JP5459287B2 - Cross shaft type universal joint - Google Patents

Cross shaft type universal joint Download PDF

Info

Publication number
JP5459287B2
JP5459287B2 JP2011223196A JP2011223196A JP5459287B2 JP 5459287 B2 JP5459287 B2 JP 5459287B2 JP 2011223196 A JP2011223196 A JP 2011223196A JP 2011223196 A JP2011223196 A JP 2011223196A JP 5459287 B2 JP5459287 B2 JP 5459287B2
Authority
JP
Japan
Prior art keywords
shaft
universal joint
base portion
portions
yokes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011223196A
Other languages
Japanese (ja)
Other versions
JP2013083297A (en
Inventor
信行 萩原
要 安田
三奈生 梅田
一穂 力石
浩樹 水野
雅裕 井上
修 立脇
直樹 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011223196A priority Critical patent/JP5459287B2/en
Publication of JP2013083297A publication Critical patent/JP2013083297A/en
Application granted granted Critical
Publication of JP5459287B2 publication Critical patent/JP5459287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steering Controls (AREA)
  • Forging (AREA)

Description

この発明は、自動車用操舵装置を構成する回転軸同士を、トルク伝達可能に接続する為の十字軸式自在継手(カルダンジョイント)の改良に関する。具体的には、衝突事故等によりこの十字軸式自在継手に過大なトルクが加えられた場合にも、ヨークと十字軸とが分離し難く、更に、過大なトルクが加えられた事実を後からでも容易に判定できる構造を実現するものである。   The present invention relates to an improvement of a cross-shaft universal joint (cardan joint) for connecting rotational shafts constituting a steering apparatus for an automobile so that torque can be transmitted. Specifically, even if an excessive torque is applied to this cross joint universal joint due to a collision accident, it is difficult to separate the yoke and the cross shaft, and the fact that the excessive torque was applied is later explained. However, a structure that can be easily determined is realized.

自動車用操舵装置は、図12に示す様に構成して、ステアリングホイール1の回転をステアリングギヤユニット2の入力軸3に伝達し、この入力軸3の回転に伴って左右1対のタイロッド4、4を押し引きして、前車輪に舵角を付与する様にしている。前記ステアリングホイール1は、ステアリングシャフト5の後端部に支持固定されており、このステアリングシャフト5は、円筒状のステアリングコラム6を軸方向に挿通した状態で、このステアリングコラム6に回転自在に支持されている。又、前記ステアリングシャフト5の前端部は、自在継手7を介して中間シャフト8の後端部に接続し、この中間シャフト8の前端部を、別の自在継手9を介して、前記入力軸3に接続している。尚、図示の例は、電動モータ10を補助動力源として前記ステアリングホイール1を操作する為に要する力の低減を図る、電動式パワーステアリング装置を組み込んでいる。従って、前記ステアリングシャフト5の前端部を、この電動式パワーステアリング装置の入力側に接続し、この電動式パワーステアリング装置の出力軸と前記中間シャフト8の後端部とを、前記自在継手7により、トルクの伝達を自在に接続している。   The vehicle steering apparatus is configured as shown in FIG. 12, and transmits the rotation of the steering wheel 1 to the input shaft 3 of the steering gear unit 2, and a pair of left and right tie rods 4 according to the rotation of the input shaft 3. 4 is pushed and pulled to give a steering angle to the front wheels. The steering wheel 1 is supported and fixed at the rear end portion of the steering shaft 5, and the steering shaft 5 is rotatably supported by the steering column 6 with the cylindrical steering column 6 inserted in the axial direction. Has been. Further, the front end portion of the steering shaft 5 is connected to the rear end portion of the intermediate shaft 8 via a universal joint 7, and the front end portion of the intermediate shaft 8 is connected to the input shaft 3 via another universal joint 9. Connected to. The illustrated example incorporates an electric power steering device that reduces the force required to operate the steering wheel 1 using the electric motor 10 as an auxiliary power source. Therefore, the front end portion of the steering shaft 5 is connected to the input side of the electric power steering device, and the output shaft of the electric power steering device and the rear end portion of the intermediate shaft 8 are connected by the universal joint 7. Torque transmission is connected freely.

上述の様な自動車用操舵装置に組み込まれた、互いに同一直線上に存在しない回転軸である、前記ステアリングシャフト5と前記中間シャフト8と前記入力軸3とを接続する、前記両自在継手7、9は、何れも本発明の対象となる十字軸式自在継手である。この様な自在継手は、例えば特許文献1〜4に記載される等により、従来から各種構造のものが知られている。図13は、このうちの特許文献2に記載された、従来構造の1例を示している。   The universal joint 7 connected to the steering shaft 5, the intermediate shaft 8, and the input shaft 3, which are rotating shafts that are incorporated in the above-described steering apparatus for an automobile and do not exist on the same straight line. Reference numeral 9 denotes a cruciform universal joint which is an object of the present invention. Such universal joints have been conventionally known in various structures as described in Patent Documents 1 to 4, for example. FIG. 13 shows an example of a conventional structure described in Patent Document 2 among them.

この図13に示した自在継手11は、1対のヨーク12a、12bを1個の十字軸13を介して、トルク伝達自在に結合して成る。これら両ヨーク12a、12bはそれぞれ、金属材にプレス加工又は鍛造加工を施す事により造られており、それぞれが基部14a、14bと、前記両ヨーク12a、12b毎に1対ずつの結合腕部15a、15bとを備える。これら各結合腕部15a、15bの先端にそれぞれ円孔16a、16bを、前記両ヨーク12a、12b毎に互いに同心に形成している。又、前記十字軸13は、4本の軸部17、17を、隣り合う軸部17、17の中心軸同士が互いに直交する状態で設けて成る。そして、これら各軸部17、17を前記各円孔16a、16bの内側に、それぞれカップシェル型のラジアルニードル軸受18、18を介して、回転自在に支持して、前記自在継手11としている。   The universal joint 11 shown in FIG. 13 is formed by connecting a pair of yokes 12a and 12b via a single cross shaft 13 so that torque can be transmitted. Each of these yokes 12a and 12b is made by pressing or forging a metal material. Each of the yokes 12a and 12b has a base portion 14a and 14b, and a pair of connecting arm portions 15a for each of the yokes 12a and 12b. , 15b. Circular holes 16a and 16b are formed concentrically with respect to the yokes 12a and 12b, respectively, at the ends of the coupling arm portions 15a and 15b. The cross shaft 13 includes four shaft portions 17 and 17 provided such that the central axes of the adjacent shaft portions 17 and 17 are orthogonal to each other. The shafts 17 and 17 are rotatably supported inside the circular holes 16a and 16b via cup-shell radial needle bearings 18 and 18 to form the universal joint 11.

