JP2009299706A - Yoke for universal joint and universal joint - Google Patents

Yoke for universal joint and universal joint Download PDF

Info

Publication number
JP2009299706A
JP2009299706A JP2008151634A JP2008151634A JP2009299706A JP 2009299706 A JP2009299706 A JP 2009299706A JP 2008151634 A JP2008151634 A JP 2008151634A JP 2008151634 A JP2008151634 A JP 2008151634A JP 2009299706 A JP2009299706 A JP 2009299706A
Authority
JP
Japan
Prior art keywords
base
universal joint
yoke
slit
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008151634A
Other languages
Japanese (ja)
Other versions
JP5092913B2 (en
JP2009299706A5 (en
Inventor
Hiromichi Komori
宏道 小森
Masaharu Igarashi
正治 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2008151634A priority Critical patent/JP5092913B2/en
Publication of JP2009299706A publication Critical patent/JP2009299706A/en
Publication of JP2009299706A5 publication Critical patent/JP2009299706A5/ja
Application granted granted Critical
Publication of JP5092913B2 publication Critical patent/JP5092913B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/26Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected
    • F16D3/38Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another
    • F16D3/382Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another constructional details of other than the intermediate member
    • F16D3/387Fork construction; Mounting of fork on shaft; Adapting shaft for mounting of fork
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
    • F16D1/08Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key
    • F16D1/0852Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key with radial clamping between the mating surfaces of the hub and shaft
    • F16D1/0864Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key with radial clamping between the mating surfaces of the hub and shaft due to tangential loading of the hub, e.g. a split hub

Abstract

<P>PROBLEM TO BE SOLVED: To improve durability of a yoke 23, by relieving stress acting on a continuous part 31, with a structure that a slit 29 and the continuous part 31 exist in a base part 24 of the yoke 23 of a universal joint. <P>SOLUTION: A recessed part 25 recessed to the outer diameter side is formed in a part being the substantially same phase as the slit 29 in the circumferential direction among an inner peripheral surface of this continuous part 31. Rigidity of this part is reduced more than the other part. Stress acting when further fastening by threadedly engaging a nut with a bolt inserted into a pair of through-holes 28 arranged in the base part 24, and stress acting when transmitting rotation of mutual both rotary shafts respectively fixed to both end parts of the universal joint, are relieved by elastically deforming a part of forming the recessed part 25. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、例えば、自動車のステアリング装置のステアリングシャフト及び中間シャフトの様な、同一直線上に存在しない1対の回転軸の端部同士を連結して、これら両回転軸同士の間で回転力の伝達を可能とする自在継手、及び、この自在継手を構成するヨークの改良に関する。特に、本発明は、自在継手用ヨークの基部に作用する応力を緩和して、この自在継手用ヨークの耐久性の向上を図るものである。   In the present invention, for example, the ends of a pair of rotating shafts that do not exist on the same straight line, such as a steering shaft and an intermediate shaft of an automobile steering device, are connected to each other, and a rotational force is generated between these rotating shafts. The present invention relates to a universal joint that can transmit the above and a yoke that constitutes the universal joint. In particular, the present invention aims to improve the durability of the universal joint yoke by relieving the stress acting on the base of the universal joint yoke.

自動車のステアリング装置は、例えば図17に示す様に構成している。ステアリングホイール1の動きは、ステアリングシャフト2及び中間シャフト3を介してステアリングギヤユニット4に伝達し、このステアリングギヤユニット4によって車輪を操舵する。上記ステアリングシャフト2と、上記ステアリングギヤユニット4の入力軸5とは、互いに同一直線上に設ける事ができないのが通常である。この為に従来から、上記ステアリングシャフト2と上記入力軸5との間に上記中間シャフト3を設け、この中間シャフト3の両端部と、上記ステアリングシャフト2及び上記入力軸5の端部とを、それぞれカルダン継手と呼ばれる自在継手6、6を介して結合している。これにより、同一直線上に存在しない、上記ステアリングシャフト2と上記入力軸5との間での、回転力伝達を行なえる様にしている。   An automobile steering device is configured, for example, as shown in FIG. The movement of the steering wheel 1 is transmitted to the steering gear unit 4 via the steering shaft 2 and the intermediate shaft 3, and the wheels are steered by the steering gear unit 4. In general, the steering shaft 2 and the input shaft 5 of the steering gear unit 4 cannot be provided on the same straight line. For this purpose, conventionally, the intermediate shaft 3 is provided between the steering shaft 2 and the input shaft 5, and both ends of the intermediate shaft 3 and the ends of the steering shaft 2 and the input shaft 5 are connected. They are connected through universal joints 6 and 6 called cardan joints. Thereby, the rotational force can be transmitted between the steering shaft 2 and the input shaft 5 which do not exist on the same straight line.

上述の様な自在継手は、例えば、特許文献1〜5に記載されている様に、各種構造が知られている。図18〜20は、このうちの特許文献1に記載されている自在継手6aを示している。この自在継手6aは、1対の金属板製のヨーク7a、7bと、十字軸8とを備える。このうちの1対のヨーク7a、7bのうち、一方の(図18〜19の右方に示した)ヨーク7aは、基部9aと、この基部9aの軸方向先端縁(図18〜19の左端縁)から延出した1対の腕部10、10とを備える。   As for the universal joint as described above, various structures are known as described in Patent Documents 1 to 5, for example. 18-20 has shown the universal joint 6a described in patent document 1 among these. The universal joint 6 a includes a pair of yokes 7 a and 7 b made of a metal plate and a cross shaft 8. Of the pair of yokes 7a and 7b, one yoke 7a (shown on the right side of FIGS. 18 to 19) is composed of a base 9a and an axial front end edge of the base 9a (the left end of FIGS. 18 to 19). A pair of arms 10 and 10 extending from the edge.

このうちの基部9aは、ステアリングシャフト等の図示しない回転軸の端部を挿入する為、円周方向1個所を不連続部とした欠円筒状に形成して、内径を拡縮可能としている。又、この不連続部に、互いに対向する1対のフランジ11a、11bを設けている。そして、このうちの一方のフランジ11aに、ボルト(図示せず)の杆部を挿通する為の通孔12を形成している。これと共に、他方のフランジ11bに形成した通孔13にナット14を圧入固定する事により、上記ボルトを螺合する為のねじ孔を設けている。尚、このねじ孔は、上記フランジ11bに直接形成する場合もある。又、上記基部9aの内周面と、上記図示しない回転軸の端部外周面とは、互いにセレーション係合可能としている。   Of these, the base portion 9a is inserted into an end portion of a rotating shaft (not shown) such as a steering shaft, so that the inner portion can be expanded and contracted by forming a circular cylinder with a discontinuous portion in one circumferential direction. In addition, a pair of flanges 11a and 11b facing each other are provided in the discontinuous portion. A through hole 12 for inserting a flange portion of a bolt (not shown) is formed in one of the flanges 11a. At the same time, a screw hole for screwing the bolt is provided by press-fitting a nut 14 into a through hole 13 formed in the other flange 11b. This screw hole may be directly formed in the flange 11b. The inner peripheral surface of the base portion 9a and the outer peripheral surface of the end portion of the rotating shaft (not shown) are capable of serration engagement with each other.

又、上記両腕部10、10は、上記基部9aの軸方向先端部で径方向反対側となる2個所位置から、この基部9aの軸方向に延出しており、互いの内側面同士を対向させている。これら両腕部10、10の先端部には、互いに同心の円孔15、15を形成している。又、これら両腕部10、10の内側面と幅方向両端面との連続部で、これら両腕部10、10の長さ方向中間部には、それぞれ当該連続部に存在する角部を切り欠いた如き形状の面取り部16、16を形成している。尚、これら各面取り部16、16は、ヨークの成形と同時に或いは前後して、プレス加工、鍛造加工等の塑性加工によって形成しても良いし、或いは切削加工によって形成しても良い。   Further, the both arm portions 10 and 10 extend in the axial direction of the base portion 9a from two positions opposite to the radial direction at the axial tip portion of the base portion 9a, and face each other inside surfaces. I am letting. Concentric circular holes 15 and 15 are formed at the distal ends of both arms 10 and 10. Further, a corner portion existing in the continuous portion is cut at a continuous portion between the inner side surfaces of both the arm portions 10 and 10 and both end surfaces in the width direction, and an intermediate portion in the longitudinal direction of the both arm portions 10 and 10. The chamfered portions 16 and 16 having a shape as lacked are formed. Each of the chamfered portions 16 and 16 may be formed by plastic working such as press working or forging work, or may be formed by cutting work before or after forming the yoke.

又、上記1対のヨーク7a、7bのうちの他方の(図18〜19の左方に示す)ヨーク7bは、基部9bの形状のみが、上記一方のヨーク7aと異なる。即ち、上記他方のヨーク7bを構成する基部9bは、中間シャフト等の回転軸17の端部を挿入する為、全体を略円筒状に形成すると共に、軸方向先端部(図18〜19の右端部)の全周を、径方向外方に向け折り曲げた形状としている。   The other yoke 7b (shown on the left side of FIGS. 18 to 19) of the pair of yokes 7a and 7b is different from the one yoke 7a only in the shape of the base 9b. That is, the base portion 9b that constitutes the other yoke 7b is formed in a substantially cylindrical shape in order to insert the end portion of the rotary shaft 17 such as an intermediate shaft, and the axial tip portion (the right end portion in FIGS. 18 to 19). Part) is bent in the radially outward direction.

又、上記十字軸8は、この十字軸8を構成する、十字に交わる状態で設けられた2本の軸部のうちの一方の軸部の両端部を、上記一方のヨーク7aの腕部10、10に形成した円孔15、15の内側に枢支すると共に、同じく他方の軸部の両端部を、上記他方のヨーク7bの腕部10、10に形成した円孔15、15の内側に枢支している。この為に具体的には、図19に示す様に、上記各円孔15、15の内側にそれぞれ、その内周面に複数のニードル18、18を転動自在に保持した軸受カップ19を圧入固定すると共に、これら各ニードル18、18の径方向内側に上記十字軸8の端部を挿入している。   Further, the cross shaft 8 is configured so that both ends of one shaft portion of the two shaft portions constituting the cross shaft 8 and intersecting with the cross are connected to the arm portion 10 of the one yoke 7a. 10 are pivotally supported inside the circular holes 15 and 15 formed in the upper and lower ends of the other shaft 7 and the inner ends of the circular holes 15 and 15 formed in the arm portions 10 and 10 of the other yoke 7b. It is pivotally supported. For this purpose, as shown in FIG. 19, a bearing cup 19 holding a plurality of needles 18 and 18 on the inner peripheral surface of each of the circular holes 15 and 15 so as to roll is press-fitted. At the same time, the end of the cross shaft 8 is inserted inside the needles 18 and 18 in the radial direction.

