JP2016008640A - Connecting part between yoke for joint cross universal joint and rotating shaft - Google Patents

Connecting part between yoke for joint cross universal joint and rotating shaft Download PDF

Info

Publication number
JP2016008640A
JP2016008640A JP2014128499A JP2014128499A JP2016008640A JP 2016008640 A JP2016008640 A JP 2016008640A JP 2014128499 A JP2014128499 A JP 2014128499A JP 2014128499 A JP2014128499 A JP 2014128499A JP 2016008640 A JP2016008640 A JP 2016008640A
Authority
JP
Japan
Prior art keywords
spline
axial direction
shaft
diameter
yoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014128499A
Other languages
Japanese (ja)
Other versions
JP2016008640A5 (en
Inventor
祥史 黒川
Yoshifumi Kurokawa
祥史 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2014128499A priority Critical patent/JP2016008640A/en
Publication of JP2016008640A publication Critical patent/JP2016008640A/en
Publication of JP2016008640A5 publication Critical patent/JP2016008640A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/26Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected
    • F16D3/38Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another
    • F16D3/382Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another constructional details of other than the intermediate member
    • F16D3/387Fork construction; Mounting of fork on shaft; Adapting shaft for mounting of fork

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Steering Controls (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a structure which can prevent the generation of large tensile stress related to a circumferential direction at a periphery of an axial single-side opening of a spline hole.SOLUTION: A spline shaft part 28 is constituted of a small-diameter spline shaft part 30 which is arranged at a half part in an axial direction, and a large-diameter spline shaft part 29 which is arranged at the other half part in the axial direction, and larger than the small-diameter spline shaft part 30. Concretely, an over-pin diameter (OPD), a tooth-tip circle diameter and a tooth-bottom circle diameter of a male spline part which is formed at an external peripheral face of the small-diameter spline shaft part 30 are set smaller than an over-pin diameter, a tooth-tip circle diameter and a tooth-bottom circle diameter of a male spline part which is formed at an external peripheral face of the large-diameter spline shaft part 29, respectively.

Description

この発明は、例えば自動車用ステアリング装置を構成する回転軸同士をトルク伝達可能に接続する為の十字軸式自在継手(カルダンジョイント)を構成するヨークと回転軸との結合部の改良に関する。   The present invention relates to an improvement in a joint part between a yoke and a rotary shaft constituting a cross shaft universal joint (cardan joint) for connecting, for example, rotational shafts constituting a steering device for an automobile so that torque can be transmitted.

自動車のステアリング装置は、図12に示す様に構成している。運転者が操作するステアリングホイール1の動きは、ステアリングシャフト2、自在継手3a、中間シャフト4、別の自在継手3bを介して、ステアリングギヤユニット5の入力軸6に伝達される。そして、このステアリングギヤユニット5に内蔵したラックアンドピニオン機構により左右1対のタイロッド7、7を押し引きし、左右1対の操舵輪に、前記ステアリングホイール1の操作量に応じた、適切な舵角を付与する様に構成している。尚、図示の例の場合、電動パワーステアリング装置を組み込んでいる。この為に、内側に前記ステアリングシャフト2を回転自在に支持したステアリングコラム8の前端部に、補助力付与の為の動力源として電動モータ9を、このステアリングコラム8の前端部に固定したハウジング10に支持する事により設けている。そして、前記電動モータ9の出力トルク(補助力)をこのハウジング10内に設けたギヤユニット等を介して、前記ステアリングシャフト2に付与する様にしている。   The automobile steering device is configured as shown in FIG. The movement of the steering wheel 1 operated by the driver is transmitted to the input shaft 6 of the steering gear unit 5 via the steering shaft 2, the universal joint 3a, the intermediate shaft 4, and another universal joint 3b. Then, a pair of left and right tie rods 7 and 7 are pushed and pulled by a rack and pinion mechanism built in the steering gear unit 5, and an appropriate rudder according to the operation amount of the steering wheel 1 is applied to the pair of left and right steering wheels. It is configured to give corners. In the case of the illustrated example, an electric power steering device is incorporated. For this purpose, a housing 10 in which an electric motor 9 is fixed to the front end portion of the steering column 8 at the front end portion of the steering column 8 that supports the steering shaft 2 so as to be rotatable inside is provided as a power source for providing auxiliary force. It is provided by supporting. The output torque (auxiliary force) of the electric motor 9 is applied to the steering shaft 2 through a gear unit or the like provided in the housing 10.

図13は、上述の様なステアリング装置に組み込む中間シャフト4の構造の1例を示している。図示の例の場合、この中間シャフト4を、衝突事故の際に前記ステアリングホイール1が運転者側に突き上げられる事を防止する為に、伸縮式としている。前記中間シャフト4は、先端部(図13の左端部)外周面に雄スプライン部11を設けたインナシャフト12と、内周面にこの雄スプライン部11を挿入可能な雌スプライン部13を形成した円管状のアウタチューブ14とから成る。そして、これら雄スプライン部11と雌スプライン部13とをスプライン係合する事で、前記インナシャフト12と前記アウタチューブ14とを、伸縮自在に組み合わせている。又、これらインナシャフト12とアウタチューブ14との基端部に、それぞれ自在継手3a、3bを構成する一方のヨーク15、15の基端部を溶接固定している。   FIG. 13 shows an example of the structure of the intermediate shaft 4 incorporated in the steering device as described above. In the case of the illustrated example, the intermediate shaft 4 is telescopic in order to prevent the steering wheel 1 from being pushed up to the driver side in the event of a collision. The intermediate shaft 4 has an inner shaft 12 provided with a male spline part 11 on the outer peripheral surface of the tip part (left end part in FIG. 13), and a female spline part 13 into which the male spline part 11 can be inserted on the inner peripheral surface. The outer tube 14 has a circular tubular shape. The male spline portion 11 and the female spline portion 13 are spline-engaged, so that the inner shaft 12 and the outer tube 14 are combined in an extendable manner. Further, the base end portions of the yokes 15 and 15 constituting the universal joints 3a and 3b are welded and fixed to the base end portions of the inner shaft 12 and the outer tube 14, respectively.