上述の様な自在継手7、9、11を組み込んだステアリング装置を搭載した車両が衝突事故を起こしたり、運転操作の誤りにより操舵輪を縁石に乗り上げたりした場合、前記ステアリングギヤユニット2の側から、前記自在継手7、9、11に、衝撃的な(過大な)トルクが加わる場合がある。そして、この様な衝撃的トルクに基づいて、この構成部材の全部又は一部が損傷し、継続的な安全運行に支障をきたす可能性がある。例えば、前記各結合腕部15a、15bが歪んで、これら各結合腕部15a、15bの先端部に形成した前記各円孔16a、16bの同心性が損なわれる。この同心性が損なわれた場合、前記各ラジアルニードル軸受18、18の機能が損なわれ、各部の摩耗が進行し易くなる等の問題を生じる。この様な場合に、使用者が当該車両を修理工場に持ち込んで、直ちに検査、修理を受ければ良いが、一部の使用者は、特に異常を感じないで、そのまま車両の使用を継続する可能性がある。更には、前記各結合腕部15a、15bの歪みが著しい場合には、前記各円孔16a、16bの内側から前記各ラジアルニードル軸受18、18が脱落し、前記自在継手7、9、11のトルク伝達機能が完全に喪失し、前記ステアリング装置が機能しなくなる可能性もある。   When a vehicle equipped with a steering device incorporating the universal joints 7, 9, and 11 as described above causes a collision accident or rides on a steered wheel on a curb due to an error in driving operation, from the steering gear unit 2 side. In some cases, shock (excessive) torque is applied to the universal joints 7, 9, and 11. And based on such a shocking torque, all or a part of the constituent members may be damaged, which may hinder continuous safe operation. For example, the coupling arm portions 15a and 15b are distorted, and the concentricity of the circular holes 16a and 16b formed at the distal ends of the coupling arm portions 15a and 15b is impaired. When this concentricity is impaired, the function of each of the radial needle bearings 18 and 18 is impaired, causing problems such as easy wear of each part. In such a case, the user may bring the vehicle into a repair shop and immediately receive inspection and repair. However, some users can continue to use the vehicle without feeling any abnormality. There is sex. Furthermore, when the distortion of the coupling arm portions 15a and 15b is significant, the radial needle bearings 18 and 18 are dropped from the inside of the circular holes 16a and 16b, and the universal joints 7, 9, and 11 There is also a possibility that the torque transmission function is completely lost and the steering device does not function.

特開平6−280889号公報JP-A-6-280889 特開平8−270669号公報JP-A-8-270669 特開平11−325098号公報JP 11-325098 A 特開2009−299706号公報JP 2009-299706 A

本発明は、上述の様な事情に鑑みて、過大なトルクが加えられた場合にも、ヨークの結合腕部が歪み難く、トルク伝達機能を喪失し難くすると共に、過大なトルクが加えられた事実を後からでも容易に判定できる構造を実現すべく発明したものである。   In the present invention, in view of the circumstances as described above, even when an excessive torque is applied, the connecting arm portion of the yoke is hardly distorted, the torque transmission function is hardly lost, and an excessive torque is applied. It was invented to realize a structure that can easily determine the facts later.

本発明の十字軸式自在継手は、1対のヨークと、これら両ヨーク同士を揺動変位自在に結合する1個の十字軸とを備える。
このうち、前記両ヨークはそれぞれ、回転軸の端部を結合固定する為の基部と、この基部の軸方向一端縁のうちで、この回転軸に関する直径方向反対側2箇所位置から軸方向に延出した1対の結合腕部と、これら両結合腕部の先端部に互いに同心に形成された1対の円孔とを備える。
又、前記十字軸は、隣り合う軸部の中心軸同士が互いに直交する状態で設けられた4本の軸部を備える。
更に、前記十字軸の軸部の先端部はそれぞれ、前記両ヨークに設けた前記各円孔の内側に、軸受を介して回転自在に支持されている。
The cruciform universal joint of the present invention includes a pair of yokes and a cruciform shaft that couples the yokes so as to be swingably displaceable.
Of these, the yokes extend in the axial direction from two positions on the diametrically opposite side with respect to the rotating shaft, of the base for coupling and fixing the end of the rotating shaft and one axial end edge of the base. A pair of connecting arm portions that are taken out, and a pair of circular holes that are formed concentrically with each other at the tip ends of both connecting arm portions are provided.
The cross shaft includes four shaft portions provided such that the central axes of adjacent shaft portions are orthogonal to each other.
Furthermore, the tip of the shaft portion of the cross shaft is rotatably supported via bearings inside the circular holes provided in the yokes.

特に、本発明の十字軸式自在継手に於いては、前記両ヨークのうちの少なくとも一方のヨークの基部の周面のうち、周方向に関する位相が前記両結合腕部に一致する、この基部の円周方向2箇所部分に、周方向両端部が塞がれた、周方向に長い長溝である凹溝を形成する事により、当該基部の捻り方向の剛性を、この基部から延出した1対の結合腕部の同方向の剛性よりも低くしている。
この様な本発明の自在継手を実施する場合に好ましくは、請求項2に記載した発明の様に、前記両ヨークのうち、少なくとも前記凹溝を形成したヨークを、金属材料に冷間鍛造による塑性加工を施して成るものとする。
In particular, in the cross shaft type universal joint of the present invention, the phase in the circumferential direction of the peripheral surface of the base portion of at least one of the two yokes matches the both connecting arm portions. By forming a concave groove, which is a long groove in the circumferential direction, in which two circumferential end portions are closed at two circumferential portions, the rigidity in the twist direction of the base portion is extended from the base portion. It is lower than the rigidity in the same direction of the connecting arm portion.
When implementing such a universal joint of the present invention, it is preferable that, as in the invention described in claim 2 , at least the yoke in which the concave groove is formed is made of a metal material by cold forging. It shall be formed by plastic working.