上述の様に構成する自在継手6aの使用時には、図18〜19に示す様に、他方のヨーク7bを構成する基部9bの内側に、回転軸17の端部をがたつきなく挿入若しくは圧入した(或いはスプライン係合させた)状態で、上記基部9bに対して上記回転軸17の端部を溶接固定する。これと共に、一方のヨーク7aを構成する基部9aの内側に、図示しない別の回転軸の端部をスプライン係合させた状態で、一方のフランジ11aに形成した通孔12にその杆部を挿通した図示しないボルトの先端部を、他方のフランジ11bに固定したナット14に螺合させて締め付ける。これにより、上記両フランジ11a、11b同士の間隔を狭めて、上記基部9aを縮径させる事に基づき、この基部9aに対して上記別の回転軸の端部を結合固定する。そして、この様に2本の回転軸17の端部同士を上記自在継手6aを介して連結する事により、同一直線上に存在しない、上記両回転軸17同士の間での、回転力の伝達を行なえる様にする。   When the universal joint 6a configured as described above is used, as shown in FIGS. 18 to 19, the end of the rotary shaft 17 is inserted or press-fitted without rattling inside the base 9b configuring the other yoke 7b. In an (or spline engaged) state, the end of the rotating shaft 17 is welded to the base 9b. At the same time, the flange portion is inserted into the through hole 12 formed in the one flange 11a in a state where the end portion of another rotating shaft (not shown) is engaged with the inside of the base portion 9a constituting the one yoke 7a. The tip of the bolt not shown is screwed into the nut 14 fixed to the other flange 11b and tightened. As a result, the end of the other rotating shaft is coupled and fixed to the base portion 9a based on the fact that the distance between the flanges 11a and 11b is narrowed to reduce the diameter of the base portion 9a. Then, by connecting the ends of the two rotating shafts 17 via the universal joint 6a in this way, the transmission of the rotational force between the rotating shafts 17 that do not exist on the same straight line. To be able to do.

上述の自在継手6aを構成する一方のヨーク7aは、例えば、金属板を所定の形状に打ち抜き、折り曲げるプレス加工により形成したり、或は、鍛造加工により形成する。図21は、プレス加工により形成したヨーク7cを示している。この様にプレス加工により形成したヨーク7cは、製造コストを低くできるが、曲げ形成し易い材料に限定される為、このヨーク7cの強度を確保しにくい。   One yoke 7a constituting the above-described universal joint 6a is formed by, for example, a press work in which a metal plate is punched and bent into a predetermined shape, or is formed by a forging process. FIG. 21 shows the yoke 7c formed by press working. The yoke 7c formed by press working in this way can reduce the manufacturing cost, but is limited to a material that can be easily formed by bending, so that it is difficult to ensure the strength of the yoke 7c.

一方、熱間鍛造や冷間鍛造等の鍛造加工により形成する場合、強度の高いヨークを形成できる。例えば、図22に示すヨーク7dは、鍛造加工により形成している。このヨーク7dは、基部9cのボルトを挿通する通孔12の中心軸と、腕部10a、10aの十字軸を枢支する為の円孔15、15の中心軸とが、捩れの位置関係にある。従って、上記基部9cの円周方向1個所に形成したスリット20は、前述の図18〜21に示した構造と異なり、上記ヨーク7dの中間部までしか形成していない。   On the other hand, when it is formed by forging such as hot forging or cold forging, a strong yoke can be formed. For example, the yoke 7d shown in FIG. 22 is formed by forging. The yoke 7d has a twisted positional relationship between the central axis of the through hole 12 through which the bolt of the base portion 9c is inserted and the central axes of the circular holes 15 and 15 for pivotally supporting the cross shafts of the arm portions 10a and 10a. is there. Therefore, unlike the structure shown in FIGS. 18 to 21 described above, the slit 20 formed at one place in the circumferential direction of the base portion 9c is formed only up to the middle portion of the yoke 7d.

この様な図22に示した構造の場合、上記基部9cの通孔12を挿通したボルトの先端部にナットを螺合し、更に締め付けた場合に、上記スリット20の間隔が小さくなる方向に応力が作用する。この場合、このスリット20の奥端部に応力が集中して、この部分から損傷が生じ易くなる。この様な事情に鑑み、前記各特許文献のうちの特許文献2には、図23に示す様に、スリット20aの奥端部に、この奥端部を円弧状に拡大した拡大部21を形成したヨーク7eが記載されている。この拡大部21により、上述の様にボルトの締め付けによる応力集中を緩和して、上記スリット20aの奥端部から損傷を生じる事を防止できる。   In the case of such a structure shown in FIG. 22, when a nut is screwed into the tip of a bolt inserted through the through hole 12 of the base 9c and further tightened, the stress in the direction in which the interval between the slits 20 decreases. Works. In this case, stress concentrates on the back end portion of the slit 20 and damage is likely to occur from this portion. In view of such circumstances, in Patent Document 2 out of each of the above-mentioned Patent Documents, as shown in FIG. 23, an enlarged portion 21 is formed in the rear end portion of the slit 20a and the rear end portion is enlarged in an arc shape. The yoke 7e is described. The enlarged portion 21 can relieve stress concentration due to bolt tightening as described above and prevent damage from the rear end portion of the slit 20a.

上述の図22、23に示した構造は、鍛造加工によりヨーク7d、7eを形成した構造で、ボルトを挿通する通孔12の中心軸と、十字軸を枢支する円孔15、15の中心軸とが捩れの位置関係にある場合に就いて示した。但し、鍛造加工により、前述の図18〜21に示した構造と同様に、通孔12の中心軸と円孔15、15の中心軸とを平行にする構造も、勿論形成できる。図24は、この様な構造の3例を示している。このうちの図24(A)は、スリット20bを基部9dの軸方向全体に亙って形成したものである。又、図24(B)は、スリット20cを基部9dの軸方向中間部まで形成したものである。更に、図24(C)は、スリット20dの奥端部に拡大部21を形成したものである。   The structure shown in FIGS. 22 and 23 is a structure in which the yokes 7d and 7e are formed by forging, and the center axis of the through hole 12 through which the bolt is inserted and the center of the circular holes 15 and 15 that pivotally support the cross shaft. The case where the shaft is in a torsional positional relationship is shown. However, a structure in which the central axis of the through-hole 12 and the central axes of the circular holes 15 and 15 are made parallel can be formed by forging as in the structure shown in FIGS. FIG. 24 shows three examples of such a structure. Of these, FIG. 24A shows the slit 20b formed over the entire axial direction of the base 9d. In FIG. 24B, the slit 20c is formed up to the intermediate portion in the axial direction of the base 9d. Further, FIG. 24C shows an enlarged portion 21 formed at the back end of the slit 20d.

上述の図24に示した3例のうち、図24(A)に示した構造の場合、スリット20bを基部9dの軸方向全体に亙って形成している為、ボルトの締め付けにより、上述した様なスリットの基端部に応力が集中すると言う不都合が生じる事はない。但し、ボルトに作用する応力が大きくなる為、このボルトの強度を高くする必要がある。又、図24(B)(C)に示した構造に就いては、前述の図22、23に示した構造とそれぞれ同様である。即ち、図25(A)(B)に矢印で示す様に、奥端部を拡大していないスリット20cに比べて、奥端部に拡大部21を形成したスリット20dの方が、ボルト締め付け時に、基端部に応力が集中しにくく、応力の緩和を図れる。   Of the three examples shown in FIG. 24 described above, in the case of the structure shown in FIG. 24A, the slit 20b is formed over the entire axial direction of the base 9d. There is no inconvenience that stress concentrates on the base end of such a slit. However, since the stress acting on the bolt increases, it is necessary to increase the strength of the bolt. The structures shown in FIGS. 24B and 24C are the same as those shown in FIGS. That is, as shown by the arrows in FIGS. 25A and 25B, the slit 20d having the enlarged portion 21 formed at the rear end portion is more susceptible to the bolt tightening than the slit 20c having the rear end portion not enlarged. , It is difficult for stress to concentrate on the base end, and stress can be relaxed.

上述した様に、ヨークの基部にスリットを設ける構造の場合、このスリットの奥端部に拡大部を設ける事により、ボルト締め付け時の応力を緩和できるが、上記ヨークには、自在継手として使用している場合にも、次の様な応力が作用する。即ち、同一直線上に存在しない回転軸同士の間で回転を伝達する場合に、図26(A)(B)に矢印で示す様に、ヨーク7fの腕部10、10同士が互いに軸方向にずれる方向に力が作用する。この場合、基部9eの先端部(腕部10、10側の端部、本明細書及び特許請求の範囲全体で同じ)でスリット20cよりも腕部10、10側に存在する、円周方向に連続した連続部22の一部に大きな応力が作用する。そして、この応力により、この連続部22の一部に損傷が生じる可能性がある。この様な応力は、前述した様に、スリットの基端部に拡大部を形成すれば、或る程度緩和できるが、自在継手により伝達するトルクが大きくなると、十分とは言えない場合もある。   As described above, in the case of a structure in which a slit is provided at the base of the yoke, the stress at the time of bolt tightening can be relieved by providing an enlarged portion at the back end of the slit. However, the yoke is used as a universal joint. The following stress is also applied. That is, when the rotation is transmitted between the rotation axes that do not exist on the same straight line, the arms 10 and 10 of the yoke 7f are axially connected to each other as indicated by arrows in FIGS. Force acts in the direction of displacement. In this case, in the circumferential direction, the tip portion of the base portion 9e (the end portion on the arm portion 10, 10 side, which is the same in the entire specification and claims) is located closer to the arm portion 10, 10 than the slit 20c. A large stress acts on a part of the continuous part 22. And this stress may cause damage to a part of the continuous portion 22. Such stress can be alleviated to some extent by forming an enlarged portion at the base end of the slit as described above, but it may not be sufficient if the torque transmitted by the universal joint increases.