上述の様なステアリング装置に組み込む自在継手3a、3bとして、例えば特許文献1〜2に記載される様に、十字軸式自在継手が使用されている。図14〜15は、このうちの特許文献1に記載された十字軸式自在継手の1例を示している。自在継手3は、十分な剛性を有する金属材によりそれぞれが二又状に形成された1対のヨーク15a、15bを、軸受鋼の如き合金鋼等の硬質金属により造られた十字軸16を介して、トルク伝達自在に結合して成る。前記両ヨーク15a、15bはそれぞれ、基部17a、17bと、これら両ヨーク15a、15b毎に1対ずつの結合腕部18、18とを備える。このうちの基部17a、17bは、回転軸19の端部(インナシャフト12若しくはアウタチューブ14の基端部、或いは、ステアリングシャフト2の前端部若しくは入力軸6の後端部、図12参照)をトルクの伝達を自在に支持固定する。この為に、前記両ヨーク15a、15bのうち、本発明の対象となる一方(図14〜15の左方)のヨーク15aの基部17aは、全体を略円環状に造られており、この基部17aの径方向中心部に、この基部17aを軸方向に貫通する状態で、スプライン孔20が形成されている。そして、前記回転軸19の端部に設けられたスプライン軸部を前記スプライン孔20に圧入し、前記基部17aと前記回転軸19の端部のうち、この基部17aから外れた部分とを、全周に亙り溶接する所謂全周溶接により結合している。これに対し、前記両ヨーク15a、15bのうち、本発明の対象からは外れる他方(図14〜15の右方)のヨーク15bの基部17bは、図示しない回転軸の端部を挿入する為、円周方向1箇所を不連続部とした欠円筒状に形成して、内径を拡縮可能としている。又、前記基部17bには、この不連続部を円周方向両側から挟む状態で、1対のフランジ部21a、21bが設けられている。そして、前記基部17bの内周面に形成した雌スプライン部22と、図示しない別の回転軸の端部に設けたスプライン軸部とをスプライン係合させた状態で、一方のフランジ部21aに形成した通孔23aに杆部を挿通した図示しないボルトの先端部を、他方のフランジ部21bに形成した通孔23bに圧入固定したナット24に螺合させて締め付ける。これにより、前記両フランジ部21a、21b同士の間隔を縮め、前記基部17bを縮径させる事に基づき、この基部17bに対して前記別の回転軸の端部を結合固定する。尚、本明細書及び特許請求の範囲に於いて、ヨークの基部と回転軸との結合部に関して用いる「スプライン」の語には、ピッチの細かい、所謂「セレーション」と呼ばれるものも含む。   As the universal joints 3a and 3b incorporated in the steering device as described above, for example, as described in Patent Documents 1 and 2, a cross shaft type universal joint is used. 14 to 15 show an example of the cross shaft type universal joint described in Patent Document 1 among them. The universal joint 3 includes a pair of yokes 15a and 15b, each of which is formed in a bifurcated shape by a metal material having sufficient rigidity, via a cross shaft 16 made of a hard metal such as an alloy steel such as bearing steel. In this way, the torque is transmitted and coupled. Each of the yokes 15a and 15b includes a base portion 17a and 17b, and a pair of connecting arm portions 18 and 18 for each of the yokes 15a and 15b. Of these, the base portions 17a and 17b are the end portions of the rotating shaft 19 (the base end portion of the inner shaft 12 or the outer tube 14, the front end portion of the steering shaft 2 or the rear end portion of the input shaft 6, see FIG. 12). Torque transmission is supported and fixed freely. Therefore, the base portion 17a of one yoke 15a (the left side in FIGS. 14 to 15) of the yokes 15a and 15b, which is the object of the present invention, is formed in a substantially annular shape as a whole. A spline hole 20 is formed in the central portion of the radial direction 17a so as to penetrate the base portion 17a in the axial direction. Then, the spline shaft portion provided at the end portion of the rotating shaft 19 is press-fitted into the spline hole 20, and the base portion 17 a and the portion of the end portion of the rotating shaft 19 that is separated from the base portion 17 a are all They are connected by so-called all-around welding that is welded over the circumference. On the other hand, of the yokes 15a and 15b, the base portion 17b of the other yoke 15b that is out of the scope of the present invention (on the right side in FIGS. 14 to 15) inserts an end portion of a rotating shaft (not shown). The inner diameter can be enlarged or reduced by forming a circular cylinder with a discontinuous portion in one circumferential direction. The base portion 17b is provided with a pair of flange portions 21a and 21b with the discontinuous portion being sandwiched from both sides in the circumferential direction. And it forms in one flange part 21a in the state which carried out the spline engagement of the female spline part 22 formed in the internal peripheral surface of the said base part 17b, and the spline shaft part provided in the edge part of another rotating shaft which is not shown in figure. The front end of a bolt (not shown) with the flange portion inserted through the through hole 23a is screwed into a nut 24 that is press-fitted into the through hole 23b formed in the other flange portion 21b and tightened. As a result, the distance between the flange portions 21a and 21b is reduced and the diameter of the base portion 17b is reduced, and the end portion of the other rotating shaft is coupled and fixed to the base portion 17b. In the present specification and claims, the term “spline” used for the joint between the base portion of the yoke and the rotating shaft includes what is called “serration” with a fine pitch.

又、前記両結合腕部18、18は、前記基部17a(17b)の軸方向片端縁のうちの直径方向反対側2箇所位置から軸方向片側に延出しており、互いの内側面同士を対向させている。又、前記両結合腕部18、18の先端寄り部分には、互いに同心の円孔25、25を形成している。   Further, the connecting arm portions 18 and 18 extend from one axial end of the base portion 17a (17b) to two axially opposite positions on one side in the diametrical direction, and face each other's inner side surfaces. I am letting. In addition, concentric circular holes 25 and 25 are formed in the portions near the tips of the connecting arm portions 18 and 18, respectively.

又、前記十字軸16は、互いに直交する状態で設けられた1対の軸部26a、26bのうち、一方の軸部26aの両端部を、前記一方のヨーク15aの結合腕部18、18に形成した円孔25、25の内側に、同じく他方の軸部26bの両端部を、前記他方のヨーク15bの結合腕部18、18に形成した円孔25、25の内側に、それぞれラジアルニードル軸受27、27を介して枢支する事により、前記十字軸16に対して前記両ヨーク15a、15bが、軽い力で揺動変位する様にしている。この様に構成する為、これら両ヨーク15a、15bの中心軸同士が一致しない状態で、これら両ヨーク15a、15bの間での回転力の伝達を、伝達ロスを抑えた状態で行える。   The cross shaft 16 has a pair of shaft portions 26a and 26b provided in a state of being orthogonal to each other, and both ends of one shaft portion 26a are connected to the connecting arm portions 18 and 18 of the one yoke 15a. Similarly, both ends of the other shaft portion 26b are formed inside the circular holes 25, 25, and the radial needle bearings are arranged inside the circular holes 25, 25 formed in the coupling arm portions 18, 18 of the other yoke 15b. The two yokes 15a and 15b are oscillated and displaced with a light force with respect to the cross shaft 16 by being pivotally supported via the shafts 27 and 27. Due to such a configuration, the rotational force can be transmitted between the yokes 15a and 15b with the transmission loss suppressed in a state where the central axes of the yokes 15a and 15b do not coincide with each other.

上述の様な十字軸式の自在継手3を構成する、前記両ヨーク15a、15b同士の間で回転力を伝達する場合、一方のヨーク15aの基部17aに形成したスプライン孔20ののうち、軸方向片側開口の周縁部に、大きなフープ応力(円周方向の引っ張り応力)が発生し易い。即ち、前記両ヨーク15a、15b同士の間で回転力を伝達する際には、図16〜17に誇張して示す様に、前記両結合腕部18、18が捩れ方向(基部17aに結合固定した回転軸19の中心軸周りに回転する方向)に弾性変形する傾向となる。これにより、図18に鎖線αで示す様に、前記スプライン孔20の軸方向片側開口が非円形(楕円形)に歪む。特に、前述の図12に示す様なコラムアシスト式の電動パワーステアリング装置を組み込んだステアリング装置の場合、自在継手3の伝達する回転力が大きくなり、上述の様なスプライン孔20の歪みが著しくなる。そして、この様な歪みにより、このスプライン孔20の軸方向片側開口の内周縁のうち、内径寸法が小さくなった部分(図18の鎖線βで囲んだ部分)と、前記回転軸19の外周面との当接圧が大きくなって、この内径寸法が小さくなった部分に、この回転軸19の円周方向に関する大きな引っ張り応力が集中して発生し易くなる。この様な大きな引っ張り応力の発生は、前記一方のヨーク15a、延いては、前記自在継手3の耐久性の確保の面から不利となる。   Of the spline holes 20 formed in the base portion 17a of one yoke 15a, when the rotational force is transmitted between the yokes 15a and 15b constituting the cross shaft type universal joint 3 as described above, the shaft Large hoop stress (circumferential tensile stress) is likely to occur at the peripheral edge of the unidirectional opening. That is, when transmitting the rotational force between the yokes 15a and 15b, as shown exaggeratedly in FIGS. 16 to 17, the coupling arm portions 18 and 18 are twisted (coupled and fixed to the base portion 17a). The direction of rotation around the central axis of the rotating shaft 19 tends to be elastically deformed. As a result, as indicated by a chain line α in FIG. 18, the one-side axial opening of the spline hole 20 is distorted into a non-circular shape (elliptical shape). In particular, in the case of a steering apparatus incorporating a column assist type electric power steering apparatus as shown in FIG. 12 described above, the rotational force transmitted by the universal joint 3 increases, and the distortion of the spline hole 20 as described above becomes significant. . Then, due to such distortion, a part of the inner peripheral edge of the one-side opening in the axial direction of the spline hole 20 whose inner diameter is reduced (a part surrounded by a chain line β in FIG. 18), and an outer peripheral surface of the rotary shaft 19 A large tensile stress in the circumferential direction of the rotary shaft 19 is likely to be concentrated and generated in the portion where the inner diameter dimension is reduced due to an increase in the contact pressure. The generation of such a large tensile stress is disadvantageous in terms of ensuring the durability of the one yoke 15a, and thus the universal joint 3.

特開平10−205547号公報JP-A-10-205547 特開2008−196650号公報JP 2008-196650 A

本発明は、上述の様な事情に鑑み、ヨークを構成する基部に形成した結合孔の軸方向片端部の周縁部に、円周方向に関する大きな引っ張り応力が発生する事を防止できる、十字軸式自在継手用ヨークと回転軸との結合部の構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention is a cross shaft type that can prevent the occurrence of a large tensile stress in the circumferential direction at the peripheral edge portion of one axial end portion of the coupling hole formed in the base portion constituting the yoke. The invention was invented to realize the structure of the joint portion between the universal joint yoke and the rotary shaft.