上述の様に構成する本発明の十字軸式自在継手によれば、過大なトルクが加えられた場合にも、ヨークの結合腕部が歪み難く、トルク伝達機能を喪失し難くできる。即ち、このヨークの基部の捻り方向の剛性を、この基部から延出した1対の結合腕部の同方向の剛性よりも低くしている為、過大なトルクが加えられた場合に、これら両結合腕部が歪む前に、前記基部が捻り方向に塑性変形する。この為、前記トルク伝達機能が損なわれたり、更には喪失するに至るトルクの大きさを、従来構造に比べて大きくできる。   According to the cruciform universal joint of the present invention configured as described above, even when an excessive torque is applied, the connecting arm portion of the yoke is hardly distorted, and the torque transmission function is hardly lost. That is, since the rigidity in the twisting direction of the base portion of the yoke is lower than the rigidity in the same direction of the pair of connecting arm portions extending from the base portion, both of these are applied when an excessive torque is applied. Before the connecting arm portion is distorted, the base portion is plastically deformed in the twisting direction. For this reason, the magnitude of the torque that leads to the loss or further loss of the torque transmission function can be increased as compared with the conventional structure.

又、過大なトルクが加えられた事実を後からでも容易に判定できる。即ち、前記基部が捻り方向に塑性変形する事で、前記ヨークに結合固定された回転軸と、前記両結合腕部との、回転方向に関する位相がずれる。この結果、車両を直進状態とする為の、ステアリングホイールの中立状態の姿勢が変化する。この変化は、運転者にとって容易且つ確実に認識できる。この為、運転者に、修理を促す事ができて、損傷した車両の運行を継続する事に伴う危険を回避できる。又、前記基部の塑性変形は、修理工場で容易に確認できる為、運転者が車両を修理工場に持ち込みさえすれば、前記ステアリングホイールの中立状態での姿勢変化が、過大トルクの付加によるものである事を、容易に確認できる。   Further, the fact that an excessive torque is applied can be easily determined later. That is, when the base portion is plastically deformed in the twisting direction, the phase in the rotation direction between the rotating shaft coupled and fixed to the yoke and the both coupling arm portions is shifted. As a result, the attitude of the steering wheel in a neutral state for changing the vehicle straight is changed. This change can be easily and reliably recognized by the driver. For this reason, the driver can be urged to repair, and the danger associated with continuing operation of the damaged vehicle can be avoided. In addition, since the plastic deformation of the base can be easily confirmed at a repair shop, if the driver brings the vehicle to the repair shop, the posture change in the neutral state of the steering wheel is due to the addition of excessive torque. Something can be confirmed easily.

本発明の実施の形態の第1例を示す、端面図(A)と、一部を切断乃至透視して(A)の下方から見た図(B)と、(B)の側方から見た図(C)。The end view (A) which shows the 1st example of embodiment of this invention, the figure (B) which cut | disconnected through thru | or seen through partly, and was seen from the lower part of (A), and the side view of (B) (C). 本例の特徴となる断面形状を説明する為の、図1の(B)と同様の図(A)と、(A)のa−a部の断面図(B)と、同じくb−b部の断面図(C)。The same figure (A) as (B) of FIG. 1, sectional drawing (B) of the aa part of (A), and bb part for explaining the sectional shape which is the feature of this example Sectional drawing (C) of FIG. 過大トルクが加わってヨークが塑性変形した状態を示す、図1の(C)と同様の図。The figure similar to (C) of FIG. 1 which shows the state which applied the excessive torque and the yoke deform | transformed plastically. ヨーク基部の凹溝の形状の別の2例を示す図。The figure which shows two other examples of the shape of the ditch | groove of a yoke base. 本発明の効果を説明する為の、図1の(B)と同様の図(A)と、トルク伝達時の挙動を説明する為の、十字軸を組み込んだ状態で示す、(A)のc−c断面に相当する図(B)と、従来構造の場合に発生する1対の結合腕部の変形状態を示す図(C)と、本発明の場合の同様の図(D)。(A) of FIG. 1 (A) similar to FIG. 1 (B) for explaining the effect of the present invention, and (c) of (A) showing a state in which a cross shaft is incorporated for explaining the behavior during torque transmission. The figure corresponding to -c cross section (B), the figure (C) which shows the deformation | transformation state of a pair of coupling arm part which generate | occur | produces in the case of a conventional structure, and the same figure (D) in the case of this invention. ヨークが伝達するトルクと、このヨークを構成する基部と1対の結合腕部との捻れ角との関係を示す線図。The diagram which shows the relationship between the torque which a yoke transmits, and the twist angle of the base which comprises this yoke, and a pair of coupling arm part. ステアリングホイールの中立位置を、衝撃的なトルクが加わる前の状態(A)と加わった後の状態(B)とで示す正面図。The front view which shows the neutral position of a steering wheel with the state (A) before applying shock torque, and the state (B) after applying. 本発明の実施の形態の第2例を、ヨークと一体のアウタチューブを含んで構成した中間シャフト及び他の十字軸式自在継手と組み合わせた状態で示す、一部を透視乃至切断した状態で示す側面図(A)及び(A)のX矢視図(B)。A second example of the embodiment of the present invention is shown in a state where a part thereof is seen through or cut off, in a state where it is combined with an intermediate shaft configured to include an outer tube integrated with a yoke and another cross shaft type universal joint. Side view (A) and X arrow view (B) of (A). 同じく、アウタチューブと一体のヨークの製造方法の第1例を、工程順に示す端面及び断面図。Similarly, the end surface and sectional drawing which show the 1st example of the manufacturing method of the yoke integral with an outer tube in order of a process. 同第2例を工程順に示す、端面図及び断面図。The end view and sectional drawing which show the 2nd example in order of a process. 本発明の実施の形態の第3例を示す、部分切断側面図(A)及び(A)のY矢視図(B)。The partially cut side view (A) and the arrow Y view (B) of (A) which show the 3rd example of embodiment of this invention. 十字軸式自在継手を組み込んだ自動車用操舵装置の1例を示す、部分切断側面図。The partial cutting side view which shows an example of the steering device for motor vehicles incorporating the cross-shaft type universal joint. 十字軸式自在継手の従来構造の1例を示す分解斜視図。The disassembled perspective view which shows an example of the conventional structure of a cross-shaft type universal joint.