特開平10−205547号公報JP-A-10-205547 実公昭55−28899号公報Japanese Utility Model Publication No. 55-28899 実開昭63−164626号公報Japanese Utility Model Publication No. 63-164626 実開平6−24235号公報Japanese Utility Model Publication No. 6-24235 特開平7−317793号公報JP 7-317793 A

本発明は、上述の様な事情に鑑み、自在継手用ヨークの基部にスリット及び連続部が存在する構造で、この連続部に作用する応力を緩和して、この自在継手用ヨークの耐久性の向上を図れる構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention has a structure in which a slit and a continuous portion are present at the base of the universal joint yoke. The stress acting on the continuous portion is alleviated, and the durability of the universal joint yoke is improved. It was invented to realize a structure that can be improved.

本発明の自在継手用ヨーク及び自在継手のうちの自在継手用ヨークは、基部と、1対の腕部と、スリットと、連続部と、1対の通孔又は1組の通孔及びねじ孔とを備える。
このうちの基部は、回転軸の端部に結合可能なものである。
又、上記両腕部は、板状で、上記基部の軸方向先端部で径方向反対側となる2個所位置からこの基部の軸方向に延出し、且つ、互いの内側面同士を対向させた状態で設けられている。そして、それぞれの先端部に十字軸の端部を枢支する。
又、上記スリットは、上記基部の円周方向1個所に設けられ、この基部の軸方向基端部を円周方向に関し不連続とするものである。
又、上記連続部は、上記基部の先端部でこのスリットから軸方向に外れた部分に設けられた、円周方向に関し連続した部分である。
更に、上記両通孔又は通孔及びねじ孔の組は、上記基部の基端寄り部分のうち、この基部の中心軸から外れた位置で、且つ、円周方向に関し上記スリットを挟んで互いに整合する位置に形成している。
そして、上記基部内に上記回転軸を挿入した状態で、上記両通孔を挿通したボルトの先端部にナットを螺合し締め付ける事により、又は、上記通孔を挿通したボルトの先端部を上記ねじ孔に螺合し更に締め付ける事により、上記基部に上記回転軸を固定する。
The universal joint yoke and universal joint yoke of the present invention includes a base, a pair of arms, a slit, a continuous portion, a pair of through holes, or a set of through holes and screw holes. With.
Of these, the base is connectable to the end of the rotating shaft.
Further, the both arm portions are plate-like and extend in the axial direction of the base portion from two positions opposite to the radial direction at the axial tip portion of the base portion, and the inner side surfaces thereof are opposed to each other. It is provided in the state. Then, the end of the cross shaft is pivotally supported at each tip.
The slit is provided at one place in the circumferential direction of the base, and the base end in the axial direction of the base is discontinuous in the circumferential direction.
Further, the continuous portion is a portion that is continuous in the circumferential direction, provided at a portion of the distal end portion of the base portion that is axially removed from the slit.
Further, the two through holes or the set of the through holes and the screw holes are aligned with each other at a position deviating from the central axis of the base portion of the portion near the base end of the base portion and sandwiching the slit in the circumferential direction. It is formed at the position to be.
Then, with the rotating shaft inserted into the base, by screwing and tightening a nut to the tip of the bolt inserted through the both through holes, or the tip of the bolt inserted through the through hole is The rotating shaft is fixed to the base by screwing into the screw hole and further tightening.

特に、本発明の自在継手用ヨークに於いては、上記基部の上記連続部のうち、円周方向に関して上記スリットとほぼ同じ位相となる部分(例えば、位相のずれが±10度以内の部分)に、この連続部の他の部分よりも剛性が低い低剛性部分を設けている。   In particular, in the universal joint yoke of the present invention, a portion of the continuous portion of the base portion that has substantially the same phase as the slit in the circumferential direction (for example, a portion whose phase shift is within ± 10 degrees). In addition, a low-rigidity portion having lower rigidity than the other portions of the continuous portion is provided.

この様な構造として具体的には、例えば、請求項2に記載した発明の様に、上記基部の上記連続部の内周面のうち、円周方向に関して上記スリットとほぼ同じ位相となる部分に、外径側に凹んだ溝状の凹部を軸方向に形成する。
或は、請求項5に記載した発明の様に、上記基部の上記連続部のうち、円周方向に関して上記スリットとほぼ同じ位相となる部分に、肉厚をこの連続部の他の部分よりも小さくした部分を設ける。
Specifically, as such a structure, for example, as in the invention described in claim 2, in the inner peripheral surface of the continuous portion of the base portion, in a portion having substantially the same phase as the slit in the circumferential direction. Then, a groove-like recess recessed in the outer diameter side is formed in the axial direction.
Alternatively, as in the invention described in claim 5, the thickness of the continuous portion of the base portion in the portion having substantially the same phase as that of the slit in the circumferential direction is set to be larger than that of other portions of the continuous portion. Provide a smaller part.

上述の請求項2に記載した発明を実施する場合に好ましくは、請求項3に記載した発明の様に、凹部を外径側に向かって湾曲した湾曲面により形成する。
より好ましくは、請求項4に記載した発明の様に、連続部の凹部を形成した部分の肉厚を、この連続部の他の部分の肉厚よりも小さくする。
When the invention described in claim 2 described above is carried out, preferably, as in the invention described in claim 3, the concave portion is formed by a curved surface curved toward the outer diameter side.
More preferably, as in the invention described in claim 4, the thickness of the portion where the concave portion of the continuous portion is formed is made smaller than the thickness of the other portion of the continuous portion.

又、上述の各発明は、請求項6に記載した発明の様に、1対の腕部の先端部に形成された十字軸を枢支する為の1対の円孔の中心軸と、基部の基端寄り部分に形成されたボルトを挿通する1対の通孔又は1組の通孔及びねじ孔の中心軸とが平行である構造に、好ましく適用できる。   Further, each of the above-mentioned inventions, as in the invention described in claim 6, includes a center axis of a pair of circular holes for pivotally supporting a cross shaft formed at the distal end portion of the pair of arm portions, and a base portion. It can be preferably applied to a structure in which a pair of through-holes or a set of through-holes through which a bolt formed near the proximal end of the screw is inserted and the central axis of the screw hole are parallel.

又、本発明の自在継手は、請求項7に記載した発明の様に、1対の自在継手用ヨークと、十字軸とを備える。
このうちの両自在継手用ヨークはそれぞれ、回転軸の端部に結合可能な基部と、この基部の軸方向先端部で径方向反対側となる2個所位置から上記基部の軸方向に延出し且つ互いの内側面同士を対向させた状態で設けられた、それぞれの先端部に十字軸の端部を枢支する為の1対の板状の腕部とを備えたものである。
又、上記十字軸は、この十字軸を構成する、十字に交わる状態で設けられた2本の軸部のうちの一方の軸部の両端部を、上記両自在継手用ヨークのうちの一方の自在継手用ヨークを構成する1対の腕部の先端部に、同じく他方の軸部の両端部を、他方の自在継手用ヨークを構成する1対の腕部の先端部に、それぞれ枢支されている。
特に、本発明の自在継手に於いては、上記両自在継手用ヨークのうちの少なくとも一方が、請求項1〜6のうちの何れか1項に記載した自在継手用ヨークである。
The universal joint of the present invention includes a pair of universal joint yokes and a cross shaft, as in the seventh aspect of the invention.
Each of the universal joint yokes extends in the axial direction of the base from two base positions that are radially opposite to each other at a base portion that can be coupled to the end portion of the rotating shaft and an axial front end portion of the base portion. A pair of plate-like arm portions for pivotally supporting the end portions of the cross shafts are provided at the respective front end portions provided in a state where the inner side surfaces face each other.
In addition, the cross shaft is configured so that both ends of one shaft portion of the two shaft portions constituting the cross shaft and intersecting the cross are connected to one of the two universal joint yokes. A pair of arm portions constituting the universal joint yoke are pivotally supported at both ends of the other shaft portion, and a pair of arm portions constituting the other universal joint yoke. ing.
In particular, in the universal joint of the present invention, at least one of the two universal joint yokes is the universal joint yoke according to any one of claims 1 to 6.

上述の様に構成する本発明の場合、連続部のうち、円周方向に関して上記スリットとほぼ同じ位相となる部分に、凹部を形成したり(請求項2)、或は、この部分に肉厚を小さくした部分(薄肉部分)を設ける(請求項5)等により、剛性が低い低剛性部分を設けている。この為、この部分に作用する応力を緩和できる。例えば、両通孔同士に挿通したボルトにナットを螺合し更に緊締する事により、上記スリットの奥端部に生じる応力は、上記低剛性部分により吸収される。従って、ボルトの締め付けにより生じる応力を緩和できる。この結果、自在継手用ヨーク及び、この自在継手用ヨークを組み込んだ自在継手(請求項7)の耐久性を向上させられる。   In the case of the present invention configured as described above, a concave portion is formed in a portion of the continuous portion that has substantially the same phase as the slit in the circumferential direction (Claim 2), or a thickness is formed in this portion. A low-rigidity portion having low rigidity is provided, for example, by providing a portion (thin-walled portion) with a reduced height (Claim 5). For this reason, the stress which acts on this part can be relieved. For example, when a nut is screwed into a bolt inserted through both through holes and further tightened, stress generated at the back end of the slit is absorbed by the low rigidity portion. Therefore, the stress generated by tightening the bolt can be relaxed. As a result, the durability of the universal joint yoke and the universal joint incorporating the universal joint yoke (claim 7) can be improved.

又、請求項3に記載した発明によれば、凹部を湾曲面により形成している為、応力の緩和作用をより顕著に得られる。
又、請求項4に記載した発明によれば、凹部を形成する事に加えて、この凹部の肉厚を薄くしている為、この部分の応力を吸収する作用をより大きくできる。
According to the third aspect of the present invention, since the concave portion is formed by the curved surface, the stress relaxation action can be obtained more remarkably.
According to the invention described in claim 4, in addition to forming the recess, the thickness of the recess is reduced, so that the effect of absorbing the stress in this portion can be increased.