本発明の十字軸式自在継手用ヨークと回転軸との結合部は、十字軸式自在継手を構成するヨークと、使用時に回転する回転軸とを備える。
このうちのヨークは、径方向中心部に軸方向に形成された結合孔を有する基部と、この基部の軸方向片端縁のうちで、前記回転軸に関する直径方向反対側2箇所位置から軸方向片側に延出する状態で設けられた1対の結合腕部とを有する。
前記回転軸は、軸方向片端部に設けた圧入部を前記結合孔の軸方向他側からこの結合孔の内側に圧入する事により、前記基部に結合固定されている。
The joint part of the yoke for cross-axis type universal joints of this invention and a rotating shaft is provided with the yoke which comprises a cross-axis type universal joint, and the rotating shaft which rotates at the time of use.
Of these, the yoke has a base portion having a coupling hole formed in the axial direction at the center in the radial direction, and one axial end edge of the base portion, from one position on the opposite side in the diametrical direction with respect to the rotating shaft to one side in the axial direction. And a pair of connecting arm portions provided in a state of extending in the direction.
The rotary shaft is coupled and fixed to the base portion by press-fitting a press-fit portion provided at one end in the axial direction into the inside of the coupling hole from the other axial side of the coupling hole.

特に、本発明の十字軸式自在継手用ヨークと回転軸との結合部に於いては、前記結合孔の内周面に対する前記圧入部の軸方向片端寄り部分の締め代を、同じく軸方向他端寄り部分の締め代よりも小さくしている(結合孔の内周面に対する圧入部の軸方向片端寄り部分の締め代が負、即ち、この圧入部の軸方向片端寄り部分の外周面と前記結合孔の内周面とを隙間を介して近接対向させた状態を含む)。   In particular, in the joint portion of the cross shaft type universal joint yoke of the present invention and the rotary shaft, the tightening margin of the portion near the axial end of the press-fitting portion with respect to the inner peripheral surface of the joint hole is also the same as that in the axial direction. The tightening margin of the portion near the end is smaller (the tightening margin of the portion near the one end in the axial direction of the press-fit portion relative to the inner peripheral surface of the coupling hole is negative, that is, the outer peripheral surface of the portion near the one end in the axial direction of the press-fit portion Including a state in which the inner peripheral surface of the coupling hole is closely opposed via a gap).

上述の様な本発明の十字軸式自在継手用ヨークと回転軸との結合部を実施する場合に好ましくは、請求項2に記載した発明の様に、前記圧入部のうち、少なくとも軸方向片半部の前記結合孔の内周面に対する締め代を、軸方向片側に向かう程小さくする。   In the case where the joint portion between the cross shaft type universal joint yoke and the rotary shaft of the present invention as described above is implemented, it is preferable that at least the axial direction piece of the press-fit portion as in the invention described in claim 2. The interference with respect to the inner peripheral surface of the coupling hole in the half is made smaller toward the one side in the axial direction.

又、上述の様な本発明を実施する場合に、例えば請求項3〜4に記載した発明の様に、前記結合孔を、内周面に雌スプライン部を設けたスプライン孔とし、前記圧入部を、外周面に雄スプライン部を設けたスプライン軸部とする。
そして、請求項3に記載した発明の場合には、前記雄スプライン部のオーバーピン径と、歯先円直径と、歯底円直径とのうちの少なくとも1つの直径を、前記スプライン軸部の軸方向片端寄り部分で軸方向他端寄り部分よりも小さくする。
これに対し、請求項4に記載した発明の場合には、前記雄スプライン部の歯厚を、前記スプライン軸部の軸方向片端寄り部分で軸方向他端寄り部分よりも小さくする。
When implementing the present invention as described above, for example, as in the invention described in claims 3 to 4, the coupling hole is a spline hole in which a female spline portion is provided on an inner peripheral surface, and the press-fitting portion Is a spline shaft portion provided with a male spline portion on the outer peripheral surface.
In the case of the invention described in claim 3, at least one of the diameter of the overpin, the tip circle diameter, and the root circle diameter of the male spline portion is set to the axis of the spline shaft portion. The portion closer to one end in the direction is made smaller than the portion closer to the other end in the axial direction.
On the other hand, in the case of the invention described in claim 4, the tooth thickness of the male spline portion is made smaller at the portion near the one end in the axial direction of the spline shaft portion than at the portion near the other end in the axial direction.

又、上述の様な本発明を実施する場合に、好ましくは請求項5に記載した発明の様に、前記結合孔を、前記基部を軸方向に貫通する状態で設け、この結合孔に前記圧入部を、この圧入部の軸方向片端部がこの結合孔の軸方向片側開口から突出する状態で圧入する。そして、この圧入部の軸方向片端部の円周方向1乃至複数箇所を径方向外方に塑性変形させ、かしめ部を設ける事で、前記結合孔から前記圧入部が抜け出る事を防止する。   In carrying out the present invention as described above, preferably, as in the invention described in claim 5, the coupling hole is provided so as to penetrate the base portion in the axial direction, and the press-fitting into the coupling hole is performed. Part is press-fitted in a state where one end part in the axial direction of the press-fitting part protrudes from one axial opening of the coupling hole. Then, one or a plurality of circumferential directions of one end portion in the axial direction of the press-fitting portion are plastically deformed radially outward and a caulking portion is provided to prevent the press-fitting portion from coming out of the coupling hole.

上述の様に構成する本発明の十字軸式自在継手用ヨークと回転軸との結合部によれば、ヨークを構成する基部に形成した結合孔の軸方向片端部の周縁部に、円周方向に関する大きな引っ張り応力が発生する事を防止できる。
即ち、本発明の場合、前記結合孔に圧入固定する、回転軸の軸方向片端部に設けた圧入部のうち、軸方向片端寄り部分の締め代を、同じく軸方向他端寄り部分の締め代よりも小さくしている。従って、十字軸式の自在継手により回転力を伝達する際に、前記ヨークを構成する1対の結合腕部が捩れ方向に弾性変形する傾向となった場合であっても、前記結合孔の軸方向片端部の周縁部と、前記回転軸(圧入部)の外周面との当接圧が過度に大きくなる事を防止できる。この為、前記周縁部の一部に、円周方向に関する大きな引っ張り応力が発生する事を防止できて、前記ヨーク、延いては、前記自在継手の耐久性の向上を図れる。
According to the joint part of the cross shaft type universal joint yoke and the rotary shaft of the present invention configured as described above, the circumferential direction is formed at the peripheral edge part of one axial end part of the joint hole formed in the base part constituting the yoke. It is possible to prevent a large tensile stress from being generated.
That is, in the case of the present invention, among the press-fit portions provided at one end in the axial direction of the rotating shaft that are press-fitted into the coupling hole, the allowance for the portion near the one end in the axial direction is the same as the allowance for the portion near the other end in the axial direction. Smaller than that. Therefore, even when the pair of coupling arm portions constituting the yoke tend to elastically deform in the torsional direction when the rotational force is transmitted by the cruciform universal joint, the shaft of the coupling hole is used. It can prevent that the contact pressure with the peripheral part of a direction one end part and the outer peripheral surface of the said rotating shaft (press-fit part) becomes large too much. For this reason, it is possible to prevent a large tensile stress in the circumferential direction from being generated in a part of the peripheral portion, and it is possible to improve the durability of the yoke and, consequently, the universal joint.

本発明の実施の形態の第1例を示す、部分切断側面図。The partial cutting side view which shows the 1st example of embodiment of this invention. 同じく回転軸を取り出して示す、要部拡大側面図。The principal part enlarged side view which similarly takes out and shows a rotating shaft. 雄スプライン部を設ける以前の状態で示す、図2と同様の図。The figure similar to FIG. 2 shown in the state before providing a male spline part. 本発明の実施の形態の第2例を示す、図2と同様の図。The figure similar to FIG. 2 which shows the 2nd example of embodiment of this invention. 同第3例を示す、図2と同様の図。The figure similar to FIG. 2 which shows the 3rd example. 同第4例を示す、図2と同様の図。The figure similar to FIG. 2 which shows the 4th example. 同第5例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the same 5th example. 同第6例を示す、図2と同様の図。The figure similar to FIG. 2 which shows the said 6th example. 同第7例を示す、図1と同様の図(A)と、(A)のX部拡大図(B)。The same figure (A) as FIG. 1 which shows the 7th example, and the X section enlarged view (B) of (A). 同第8例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 8th example. 本発明と組み合わせて実施可能な構造を説明する為のヨークを軸方向片側から見た状態を示す端面図。The end view which shows the state which looked at the yoke for demonstrating the structure which can be implemented in combination with this invention from the axial direction one side. 従来から知られているステアリング装置の1例を示す部分切断側面図。The partially cut side view which shows an example of the steering apparatus known conventionally. 中間シャフトを取り出して示す部分切断側面図。The partial cutting side view which takes out and shows an intermediate shaft. 従来から知られている十字軸式自在継手の1例を示す側面図。The side view which shows an example of the cross-shaft type universal joint known conventionally. 一部を切断した状態で示す、図14の下方から見た図。The figure seen from the lower part of FIG. 14 shown in the state which cut | disconnected a part. 回転力の伝達に伴ってヨークが弾性変形した状態を誇張して示す斜視図。The perspective view which exaggerates and shows the state which the yoke elastically deformed with transmission of rotational force. 図16の上方から見た端面図。The end view seen from the upper part of FIG. 回転力を伝達しない状態で示す、図17と同様の図。The figure similar to FIG. 17 shown in the state which does not transmit rotational force.