[実施の形態の第1例]
図1〜7により、本発明の実施の形態の第1例に就いて説明する。尚、本例を含めて本発明の特徴は、十字軸式自在継手を構成する1対のヨークのうちの少なくとも一方のヨークの基部の捻り方向の剛性を、当該基部の軸方向一端縁から軸方向に延出した状態で設けられた1対の結合腕部の同方向の剛性よりも低くする点にある。その他の部分の構成及び作用は、前述の図13に記載した構造を含めて、従来から知られている十字軸式自在継手と同様であるから、重複する図示並びに説明は、省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
[First example of embodiment]
A first example of the embodiment of the present invention will be described with reference to FIGS. The feature of the present invention including this example is that the rigidity in the torsional direction of the base of at least one of the pair of yokes constituting the cross joint universal joint is determined from the axial end edge of the base. It is in the point made lower than the rigidity of the same direction of a pair of connecting arm part provided in the state extended in the direction. Since the configuration and operation of the other parts are the same as those of the conventionally known cruciform universal joint including the structure shown in FIG. 13, the overlapping illustrations and explanations are omitted or simplified. Hereinafter, the description will focus on the features of this example.

本例の十字軸式自在継手を構成するヨーク12cは、金属材料に冷間鍛造加工を施して成るもので、基部14cと、1対の結合腕部15c、15cとを備える。このうちの基部14cは、ステアリングシャフト5や中間シャフト8(図12参照)の端部を結合固定する為のもので、円筒状に造られており、内周面にスプライン溝19を形成している。又、前記両結合腕部15c、15cは、前記基部14cの軸方向一端縁のうちで直径方向反対側2箇所位置から、それぞれ軸方向に延出している。本例の場合、前記両結合腕部15c、15cの形状が平板状であり、それぞれの先端部に、互いに同心の円孔16c、16cを形成している。   The yoke 12c constituting the cross shaft universal joint of this example is formed by subjecting a metal material to a cold forging process, and includes a base portion 14c and a pair of connecting arm portions 15c and 15c. Of these, the base portion 14c is for coupling and fixing the ends of the steering shaft 5 and the intermediate shaft 8 (see FIG. 12), and is formed in a cylindrical shape, and has a spline groove 19 formed on the inner peripheral surface. Yes. The coupling arm portions 15c and 15c extend in the axial direction from two positions on the diametrically opposite side of one end edge in the axial direction of the base portion 14c. In the case of this example, the shape of both the connecting arm portions 15c, 15c is a flat plate shape, and concentric circular holes 16c, 16c are formed at respective tip portions.

更に、本例の十字軸式自在継手を構成するヨーク12cの場合には、前記基部14cの周面のうち、円周方向に関する位相が前記両結合腕部15c、15cに一致する部分に、それぞれ凹溝20、20を形成している。これら両凹溝20、20は、それぞれ周方向両端部が塞がれた、周方向に長い長溝である。これら両凹溝20、20の形状は、図1の(C)に示す様な長矩形でも、或いは、図4の(A)に示す様な、中間部に円形部を有する形状でも、更には、図4の(B)に示す様な楕円形であっても良い。何れにしても、前記両凹溝20、20を形成する事により、前記基部14cの捻り方向の剛性を、前記両結合腕部15c、15cの同方向の剛性よりも低くしている。前記両凹溝20、20の寸法(深さ、周方向長さ、幅)及び形状(開口形状、断面形状)、更には数(図示の例では2個)は、通常時に於ける(過大なトルクが加わる以前の状態での)剛性を十分に(前記基部14cが変形する事なくトルクを伝達可能な状態に)確保し、且つ、上述した条件(「基部14cの捻り剛性」<「両結合腕部15c、15cの捻り剛性」)を満たす様に、実験又はコンピュータ解析により設計的に定める。   Further, in the case of the yoke 12c constituting the cross shaft type universal joint of the present example, in the circumferential surface of the base portion 14c, the phase in the circumferential direction coincides with the both connecting arm portions 15c and 15c, respectively. Concave grooves 20 and 20 are formed. Both the concave grooves 20 and 20 are long grooves in the circumferential direction, each of which is closed at both ends in the circumferential direction. The shape of both the concave grooves 20 and 20 may be a long rectangle as shown in FIG. 1C, or a shape having a circular portion in the middle as shown in FIG. An elliptical shape as shown in FIG. In any case, by forming the both concave grooves 20, 20, the rigidity of the base portion 14c in the twisting direction is made lower than the rigidity of the connecting arm portions 15c, 15c in the same direction. The dimensions (depth, circumferential length, width) and shape (opening shape, cross-sectional shape), and number (two in the illustrated example) of the both concave grooves 20, 20 are normal (excessive). Ensuring sufficient rigidity (in a state before the torque is applied) (in a state where the torque can be transmitted without deformation of the base portion 14c), and the above-described condition ("torsional rigidity of the base portion 14c" <"double coupling Designed by experiment or computer analysis so as to satisfy the torsional rigidity of the arm portions 15c, 15c ").

