるよう、試作を繰り返し、分子量4000以下のPSS除去性能に優れ、かつ、PSS吸着後の反応性低下を起こさない中性塩分解容量、細孔容積、細孔径のアニオン樹脂として完成させたものである。   For the porous anion exchange resin according to the present invention, the molecular weight distribution of the eluate from the cation exchange resin is examined, and trial production is repeated so that the pores are adjusted to the molecular weight to be actually removed. And an anionic resin having a neutral salt decomposition capacity, pore volume, and pore diameter that does not cause a decrease in reactivity after PSS adsorption.

本発明に係るアニオン交換樹脂によれば、中性塩分解容量と、細孔容積または/および平均細孔径を最適にバランスさせたので、とくにカチオン交換樹脂との混床形態で使用される場合に、カチオン交換樹脂からの溶出物に対し優れた吸着除去性能を発揮することができる。従って、本発明に係るアニオン交換樹脂を、発電所の復水脱塩装置に使用すれば、ポリスチレンスルホン酸の処理水中への流出を極めて低いレベルに抑えることができる。これによって、通常運転時に、より低濃度で、安定した復水脱塩の運用を行うことが可能となる。   According to the anion exchange resin according to the present invention, the neutral salt decomposition capacity and the pore volume or / and the average pore diameter are optimally balanced, particularly when used in a mixed bed form with the cation exchange resin. In addition, it is possible to exhibit excellent adsorption removal performance for the effluent from the cation exchange resin. Therefore, when the anion exchange resin according to the present invention is used in a condensate demineralizer of a power plant, the outflow of polystyrene sulfonic acid into the treated water can be suppressed to an extremely low level. As a result, it is possible to carry out a stable demineralization operation at a lower concentration during normal operation.

以下に、本発明の望ましい実施の形態を、とくに本発明に係るアニオン交換樹脂の性能評価試験に基づいて説明する。性能評価試験では、発電所の復水脱塩装置に用いられるアニオン交換樹脂にポリスチレンスルホン酸(PSS)を通薬し、アニオン交換樹脂のPSS除去率を比較した。なお、試験に用いた測定方法は以下の通りである。   Below, desirable embodiment of this invention is described based on the performance evaluation test of the anion exchange resin concerning this invention especially. In the performance evaluation test, polystyrene sulfonic acid (PSS) was passed through the anion exchange resin used in the condensate demineralizer of the power plant, and the PSS removal rate of the anion exchange resin was compared. In addition, the measuring method used for the test is as follows.

(1)細孔容積、細孔径の測定方法
水銀圧入法を用いた。
・測定分析装置:(株)島津製作所製”オートポア”9520形
・分析方法:60℃・5時間の条件で減圧乾燥した後、約5gの試料を標準セルに取り、初期圧20kPaで測定した。前処理条件としては、メタノール、トルエン、イソオクタンの順に、置換、脱水した(30mL(アニオン交換樹脂あたり)に対し、500mLを30分以上かけて通薬した)。そして、アスピレーターで抜液後、真空乾燥機(60℃、8時間)で乾燥した。
(1) Measuring method of pore volume and pore diameter The mercury intrusion method was used.
Measurement analyzer: “Autopore” model 9520 manufactured by Shimadzu Corporation. Analysis method: After drying under reduced pressure at 60 ° C. for 5 hours, about 5 g of sample was taken in a standard cell and measured at an initial pressure of 20 kPa. As pretreatment conditions, methanol, toluene, and isooctane were substituted and dehydrated in this order (30 mL (per anion exchange resin), and 500 mL was passed over 30 minutes). And after draining with an aspirator, it dried with the vacuum dryer (60 degreeC, 8 hours).

(2)中性塩分解容量の測定方法
アニオン交換樹脂を塩酸で完全にClイオン形に変換した後、エタノールで過剰の塩酸を洗浄し、次いで硫酸ナトリウム(又は、硝酸ナトリウム)を流した時に流出したClイオンの量を中性塩分解容量とした。
(2) Method for measuring neutral salt decomposition capacity After the anion exchange resin is completely converted to Cl ion form with hydrochloric acid, excess hydrochloric acid is washed with ethanol, and then sodium sulfate (or sodium nitrate) flows out. The amount of Cl ions formed was defined as the neutral salt decomposition capacity.