更に、請求項6に記載した構造に上述した各発明を適用すれば、同一直線上にない回転軸同士の回転伝達時に作用する応力も緩和される。即ち、請求項6に記載した構造の場合、両通孔の中心軸と両腕部の先端部に形成された両円孔の中心軸とが平行である為、前記剛性が低い部分が、これら両腕部の間部分に存在する。従って、同一直線上にない回転軸同士の回転伝達時に、これら両腕部同士が互いに軸方向にずれる方向に力が作用した場合に生じる応力は、上記低剛性部分で吸収され、緩和される。   Furthermore, if each invention mentioned above is applied to the structure described in Claim 6, the stress which acts at the time of the rotation transmission of the rotating shafts which are not on the same straight line will also be relieved. That is, in the case of the structure described in claim 6, since the central axis of both the through holes and the central axis of both the circular holes formed at the distal ends of both arm portions are parallel, the low rigidity portions are It exists in the part between both arms. Accordingly, when rotation is transmitted between the rotating shafts that are not on the same straight line, the stress generated when the force acts in the direction in which these two arm portions are shifted from each other in the axial direction is absorbed and relaxed by the low-rigidity portion.

[実施の形態の第1例]
図1〜3は、本発明の実施の形態の第1例を示している。尚、本例の特徴は、ヨーク23を構成する基部24に作用する応力を緩和すべく、この基部24の一部に溝状の凹部25を形成した点にある。ヨークの基本的構造及び作用は、前述の図24に示した構造と同様である。この為、重複する部分の図示及び説明は省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
[First example of embodiment]
1 to 3 show a first example of the embodiment of the present invention. The feature of this example is that a groove-like recess 25 is formed in a part of the base 24 in order to relieve the stress acting on the base 24 constituting the yoke 23. The basic structure and operation of the yoke are the same as those shown in FIG. For this reason, illustration and description of overlapping portions are omitted or simplified, and the following description will be focused on the features of this example.

本例のヨーク23は、前述の図24に示した構造と同様に、鍛造加工により形成したもので、1対の腕部26、26の先端部に、十字軸を枢支する為にそれぞれ形成した円孔27、27の中心軸と、上記基部24の基端寄り部分に形成したボルトを挿通する為の通孔28の中心軸とを平行としている。この通孔28を形成する為に、上記基部24の基端寄り部分をフランジ状とし、このフランジ状部分に上記通孔28を形成する事で、この通孔28に挿通したボルトと、上記基部24に挿入する回転軸との干渉防止を図っている。又、この基部24の円周方向1個所で、上記両通孔28に挟まれた部分に、この基部24の軸方向基端部乃至中間部を円周方向に不連続とする、スリット29を形成している。又、このスリット29の奥端部には、この奥端部を円弧状に拡大した拡大部30を形成している。又、上記基部24のうち、上記両腕部26、26側の先端部分で上記スリット29から軸方向に外れた部分を、円周方向に関し連続した連続部31としている。   The yoke 23 in this example is formed by forging as in the structure shown in FIG. 24 described above, and is formed at the tip of the pair of arm portions 26 and 26 to pivotally support the cross shaft. The central axis of the circular holes 27, 27 and the central axis of the through hole 28 for inserting a bolt formed near the base end of the base portion 24 are parallel to each other. In order to form the through hole 28, a portion near the base end of the base portion 24 is formed in a flange shape, and the through hole 28 is formed in the flange-shaped portion, whereby the bolt inserted into the through hole 28 and the base portion are formed. Interference with the rotating shaft to be inserted into 24 is prevented. In addition, a slit 29 is provided at one portion in the circumferential direction of the base portion 24 so as to make the axial base end portion or intermediate portion of the base portion 24 discontinuous in the circumferential direction at a portion sandwiched between the two through holes 28. Forming. Further, an enlarged portion 30 is formed at the back end portion of the slit 29 by expanding the back end portion into an arc shape. In addition, a portion of the base 24 that is axially disengaged from the slit 29 at the tip portion on the both arm portions 26 and 26 side is a continuous portion 31 that is continuous in the circumferential direction.

特に、本例の場合、上記連続部31の内周面のうち、円周方向に関して上記スリット29とほぼ同じ位相となる部分に、外径側に凹んだ前記凹部25を、軸方向に、上記連続部31の全長に亙り形成している。尚、この凹部25と上記スリット29との円周方向に関する位置関係は、この凹部25の円周方向の範囲内にこのスリット29が存在すれば良いが、好ましくは、それぞれの円周方向中央部同士が同じ位相となる様にする。   In particular, in the case of this example, the concave portion 25 that is recessed on the outer diameter side in the portion having the same phase as the slit 29 in the circumferential direction on the inner peripheral surface of the continuous portion 31 is axially The continuous portion 31 is formed over the entire length. In addition, the positional relationship in the circumferential direction between the recess 25 and the slit 29 may be such that the slit 29 exists within the circumferential range of the recess 25. Make sure they are in the same phase.

又、上記凹部25は、上記両腕部26、26の先端部に形成した上記両通孔28同士の間部分に存在する。又、本例の場合、上記連続部31の内周面に上記凹部25を形成する為に、この連続部31の内周面に形成した雌セレーション部32の、この凹部25を含む円周方向に関する所定の部分を欠歯としている。言い換えれば、この雌セレーション部32を円周方向に関して連続させていない。この雌セレーション部32は、回転軸の端部に形成した雄セレーション部と、回転力を伝達自在に係合する。   The concave portion 25 exists in a portion between the through holes 28 formed at the distal ends of the both arm portions 26 and 26. In the case of this example, in order to form the concave portion 25 on the inner peripheral surface of the continuous portion 31, the circumferential direction of the female serration portion 32 formed on the inner peripheral surface of the continuous portion 31 includes the concave portion 25. The predetermined part regarding is missing teeth. In other words, the female serration portion 32 is not continuous in the circumferential direction. The female serration portion 32 engages with a male serration portion formed at the end of the rotation shaft so as to be able to transmit a rotational force.

又、上記凹部25は、外径側に向かって湾曲した湾曲面を有し、円周方向両端部を、上記連続部31の内周面で上記雌セレーション部32を形成していない部分円筒面33、33と、滑らかに(角部がない様に)連続させている。又、本例の場合、上記連続部31の上記凹部25を形成した部分の肉厚を、前記基部24の他の部分の肉厚よりも小さくしている。   Moreover, the said recessed part 25 has a curved surface which curved toward the outer-diameter side, and the circumferential direction both ends are the partial cylindrical surfaces which do not form the said female serration part 32 in the internal peripheral surface of the said continuous part 31 33 and 33 are made continuous smoothly (no corners). In the case of this example, the thickness of the portion of the continuous portion 31 where the concave portion 25 is formed is made smaller than the thickness of the other portion of the base portion 24.

又、上記凹部25は、上記連続部31の内周面のうちで前記両腕部26、26側の開口端面から前記スリット29の奥端部まで、上記連続部31の全長に亙り形成する事が好ましいが、実際の使用状況やボルトの締め付けによる応力分布、更には、ヨーク23自体の形状等を考慮して、設計的に定める。例えば、本例の様に、スリット29の奥端部に拡大部30を形成している場合、この拡大部30によりボルト締め付け時の応力が緩和される為、上記凹部25の長さを、上記連続部31の軸方向長さよりも短く(例えば、この連続部31の先端側開口端面から、前記スリット29の奥端部よりも手前までの長さと)する事もできる。この場合、連続部31の内周面で凹部25を形成していない部分には、雌セレーション部32を形成し、この部分に関しては雌セレーション部32を、全周に亙って歯が欠落していない、全歯としても良い。又、上記凹部25の深さに就いても、軸方向に関する長さと同様に、設計的に定める。   Further, the concave portion 25 is formed over the entire length of the continuous portion 31 from the opening end surface on the both arm portions 26 and 26 side to the back end portion of the slit 29 in the inner peripheral surface of the continuous portion 31. However, it is determined in terms of design in consideration of actual use conditions, stress distribution due to bolt tightening, and the shape of the yoke 23 itself. For example, when the enlarged portion 30 is formed at the back end portion of the slit 29 as in this example, since the stress at the time of bolt tightening is relieved by the enlarged portion 30, the length of the concave portion 25 is The length in the axial direction of the continuous portion 31 can also be shorter (for example, the length from the opening side end face of the continuous portion 31 to the front side of the rear end of the slit 29). In this case, a female serration portion 32 is formed on a portion of the inner peripheral surface of the continuous portion 31 where the concave portion 25 is not formed, and regarding this portion, the female serration portion 32 is missing over the entire circumference. Not all teeth are good. Further, the depth of the concave portion 25 is determined by design in the same manner as the length in the axial direction.

又、上述した様なヨーク23の形成方法は、冷間鍛造であっても熱間鍛造であっても良い。熱間鍛造の場合、鍛造素材の表面が粗く、寸法精度も低くなる為、鍛造後の切削等の機械加工が多くなり、製造コストが高くなる。但し、S35C、S45C等の炭素鋼を調質する事によって、材料強度を高める事ができる。又、形状の自由度が高い為、形状が多少複雑でも加工可能である。一方、冷間鍛造の場合、寸法精度を高くできる為、鍛造後の機械加工を少なくでき、製造コストを低くできる。但し、金型の寿命が短い為、量産設定数によっては金型の費用が高くなり、製造コストが嵩む場合がある。又、成形性を確保する為に、比較的材料強度の低い低炭素鋼を使用するが、加工率によっては、加工硬化により強度が向上する。この為、上記ヨーク23の形成方法は、量産数やコスト等のバランスを考慮した上で、設計的に定める。何れにしても、上記凹部25は、鍛造加工時に形成する事が好ましいが、鍛造後に機械加工を施す際に、この機械加工により形成しても良い。   Further, the method for forming the yoke 23 as described above may be cold forging or hot forging. In the case of hot forging, since the surface of the forging material is rough and the dimensional accuracy is low, machining such as cutting after forging increases, and the manufacturing cost increases. However, the material strength can be increased by refining carbon steel such as S35C and S45C. Further, since the degree of freedom of the shape is high, it can be processed even if the shape is somewhat complicated. On the other hand, in the case of cold forging, since the dimensional accuracy can be increased, machining after forging can be reduced and the manufacturing cost can be reduced. However, since the life of the mold is short, depending on the number set for mass production, the cost of the mold becomes high and the manufacturing cost may increase. Moreover, in order to ensure moldability, low carbon steel having a relatively low material strength is used. However, depending on the processing rate, the strength is improved by work hardening. For this reason, the method for forming the yoke 23 is determined in terms of design in consideration of the balance between the number of mass production and the cost. In any case, the recess 25 is preferably formed at the time of forging, but may be formed by machining when forging after forging.