上述の様なヨーク12cを組み込んだ本例の十字軸式自在継手によれば、過大なトルクが加えられた場合にも、このヨーク12cを構成する、前記両結合腕部15c、15cが歪み難く、トルク伝達機能を喪失し難くできる。即ち、前記両凹溝20、20の存在に基づき、前記基部14cの捻り方向の剛性を、この基部14cから延出した前記両結合腕部15c、15cの同方向の剛性よりも低くしている為、前記ヨーク12cに過大なトルクが加えられた場合に、前記両結合腕部15c、15cが歪む前に、前記基部14cが捻り方向に塑性変形する。この場合に、これら両結合腕部15c、15cは塑性変形せず、ほぼそのままの形状に保たれる。   According to the cruciform universal joint of the present example incorporating the yoke 12c as described above, both the connecting arm portions 15c and 15c constituting the yoke 12c are hardly distorted even when an excessive torque is applied. The torque transmission function can be made difficult to lose. That is, based on the presence of the concave grooves 20, 20, the rigidity of the base portion 14c in the twisting direction is made lower than the rigidity of the connecting arm portions 15c, 15c extending from the base portion 14c in the same direction. Therefore, when an excessive torque is applied to the yoke 12c, the base portion 14c is plastically deformed in the twisting direction before the connecting arm portions 15c and 15c are distorted. In this case, both the connecting arm portions 15c and 15c are not plastically deformed and are maintained in a shape as they are.

即ち、衝突事故や操舵輪の縁石乗り上げに伴って、前記ヨーク12c及び十字軸13を組み込んだ十字軸式自在継手に衝撃的な過大トルクが加わる場合がある。この様な場合、前記十字軸13を構成する何れかの軸部17の両端部から、前記ヨーク12cを構成する1対の結合腕部15c、15cに対し、図5の(B)に示した4箇所のα部分に大きな荷重が加わる。これら両結合腕部15c、15cの捻り剛性が低い(「基部14cの捻り剛性」>「両結合腕部15c、15cの捻り剛性」である)場合には、前記過大トルクに基づいて、図5の(C)に示す様に、前記両結合腕部15c、15cの先端部に形成した円孔16c、16cの同心性が損なわれ、これら両円孔16c、16cの内側に、ラジアルニードル軸受18、18により支持された前記軸部17の揺動変位が円滑に行われなくなったり、著しい場合には、これら両ラジアルニードル軸受18、18が前記両円孔16c、16cから抜け出る可能性がある。この結果、前記十字軸式自在継手を組み込んだ自動車用操舵装置の機能が、低下乃至は喪失する。   That is, an impact excessive torque may be applied to the cruciform universal joint incorporating the yoke 12c and the cruciform shaft 13 due to a collision accident or a curb ride on the steering wheel. In such a case, a pair of connecting arm portions 15c and 15c constituting the yoke 12c are shown in FIG. 5B from both ends of any shaft portion 17 constituting the cross shaft 13. A large load is applied to the four α portions. When the torsional rigidity of both the connecting arm portions 15c and 15c is low (“torsional rigidity of the base portion 14c”> “torsional rigidity of both the connecting arm portions 15c and 15c”), based on the excessive torque, FIG. As shown in (C), the concentricity of the circular holes 16c, 16c formed at the distal ends of the coupling arm portions 15c, 15c is impaired, and the radial needle bearing 18 is placed inside the circular holes 16c, 16c. When the shaft portion 17 supported by the shaft 18 is not smoothly displaced, or when the shaft portion 17 is remarkably moved, the radial needle bearings 18 and 18 may come out of the circular holes 16c and 16c. As a result, the function of the steering apparatus for an automobile incorporating the cross shaft type universal joint is reduced or lost.

これに対して本例の構造の場合には、前述した様に、前記両結合腕部15c、15cの捻り剛性に比べて前記基部14cの捻り剛性が低い為、前記過大トルクにより、先ず、この基部14cが、図3に示す様に、捻り方向に塑性変形する。この過大トルクに基づく、前記両結合腕部15c、15cの塑性変形は、生じないか、生じた場合でも僅少に止まる。従って、図5の(D)に示す様に、前記両結合腕部15c、15cの形状は、ほぼそのままの状態に維持されて、これら両結合腕部15c、15cの先端部に形成した円孔16c、16cの同心性が保たれる。この為、前記軸部17の揺動変位が円滑に行われる状態が保たれる。勿論、前記両ラジアルニードル軸受18、18が前記両円孔16c、16cから抜け出る事はない。この結果、前記十字軸式自在継手を組み込んだ自動車用操舵装置の機能は、ほぼそのままに維持される。   On the other hand, in the case of the structure of this example, as described above, the torsional rigidity of the base part 14c is lower than the torsional rigidity of both the connecting arm parts 15c, 15c. As shown in FIG. 3, the base portion 14c is plastically deformed in the twisting direction. The plastic deformation of both the connecting arm portions 15c and 15c based on the excessive torque does not occur or even slightly occurs even when it occurs. Therefore, as shown in FIG. 5D, the shape of the both connecting arm portions 15c, 15c is maintained almost as it is, and the circular holes formed at the tip portions of the both connecting arm portions 15c, 15c. The concentricity of 16c and 16c is maintained. For this reason, the state where the rocking displacement of the shaft portion 17 is smoothly performed is maintained. Of course, the radial needle bearings 18 and 18 do not come out of the circular holes 16c and 16c. As a result, the function of the steering apparatus for automobiles incorporating the cross shaft type universal joint is maintained almost as it is.

要するに、本例の構造によれば、前記十字軸式自在継手によるトルク伝達機能が損なわれたり、更には喪失するに至るトルクの大きさを、従来構造に比べて大きくできる。この点に就いて、図6を参照しつつ説明する。この図6は、横軸に、ヨークに結合固定した回転軸と十字軸との間に存在する、中立位置に対する捻れ角を、縦軸に、これら回転軸と十字軸との間に存在するヨークに加わるトルクの大きさを、それぞれ表している。このトルクが大きくなると、イ点でこのヨークが塑性変形し始めるが、ロ線からハ線までの間は、主として前記基部14cが捻り方向に塑性変形し、前記両結合腕部15c、15cは殆ど塑性変形しない。そして、ニ点で、前述の図5の(C)に示す様に、前記両ラジアルニードル軸受18、18が前記両円孔16c、16cから抜け出し、前記十字軸式自在継手が破壊されて、トルク伝達機能が喪失する。   In short, according to the structure of the present example, the torque transmission function of the cross shaft universal joint is impaired or further lost, and the magnitude of the torque that can be lost can be increased as compared with the conventional structure. This point will be described with reference to FIG. FIG. 6 shows the torsion angle with respect to the neutral position, which exists between the rotary shaft coupled to the yoke and the cross shaft on the horizontal axis, and the yoke that exists between the rotary shaft and the cross shaft on the vertical axis. The magnitude of the torque applied to each is shown. When this torque increases, the yoke begins to plastically deform at point i, but between the line B and line C, the base portion 14c mainly undergoes plastic deformation in the twisting direction, and both the connecting arm portions 15c and 15c are almost completely deformed. Does not plastically deform. At two points, as shown in FIG. 5C, the radial needle bearings 18 and 18 come out of the circular holes 16c and 16c, and the cross shaft universal joint is destroyed. The transmission function is lost.