(3)PSS除去率の測定条件
・MW(分子量)10,000-30,000 :東ソー(株)製、”ポリナス”PS-1
・MW 4,800:AMERICAN POLYMER STANDERS CORP.製、MW4,800
・MW 1,400:AMERICAN POLYMER STANDERS CORP.製、MW1,400
(1) 樹脂量:アニオン交換樹脂100ml
(2) 樹脂層高:200mm
(3) 流速:LV100m/h(50L/H)
(4) 温度:42℃
ただし、PSSを直接定量できないので、図1に示すように、試料水1にPSS(2)を注入した後、紫外線3(UV)を照射し、生成するSO4をイオンクロマトグラフ4にて定量した。
(3) PSS removal rate measurement conditions-MW (molecular weight) 10,000-30,000: "Polynas" PS-1 manufactured by Tosoh Corporation
・ MW 4,800: Made by AMERICAN POLYMER STANDERS CORP., MW 4,800
・ MW 1,400: Made by AMERICAN POLYMER STANDERS CORP., MW1,400
(1) Resin amount: Anion exchange resin 100ml
(2) Resin layer height: 200mm
(3) Flow velocity: LV100m / h (50L / H)
(4) Temperature: 42 ℃
However, since PSS cannot be directly quantified, as shown in FIG. 1, after injecting PSS (2) into sample water 1, UV 3 (UV) is irradiated and SO 4 produced is quantified by ion chromatograph 4. did.

(4)PSS分子量の測定方法
HPLC(高速液体クロマトグラフィー)でPSSの分子分布を分析した。
(1)GFCカラム:TGKgel G2000SWXL, TGKgel G3000SWXL(7.8mmID×300mm)
(2)溶離液: 0.1M KH2PO4 /0.1M Na2HPO4 = 1/1, CH3CN(20%)
(3)流速: 1.0mL/min
(4)検出器: UV detector, 225nm
(5)注入量: 1.0mL
(6)標準物質:ポリスチレンスルホン酸(PSS)
(4) PSS molecular weight measurement method
The molecular distribution of PSS was analyzed by HPLC (high performance liquid chromatography).
(1) GFC columns: TGKgel G2000SWXL, TGKgel G3000SWXL (7.8mmID × 300mm)
(2) Eluent: 0.1M KH 2 PO 4 /0.1M Na 2 HPO 4 = 1/1, CH 3 CN (20%)
(3) Flow rate: 1.0mL / min
(4) Detector: UV detector, 225nm
(5) Injection volume: 1.0mL
(6) Standard material: Polystyrene sulfonic acid (PSS)

実施例1〜3、比較例1〜4
(性能評価試験1)
分子量既知のPSS標準物質(H)を、表1に示す実施例1〜3、比較例1〜4の各アニオン交換樹脂に通薬し、PSS除去率を測定した。結果を表1に示す。なお、表1におけるMTCは、物質移動係数を示しており、該MTCは下記の方法で測定した。
Examples 1-3, Comparative Examples 1-4
(Performance evaluation test 1)
A PSS standard substance (H) having a known molecular weight was passed through each anion exchange resin of Examples 1 to 3 and Comparative Examples 1 to 4 shown in Table 1, and the PSS removal rate was measured. The results are shown in Table 1. MTC in Table 1 represents a mass transfer coefficient, and the MTC was measured by the following method.

評価するアニオン交換樹脂と新品のカチオン交換樹脂(ロームアンドハース社製”アンバーライト”200CP)のH形とをアニオン交換樹脂/カチオン交換樹脂容量比=1/2で混合し、カラムに充填する。次いで、カラムの上部よりアンモニウムイオン(アンモニア水)と硫酸ナトリウムを所定の濃度の水溶液の形で通水する。通水中にカラム入口水と出口水を採取して、硫酸イオン濃度を測定し、更に、通水終了後に空隙率、陰イオン交換樹脂粒径を測定する。物質移動係数「MTC」を下記の式(数1)に従って算出する。この値が高いほど、陰イオン交換樹脂の反応速度が高く、その性能が健全であると言える。通常、新品の陰イオン交換樹脂のMTC値は、2.0(×10-4m/sec)以上となる。 An anion exchange resin to be evaluated and a new cation exchange resin (“Amberlite” 200CP, manufactured by Rohm and Haas Co.) in the H form are mixed at an anion exchange resin / cation exchange resin volume ratio = 1/2 and packed into a column. Next, ammonium ions (ammonia water) and sodium sulfate are passed from the top of the column in the form of an aqueous solution having a predetermined concentration. Column inlet water and outlet water are collected in the water flow, and the sulfate ion concentration is measured. After the water flow is completed, the porosity and the anion exchange resin particle size are measured. The mass transfer coefficient “MTC” is calculated according to the following equation (Equation 1). It can be said that the higher the value, the higher the reaction rate of the anion exchange resin and the sounder the performance. Usually, the MTC value of a new anion exchange resin is 2.0 (× 10 −4 m / sec) or more.