上述の様に構成する本例の場合、連続部31のうち、円周方向に関してスリット29とほぼ同じ位相となる部分(例えば±10度の範囲、或は、このスリット29の少なくとも一部と凹部25の少なくとも一部とが軸方向に重畳する範囲)に、凹部25を形成している為、この部分に作用する応力を緩和できる。即ち、本例の場合、この凹部25を形成する事によって、上記連続部31の上記スリット29とほぼ同じ位相となる部分の剛性を、他の部分よりも低くしている。又、本例の場合、上記両通孔28の中心軸と、両腕部26、26の先端部に形成した両円孔27、27の中心軸とが平行である為、基部24に形成したスリット29は、上記両通孔28の間部分で、且つ、上記両腕部26、26の間部分に存在する。この為、図3に示す様に、上記両通孔28同士に挿通したボルト34にナット(図示省略)を螺合し更に緊締した場合に、上記スリット29の基端部に生じる応力が、上記凹部25で吸収される。   In the case of this example configured as described above, a portion of the continuous portion 31 that has substantially the same phase as the slit 29 in the circumferential direction (for example, a range of ± 10 degrees, or at least a portion of the slit 29 and a recess Since the concave portion 25 is formed in a range in which at least a part of 25 overlaps in the axial direction, the stress acting on this portion can be relieved. In other words, in the case of this example, by forming the concave portion 25, the rigidity of the portion of the continuous portion 31 that has substantially the same phase as the slit 29 is made lower than the other portions. In the case of this example, the central axis of the two through holes 28 and the central axes of the circular holes 27 and 27 formed at the distal end portions of the arm portions 26 and 26 are parallel to each other. The slit 29 exists in a portion between the both through holes 28 and a portion between the both arm portions 26 and 26. For this reason, as shown in FIG. 3, when a nut (not shown) is screwed into the bolt 34 inserted through the two through holes 28 and further tightened, the stress generated at the base end of the slit 29 is Absorbed by the recess 25.

具体的には、上記ボルト34の締め付けにより上記連続部31に、図3の矢印で示す様に、上記スリット29の間隔が狭くなる方向に圧縮応力が作用する。本例の場合、この様に圧縮応力が作用しても、上記連続部31の上記凹部25を形成した部分が、この凹部25の曲率半径が小さくなる方向に撓む事により、この応力を吸収する。この結果、図4(A)に示す様に、応力分布がほぼ一定になり(ほぼ平均化され)、ヨーク23に破損が生じにくくなる。これに対して、凹部25を形成していない構造の場合、図4(B)に示す様に、応力分布が局所的に高くなり、この部分から破損が生じ易くなる。   Specifically, as the bolt 34 is tightened, a compressive stress acts on the continuous portion 31 in the direction in which the interval between the slits 29 becomes narrower as shown by the arrow in FIG. In the case of this example, even if a compressive stress acts in this way, the portion of the continuous portion 31 where the concave portion 25 is formed bends in a direction in which the radius of curvature of the concave portion 25 decreases, thereby absorbing this stress. To do. As a result, as shown in FIG. 4A, the stress distribution becomes substantially constant (substantially averaged), and the yoke 23 is hardly damaged. On the other hand, in the structure in which the concave portion 25 is not formed, the stress distribution is locally increased as shown in FIG. 4B, and breakage easily occurs from this portion.

又、本例の場合、前述の図24に示した様に、同一直線上にない回転軸同士の回転伝達時に、ヨーク23の両腕部26、26同士が互いに軸方向にずれる方向に力が作用した場合に生じる応力も、上記凹部25を形成した部分により吸収され、緩和される。即ち、上記両腕部26、26同士が軸方向にずれる方向に力が作用した場合に、図5(A)に示す様に、凹部25を形成した部分が(a)→(b)に示す様に捩れる様に変形する。即ち、上記両回転軸同士の回転伝達時には、連続部31の円周方向に関し上記凹部25を挟んだ両側部分同士が、軸方向に関し互いに逆方向に相対変位する。本例の場合、この凹部25を形成した部分は、剛性が低く、弾性変形し易い為、この様な相対変位を大きく許容できる。従って、上記凹部25を形成した部分が、図5(A)(b)に示す様に、この凹部25の曲率半径が大きくなる方向に弾性変形する事により、上記相対変位により生じる応力が緩和される。   Further, in the case of this example, as shown in FIG. 24 described above, when transmitting the rotation between the rotating shafts that are not on the same straight line, the force is applied in the direction in which both the arm portions 26 and 26 of the yoke 23 are shifted in the axial direction. The stress generated when it acts is also absorbed and relaxed by the portion where the recess 25 is formed. That is, when a force is applied in a direction in which both the arm portions 26 and 26 are displaced in the axial direction, as shown in FIG. 5A, the portion where the concave portion 25 is formed is shown in (a) → (b). It deforms like twisting. That is, at the time of transmission of rotation between the two rotating shafts, both side portions sandwiching the concave portion 25 in the circumferential direction of the continuous portion 31 are relatively displaced in directions opposite to each other in the axial direction. In the case of this example, the portion where the concave portion 25 is formed has low rigidity and is easily elastically deformed, so that such a relative displacement can be greatly allowed. Therefore, as shown in FIGS. 5A and 5B, the portion formed with the recess 25 is elastically deformed in the direction in which the radius of curvature of the recess 25 increases, thereby relieving the stress caused by the relative displacement. The

これに対して、凹部25を形成していない構造の場合、図5(B)に示す様に、上記両回転軸同士の回転伝達時に、連続部31の一部が(a)→(b)に示す様に変形する。この場合、この連続部31のうち、この様な変形により応力が作用する部分の剛性は、他の部分と殆ど変わらない為、この応力を吸収しにくい。この為、この応力が一部に集中し、この応力が集中した部分から破損が生じ易くなる。   On the other hand, in the case of the structure in which the concave portion 25 is not formed, as shown in FIG. 5B, a part of the continuous portion 31 is (a) → (b) during the rotation transmission between the two rotating shafts. Deforms as shown in In this case, the rigidity of the portion of the continuous portion 31 where the stress is applied due to such deformation is hardly different from the other portions, so that it is difficult to absorb this stress. For this reason, this stress concentrates on a part and it becomes easy to produce a damage from the part where this stress concentrated.

尚、図6に示す様に、凹部25を連続部31の円周方向に関してスリット29と反対側に形成する事も考えられる。この構造の場合には、凹部25を形成した部分が、上述の様な応力が最も集中する上記スリット29と同じ位相となる部分とは、反対側に存在する為、この様な応力を十分に緩和する事ができない。これに対して本例の場合、凹部25を、連続部31のうち、最も応力が集中し易い部分に形成している為、この様な応力を十分に緩和できる。   As shown in FIG. 6, it is conceivable to form the recess 25 on the opposite side of the slit 29 in the circumferential direction of the continuous portion 31. In the case of this structure, the portion where the recess 25 is formed is on the opposite side of the portion having the same phase as the slit 29 where the stress is most concentrated as described above. I can't relax. On the other hand, in this example, since the concave portion 25 is formed in a portion of the continuous portion 31 where stress is most likely to concentrate, such stress can be sufficiently relaxed.

又、本例の場合、上記凹部25を湾曲面により形成している為、応力の緩和作用をより顕著に得られる。即ち、凹部25に角部が存在する場合には、この角部に応力が集中する。従って、この凹部25を形成した部分が上述の様に弾性変形しても、応力の緩和作用を十分に得られない可能性がある。これに対して、本例の様に、上記凹部25を湾曲面により形成すれば、応力の集中を防止し、上述した応力の緩和作用を十分に得られる。又、本例の場合、上記凹部25を形成した部分の肉厚を薄くしている為、この凹部25を形成した部分がより弾性変形し易くなり、上記応力をより吸収し易くできる。   In the case of this example, since the concave portion 25 is formed by a curved surface, the stress relaxation action can be obtained more remarkably. That is, when a corner exists in the recess 25, stress concentrates on the corner. Therefore, even if the portion where the concave portion 25 is formed is elastically deformed as described above, there is a possibility that the stress relaxation action cannot be sufficiently obtained. On the other hand, if the concave portion 25 is formed of a curved surface as in this example, stress concentration can be prevented and the above-described stress relaxation action can be sufficiently obtained. In the case of this example, since the thickness of the portion where the concave portion 25 is formed is reduced, the portion where the concave portion 25 is formed is more easily elastically deformed, and the stress can be more easily absorbed.

上述の様に、本例の場合には、ボルト34の締め付け時に作用する応力も、両回転軸同士の回転伝達時に作用する応力の何れも、凹部25を形成していない構造に比べて緩和できる。この為、自在継手用の上記ヨーク23、及び、このヨーク23を組み込んだ、後述する図14に示す様な自在継手35の耐久性を向上させられる。   As described above, in the case of this example, both the stress acting when tightening the bolt 34 and the stress acting when transmitting the rotation between the two rotating shafts can be alleviated as compared with the structure in which the recess 25 is not formed. . Therefore, the durability of the universal joint yoke 23 and a universal joint 35 incorporating the yoke 23 as shown in FIG. 14 described later can be improved.