本例の構造の場合、前記ロ線からハ線までの間は、前記基部14cが塑性変形する事で、前記十字軸式自在継手に衝撃的に加わった過大トルクのエネルギ(衝撃エネルギ)を吸収する。前記基部14cが塑性変形する事によるエネルギ吸収量は、図6に斜格子で示した、前記トルクと捻れ角との関係を示した曲線の下側部分の面積に比例する。従って、前記図6から明らかな通り、本発明の構造によれば、前記衝撃エネルギの吸収性能を大きくできて、前記過大トルクに基づき、前記ヨーク12cを組み込んだ十字軸式自在継手以外の部品の損傷を防止し易い。尚、前記衝撃エネルギの吸収性能を大きくする為には、前記十字軸式自在継手を構成する1対のヨークの何れに関しても、基部に凹溝を形成する。更に、例えば中間シャフトの両端部に設ける1対の十字軸式自在継手を構成する1対ずつ、合計4個のヨークの何れに関しても、基部に凹溝を形成すれば、前記衝撃エネルギの吸収性能を大きくできる。   In the case of the structure of this example, during the period from line B to line C, the base portion 14c is plastically deformed to absorb excessive torque energy (impact energy) applied to the cruciform universal joint impactively. To do. The amount of energy absorbed by the plastic deformation of the base portion 14c is proportional to the area of the lower portion of the curve showing the relationship between the torque and the torsion angle shown by the oblique lattice in FIG. Therefore, as apparent from FIG. 6, according to the structure of the present invention, the impact energy absorption performance can be increased, and parts other than the cross shaft type universal joint incorporating the yoke 12c can be obtained based on the excessive torque. Easy to prevent damage. In order to increase the impact energy absorbing performance, a concave groove is formed in the base portion of any of the pair of yokes constituting the cross shaft universal joint. Further, for example, if a concave groove is formed in the base portion of any one of the four yokes constituting a pair of cross shaft universal joints provided at both ends of the intermediate shaft, the impact energy absorbing performance can be obtained. Can be increased.

又、過大なトルクが加えられた事実を後からでも容易に判定できる。即ち、前記基部14cが捻り方向に塑性変形する事で、前記ヨーク12cに結合固定された回転軸と、前記両結合腕部15c、15cとの、回転方向に関する位相がずれる。この結果、車両を直進状態とする為の、ステアリングホイール1の中立状態の姿勢が変化する。即ち、前記ヨーク12cが塑性変形する以前の状態では、車両が直進状態にある場合に、前記ステアリングホイール1の姿勢は、図7の(A)に示した、初期状態の姿勢に維持される。これに対し、前記衝撃エネルギにより前記ヨーク12cに衝撃的なトルクが加わって、このヨーク12cの基部14cが捻り方向に塑性変形し、この基部14cと前記両結合腕部15c、15cとの回転方向の位相がずれると、車両を直進状態とする為の、前記ステアリングホイール1の中立状態の姿勢が、例えば図7の(A)→(B)の順に示す様に変化する。この変化は、運転者にとって容易且つ確実に認識できる。この為、運転者に修理を促す事ができて、損傷した車両の運行を継続する事に伴う危険を回避できる。又、前記基部14cの塑性変形は、修理工場で容易に確認できる為、運転者が車両を修理工場に持ち込みさえすれば、前記ステアリングホイール1の中立状態での姿勢変化が、過大トルクの付加によるものである事を、容易に確認できる。   Further, the fact that an excessive torque is applied can be easily determined later. That is, when the base portion 14c is plastically deformed in the twisting direction, the phase in the rotational direction between the rotating shaft coupled and fixed to the yoke 12c and the coupling arm portions 15c and 15c is shifted. As a result, the neutral posture of the steering wheel 1 for changing the vehicle straight is changed. That is, in a state before the yoke 12c is plastically deformed, when the vehicle is in a straight traveling state, the posture of the steering wheel 1 is maintained at the initial state shown in FIG. On the other hand, a shocking torque is applied to the yoke 12c by the impact energy, and the base portion 14c of the yoke 12c is plastically deformed in the twisting direction, and the rotation direction of the base portion 14c and the both connecting arm portions 15c and 15c. When the phase is shifted, the neutral posture of the steering wheel 1 for making the vehicle go straight is changed as shown in the order of (A) → (B) in FIG. 7, for example. This change can be easily and reliably recognized by the driver. For this reason, the driver can be urged to repair, and the danger associated with continuing the operation of the damaged vehicle can be avoided. Further, since the plastic deformation of the base portion 14c can be easily confirmed at a repair shop, if the driver brings the vehicle into the repair shop, the posture change in the neutral state of the steering wheel 1 is due to the addition of excessive torque. It can be easily confirmed that it is.