Figure 2007216094
Figure 2007216094

但し、
K:物質移動係数「MTC」(m/sec)、
ε:空隙率、
R:イオン交換樹脂中のアニオン交換樹脂比率(体積分率)、
F:通水流量(m3/sec)、
A:イオン交換樹脂層断面積(m2)、
L:イオン交換樹脂層高(m)、
d:イオン交換樹脂粒径(m)、
0:入口水の硫酸イオン濃度、
C:出口水の硫酸イオン濃度、
である。
However,
K: Mass transfer coefficient “MTC” (m / sec),
ε: porosity,
R: ratio of anion exchange resin in ion exchange resin (volume fraction),
F: Water flow rate (m 3 / sec),
A: sectional area of ion exchange resin layer (m 2 ),
L: ion exchange resin layer height (m),
d: ion exchange resin particle size (m),
C 0 : sulfate ion concentration of the inlet water,
C: sulfate water concentration of outlet water,
It is.

Figure 2007216094
Figure 2007216094

表1から分かるように、カチオン交換樹脂からの溶出物相当のPSSをよく吸着するには、中性塩分解容量1.2eq/L(アニオン交換樹脂あたり)以上、かつ、細孔容積0.15mL/g以上または/および平均細孔径5nm以上のアニオン交換樹脂を用いることが必要である。なお、比較例3のゲル形アニオン交換樹脂IRA400T は、PSSは捕捉するが、捕捉後、反応速度が低下し、実際には使用できない。   As can be seen from Table 1, neutral salt decomposition capacity of 1.2 eq / L (per anion exchange resin) or more and a pore volume of 0.15 mL / g are required to adsorb PSS corresponding to the eluate from the cation exchange resin well. It is necessary to use an anion exchange resin having an average pore diameter of 5 nm or more. The gel-type anion exchange resin IRA400T of Comparative Example 3 captures PSS, but after the capture, the reaction rate decreases and cannot be used in practice.

上記のような本発明に係るアニオン交換樹脂の使用により、従来のアニオン交換樹脂では除去率の低かった低分子量のPSSもよく吸着除去できるため、通常時のカチオン交換樹脂溶出物をよく吸着できる。このため、通常時の復水脱塩装置出口のPSSを低減でき、PSSが分解して生じる硫酸イオン濃度を低減することができる。かつ、従来のゲル形アニオン交換樹脂では、PSS捕捉量が増えると反応性が低下したが、本発明に係るアニオン交換樹脂では、PSS捕捉後もMTC低下は見られず、良好な水質を維持することができる。   By using the anion exchange resin according to the present invention as described above, low molecular weight PSS, which has a low removal rate with the conventional anion exchange resin, can be adsorbed and removed well, so that the cation exchange resin eluate at normal times can be adsorbed well. For this reason, the PSS at the outlet of the condensate demineralizer at the normal time can be reduced, and the sulfate ion concentration generated by the decomposition of the PSS can be reduced. In addition, in the conventional gel-type anion exchange resin, the reactivity decreases as the amount of PSS trapped increases, but in the anion exchange resin according to the present invention, no MTC decrease is observed even after the PSS trapping, and good water quality is maintained. be able to.

(性能評価試験2)
表1に示した実施例1、2、比較例1のアニオン交換樹脂に、実際に、カチオン交換樹脂”アンバーライト”AJ1006からの溶出物を通水し、出入口の有機硫酸イオン濃度を測定した。結果を図2に示す。図2から分かるように、実施例1、2のアニオン交換樹脂を使用すると、比較例1のアニオン交換樹脂に比べ、実際の復水脱塩装置においてカチオン交換樹脂からの溶出物を、より効率よく吸着除去できることが確認された。
(Performance evaluation test 2)
The eluate from the cation exchange resin “Amberlite” AJ1006 was actually passed through the anion exchange resins of Examples 1 and 2 and Comparative Example 1 shown in Table 1, and the organic sulfate ion concentration at the entrance and exit was measured. The results are shown in FIG. As can be seen from FIG. 2, when the anion exchange resins of Examples 1 and 2 were used, the effluent from the cation exchange resin was more efficiently removed in the actual condensate demineralizer than the anion exchange resin of Comparative Example 1. It was confirmed that adsorption removal was possible.