[実施の形態の第2、3例]
図7、8は、本発明の実施の形態の第2、3例を、それぞれ示している。これら第2、3例の場合、凹部25aの曲率中心が、連続部31の内周面で雌セレーション部32を形成した部分(基礎円)の外径側に存在する。そして、上記凹部25aの曲率を大きく(曲率半径を小さく)している。
又、上記図7に示した第2例の場合、雌セレーション部32と凹部25aとの円周方向に関する間部分に部分円筒面33、33を形成し、この雌セレーション部32を欠歯としている。
一方、上記図8に示した第3例の場合、この様な部分円筒面33、33を設けずに、雌セレーション部32を凹部25aの端縁部まで形成している。何れの構造の場合も、凹部25aの両側縁と、この凹部25aの円周方向両側に存在する部分とは、断面円弧状の曲面部により、滑らかに連続させる事が好ましい。
その他の構造及び作用は、上述の第1例と同様である。
[Second and third examples of embodiment]
7 and 8 respectively show second and third examples of the embodiment of the present invention. In the case of these second and third examples, the center of curvature of the recess 25 a exists on the outer diameter side of the portion (basic circle) where the female serration portion 32 is formed on the inner peripheral surface of the continuous portion 31. And the curvature of the said recessed part 25a is enlarged (a curvature radius is made small).
Further, in the case of the second example shown in FIG. 7, partial cylindrical surfaces 33 and 33 are formed in a portion between the female serration portion 32 and the recess 25a in the circumferential direction, and the female serration portion 32 is missing. .
On the other hand, in the case of the third example shown in FIG. 8, the female serration portion 32 is formed up to the edge of the recess 25a without providing such partial cylindrical surfaces 33 and 33. In any structure, it is preferable that the both side edges of the recess 25a and the portions existing on both sides in the circumferential direction of the recess 25a are smoothly continuous by curved portions having an arcuate cross section.
Other structures and operations are the same as those in the first example.

[実施の形態の第4、5例]
図9〜11は、本発明の実施の形態の第4、5例を、それぞれ示している。これら第4、5例の場合、上述の第2、3例の構造と異なり、凹部25bの曲率中心が、連続部31の内周面で雌セレーション部32を形成した部分(基礎円)の内径側に存在する。そして、上記凹部25bの曲率を小さくしている。
又、上記図9〜10に示した第4例の場合、前述の第1例及び上述の第2、3例の構造と同様に、凹部25bを、連続部31の円周方向に関してスリット29とほぼ同じ位相となる部分に形成している。
これに対して図11に示した第5例の場合、凹部25b、25bを、円周方向に関して、スリット29とほぼ同じ位相となる部分に加えて、このスリット29と反対側にも形成している。
その他の構造及び作用は、上述の第1例と同様である。
[Fourth and fifth examples of embodiment]
9 to 11 show fourth and fifth examples of the embodiment of the present invention, respectively. In the case of these fourth and fifth examples, unlike the structures of the second and third examples described above, the center of curvature of the recess 25b is the inner diameter of the portion (basic circle) where the female serration portion 32 is formed on the inner peripheral surface of the continuous portion 31. Exists on the side. And the curvature of the said recessed part 25b is made small.
In the case of the fourth example shown in FIGS. 9 to 10, the recess 25 b is formed with the slit 29 in the circumferential direction of the continuous part 31 in the same manner as the structures of the first example and the second and third examples. It is formed in a portion having substantially the same phase.
On the other hand, in the case of the fifth example shown in FIG. 11, the concave portions 25 b and 25 b are formed on the opposite side of the slit 29 in addition to the portion having the same phase as the slit 29 in the circumferential direction. Yes.
Other structures and operations are the same as those in the first example.

[実施の形態の第6、7例]
図12、13は、本発明の実施の形態の第6、7例を、それぞれ示している。これら第6、7例の場合、基部24、24aの外周面のうち、拡大部30の周囲部分に肉寄せして、この部分を厚肉化している。この様な第6、7例の場合、この拡大部30の周辺部を厚肉化している為、ボルト締め付け時等にこの拡大部30の周辺に作用する応力をより緩和でき、ヨーク23、23aの耐久性をより向上させられる。尚、図13に示した第7例の構造は、前述の図22〜23に示した従来構造と同様の、ボルトを挿通する通孔28aの中心軸と、十字軸を枢支する円孔27、27の中心軸とが捩れの位置関係にある構造である。
その他の構造及び作用は、図12に示した第6例に関しては、前述の第1例と同様である。又、図13に示した第7例に関しては、前述の図23に示した従来構造と同様である。尚、この様な第7例の構造の場合も、基部24aの連続部31aの内周面のうち、図13の上側の腕部26aとの連結部付近に、上記第1例と同様の凹部を形成している。
[Sixth and Seventh Embodiments]
12 and 13 respectively show sixth and seventh examples of the embodiment of the present invention. In the case of these sixth and seventh examples, the outer peripheral surfaces of the base portions 24 and 24a are brought closer to the peripheral portion of the enlarged portion 30 to thicken this portion. In the case of the sixth and seventh examples, since the peripheral portion of the enlarged portion 30 is thickened, the stress acting on the periphery of the enlarged portion 30 during bolt tightening can be further relaxed, and the yokes 23, 23a The durability of the can be further improved. The structure of the seventh example shown in FIG. 13 is the same as the conventional structure shown in FIGS. 22 to 23 described above, and the circular hole 27 that pivotally supports the central axis of the through hole 28a through which the bolt is inserted and the cross shaft. , 27 and the central axis are in a twisted positional relationship.
Other structures and operations are the same as those in the first example with respect to the sixth example shown in FIG. Further, the seventh example shown in FIG. 13 is the same as the conventional structure shown in FIG. In the case of the structure of the seventh example as described above, a recess similar to that of the first example is formed in the vicinity of the connecting portion with the upper arm portion 26a in FIG. 13 on the inner peripheral surface of the continuous portion 31a of the base portion 24a. Is forming.

[実施の形態の第8例]
図14〜15は、本発明の実施の形態の第8例を示している。本例の場合、ヨーク23bを、金属板を所定の形状に打ち抜き、折り曲げるプレス加工により形成したプレスヨークとしている。そして、基部24bの円周方向に関して連続していない部分に、ブリッジ部材36を掛け渡している。即ち、本例の場合、上記基部24bは、このブリッジ部材36を除く部分は円周方向に連続していない。従って、この基部24bのうち、このブリッジ部材36を設けた部分が、特許請求の範囲に記載した連続部の一部に、このブリッジ部材36の軸方向両側に存在する、円周方向に関して不連続な部分が、同じくスリットに、それぞれ相当する。又、本例の場合、上記ブリッジ部材36の円周方向中央部を、径方向外方に湾曲させて、この部分の内周面に凹部25cを形成している。尚、上記ブリッジ部材36は、両端部を上記基部24bに対し、例えば、この基部24bの所定部分に形成した切り欠きに締り嵌めで嵌合したり、溶接を施す等により結合している。
[Eighth Example of Embodiment]
14 to 15 show an eighth example of the embodiment of the present invention. In the case of this example, the yoke 23b is a press yoke formed by pressing a metal plate into a predetermined shape and bending it. And the bridge member 36 is spanned over the part which is not continuous regarding the circumferential direction of the base 24b. That is, in this example, the base 24b is not continuous in the circumferential direction except for the bridge member 36. Accordingly, the portion of the base 24b where the bridge member 36 is provided is discontinuous with respect to the circumferential direction, which is present on both sides in the axial direction of the bridge member 36 in a part of the continuous portion described in the claims. These parts correspond to the slits, respectively. In the case of this example, the circumferentially central portion of the bridge member 36 is curved radially outward to form a recess 25c on the inner peripheral surface of this portion. Note that the bridge member 36 is coupled at both ends to the base 24b by, for example, fitting into a notch formed in a predetermined portion of the base 24b, or by welding.

又、図示の例の場合、上記ブリッジ部材36の円周方向中央部全体を、基部24bの径方向外方に湾曲させて、上記凹部25cを形成している為、この凹部25cを形成した部分の肉厚(基部24bの径方向寸法)を特に小さくしていない。これは、上記ブリッジ部材36に圧縮方向や捩れ方向に力が作用した場合に或る程度の弾性変形を許容しつつも、このブリッジ部材36の強度を確保する為である。このブリッジ部材36の、上記基部24bの軸方向に関する肉厚を大きくする等、他の方法で強度を確保できるならば、上記凹部25cを形成した部分の、上記基部24bの径方向に関する肉厚を小さくしても良い。   In the case of the illustrated example, the entire central portion in the circumferential direction of the bridge member 36 is curved outward in the radial direction of the base portion 24b to form the concave portion 25c. Therefore, the portion where the concave portion 25c is formed. The wall thickness (the radial dimension of the base portion 24b) is not particularly reduced. This is to ensure the strength of the bridge member 36 while allowing a certain degree of elastic deformation when a force is applied to the bridge member 36 in the compression direction or torsional direction. If the strength of the bridge member 36 in the axial direction of the base 24b can be increased by other methods such as increasing the thickness of the base 24b, the thickness of the portion where the recess 25c is formed in the radial direction of the base 24b. It may be small.

上述の様な本例の場合、ブリッジ部材36の円周方向中央部に凹部25cを形成している為、このブリッジ部材36の中央部の剛性がこのブリッジ部材36の他の部分よりも低くなる。即ち、ボルト締め付け時に圧縮方向の応力が作用した場合には、上記凹部25cの曲率半径が小さくなる方向に撓み、この応力を緩和する。一方、両回転軸同士の回転伝達時に捩れ方向の応力が作用した場合には、上記ブリッジ部材36のうち、上記凹部25cを形成した部分が、前述の図5に示した場合と同様に、この凹部25cの曲率半径が大きくなる方向に弾性変形し、この応力を緩和する。又、本例の場合、上記ブリッジ部材36を設けている為、上記ボルト締め付け時に作用する応力の一部がこのブリッジ部材36により支承される。この為、このボルトに作用する応力を低減できる。
その他の構造及び作用は、前述の第1例と同様である。
In the case of this example as described above, since the concave portion 25c is formed in the central portion of the bridge member 36 in the circumferential direction, the rigidity of the central portion of the bridge member 36 is lower than the other portions of the bridge member 36. . That is, when a stress in the compressing direction is applied at the time of bolt tightening, the concave portion 25c bends in a direction in which the radius of curvature becomes small, and this stress is relaxed. On the other hand, when stress in the torsional direction is applied during the rotation transmission between the two rotation shafts, the portion of the bridge member 36 where the recess 25c is formed is similar to the case shown in FIG. The concave portion 25c is elastically deformed in the direction in which the radius of curvature increases, and this stress is relieved. In the case of this example, since the bridge member 36 is provided, a part of the stress acting when the bolt is tightened is supported by the bridge member 36. For this reason, the stress which acts on this bolt can be reduced.
Other structures and operations are the same as those in the first example.