[実施の形態の第2例]
図8〜10は、本発明の実施の形態の第2例を示している。本発明は、中間シャフト8aを構成するアウタシャフト21と、自在継手9aを構成するヨーク12dとを一体とした、所謂チューブヨークに関して、本発明を適用した場合に就いて示している。この様なチューブヨークは、従来から知られている様に、S10C〜S45C等の炭素鋼製で、図9の(A)に示す様な円柱状の素材22に、前方押し出し加工、後方押し出し加工等の冷間鍛造加工を順次施し、図9の(B)に示す様な第一中間素材23、同じく(C)に示す様な第二中間素材24を経て、同じく(D)に示した、前記アウタシャフト21を一体としたヨーク12dとする。そして、このヨーク12dの基部14dの外周面に、押型25の突部26を押し付けて、当該部分を塑性変形させ、凹溝20a、20aとする。尚、前記両凹溝20a、20aの形成作業は、図10の(A)に示す様に、中間素材の先端部で1対の結合腕部15d、15dとなるべき部分を、アウタシャフト21となるべき部分に対して、径方向外方に向け直角に折り曲げた状態で行う事もできる。前記両結合腕部15d、15dは、前記両凹溝20a、20aの形成後に、前記アウタシャフト21の中心軸に対し平行になるまで折り曲げる。
[Second Example of Embodiment]
8 to 10 show a second example of the embodiment of the present invention. The present invention shows a case where the present invention is applied to a so-called tube yoke in which the outer shaft 21 constituting the intermediate shaft 8a and the yoke 12d constituting the universal joint 9a are integrated. Such a tube yoke is made of carbon steel such as S10C to S45C, as is conventionally known, and is extruded into a cylindrical material 22 as shown in FIG. Are sequentially subjected to cold forging, etc., and after passing through a first intermediate material 23 as shown in FIG. 9B and a second intermediate material 24 as shown in FIG. The yoke 12d is formed by integrating the outer shaft 21. Then, the protruding portion 26 of the pressing die 25 is pressed against the outer peripheral surface of the base portion 14d of the yoke 12d, and the portion is plastically deformed to form concave grooves 20a and 20a. In addition, as shown in FIG. 10A, the forming operation of the both concave grooves 20a, 20a is performed by changing the portion to be the pair of connecting arm portions 15d, 15d at the tip of the intermediate material with the outer shaft 21. It can also be performed in a state where the portion to be formed is bent at a right angle outward in the radial direction. Both the connecting arm portions 15d and 15d are bent until they are parallel to the central axis of the outer shaft 21 after the both concave grooves 20a and 20a are formed.

何れの場合でも、前記両凹溝20a、20aを形成した後、軟窒化処理等の熱処理を施して、表面を硬く、心部を軟らかくする事が好ましい。この理由は、表面を硬くして耐久性を確保すると共に、過大なトルクが加わった場合に、前記基部14dのうちで前記両凹溝20a、20aを形成した部分が、捻り方向に確実に塑性変形する様にする為である。又、前記アウタシャフト21とインナシャフト27とをボールスプライン28を介して伸縮自在に組み合わせ、前記中間シャフト8aとする。又、前記インナシャフト27の端部に、別の自在継手7aを組み付ける。この中間シャフト8aの構造及び作用は従来から広く知られており、又、前記別の自在継手7aに関しても、従来から広く知られている構造である。更に、何れも、本発明の要旨とは関係しないので、詳しい説明は省略する。
又、本発明を適用した、前記自在継手9aの構造及び作用に就いても、本発明の特徴部分である、前記両凹溝20a、20aに関しては、前述した実施の形態の第1例の場合と同様であるから、重複する説明は省略する。
In any case, it is preferable to form the both concave grooves 20a and 20a, and then perform heat treatment such as soft nitriding to make the surface hard and the core soft. This is because the surface is hardened to ensure durability, and when excessive torque is applied, the portion of the base portion 14d where the concave grooves 20a and 20a are formed is reliably plastic in the twisting direction. This is to make it deform. Further, the outer shaft 21 and the inner shaft 27 are combined so as to expand and contract via a ball spline 28 to form the intermediate shaft 8a. Further, another universal joint 7 a is assembled to the end of the inner shaft 27. The structure and operation of the intermediate shaft 8a have been widely known in the past, and the other universal joint 7a has also been widely known. Further, none of them is related to the gist of the present invention, and thus detailed description is omitted.
In addition, regarding the structure and operation of the universal joint 9a to which the present invention is applied, the double groove 20a, 20a, which is a characteristic part of the present invention, is the case of the first example of the embodiment described above. Since it is the same, the overlapping description is omitted.

[実施の形態の第3例]
図11は、本発明の実施の形態の第3例を示している。本例の自在継手7bの場合には、冷間鍛造により造ったヨーク12eと中間シャフト8bの端部とを、溶接により接合固定している。本発明の特徴部分である、1対の凹溝20a、20aに関しては、前述した実施の形態の第1例の場合と同様であるから、重複する説明は省略する。
[Third example of embodiment]
FIG. 11 shows a third example of the embodiment of the present invention. In the case of the universal joint 7b of this example, the yoke 12e made by cold forging and the end of the intermediate shaft 8b are joined and fixed by welding. Since the pair of concave grooves 20a, 20a, which is a characteristic part of the present invention, is the same as in the case of the first example of the embodiment described above, a duplicate description is omitted.

本発明を実施する場合に、凹溝の形成方法は特に問わない。図示の様に、押型の突部を突き当てて塑性変形させる事により形成する方法の他、切削加工等により形成する事もできる。
又、凹溝を形成する位置は、1対の結合腕部から外れた部分で、過大なトルクにより捻り方向に塑性変形可能で、且つ、裂断等の機能を喪失する程の大きな損傷の発生を抑えられる部分であれば良く、例えば、図2の(A)のL範囲に設定できる。
When practicing the present invention, the method for forming the groove is not particularly limited. As shown in the drawing, it can be formed by cutting or the like in addition to the method of forming by pressing the protrusion of the pressing die and plastically deforming it.
In addition, the position where the concave groove is formed is a portion that is disengaged from the pair of coupled arm portions, and can be plastically deformed in the twisting direction by excessive torque, and the occurrence of large damage to the extent that the function such as tearing is lost. For example, it can be set in the L range of FIG.