本発明に係るアニオン交換樹脂は、アニオン交換樹脂の使用が要求されるあらゆる装置に適用可能であり、とくにカチオン交換樹脂との混床形態での使用が望まれる装置、中でも発電所の復水脱塩装置に用いて最適なものである。   The anion exchange resin according to the present invention can be applied to any apparatus that requires the use of an anion exchange resin. In particular, an apparatus that is desired to be used in a mixed bed form with a cation exchange resin, particularly a condensate dewatering of a power plant. It is optimal for use in salt equipment.

PSS除去率測定装置の概略構成図である。It is a schematic block diagram of a PSS removal rate measuring apparatus. カチオン交換樹脂からの溶出物通水試験結果を示す、通水時間と有機硫酸イオン濃度との関係図である。It is a relationship figure of water flow time and organic sulfate ion concentration which shows the eluate water flow test result from a cation exchange resin.

符号の説明Explanation of symbols

1 試料水
2 ポリスチレンスルホン酸(PSS)
3 紫外線分解装置(UV)
4 イオンクロマトグラフ
1 Sample water 2 Polystyrene sulfonic acid (PSS)
3 Ultraviolet decomposition equipment (UV)
4 Ion chromatograph

Claims (9)

中性塩分解容量が1.2eq/L(アニオン交換樹脂あたり)以上、かつ、細孔容積が0.15mL/g以上であることを特徴とするアニオン交換樹脂。   An anion exchange resin having a neutral salt decomposition capacity of 1.2 eq / L (per anion exchange resin) or more and a pore volume of 0.15 mL / g or more. 中性塩分解容量が1.2eq/L(アニオン交換樹脂あたり)以上、かつ、平均細孔径が5nm以上であることを特徴とするアニオン交換樹脂。   An anion exchange resin having a neutral salt decomposition capacity of 1.2 eq / L or more (per anion exchange resin) and an average pore diameter of 5 nm or more. 中性塩分解容量が1.2eq/L(アニオン交換樹脂あたり)以上、細孔容積が0.15mL/g以上、かつ、平均細孔径が5nm以上であることを特徴とするアニオン交換樹脂。   An anion exchange resin having a neutral salt decomposition capacity of 1.2 eq / L (per anion exchange resin) or more, a pore volume of 0.15 mL / g or more, and an average pore diameter of 5 nm or more. 請求項1〜3のいずれかに記載のアニオン交換樹脂を充填した装置。   The apparatus filled with the anion exchange resin in any one of Claims 1-3. 請求項1〜3のいずれかに記載のアニオン交換樹脂をカチオン交換樹脂との混床形態で充填した請求項4に記載の装置。   The apparatus of Claim 4 which filled the anion exchange resin in any one of Claims 1-3 with the mixed bed form with the cation exchange resin. カチオン交換樹脂がゲル形カチオン交換樹脂からなる、請求項5に記載の装置。   The apparatus according to claim 5, wherein the cation exchange resin comprises a gel-type cation exchange resin. 充填層が少なくとも2層あり、最下流層が請求項1〜3のいずれかに記載のアニオン交換樹脂からなる層に形成されている、請求項4〜6のいずれかに記載の装置。   The apparatus according to any one of claims 4 to 6, wherein there are at least two packed layers, and the most downstream layer is formed in a layer made of the anion exchange resin according to any one of claims 1 to 3. 脱塩装置からなる、請求項4〜7のいずれかに記載の装置。   The apparatus in any one of Claims 4-7 which consists of a desalination apparatus. 発電所の復水脱塩装置からなる、請求項8に記載の装置。   9. The device according to claim 8, comprising a condensate demineralizer for a power plant.
JP2006036617A 2006-02-14 2006-02-14 Ion exchanger Active JP4883676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006036617A JP4883676B2 (en) 2006-02-14 2006-02-14 Ion exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006036617A JP4883676B2 (en) 2006-02-14 2006-02-14 Ion exchanger

Publications (2)

Publication Number Publication Date
JP2007216094A true JP2007216094A (en) 2007-08-30
JP4883676B2 JP4883676B2 (en) 2012-02-22

Family

ID=38493912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006036617A Active JP4883676B2 (en) 2006-02-14 2006-02-14 Ion exchanger

Country Status (1)