[実施の形態の第1例]
図1〜3は、請求項1、3に対応する、本発明の実施の形態の第1例を示している。尚、本例を含め、本発明の特徴は、ヨーク15aを構成する基部17aのスプライン孔20のうち、軸方向片側(図1の右側)開口の周縁部に、円周方向に関する大きな引っ張り応力が発生する事を防止する為の構造にある。その他の部分の構造及び作用は、前述の図14〜15に示した従来構造を含め、従来から知られている構造と同様であるから、重複する図示並びに説明は、省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
[First example of embodiment]
1 to 3 show a first example of an embodiment of the present invention corresponding to claims 1 and 3. It should be noted that a feature of the present invention including this example is that a large tensile stress in the circumferential direction is applied to the peripheral edge portion of the opening on one axial side (the right side in FIG. 1) of the spline hole 20 of the base portion 17a constituting the yoke 15a. It is in a structure to prevent it from occurring. Since the structure and operation of the other parts are the same as those conventionally known, including the conventional structure shown in FIGS. 14 to 15 described above, overlapping illustrations and descriptions are omitted or simplified. The description will focus on the features of this example.

本例の場合も、前述の図14〜15に示した従来構造と同様に、前記ヨーク15aの基部17aは、全体を略円環状に造られており、この基部17aの径方向中心部に、この基部17aを軸方向に貫通する状態で、前記スプライン孔20が形成されている。このスプライン孔20の直径(オーバーピン径、歯先円直径及び歯底円直径)は、軸方向に亙って同じとしている。そして、中実状又は中空状の回転軸19aの軸方向片端部に設けた、外周面を雄スプライン部としたスプライン軸部28を、前記スプライン孔20に軸方向他側開口から圧入し、前記基部17aの軸方向他端面(図1の左端面)と、前記回転軸19aの中間部(スプライン軸部28に隣接する部分)の外周面とを全周に亙り溶接する事により、前記ヨーク15aを前記回転軸19aに対し結合固定している。尚、本例の場合、前記スプライン軸部28の軸方向片端部を、前記スプライン孔20の軸方向片側開口から突出させている。   Also in the case of this example, the base portion 17a of the yoke 15a is formed in a substantially annular shape as a whole in the same manner as the conventional structure shown in FIGS. 14 to 15 described above, and at the central portion in the radial direction of the base portion 17a, The spline hole 20 is formed so as to penetrate the base portion 17a in the axial direction. The diameters of the spline holes 20 (overpin diameter, tip diameter, and root diameter) are the same in the axial direction. Then, a spline shaft portion 28 having an outer peripheral surface as a male spline portion provided at one axial end portion of the solid or hollow rotating shaft 19a is press-fitted into the spline hole 20 from the other axial opening, and the base portion The yoke 15a is welded by welding the other end surface in the axial direction of 17a (the left end surface in FIG. 1) and the outer peripheral surface of the intermediate portion of the rotating shaft 19a (the portion adjacent to the spline shaft portion 28) over the entire circumference. The rotary shaft 19a is coupled and fixed. In the case of this example, one end portion in the axial direction of the spline shaft portion 28 is protruded from one side opening in the axial direction of the spline hole 20.

特に本例の場合、前記スプライン軸部28を、先半部(軸方向片半部であり、図1〜2の右半部)に設けた小径スプライン軸部30と、基半部(軸方向他半部であり、図1〜2の左半部)に設けた、この小径スプライン軸部30よりも大径の大径スプライン軸部29とから構成している。具体的には、この小径スプライン軸部30の外周面に形成した雄スプライン部のオーバーピン径(OPD)、歯先円直径及び歯底円直径を、前記大径スプライン軸部29の外周面に形成した雄スプライン部のオーバーピン径、歯先円直径及び歯底円直径よりもそれぞれ小さくしている。これにより、前記スプライン孔20の内周面に対する前記小径スプライン軸部30の径方向に関する締め代を、同じく前記大径スプライン軸部29の径方向に関する締め代よりも小さくしている。又、前記スプライン軸部28のうち、このスプライン軸部28の全長の50〜80%の範囲を前記大径スプライン軸部29とし、20〜50%の範囲を前記小径スプライン軸部30としている。これにより、前記スプライン孔20と前記スプライン軸部28との嵌合部(スプライン係合部)のうち、このスプライン孔20の全長の50〜80%の範囲が前記大径スプライン軸部29と嵌合し、20〜50%の範囲が前記小径スプライン軸部30と嵌合している。この様なスプライン軸部28を形成する作業は、例えば次の様にして行う。先ず、図3に示す様に、前記回転軸19aの素材となる金属製の棒材31に切削加工を施して、この棒材31の端部を、軸方向片半部の外径が軸方向他半部の外径よりも小さい、段付軸部32とする。そして、この段付軸部32の軸方向片半部外周面と軸方向他半部外周面とにそれぞれ転造加工を施す事で、前記スプライン軸部28とする。或いは、単一円筒面状の棒材の端部を、前記スプライン軸部28の外面形状に見合う形状を有する{奥半部の内径(オーバーピン径、歯先円直径及び歯底円直径)が開口側半部の内径よりも小さい}ダイス内に押し込むプレス加工により、前記スプライン軸部28とする事もできる。   In particular, in the case of this example, the spline shaft portion 28 includes a small-diameter spline shaft portion 30 provided in a front half portion (a half portion in the axial direction and the right half portion in FIGS. 1 and 2), and a base half portion (axial direction). The other half portion is a large-diameter spline shaft portion 29 having a larger diameter than the small-diameter spline shaft portion 30 provided in the left half portion of FIGS. Specifically, an overpin diameter (OPD), a tip circle diameter, and a root circle diameter of the male spline portion formed on the outer peripheral surface of the small-diameter spline shaft portion 30 are set on the outer peripheral surface of the large-diameter spline shaft portion 29. The formed male spline part has an overpin diameter, a tip circle diameter, and a root circle diameter smaller than each other. Thereby, the interference with respect to the radial direction of the small-diameter spline shaft portion 30 with respect to the inner peripheral surface of the spline hole 20 is also made smaller than the interference with respect to the radial direction of the large-diameter spline shaft portion 29. Of the spline shaft portion 28, a range of 50 to 80% of the total length of the spline shaft portion 28 is the large-diameter spline shaft portion 29, and a range of 20 to 50% is the small-diameter spline shaft portion 30. As a result, of the fitting portion (spline engaging portion) between the spline hole 20 and the spline shaft portion 28, a range of 50 to 80% of the total length of the spline hole 20 is fitted with the large-diameter spline shaft portion 29. The range of 20 to 50% is fitted with the small-diameter spline shaft portion 30. The operation of forming such a spline shaft portion 28 is performed as follows, for example. First, as shown in FIG. 3, the metal bar 31 used as the material of the rotary shaft 19a is cut, and the end of the bar 31 has an axial diameter of one half in the axial direction. The stepped shaft portion 32 is smaller than the outer diameter of the other half portion. The spline shaft portion 28 is formed by rolling each of the stepped shaft portion 32 on the outer peripheral surface of the half piece in the axial direction and the outer peripheral surface of the other half portion in the axial direction. Alternatively, the end portion of the single cylindrical surface bar has a shape corresponding to the outer surface shape of the spline shaft portion 28 {the inner diameter of the back half (overpin diameter, tooth tip diameter and root diameter). The spline shaft portion 28 can be formed by pressing into a die smaller than the inner diameter of the opening half.