1 ステアリングホイール
2 ステアリングギヤユニット
3 入力軸
4 タイロッド
5 ステアリングシャフト
6 ステアリングコラム
7、7a、7b 自在継手
8、8a、8b 中間シャフト
9、9a 自在継手
10 電動モータ
11 自在継手
12a、12b、12c、12d、12e ヨーク
13 十字軸
14a、14b、14c、14d 基部
15a、15b、15c、15d 結合腕部
16a、16b、16c 円孔
17 軸部
18 ラジアルニードル軸受
19 スプライン溝
20、20a 凹溝
21 アウタシャフト
22 素材
23 第一中間素材
24 第二中間素材
25 押型
26 突部
27 インナシャフト
28 ボールスプライン
DESCRIPTION OF SYMBOLS 1 Steering wheel 2 Steering gear unit 3 Input shaft 4 Tie rod 5 Steering shaft 6 Steering column 7, 7a, 7b Universal joint 8, 8a, 8b Intermediate shaft 9, 9a Universal joint 10 Electric motor 11 Universal joint 12a, 12b, 12c, 12d , 12e Yoke 13 Cross shaft 14a, 14b, 14c, 14d Base 15a, 15b, 15c, 15d Joint arm 16a, 16b, 16c Circular hole 17 Shaft 18 Radial needle bearing 19 Spline groove 20, 20a Concave groove 21 Outer shaft 22 Material 23 First intermediate material 24 Second intermediate material 25 Stamping die 26 Projection 27 Inner shaft 28 Ball spline

Claims (2)

1対のヨークと、これら両ヨーク同士を揺動変位自在に結合する1個の十字軸とを備え、
これら両ヨークはそれぞれ、回転軸の端部を結合固定する為の基部と、この基部の軸方向一端縁のうちで、この回転軸に関する直径方向反対側2箇所位置から軸方向に延出した1対の結合腕部と、これら両結合腕部の先端部に互いに同心に形成された1対の円孔とを備えたものであり、
前記十字軸は、隣り合う軸部の中心軸同士が互いに直交する状態で設けられた4本の軸部を備えたものであり、
前記十字軸の軸部の先端部がそれぞれ、前記両ヨークに設けた前記各円孔の内側に、軸受を介して回転自在に支持されている十字軸式自在継手に於いて、
前記両ヨークのうちの少なくとも一方のヨークの基部の周面のうち、周方向に関する位相が前記両結合腕部に一致する、この基部の円周方向2箇所部分に、周方向両端部が塞がれた、周方向に長い長溝である凹溝を形成する事により、当該基部の捻り方向の剛性を、この基部から延出した1対の結合腕部の同方向の剛性よりも低くしている事を特徴とする十字軸式自在継手。
A pair of yokes, and a cross shaft that couples the yokes in a swingable manner,
Each of these yokes extends in the axial direction from two positions on the opposite side in the diametrical direction with respect to the rotating shaft, of the base for coupling and fixing the end of the rotating shaft and one axial end edge of the base. A pair of coupled arm portions, and a pair of circular holes formed concentrically with each other at the distal ends of the coupled arm portions;
The cross shaft is provided with four shaft portions provided in a state where the central axes of adjacent shaft portions are orthogonal to each other,
In the cross shaft type universal joint in which the tip end portions of the shaft portions of the cross shaft are rotatably supported through bearings inside the circular holes provided in the two yokes, respectively.
Of the circumferential surfaces of the base portion of at least one of the two yokes , the circumferential direction phase coincides with the two connecting arm portions, and two circumferential portions of the base portion are closed at both circumferential ends. By forming a concave groove that is a long groove that is long in the circumferential direction, the rigidity in the twisting direction of the base portion is made lower than the rigidity in the same direction of the pair of connecting arm portions extending from the base portion. A cross joint universal joint characterized by
前記両ヨークのうち、少なくとも前記両凹溝を形成したヨークは、金属材料に冷間鍛造による塑性加工を施して成るものである、請求項1に記載した十字軸式自在継手。 2. The cross shaft type universal joint according to claim 1, wherein at least the yoke formed with the two concave grooves is formed by subjecting a metal material to plastic working by cold forging. 3.
JP2011223196A 2011-10-07 2011-10-07 Cross shaft type universal joint Active JP5459287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011223196A JP5459287B2 (en) 2011-10-07 2011-10-07 Cross shaft type universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011223196A JP5459287B2 (en) 2011-10-07 2011-10-07 Cross shaft type universal joint

Publications (2)

Publication Number Publication Date
JP2013083297A JP2013083297A (en) 2013-05-09
JP5459287B2 true JP5459287B2 (en) 2014-04-02

Family

ID=48528683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011223196A Active JP5459287B2 (en) 2011-10-07 2011-10-07 Cross shaft type universal joint

Country Status (1)

Country Link
JP (1) JP5459287B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5253878Y2 (en) * 1973-08-03 1977-12-07
JPH08270669A (en) * 1995-03-31 1996-10-15 Fuji Kiko Co Ltd Joint for steering and manufacture thereof

Also Published As

Publication number Publication date
JP2013083297A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
JP5092913B2 (en) Universal joint yoke and universal joint
JP5516533B2 (en) Torque transmission device for steering device
JP2009040302A (en) Energy absorption type shaft for steering device
EP2738408B1 (en) Cruciform-shaft universal joint and method for producing same
JP5673770B2 (en) Torque transmission device for steering device
JP5321655B2 (en) Torque transmission device for steering device
JP5353972B2 (en) Torque transmission device for steering device
JP5459287B2 (en) Cross shaft type universal joint
JP6149708B2 (en) Electric power steering device
JP5353973B2 (en) Torque transmission device for steering device
JP2019082217A (en) Coupling structure and coupling method of shafts
JP5545275B2 (en) Method for manufacturing shock absorbing steering shaft
JP2022085813A (en) Intermediate shaft
JP5332723B2 (en) Intermediate shaft
JP5733360B2 (en) Method for manufacturing shock absorbing steering shaft
JP6217209B2 (en) Universal joint yoke
JP2013174253A (en) Spider-type universal joint
JP2013148162A (en) Cross-type universal joint
JP2013256972A (en) Cross-type universal joint
JP2013224686A (en) Cardan universal joint
JP2014084884A (en) Cross shaft type universal joint
JP2013148165A (en) Cross-type universal joint
JP6524937B2 (en) Cross joint
JP2013164096A (en) Cross shaft type universal joint
JP2013174252A (en) Spider-type universal joint

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131230

R150 Certificate of patent or registration of utility model

Ref document number: 5459287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250