本発明は、上述の各実施の形態の構造に限らず、例えば図16に示す様な、ステアリング装置の中間シャフト3の両端部に溶接固定したヨーク37a、37aを含んで構成する各自在継手等、特許請求の範囲に記載した要件を満たす、各種構造の自在継手用ヨーク及び自在継手に適用可能である。例えば、図16に示した構造の場合、上記ヨーク37a、37aと十字軸8を介して接続するヨーク37b、37bを、上述した各実施の形態で説明した様な構造とする。   The present invention is not limited to the structure of each of the above-described embodiments. For example, as shown in FIG. 16, each of the universal joints including yokes 37a and 37a fixed to both ends of the intermediate shaft 3 of the steering device by welding. The present invention can be applied to universal joint yokes and universal joints that satisfy the requirements described in the claims. For example, in the case of the structure shown in FIG. 16, the yokes 37b and 37b connected to the yokes 37a and 37a via the cross shaft 8 are configured as described in the above embodiments.

又、上述の各実施の形態では、連続部に凹部を形成する事により、剛性を低くしているが、この凹部を形成せずに、連続部の円周方向に関してスリットとほぼ同じ位相となる部分の肉厚を小さくするだけでも、この部分の剛性を低くして、上述した様な応力を緩和できる。例えば、この部分の円周方向両側からこの部分の円周方向中央部に向かう程、漸次肉厚を小さくする。   In each of the above-described embodiments, the rigidity is lowered by forming the concave portion in the continuous portion. However, without forming the concave portion, the phase is substantially the same as that of the slit in the circumferential direction of the continuous portion. Even by reducing the thickness of the portion, the rigidity as described above can be reduced to relieve the stress as described above. For example, the wall thickness is gradually reduced from the both sides in the circumferential direction toward the central portion in the circumferential direction.

本発明の実施の形態の第1例を示す自在継手用ヨークの斜視図。The perspective view of the yoke for universal joints which shows the 1st example of embodiment of this invention. 同じく、軸方向に関し1対の腕部側から見た図。Similarly, the figure seen from a pair of arm part side regarding an axial direction. 1対の通孔にボルトを挿通した状態で、図2と同方向から見た図。The figure seen from the same direction as FIG. 2 in the state which inserted the volt | bolt in one pair of through-holes. (A)は、連続部の凹部を形成した部分に作用する応力の分布を、(B)は、連続部に凹部を形成していない場合の応力部分を、それぞれ示す模式図。(A) is a schematic diagram showing the distribution of stress acting on the portion where the concave portion of the continuous portion is formed, and (B) is a schematic diagram showing the stress portion when the concave portion is not formed on the continuous portion. (A)は連続部に凹部が存在する場合を、(B)は連続部に凹部が存在しない場合を、それぞれ示し、それぞれの(a)は応力が作用する前の状態を、同じく(b)は応力が作用した状態を、それぞれ示す模式図。(A) shows the case where there is a concave portion in the continuous part, (B) shows the case where there is no concave part in the continuous part, and (a) shows the state before the stress acts. Is a schematic diagram showing the state in which stress is applied. 凹部を円周方向に関してスリットと反対側に形成した構造を示す、図2と同様の図。The figure similar to FIG. 2 which shows the structure which formed the recessed part on the opposite side to the slit regarding the circumferential direction. 本発明の実施の形態の第2例を示す、図2と同様の図。The figure similar to FIG. 2 which shows the 2nd example of embodiment of this invention. 同第3例を示す、図2と同様の図。The figure similar to FIG. 2 which shows the 3rd example. 同第4例を示す、図2と同様の図。The figure similar to FIG. 2 which shows the 4th example. 図9のイ部拡大図。FIG. 本発明の実施の形態の第5例を示す、図2と同様の図。The figure similar to FIG. 2 which shows the 5th example of embodiment of this invention. 同第6例を示す自在継手用ヨークの斜視図。The perspective view of the universal joint yoke which shows the 6th example. 同第7例を示す自在継手用ヨークの斜視図。The perspective view of the yoke for universal joints which shows the 7th example. 同第8例を示す自在継手用ヨークの斜視図。The perspective view of the yoke for universal joints which shows the 8th example. 同じく、軸方向に関し基部側から見た図。Similarly, the figure seen from the base side regarding the axial direction. 本発明を適用可能な自在継手を中間シャフトの両端部に組み付けた状態で示す、一部切断側面図。The partially cutaway side view which shows the universal joint which can apply this invention in the state assembled | attached to the both ends of the intermediate shaft. 本発明の対象となる自在継手を備えた自動車用操舵装置の1例を、一部を切断して示す側面図。The side view which cuts and shows one example of the steering apparatus for motor vehicles provided with the universal joint used as the object of this invention. 自在継手の従来構造の1例を示す側面図。The side view which shows an example of the conventional structure of a universal joint. 一部を切断した状態で示す、図18の下方から見た図。The figure seen from the lower part of FIG. 18 shown in the state which cut | disconnected a part. 図18のロ−ロ切断図。FIG. 19 is a cutaway view of FIG. プレスヨークの1例を示す斜視図。The perspective view which shows one example of a press yoke. 鍛造加工により形成したヨークの1例を示す斜視図。The perspective view which shows an example of the yoke formed by the forge process. スリットの奥端部に拡大部を形成した従来構造の1例を示す平面図。The top view which shows one example of the conventional structure which formed the enlarged part in the back end part of the slit. 両腕部に形成した円孔の中心軸と、基部に形成した通孔の中心軸とが平行である構造の3例を示す平面図。The top view which shows three examples of the structure where the central axis of the circular hole formed in both the arm parts and the central axis of the through-hole formed in the base part are parallel. スリットの基端部に拡大部を形成していない場合(A)と、形成した場合(B)との応力の作用状態を示す模式図。The schematic diagram which shows the action state of the stress when the enlarged part is not formed in the base end part of a slit, and when it forms (B). 同一直線上にない回転軸同士の回転伝達時に、ヨークに作用する力を誇張して示す模式図。The schematic diagram which exaggerates and shows the force which acts on a yoke at the time of the rotation transmission of the rotating shafts which are not on the same straight line.

符号の説明Explanation of symbols

1 ステアリングホイール
2 ステアリングシャフト
3 中間シャフト
4 ステアリングギアユニット
5 入力軸
6、6a 自在継手
7a、7b、7c、7d、7e、7f ヨーク
8 十字軸
9a、9b、9c、9d、9e 基部
10、10a 腕部
11a、11b フランジ
12 通孔
13 通孔
14 ナット
15 円孔
16 面取り部
17 回転軸
18 ニードル
19 軸受カップ
20、20a、20b、20c、20d スリット
21 拡大部
22 連続部
23、23a、23b ヨーク
24、24a、24b 基部
25、25a、25b、25c 凹部
26、26a 腕部
27 円孔
28、28a 通孔
29 スリット
30 拡大部
31、31a 連続部
32 雌セレーション部
33 部分円筒面
34 ボルト
35 自在継手
36 ブリッジ部材
37a、37b ヨーク
DESCRIPTION OF SYMBOLS 1 Steering wheel 2 Steering shaft 3 Intermediate shaft 4 Steering gear unit 5 Input shaft 6, 6a Universal joint 7a, 7b, 7c, 7d, 7e, 7f Yoke 8 Cross shaft 9a, 9b, 9c, 9d, 9e Base 10, 10a Arm Part 11a, 11b Flange 12 Through-hole 13 Through-hole 14 Nut 15 Circular hole 16 Chamfered part 17 Rotating shaft 18 Needle 19 Bearing cup 20, 20a, 20b, 20c, 20d Slit 21 Enlarged part 22 Continuous part 23, 23a, 23b Yoke 24 24a, 24b Base part 25, 25a, 25b, 25c Recess 26, 26a Arm part 27 Circular hole 28, 28a Through hole 29 Slit 30 Enlarged part 31, 31a Continuous part 32 Female serration part 33 Partial cylindrical surface 34 Bolt 35 Universal joint 36 Bridge members 37a, 37 Yoke

Claims (7)