尚、本例を実施する場合、前記スプライン孔20の内周面に対する前記小径スプライン軸部30の締め代を、同じく前記大径スプライン軸部29の締め代よりも小さくできれば、雄スプライン部のオーバーピン径、歯先円直径及び歯底円直径のうちの何れか1つ或いは何れか2つの直径を、前記小径スプライン軸部30で前記大径スプライン軸部29よりも小さくする様に構成する事もできる。
又、前記スプライン孔20の内周面に対する前記小径スプライン軸部30の締め代を負にする(小径スプライン軸部30の外周面とスプライン孔20の内周面とを隙間を介して近接対向させる)事もできる。
但し、何れの場合にも、前記スプライン軸部28のうちの大径スプライン軸部29は、前記スプライン孔20の内側に十分な締め代を持った状態(締り嵌めによる圧入状態)で内嵌固定(スプライン係合)する。
In the case of carrying out this example, if the tightening allowance of the small-diameter spline shaft portion 30 with respect to the inner peripheral surface of the spline hole 20 can be made smaller than the tightening allowance of the large-diameter spline shaft portion 29, the male spline portion overshoots. Any one or any two of the pin diameter, the tip circle diameter, and the root circle diameter may be configured to be smaller in the small diameter spline shaft portion 30 than in the large diameter spline shaft portion 29. You can also.
Further, the allowance of the small-diameter spline shaft portion 30 with respect to the inner peripheral surface of the spline hole 20 is made negative (the outer peripheral surface of the small-diameter spline shaft portion 30 and the inner peripheral surface of the spline hole 20 are closely opposed to each other through a gap. You can also.
However, in any case, the large-diameter spline shaft portion 29 of the spline shaft portions 28 is fitted and fixed in a state of having a sufficient tightening margin inside the spline hole 20 (press-fit state by interference fit). (Spline engagement).

上述の様な本例の自在継手用ヨークと回転軸との結合部によれば、前記スプライン孔20のうち、軸方向片側開口の周縁部に、円周方向に関する大きな引っ張り応力が発生する事を防止できる。
即ち、本例の場合、前記スプライン孔20と前記スプライン軸部28との嵌合部(スプライン係合部)のうち、このスプライン軸部28の軸方向片半部に設けた前記小径スプライン軸部30の前記スプライン孔20の内周面に対する締め代を、軸方向他半部に設けた前記大径スプライン軸部29のこのスプライン孔20の内周面に対する締め代よりも小さくしている。従って、自在継手により回転力を伝達する事に伴い、前記ヨーク15aを構成する1対の結合腕部18、18が捩れ方向(回転軸19aの中心軸周りに回転する方向)に弾性変形する傾向となって、前記スプライン孔20の軸方向片側開口が非円形に歪んだ場合であっても、この軸方向片側開口の周縁部のうちの内径が小さくなった部分と、前記スプライン軸部28(の小径スプライン軸部30)の外周面との当接圧が過度に大きくなる事を防止できる。この結果、前記周縁部のうちの内径が小さくなった部分に、円周方向に関する大きな引っ張り応力が発生する事を防止できて、前記ヨーク15a、延いては、前記自在継手の耐久性の向上を図る事ができる。
According to the joint portion between the universal joint yoke and the rotating shaft of this example as described above, a large tensile stress in the circumferential direction is generated in the peripheral edge portion of the one-side axial opening of the spline hole 20. Can be prevented.
That is, in the case of the present example, the small-diameter spline shaft portion provided in one half of the axial direction of the spline shaft portion 28 in the fitting portion (spline engagement portion) between the spline hole 20 and the spline shaft portion 28. The tightening allowance of 30 on the inner peripheral surface of the spline hole 20 is made smaller than the allowance on the inner peripheral surface of the spline hole 20 of the large-diameter spline shaft portion 29 provided in the other half portion in the axial direction. Accordingly, as the rotational force is transmitted by the universal joint, the pair of coupling arm portions 18 and 18 constituting the yoke 15a tend to be elastically deformed in the twisting direction (direction rotating around the central axis of the rotating shaft 19a). Thus, even when the axial one-side opening of the spline hole 20 is distorted into a non-circular shape, the portion of the peripheral edge of the axial one-side opening has a reduced inner diameter, and the spline shaft portion 28 ( The contact pressure with the outer peripheral surface of the small-diameter spline shaft portion 30) can be prevented from becoming excessively large. As a result, it is possible to prevent a large tensile stress in the circumferential direction from occurring in a portion of the peripheral edge where the inner diameter is reduced, and to improve the durability of the yoke 15a and the universal joint. You can plan.

又、本例の場合には、前記スプライン孔20内に前記スプライン軸部28を圧入する作業の容易化を図れる。即ち、前記スプライン軸部28のうち、軸方向片半部に設けた小径スプライン軸部30の直径を、軸方向他半部に設けた大径スプライン軸部29の直径よりも小さくしている為、前記スプライン軸部28を前記スプライン孔20内に圧入する作業の初期段階で、前記小径スプライン軸部30を前記スプライン孔20に挿入する事により、前記スプライン軸部28とこのスプライン孔20との心合わせを行える。従って、このスプライン軸部28を、このスプライン孔20の軸方向他側からこのスプライン孔20の内側に正しい姿勢で圧入する作業の容易化を図れる。尚、前記ヨーク15aと前記回転軸19aとの結合部は、前記大径スプライン軸部29を前記長さの範囲に規制している為、使用上十分な結合強度を確保できる。
尚、本発明を実施する場合に、ヨークを構成する基部の径方向中心部に形成する結合孔を単なる円孔とし、この円孔に、回転軸19aのスプライン軸部28を圧入する様に構成する事もできる。この場合には、このスプライン軸部28の外周面に設けた雄スプライン部を構成する各歯が、前記円孔の内周面に締め代を有する状態で嵌合する。
In the case of this example, the work of press-fitting the spline shaft portion 28 into the spline hole 20 can be facilitated. That is, among the spline shaft portions 28, the diameter of the small-diameter spline shaft portion 30 provided in one half of the axial direction is made smaller than the diameter of the large-diameter spline shaft portion 29 provided in the other half of the axial direction. By inserting the small-diameter spline shaft portion 30 into the spline hole 20 at the initial stage of press-fitting the spline shaft portion 28 into the spline hole 20, the spline shaft portion 28 and the spline hole 20 You can align. Therefore, it is possible to facilitate the work of press-fitting the spline shaft portion 28 in the correct posture from the other side in the axial direction of the spline hole 20 to the inside of the spline hole 20. Note that the coupling portion between the yoke 15a and the rotary shaft 19a restricts the large-diameter spline shaft portion 29 to the length range, so that a sufficient coupling strength in use can be secured.
When the present invention is carried out, the coupling hole formed in the central portion in the radial direction of the base portion constituting the yoke is a simple circular hole, and the spline shaft portion 28 of the rotary shaft 19a is press-fitted into this circular hole. You can also do it. In this case, each tooth constituting the male spline portion provided on the outer peripheral surface of the spline shaft portion 28 is fitted in a state having a tightening margin on the inner peripheral surface of the circular hole.

[実施の形態の第2例]
図4は、請求項1〜3に対応する、本発明の実施の形態の第2例を示している。本例の場合、回転軸19bの端部に設けたスプライン軸部28aのうち、先半部(図4の右半部)33の外周面に形成した雄スプライン部のオーバーピン径、歯先円直径及び歯底円直径を軸方向片側(図4の右側)に向かう程小さくしている。これにより、ヨーク15aのスプライン孔20(図1参照)の内周面に対する、前記スプライン軸部28aの先半部33の径方向に関する締め代を、軸方向片側に向かう程小さくしている。
その他の部分の構成及び作用は、前述した実施の形態の第1例と同様である。
[Second Example of Embodiment]
FIG. 4 shows a second example of an embodiment of the present invention corresponding to claims 1 to 3. In the case of this example, of the spline shaft portion 28a provided at the end portion of the rotating shaft 19b, the overpin diameter of the male spline portion formed on the outer peripheral surface of the tip half portion (the right half portion in FIG. 4), the tooth tip circle The diameter and the root circle diameter are made smaller toward the one axial side (the right side in FIG. 4). Accordingly, the tightening margin in the radial direction of the front half portion 33 of the spline shaft portion 28a with respect to the inner peripheral surface of the spline hole 20 (see FIG. 1) of the yoke 15a is reduced toward the one side in the axial direction.
The configuration and operation of the other parts are the same as in the first example of the embodiment described above.