Country Link
JP (1) JP4883676B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090310733A1 (en) * 2008-06-11 2009-12-17 Organo Corporation Demineralizer of primary coolant system in pressurized-water reactor power plant and method for purifying primary cooling water in pressurized-water reactor power plant
JP2009300162A (en) * 2008-06-11 2009-12-24 Japan Organo Co Ltd Desalter for primary cooling system and purification method for primary cooling water in nuclear power plant with pressurized water reactor
JP2011058832A (en) * 2009-09-07 2011-03-24 Ebara Corp System and method for demineralizing condensate
JP2020131130A (en) * 2019-02-20 2020-08-31 水ing株式会社 Method for evaluating performance of anion exchange resin, method for producing pure water and water treatment system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126195A (en) * 1992-10-13 1994-05-10 Mitsubishi Kasei Corp Porous anion exchange resin and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126195A (en) * 1992-10-13 1994-05-10 Mitsubishi Kasei Corp Porous anion exchange resin and its production

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090310733A1 (en) * 2008-06-11 2009-12-17 Organo Corporation Demineralizer of primary coolant system in pressurized-water reactor power plant and method for purifying primary cooling water in pressurized-water reactor power plant
JP2009300162A (en) * 2008-06-11 2009-12-24 Japan Organo Co Ltd Desalter for primary cooling system and purification method for primary cooling water in nuclear power plant with pressurized water reactor
US9115010B2 (en) 2008-06-11 2015-08-25 Organo Corporation Demineralizer of primary coolant system in pressurized-water reactor power plant and method for purifying primary cooling water in pressurized-water reactor power plant
JP2011058832A (en) * 2009-09-07 2011-03-24 Ebara Corp System and method for demineralizing condensate
JP2020131130A (en) * 2019-02-20 2020-08-31 水ing株式会社 Method for evaluating performance of anion exchange resin, method for producing pure water and water treatment system
JP7179641B2 (en) 2019-02-20 2022-11-29 水ing株式会社 Method for evaluating performance of anion exchange resin, method for producing pure water, and water treatment system

Also Published As

Publication number Publication date
JP4883676B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
Tan et al. Factors affecting selectivity during dissolved organic matter removal by anion-exchange resins
Hu et al. Removal of diclofenac from aqueous solution with multi-walled carbon nanotubes modified by nitric acid
KR102194404B1 (en) Treatment of water, particularly for obtaining ultrapure water
CN101797523A (en) Method of iodide removal
JP4883676B2 (en) Ion exchanger
Choi et al. Adsorption of Co2+ and Cs1+ by polyethylene membrane with iminodiacetic acid and sulfonic acid modified by radiation‐induced graft copolymerization
WO2011036942A1 (en) Process for production of tetraalkylammonium hydroxide
JP2009281875A (en) Method and device for condensate demineralization
CN104936691A (en) Zeolite composite containing iodine or bromine confined pores, and use thereof
Wang et al. Field sample preparation of trace inorganic anions in environmental waters with in-tip microextraction device based on anion-exchange monolithic adsorbent followed by ion chromatography quantification
IJzer et al. Performance analysis of aromatic adsorptive resins for the effective removal of furan derivatives from glucose
JP4467488B2 (en) Condensate demineralization method and condensate demineralization apparatus
JP2001215294A (en) Condensate demineralizer
Bai et al. Processable amidoxime functionalized porous hyper-crosslinked polymer with highly efficient regeneration for uranium extraction
JP3687829B2 (en) Condensate treatment method and condensate demineralizer
US20090294367A1 (en) Method and apparatus for condensate demineralization
Ali et al. Study on the synthesis of a macroporous ethylacrylate‐divinylbenzene copolymer, its conversion into a bi‐functional cation exchange resin and applications for extraction of toxic heavy metals from wastewater
Jeong et al. Adsorption characteristics of effluent organic matter and natural organic matter by carbon based nanomaterials
Wang et al. Incorporation of multiwalled carbon nanotube into a polymethacrylate‐based monolith for ion chromatography
JP5038232B2 (en) Condensate demineralization method and condensate demineralization apparatus
JP7379170B2 (en) Method for purifying nonaqueous solvents and pretreatment method for ion exchange resins for purifying nonaqueous solvents
CN103433010B (en) Preparation method of gel type styrene cation resins for chromatographic separation
JP2002361247A (en) Method for manufacturing pure water
JP2001246377A (en) Operating method of condensate demineralizer
JP2009281873A (en) Method and device for condensate demineralization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4883676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250