回転軸の端部に結合可能な基部と、この基部の軸方向先端部で径方向反対側となる2個所位置からこの基部の軸方向に延出し且つ互いの内側面同士を対向させた状態で設けられた、それぞれの先端部に十字軸の端部を枢支する為の1対の板状の腕部と、上記基部の円周方向1個所に設けられ、この基部の軸方向基端部を円周方向に関し不連続とするスリットと、この基部の先端部でこのスリットから軸方向に外れた部分に設けられた、円周方向に関し連続した連続部と、上記基部の基端寄り部分のうち、この基部の中心軸から外れた位置で、且つ、円周方向に関し上記スリットを挟んで互いに整合する位置に形成した、1対の通孔又は1組の通孔及びねじ孔とを備え、上記基部内に上記回転軸を挿入した状態で、これら両通孔を挿通したボルトの先端部にナットを螺合し更に締め付ける事により、又は、上記通孔を挿通したボルトの先端部を上記ねじ孔に螺合し更に締め付ける事により、上記基部に上記回転軸を固定する自在継手用ヨークに於いて、この基部の上記連続部のうち、円周方向に関して上記スリットとほぼ同じ位相となる部分に、この連続部の他の部分よりも剛性が低い低剛性部分を設けた事を特徴とする自在継手用ヨーク。   In a state in which the base portion that can be coupled to the end portion of the rotating shaft and the axially distal end portion of the base portion extend in the axial direction of the base portion from two positions opposite to the radial direction and the inner side surfaces thereof face each other. A pair of plate-like arm portions for pivotally supporting the end portions of the cross shaft at the respective distal end portions, and one base portion in the circumferential direction of the base portion. A slit that is discontinuous in the circumferential direction, a continuous portion that is provided in a portion that is axially deviated from the slit at the distal end portion of the base portion, and a portion near the proximal end of the base portion. Of these, a pair of through holes or a pair of through holes and screw holes formed at positions deviating from the central axis of the base and aligned with each other across the slit in the circumferential direction, With the rotating shaft inserted into the base, a bolt inserted through both the through holes. A universal joint that fixes the rotating shaft to the base by screwing and tightening a nut to the tip of the screw, or by screwing and tightening the tip of a bolt inserted through the through hole into the screw hole. In the yoke for use, in the portion of the continuous portion of the base portion, a portion having a phase substantially the same as that of the slit in the circumferential direction is provided with a low-rigidity portion having lower rigidity than the other portions of the continuous portion. Characteristic universal joint yoke. 基部の連続部の内周面のうち、円周方向に関してスリットとほぼ同じ位相となる部分に、外径側に凹んだ溝状の凹部を軸方向に形成した、請求項1に記載した自在継手用ヨーク。   The universal joint according to claim 1, wherein a groove-like concave portion recessed in the outer diameter side is formed in an axial direction in a portion of the inner peripheral surface of the continuous portion of the base portion that has substantially the same phase as the slit in the circumferential direction. For yoke. 凹部が外径側に向かって湾曲した湾曲面により形成されている、請求項2に記載した自在継手用ヨーク。   The universal joint yoke according to claim 2, wherein the concave portion is formed by a curved surface curved toward the outer diameter side. 連続部の凹部を形成した部分の肉厚が、この連続部の他の部分の肉厚よりも小さい、請求項2又は請求項3に記載した自在継手用ヨーク。   The universal joint yoke according to claim 2 or 3, wherein a thickness of a portion where the concave portion of the continuous portion is formed is smaller than a thickness of other portions of the continuous portion. 基部の連続部のうち、円周方向に関してスリットとほぼ同じ位相となる部分に、肉厚がこの連続部の他の部分よりも小さい部分を設けた、請求項1に記載した自在継手用ヨーク。   The universal joint yoke according to claim 1, wherein a portion having a smaller thickness than other portions of the continuous portion is provided in a portion of the continuous portion of the base that is substantially in phase with the slit in the circumferential direction. 1対の腕部の先端部に形成された十字軸を枢支する為の1対の円孔の中心軸と、基部の基端寄り部分に形成されたボルトを挿通する1対の通孔又は1組の通孔及びねじ孔の中心軸とが平行である、請求項1〜5のうちの何れか1項に記載した自在継手用ヨーク。   A pair of through-holes through which a central axis of a pair of circular holes for pivotally supporting the cross shaft formed at the distal ends of the pair of arms and a bolt formed near the base end of the base are inserted or The universal joint yoke according to any one of claims 1 to 5, wherein the pair of through holes and the central axis of the screw hole are parallel to each other. 1対の自在継手用ヨークと、十字軸とを備え、
このうちの両自在継手用ヨークはそれぞれ、回転軸の端部に結合可能な基部と、この基部の軸方向先端部で径方向反対側となる2個所位置から上記基部の軸方向に延出し且つ互いの内側面同士を対向させた状態で設けられた、それぞれの先端部に十字軸の端部を枢支する為の1対の板状の腕部とを備えたものであり、
上記十字軸は、この十字軸を構成する、十字に交わる状態で設けられた2本の軸部のうちの一方の軸部の両端部を、上記両自在継手用ヨークのうちの一方の自在継手用ヨークを構成する1対の腕部の先端部に、同じく他方の軸部の両端部を、他方の自在継手用ヨークを構成する1対の腕部の先端部に、それぞれ枢支されている
自在継手に於いて、
上記両自在継手用ヨークのうちの少なくとも一方が、請求項1〜6のうちの何れか1項に記載した自在継手用ヨークである事を特徴とする自在継手。
A pair of universal joint yokes and a cross shaft;
Each of the universal joint yokes extends in the axial direction of the base from two base positions that are radially opposite to each other at a base portion that can be coupled to the end portion of the rotating shaft and an axial front end portion of the base portion. Provided with a pair of plate-like arm portions for pivotally supporting the ends of the cross shafts at the respective tip portions provided in a state where the inner side surfaces thereof are opposed to each other;
The cross shaft is composed of both ends of one of the two shaft portions provided in a crossing manner that constitute the cross shaft, and one universal joint of the universal joint yokes. Similarly, both end portions of the other shaft portion are pivotally supported by the tip portions of the pair of arm portions constituting the yoke for use, and the tip portions of the pair of arm portions constituting the other universal joint yoke, respectively. In universal joints,
A universal joint, wherein at least one of the universal joint yokes is the universal joint yoke according to any one of claims 1 to 6.
JP2008151634A 2008-06-10 2008-06-10 Universal joint yoke and universal joint Active JP5092913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008151634A JP5092913B2 (en) 2008-06-10 2008-06-10 Universal joint yoke and universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008151634A JP5092913B2 (en) 2008-06-10 2008-06-10 Universal joint yoke and universal joint

Publications (3)

Publication Number Publication Date
JP2009299706A true JP2009299706A (en) 2009-12-24
JP2009299706A5 JP2009299706A5 (en) 2011-06-23
JP5092913B2 JP5092913B2 (en) 2012-12-05

Family

ID=41546817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008151634A Active JP5092913B2 (en) 2008-06-10 2008-06-10 Universal joint yoke and universal joint

Country Status (1)

Country Link
JP (1) JP5092913B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189365A (en) * 2010-03-15 2011-09-29 Nsk Ltd Method for manufacturing yoke for universal joint
WO2013077026A1 (en) 2011-11-24 2013-05-30 日本精工株式会社 Cruciform-shaft universal joint and method for producing same
WO2013117982A1 (en) 2012-02-08 2013-08-15 Jtekt Corporation Universal joint and yoke
JP2019044945A (en) * 2017-09-07 2019-03-22 日本精工株式会社 Torque transmission shaft
JP2019052700A (en) * 2017-09-15 2019-04-04 日本精工株式会社 Torque transmission shaft
JP2019078273A (en) * 2017-10-20 2019-05-23 日本精工株式会社 Torque transmission shaft
CN111065835A (en) * 2017-09-07 2020-04-24 日本精工株式会社 Torque transmission shaft
JP2020112205A (en) * 2019-01-11 2020-07-27 日本精工株式会社 Yoke for universal joint
JP2020112202A (en) * 2019-01-11 2020-07-27 日本精工株式会社 Yoke for universal joint

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155333A (en) * 1985-12-27 1987-07-10 Tsuda Kogyo Kk York for universal joint
JPH102339A (en) * 1996-06-12 1998-01-06 Nippon Seiko Kk Coupling part between shaft and yoke of universal coupling
JP2005003017A (en) * 2003-06-09 2005-01-06 Tamagawa Seiki Co Ltd Axial association structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155333A (en) * 1985-12-27 1987-07-10 Tsuda Kogyo Kk York for universal joint
JPH102339A (en) * 1996-06-12 1998-01-06 Nippon Seiko Kk Coupling part between shaft and yoke of universal coupling
JP2005003017A (en) * 2003-06-09 2005-01-06 Tamagawa Seiki Co Ltd Axial association structure

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189365A (en) * 2010-03-15 2011-09-29 Nsk Ltd Method for manufacturing yoke for universal joint
WO2013077026A1 (en) 2011-11-24 2013-05-30 日本精工株式会社 Cruciform-shaft universal joint and method for producing same
US8986126B2 (en) 2011-11-24 2015-03-24 Nsk Ltd. Cross universal joint and manufacturing method thereof
WO2013117982A1 (en) 2012-02-08 2013-08-15 Jtekt Corporation Universal joint and yoke
US9239083B2 (en) 2012-02-08 2016-01-19 Jtekt Corporation Universal joint and yoke
CN111065835A (en) * 2017-09-07 2020-04-24 日本精工株式会社 Torque transmission shaft
JP2019044945A (en) * 2017-09-07 2019-03-22 日本精工株式会社 Torque transmission shaft
CN111065835B (en) * 2017-09-07 2022-04-29 日本精工株式会社 Torque transmission shaft
JP2019052700A (en) * 2017-09-15 2019-04-04 日本精工株式会社 Torque transmission shaft
JP2019078273A (en) * 2017-10-20 2019-05-23 日本精工株式会社 Torque transmission shaft
JP2020112205A (en) * 2019-01-11 2020-07-27 日本精工株式会社 Yoke for universal joint
JP2020112202A (en) * 2019-01-11 2020-07-27 日本精工株式会社 Yoke for universal joint
JP7263783B2 (en) 2019-01-11 2023-04-25 日本精工株式会社 Yoke for Universal Joint
JP7334412B2 (en) 2019-01-11 2023-08-29 日本精工株式会社 Yoke for Universal Joint

Also Published As

Publication number Publication date
JP5092913B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP5092913B2 (en) Universal joint yoke and universal joint
EP2538102A1 (en) Joint cross type universal joint yoke and method of manufacturing same
US8986126B2 (en) Cross universal joint and manufacturing method thereof
CN110869631B (en) Universal joint and transmission shaft
JP6673308B2 (en) Torque transmission shaft for steering
JP6344467B2 (en) Cross shaft type universal joint yoke
JP2009191973A (en) Yoke for universal coupling, and universal coupling
CN111065835B (en) Torque transmission shaft
JP3661327B2 (en) Universal joint yoke
JP7049124B2 (en) Universal joint yoke
JP2012193798A (en) Coupling structure for shaft and yoke of universal joint, and vehicle steering apparatus
JP2011220417A (en) Joint cross type universal joint yoke
JP6524937B2 (en) Cross joint
JP5742982B2 (en) Joint part between shaft and universal joint yoke and method for manufacturing the same
JP5488546B2 (en) Joint part between shaft and universal joint yoke and method for manufacturing the same
JP6572953B2 (en) Universal joint yoke
JP2012037043A (en) Joint cross type universal joint yoke and its manufacturing method
JP2013018417A (en) Method of manufacturing impact absorbing steering shaft
JP6642551B2 (en) Torque transmission shaft
JP2016008640A (en) Connecting part between yoke for joint cross universal joint and rotating shaft
JP5459287B2 (en) Cross shaft type universal joint
JP5015504B2 (en) Plastic joint structure of rotating member
JP2005321058A (en) Yoke for universal joint
JP2001165184A (en) Universal joint
JP5251159B2 (en) Joint portion between shaft and universal joint yoke, and method for manufacturing shaft

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

R150 Certificate of patent or registration of utility model

Ref document number: 5092913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3