[実施の形態の第3例]
図5も、請求項1〜3に対応する、本発明の実施の形態の第3例を示している。本例の場合、回転軸19cの端部に設けたスプライン軸部28b全体の直径を、軸方向片側(図5の右側)に向かう程小さくしている(スプライン軸部28bの外周面に形成した雄スプライン部の歯先円直径及び歯底円直径を軸方向片側に向かう程小さくする事により、オーバーピン径を軸方向片側に向かう程小さくしている)。そして、前記スプライン軸28bの外周面に形成した雄スプライン部の歯先面及び歯底面の軸方向に亙る断面形状(母線形状)を部分円弧状としている。これにより、ヨーク15aのスプライン孔20(図1参照)の内周面に対する、前記スプライン軸部28bの径方向に関する締め代を、軸方向片側に向かう程小さくしている。
その他の部分の構成及び作用は、前述した実施の形態の第1例と同様である。
[Third example of embodiment]
FIG. 5 also shows a third example of the embodiment of the present invention corresponding to claims 1 to 3. In the case of this example, the diameter of the entire spline shaft portion 28b provided at the end of the rotating shaft 19c is reduced toward the one side in the axial direction (right side in FIG. 5) (formed on the outer peripheral surface of the spline shaft portion 28b). The diameter of the tip circle and the root circle of the male spline portion is reduced toward the one side in the axial direction, thereby reducing the overpin diameter toward the one side in the axial direction). The cross-sectional shape (bus shape) extending in the axial direction of the tooth tip surface and the tooth bottom surface of the male spline portion formed on the outer peripheral surface of the spline shaft 28b is a partial arc shape. Thus, the tightening margin in the radial direction of the spline shaft portion 28b with respect to the inner peripheral surface of the spline hole 20 (see FIG. 1) of the yoke 15a is reduced toward the one side in the axial direction.
The configuration and operation of the other parts are the same as in the first example of the embodiment described above.

[実施の形態の第4例]
図6も、請求項1〜3に対応する、本発明の実施の形態の第4例を示している。本例の場合、回転軸19dのスプライン軸部28cの外周面に形成した雄スプライン部の歯底円直径を、軸方向片側に向かう程小さくする事により、オーバーピン径を軸方向片側に向かう程小さくしており、歯先円直径を軸方向に亙り一定としている。この様な本例によれば、前記スプライン軸部28cを、ヨーク15aのスプライン孔20(図1参照)に圧入する作業の容易化を図れる。
その他の部分の構成及び作用は、上述した実施の形態の第3例と同様である。
[Fourth Example of Embodiment]
FIG. 6 also shows a fourth example of the embodiment of the present invention corresponding to claims 1 to 3. In the case of this example, by reducing the root diameter of the male spline portion formed on the outer peripheral surface of the spline shaft portion 28c of the rotating shaft 19d so as to decrease toward one side in the axial direction, the diameter of the overpin increases toward one side in the axial direction. The tip diameter is constant over the axial direction. According to this example, it is possible to facilitate the work of press-fitting the spline shaft portion 28c into the spline hole 20 (see FIG. 1) of the yoke 15a.
The configuration and operation of the other parts are the same as in the third example of the embodiment described above.

[実施の形態の第5例]
図7は、請求項1、3に対応する、本発明の実施の形態の第5例を示している。本例の場合、ヨーク15cを構成する基部17cに、この基部17cの基端面(軸方向他端面であり、図7の左端面)にのみ開口する状態で、有底円筒状のスプライン孔20aを形成し、このスプライン孔20aに回転軸19aのスプライン軸部28を圧入している。この様な本例によれば、このスプライン孔20aの底部の存在に基づき、このスプライン孔20aの奥端部の周縁部に発生する円周方向に関する引っ張り応力が発生する事を抑える事ができる。
その他の部分の構成及び作用は、前述した実施の形態の第1例と同様である。
[Fifth Example of Embodiment]
FIG. 7 shows a fifth example of an embodiment of the present invention corresponding to claims 1 and 3. In the case of this example, a bottomed cylindrical spline hole 20a is formed in the base portion 17c constituting the yoke 15c so as to open only at the base end surface (the other end surface in the axial direction, the left end surface in FIG. 7) of the base portion 17c. The spline shaft portion 28 of the rotary shaft 19a is press-fitted into the spline hole 20a. According to this example, it is possible to suppress the occurrence of tensile stress in the circumferential direction generated at the peripheral edge of the back end portion of the spline hole 20a based on the presence of the bottom portion of the spline hole 20a.
The configuration and operation of the other parts are the same as in the first example of the embodiment described above.

[実施の形態の第6例]
図8は、請求項1、2に対応する、本発明の実施の形態の第6例を示している。本例の場合、回転軸19eの端部に、外周面を単一円筒面状とした基半部34と、先端側に向かう程外径が小さくなる部分円すい台状の先半部35とから成る、圧入部36を設けている。即ち、本例の場合には、この圧入部36の外周面に雄スプライン部を形成していない。そして、この様な圧入部36を、ヨークの基部に形成された、内周面が単一円筒面状の(円周方向に関する凹凸がない)結合孔に圧入する。これにより、この結合孔の内周面に対する前記圧入部36の径方向に関する締め代を、前記先半部35で前記基半部34よりも小さくすると共に、この先半部35の径方向に関する締め代を、先端側に向かう程小さくする事ができる。
その他の部分の構成及び作用は、前述した実施の形態の第1例と同様である。
[Sixth Example of Embodiment]
FIG. 8 shows a sixth example of an embodiment of the present invention corresponding to claims 1 and 2. In the case of this example, from the base half 34 whose outer peripheral surface is a single cylindrical surface at the end of the rotating shaft 19e, and the first half 35 of a partial truncated cone shape whose outer diameter decreases toward the tip side. A press-fitting portion 36 is provided. That is, in this example, no male spline part is formed on the outer peripheral surface of the press-fitting part 36. Then, such a press-fitting portion 36 is press-fitted into a coupling hole formed in the base of the yoke and having a single cylindrical surface on the inner peripheral surface (no irregularities in the circumferential direction). As a result, the tightening margin in the radial direction of the press-fit portion 36 with respect to the inner peripheral surface of the coupling hole is made smaller than the base half portion 34 in the front half portion 35, and the tightening margin in the radial direction of the front half portion 35. Can be reduced toward the tip side.
The configuration and operation of the other parts are the same as in the first example of the embodiment described above.

[実施の形態の第7例]
図9は、請求項1、3、5に対応する、本発明の実施の形態の第7例を示している。本例の場合、回転軸19fのスプライン軸部28dの先半部(軸方向片半部)に設けた、小径スプライン軸部30aの、スプライン孔20の内周面に対する締め代を負としている(小径スプライン軸部30aの外周面とスプライン孔20の内周面とを隙間を介して近接対向させている)。そして、前記スプライン軸部28dのうち、前記スプライン孔20の軸方向片側開口から突出した先端部の円周方向2箇所位置を径方向外方に塑性変形させ、かしめ部37、37を設けている。これにより、前記スプライン軸部28dが前記スプライン孔20から抜け出る事を防止している。
[Seventh example of embodiment]
FIG. 9 shows a seventh example of the embodiment of the present invention corresponding to the first, third, and fifth aspects. In the case of this example, the tightening margin with respect to the inner peripheral surface of the spline hole 20 of the small-diameter spline shaft portion 30a provided in the tip half portion (half axial portion) of the spline shaft portion 28d of the rotating shaft 19f is negative ( The outer peripheral surface of the small-diameter spline shaft portion 30a and the inner peripheral surface of the spline hole 20 are made to face each other through a gap). And, the spline shaft portion 28d is plastically deformed radially outward at two positions in the circumferential direction of the tip portion protruding from one axial opening of the spline hole 20, and is provided with caulking portions 37, 37. . This prevents the spline shaft portion 28d from coming out of the spline hole 20.

上述の様に構成する本例によれば、前記かしめ部37、37を形成する事に伴って、これら両かしめ部37、37の軸方向他側面と前記小径スプライン軸部30aの外周面との連続部にダレ38が生じた場合であっても、前記スプライン孔20の軸方向片側開口の周縁部に応力が集中する事を防止できる。即ち、本例の場合とは異なり、回転軸の端部に設けたスプライン軸部を、ヨークの基部に設けたスプライン孔に、このスプライン孔の軸方向全体に亙って大きな締め代を持った状態で内嵌固定した場合、かしめ部を形成する事に伴って発生したダレが、前記スプライン孔の開口の内周縁に押し付けられ、当該部分に応力が発生する可能性がある。これに対し、本例の場合には、前記小径スプライン軸部30aの、前記スプライン孔20の内周面に対する締め代を負としており、圧入部分(大径スプライン軸部29)とかしめ部37、37とを軸方向に離隔させられる為、前記ダレ38が発生した場合でも、このダレ38が、前記スプライン孔20の軸方向片側開口の内周縁に押し付けられる事を防止できる(逃げる事ができる)。又、スプライン孔20の軸方向片側開口の周縁部に引っ張り応力が集中し難くできる為、前記両かしめ部27、27を前記基部17aの軸方向片端面に押し付けた際のかしめ強度を高くできる。
その他の部分の構成及び作用は、前述した実施の形態の第1例と同様である。
According to this example configured as described above, as the caulking portions 37, 37 are formed, the other side surface in the axial direction of both the caulking portions 37, 37 and the outer peripheral surface of the small-diameter spline shaft portion 30a. Even when the sag 38 occurs in the continuous portion, it is possible to prevent stress from concentrating on the peripheral edge portion of the one-side axial opening of the spline hole 20. That is, unlike the case of this example, the spline shaft portion provided at the end portion of the rotary shaft has a large tightening margin over the entire spline hole in the spline hole provided in the base portion of the yoke. When the inner fitting is fixed in the state, the sag generated when the caulking portion is formed is pressed against the inner peripheral edge of the opening of the spline hole, and there is a possibility that stress is generated in the portion. On the other hand, in the case of this example, the tightening margin with respect to the inner peripheral surface of the spline hole 20 of the small-diameter spline shaft portion 30a is negative, and the press-fit portion (large-diameter spline shaft portion 29) and the caulking portion 37, 37 can be separated from each other in the axial direction, so that even when the sag 38 is generated, the sag 38 can be prevented from being pressed against the inner peripheral edge of the one-side axial opening of the spline hole 20 (can escape). . Further, since the tensile stress can hardly be concentrated on the peripheral edge portion of the one-side axial opening of the spline hole 20, it is possible to increase the caulking strength when the two caulking portions 27, 27 are pressed against the one axial end surface of the base portion 17a.
The configuration and operation of the other parts are the same as in the first example of the embodiment described above.

[実施の形態の第8例]
図10は、請求項1、4に対応する、本発明の実施の形態の第8例を示している。上述した実施の形態の各例のうち、第1〜5、7例は、スプライン軸部の外周面に形成した雄スプライン部のオーバーピン径、歯先円直径及び歯底円直径のうちの少なくとも1つの直径を、前記スプライン軸部の軸方向片端寄り部分で軸方向他端寄り部分よりも小さくする事により、スプライン孔の内周面に対する前記スプライン軸部の径方向に関する締め代を、軸方向片端寄り部分で軸方向他端寄り部分よりも小さくしている。これに対し、本例の場合には、スプライン軸部28eの外周面に形成した雄スプライン部の歯厚を、先半部(軸方向片半部であり、図10の右半部)39で、基半部(軸方向他半部であり、図10の左半部)40よりも小さくしている。これにより、スプライン孔20の内周面に対する前記スプライン軸部28eの円周方向に関する締め代を、前記先半部39で基半部40よりも小さくする様に構成している。
その他の部分の構成及び作用は、前述した実施の形態の第1例と同様である。尚、本例の様に、雄スプライン部の歯厚を小さくする事で、スプライン孔の内周面に対するスプライン軸部の円周方向に関する締め代を小さくする構造は、前述の実施の形態の第1〜5、7例の構造と組み合わせて実施する事もできる。
[Eighth Example of Embodiment]
FIG. 10 shows an eighth example of an embodiment of the present invention corresponding to claims 1 and 4. Among the examples of the embodiment described above, the first to fifth and seventh examples are at least one of the overpin diameter, tip circle diameter, and root circle diameter of the male spline portion formed on the outer peripheral surface of the spline shaft portion. By making one diameter smaller in the axial direction near one end of the spline shaft than in the axial other end, the tightening margin in the radial direction of the spline shaft with respect to the inner peripheral surface of the spline hole is reduced in the axial direction. The portion near one end is smaller than the portion near the other end in the axial direction. On the other hand, in the case of this example, the tooth thickness of the male spline portion formed on the outer peripheral surface of the spline shaft portion 28e is the tip half portion (a half portion in the axial direction, the right half portion in FIG. 10) 39. The base half (the other half in the axial direction and the left half in FIG. 10) 40 is smaller. As a result, the fastening margin in the circumferential direction of the spline shaft portion 28e with respect to the inner peripheral surface of the spline hole 20 is configured to be smaller than the base half portion 40 in the front half portion 39.
The configuration and operation of the other parts are the same as in the first example of the embodiment described above. Note that, as in this example, the structure in which the interference in the circumferential direction of the spline shaft portion with respect to the inner peripheral surface of the spline hole is reduced by reducing the tooth thickness of the male spline portion is the same as in the first embodiment. It can also be implemented in combination with 1 to 5 or 7 examples.

上述した本発明の実施の形態の各例のうち、第1〜5、7、8例に係る構造は、特許文献2に記載の構造と組み合わせて実施する事もできる。即ち、図11に示す様に、自在継手による回転力の伝達の際に、1対の結合腕部18、18が捩れ方向に弾性変形する傾向となった場合に応力が集中し易い部分、即ち、スプライン孔20bの内周面のうち、円周方向に関して、このスプライン孔20bの中心軸と結合腕部18の周方向端縁とを結んだ仮想直線と、このスプライン孔20bの開口縁との交点を含む部分(図11に鎖線γで囲んだ部分)に、雌スプライン部を設けない様にする事もできる。   Among the examples of the embodiment of the present invention described above, the structures according to the first to fifth, seventh, and eighth examples can be implemented in combination with the structure described in Patent Document 2. That is, as shown in FIG. 11, when the rotational force is transmitted by the universal joint, when the pair of connecting arm portions 18 and 18 tend to elastically deform in the twist direction, The virtual straight line connecting the central axis of the spline hole 20b and the circumferential edge of the connecting arm portion 18 in the circumferential direction of the inner peripheral surface of the spline hole 20b, and the opening edge of the spline hole 20b. It is also possible not to provide the female spline part in the part including the intersection (the part surrounded by the chain line γ in FIG. 11).

1 ステアリングホイール
2 ステアリングシャフト
3、3a、3b 自在継手
4 中間シャフト
5 ステアリングギヤユニット
6 入力軸
7 タイロッド
8 ステアリングコラム
9 電動モータ
10 ハウジング
11 雄スプライン部
12 インナシャフト
13 雌スプライン部
14 アウタチューブ
15 ヨーク
16 十字軸
17a、17b 基部
18 結合腕部
19、19a〜19f 回転軸
20、20a スプライン孔
21a、21b フランジ部
22 雌セレーション部
23a、23b 通孔
24 ナット
25 円孔
26a、26b 軸部
27 ラジアルニードル軸受
28、28a〜28e スプライン軸部
29 小径スプライン軸部
30、30a 大径スプライン軸部
31 棒材
32 段付軸部
33 先半部
34 基半部
35 先半部
36 圧入部
37 かしめ部
38 ダレ
39 先半部
40 基半部
DESCRIPTION OF SYMBOLS 1 Steering wheel 2 Steering shaft 3, 3a, 3b Universal joint 4 Intermediate shaft 5 Steering gear unit 6 Input shaft 7 Tie rod 8 Steering column 9 Electric motor 10 Housing 11 Male spline part 12 Inner shaft 13 Female spline part 14 Outer tube 15 Yoke 16 Cross shafts 17a, 17b Base 18 Coupling arm 19, 19a-19f Rotating shaft 20, 20a Spline hole 21a, 21b Flange 22 Female serration 23a, 23b Through hole 24 Nut 25 Circular hole 26a, 26b Shaft 27 Radial needle bearing 28, 28a to 28e Spline shaft portion 29 Small-diameter spline shaft portion 30, 30a Large-diameter spline shaft portion 31 Bar 32 Stepped shaft portion 33 Tip half portion 34 Base half portion 35 Tip half portion 36 Press-fit portion 37 Crimper 38 Dare 39 First half 40 Base half

Claims (5)

十字軸式自在継手を構成するヨークと、使用時に回転する回転軸とを備え、
このうちのヨークは、径方向中心部に軸方向に形成された結合孔を有する基部と、この基部の軸方向片端縁のうちで、直径方向反対側2箇所位置から軸方向片側に延出する状態で設けられた1対の結合腕部とを有するものであり、
前記回転軸は、軸方向片端部に設けた圧入部を前記結合孔の軸方向他側からこの結合孔の内側に圧入する事により、前記基部に結合固定されているものである、十字軸式自在継手用ヨークと回転軸との結合部に於いて、
前記結合孔の内周面に対する前記圧入部の軸方向片端寄り部分の締め代を、同じく軸方向他端寄り部分の締め代よりも小さくしている事を特徴とする十字軸式自在継手用ヨークと回転軸との結合部。
A yoke that forms a cross shaft universal joint, and a rotating shaft that rotates during use,
Of these, the yoke has a base portion having a coupling hole formed in the axial direction in the central portion in the radial direction and one axial end edge of the base portion, and extends from one position on the diametrically opposite side to one axial direction. A pair of coupling arms provided in a state,
The rotary shaft is a cross shaft type that is fixedly coupled to the base by press-fitting a press-fit portion provided at one end in the axial direction into the inside of the coupling hole from the other axial side of the coupling hole. At the joint between the universal joint yoke and the rotary shaft,
A cross shaft type universal joint yoke, characterized in that a tightening margin at one end portion in the axial direction of the press-fitting portion with respect to an inner peripheral surface of the coupling hole is smaller than a tightening margin at a portion near the other end in the axial direction. And the connecting part of the rotating shaft.
前記圧入部のうち、少なくとも軸方向片半部の前記結合孔の内周面に対する締め代を、軸方向片側に向かう程小さくしている、請求項1に記載した十字軸式自在継手用ヨークと回転軸との結合部。   The yoke for a cross-shaft type universal joint according to claim 1, wherein a tightening margin of at least one axial half of the press-fitting portion with respect to the inner peripheral surface of the coupling hole is reduced toward the one axial side. Joint with the rotating shaft. 前記結合孔が、内周面に雌スプライン部を設けたスプライン孔であり、前記圧入部が、外周面に雄スプライン部を設けたスプライン軸部であり、この雄スプライン部のオーバーピン径と、歯先円直径と、歯底円直径とのうちの少なくとも1つの直径を、前記スプライン軸部の軸方向片端寄り部分で軸方向他端寄り部分よりも小さくしている、請求項1〜2のうちの何れか1項に記載した十字軸式自在継手用ヨークと回転軸との結合部。   The coupling hole is a spline hole in which a female spline portion is provided on an inner peripheral surface, and the press-fit portion is a spline shaft portion in which a male spline portion is provided on an outer peripheral surface, and an overpin diameter of the male spline portion; The diameter of at least one of a tip circle diameter and a root circle diameter is made smaller in the axial direction one end portion of the spline shaft portion than in the axial other end portion. The joint part of the yoke for cross-axis-type universal joints described in any one of these, and a rotating shaft. 前記結合孔が、内周面に雌スプライン部を設けたスプライン孔であり、前記圧入部が、外周面に雄スプライン部を設けたスプライン軸部であり、この雄スプライン部の歯厚を、前記スプライン軸部の軸方向片端寄り部分で軸方向他端寄り部分よりも小さくしている、請求項1〜3のうちの何れか1項に記載した十字軸式自在継手用ヨークと回転軸との結合部。   The coupling hole is a spline hole in which a female spline portion is provided on an inner peripheral surface, and the press-fit portion is a spline shaft portion in which a male spline portion is provided on an outer peripheral surface. The yoke for the cross shaft type universal joint according to any one of claims 1 to 3, wherein the portion of the spline shaft portion is closer to one end in the axial direction than the other end portion in the axial direction. Coupling part. 前記結合孔が、前記基部を軸方向に貫通する状態で設けられており、この結合孔に前記圧入部を、この圧入部の軸方向片端部がこの結合孔の軸方向片側開口から突出する状態で圧入しており、この圧入部の軸方向片端部の円周方向1乃至複数箇所を径方向外方に塑性変形させ、かしめ部を設ける事で、前記結合孔から前記圧入部が抜け出る事を防止している、請求項1〜4のうちの何れか1項に記載した十字軸式自在継手用ヨークと回転軸との結合部。   The coupling hole is provided in a state of passing through the base portion in the axial direction, the press-fitting portion is inserted into the coupling hole, and an axial end portion of the press-fitting portion projects from an axial one-side opening of the coupling hole. It is possible to cause the press-fitting part to come out from the coupling hole by plastically deforming one or more circumferential directions at one end in the axial direction of the press-fitting part radially outwardly and providing a caulking part. The joint part of the yoke for cross-axis-type universal joints and the rotating shaft described in any one of Claims 1-4 which is preventing.
JP2014128499A 2014-06-23 2014-06-23 Connecting part between yoke for joint cross universal joint and rotating shaft Pending JP2016008640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014128499A JP2016008640A (en) 2014-06-23 2014-06-23 Connecting part between yoke for joint cross universal joint and rotating shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014128499A JP2016008640A (en) 2014-06-23 2014-06-23 Connecting part between yoke for joint cross universal joint and rotating shaft

Publications (2)

Publication Number Publication Date
JP2016008640A true JP2016008640A (en) 2016-01-18
JP2016008640A5 JP2016008640A5 (en) 2017-04-13

Family

ID=55226345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014128499A Pending JP2016008640A (en) 2014-06-23 2014-06-23 Connecting part between yoke for joint cross universal joint and rotating shaft

Country Status (1)

Country Link
JP (1) JP2016008640A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1030037B1 (en) * 2022-06-29 2023-07-10 Thyssenkrupp Ag Joint yoke for a universal joint, universal joint, steering shaft of a motor vehicle and steering system for a motor vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206562A (en) * 2000-10-10 2002-07-26 Toyota Industries Corp Junction structure between two members and propeller shaft
JP2006077889A (en) * 2004-09-09 2006-03-23 Ntn Corp Power transmission structure
JP2007040420A (en) * 2005-08-03 2007-02-15 Jtekt Corp Method of manufacturing driving shaft
JP2007069704A (en) * 2005-09-06 2007-03-22 Ntn Corp Bearing device for driving wheel
JP2008196650A (en) * 2007-02-15 2008-08-28 Nsk Ltd Universal joint, steering device using it, and electric power steering device
JP2010101353A (en) * 2008-10-21 2010-05-06 Aisin Ai Co Ltd Press-fitting structure using spline
JP2013043516A (en) * 2011-08-23 2013-03-04 Nsk Ltd Torque transmission device for steering device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206562A (en) * 2000-10-10 2002-07-26 Toyota Industries Corp Junction structure between two members and propeller shaft
JP2006077889A (en) * 2004-09-09 2006-03-23 Ntn Corp Power transmission structure
JP2007040420A (en) * 2005-08-03 2007-02-15 Jtekt Corp Method of manufacturing driving shaft
JP2007069704A (en) * 2005-09-06 2007-03-22 Ntn Corp Bearing device for driving wheel
JP2008196650A (en) * 2007-02-15 2008-08-28 Nsk Ltd Universal joint, steering device using it, and electric power steering device
JP2010101353A (en) * 2008-10-21 2010-05-06 Aisin Ai Co Ltd Press-fitting structure using spline
JP2013043516A (en) * 2011-08-23 2013-03-04 Nsk Ltd Torque transmission device for steering device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1030037B1 (en) * 2022-06-29 2023-07-10 Thyssenkrupp Ag Joint yoke for a universal joint, universal joint, steering shaft of a motor vehicle and steering system for a motor vehicle
EP4299937A1 (en) * 2022-06-29 2024-01-03 thyssenkrupp Presta Aktiengesellschaft Articulated fork for a universal joint, universal joint, steering shaft of a motor vehicle, and steering system for a motor vehicle

Similar Documents

Publication Publication Date Title
JP5092913B2 (en) Universal joint yoke and universal joint
JP5699565B2 (en) Shaft and yoke coupling method and coupling structure
JP5088387B2 (en) Cross shaft type universal joint
JP6555249B2 (en) Electric power steering apparatus and assembly method thereof
JP2016008640A (en) Connecting part between yoke for joint cross universal joint and rotating shaft
JP7441000B2 (en) Propeller shaft and its manufacturing method
JP6149708B2 (en) Electric power steering device
JP2016070378A (en) Connection part between yoke for cross shaft universal joint and revolving shaft
JP6344467B2 (en) Cross shaft type universal joint yoke
JP5093284B2 (en) Cross shaft type universal joint
JP6673309B2 (en) Torque transmission shaft
WO2018167992A1 (en) Spline fitting body and method for manufacturing spline fitting body
JP2013018417A (en) Method of manufacturing impact absorbing steering shaft
JP6524616B2 (en) Cross Joint Joint Yoke, Cross Joint
JP5834928B2 (en) Cross shaft type universal joint yoke
JP2011220417A (en) Joint cross type universal joint yoke
JP6922581B2 (en) The joint between the yoke and the rotating shaft
JP5742982B2 (en) Joint part between shaft and universal joint yoke and method for manufacturing the same
JP2012076724A (en) Intermediate shaft and electric power steering device
JP5884629B2 (en) Coupling method of rotating shaft and universal joint yoke
JP2012193798A (en) Coupling structure for shaft and yoke of universal joint, and vehicle steering apparatus
JP2016008640A5 (en)
JP6524937B2 (en) Cross joint
JP2016038033A (en) Yoke for joint cross universal joint
JP2013024369A (en) Joint part between shaft and universal joint yoke, and method for manufacturing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170307

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190205