JP2009295678A - 半導体装置の製造方法、強誘電体素子の製造方法および電子機器の製造方法 - Google Patents

半導体装置の製造方法、強誘電体素子の製造方法および電子機器の製造方法 Download PDF

Info

Publication number
JP2009295678A
JP2009295678A JP2008145892A JP2008145892A JP2009295678A JP 2009295678 A JP2009295678 A JP 2009295678A JP 2008145892 A JP2008145892 A JP 2008145892A JP 2008145892 A JP2008145892 A JP 2008145892A JP 2009295678 A JP2009295678 A JP 2009295678A
Authority
JP
Japan
Prior art keywords
manufacturing
substrate
ferroelectric
film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008145892A
Other languages
English (en)
Inventor
Takuro Yasuda
拓朗 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008145892A priority Critical patent/JP2009295678A/ja
Publication of JP2009295678A publication Critical patent/JP2009295678A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】液体プロセスに採用し易い配向性の制御が可能な半導体装置や強誘電体素子の製造方法を提供する。
【解決手段】本発明に係る半導体装置の製造方法は、基板と、前記基板の上方に配置されたソース電極およびドレイン電極と、前記ソース電極およびドレイン電極間に配置されチャネル部を構成する有機半導体膜と、前記チャネル部との間にゲート絶縁膜を介して配置されたゲート電極とを有する半導体装置の製造方法であって、前記基板(2)の上方に絶縁性ポリマーを材料に含む液体材料(6a)を塗布する第1工程と、塗布された前記液体材料に対して送風を行いつつ加熱することにより前記ゲート絶縁膜を形成する第2工程と、を有する。かかる方法によれば、溶液プロセスにおいて簡易な方法で、ゲート絶縁膜の配向性を向上させることができる。
【選択図】図2

Description

本発明は、半導体装置の製造方法、強誘電体素子の製造方法、特に、ポリマー材料を含有する液体材料を用いた溶液プロセスによる成膜技術に関する。
近年、TFT(thin film transistor、薄膜トランジスタ)などの半導体素子の製造方法として溶液プロセス(液相プロセス)が注目されている。例えば、半導体素子の構成膜材料を液体材料中に含有させスピンコート法やインクジェット法などにより塗布した後、熱処理を施すことにより成膜する。
例えば、下記特許文献1には、溶液プロセスを用いた半導体素子の製造技術が開示されている。
特開2005−215616号公報 特開2007−258282号公報
本発明者は、TFTなどの半導体素子に関する研究・開発に従事しており、その特性の向上を図ることができる装置構成および製造プロセスを検討している。
例えば、ゲート絶縁膜を絶縁ポリマーを含有する溶液プロセスで形成する場合には、追って詳細に説明するように、ポリマーの主鎖がランダムに位置するため、その後、熱処理を施し成膜しても、膜の配向性が低下していた。
特に、ゲート絶縁膜などに使用する場合は、チャネル方向の配向成分によりリーク電流が生じるため半導体素子特性の低下の要因となる。また、強誘電体特性は、膜の配向性に大きく左右されるため、特性をよくするためには、配向性の制御が重要となる。
本発明者らは、上記ポリマーの主鎖の方向を揃える技術として、上記特許文献2に記載の摩擦転写法を用いることを提案している。
しかしながら、上記摩擦転写法では、固体(ペレット)を押圧しつつ膜を形成するものであり、液体プロセスに適用し易い成膜方法の検討が望まれる。
そこで、本発明に係る具体的態様においては、液体プロセスに採用し易い配向性の制御が可能な半導体装置や強誘電体素子の製造方法を提供することを目的とする。
本発明に係る半導体装置の製造方法は、基板と、前記基板の上方に配置されたソース電極およびドレイン電極と、前記ソース電極およびドレイン電極間に配置されチャネル部を構成する有機半導体層と、前記チャネル部との間にゲート絶縁膜を介して配置されたゲート電極とを有する半導体装置の製造方法であって、前記基板の上方に絶縁性ポリマーを材料に含む液体材料を塗布する第1工程と、塗布された前記液体材料に対して送風を行いつつ加熱することにより前記ゲート絶縁膜を形成する第2工程と、を有する。
かかる方法によれば、溶液プロセスにおいて簡易な方法で、ゲート絶縁膜の配向性を向上させることができる。また、これにより装置特性を向上させることができる。
例えば、前記送風の方向は、前記ソース電極から前記ドレイン電極への第1方向と交差する方向である第2方向である。かかる方法によれば、ゲート絶縁膜の配向性をチャネル長方向(キャリア(電子・ホール)の移動方向)と交差する方向に制御でき、ソース、ドレイン間のリーク電流の低減を図ることができる。
例えば、前記送風の際に前記基板を前記送風の方向と逆向きに移動させる。かかる方法によれば、液体材料に対する風圧を大きくすることができる。
例えば、前記送風の際の風速を調整することにより前記絶縁膜の膜厚を調整する。かかる方法によれば、容易に膜厚を調整することができる。
例えば、前記送風の際の風向は、前記基板に対して0°から90°の範囲である。このように、基板に対して水平又は角度をつけて送風してもよい。
例えば、前記第1および第2工程を2回以上繰り返してもよい。このように、繰り返し成膜することで膜の厚膜化を図ることができる。
例えば、前記絶縁性ポリマーは、強誘電体ポリマーである。このように、強誘電体ポリマーを用いてもよい。配向性を向上させることで強誘電体特性が向上する。
例えば、前記強誘電体ポリマーは、フッ化ビニリデンと三フッ化エチレンとの共重合体P(VDF/TrFE)、およびフッ化ビニリデンの重合体PVDFのうちの少なくとも一方を主成分とするものである。かかる材料は、強誘電体特性が良好であり、上記強誘電体素子に用いて好適である。
本発明に係る強誘電体素子の製造方法は、基板の上方に配置された第1電極と、前記第1電極と強誘電体膜を介して配置された第2電極とを有する強誘電体素子の製造方法であって、前記基板の上方に強誘電体ポリマーを材料に含む液体材料を塗布する第1工程と、塗布された前記液体材料に対して送風を行いつつ加熱することにより前記強誘電体膜を形成する第2工程と、を有する。
かかる方法によれば、溶液プロセスにおいて簡易な方法で、強誘電体膜の配向性を向上させることができる。また、これにより素子特性を向上させることができる。
前記送風の際に前記基板を前記送風の方向と逆向きに移動させる。かかる方法によれば、液体材料に対する風圧を大きくすることができる。
前記送風の際の風速を調整することにより前記絶縁膜の膜厚を調整する。かかる方法によれば、容易に膜厚を調整することができる。
前記送風の際の風向は、前記基板に対して0°から90°の範囲である。このように、基板に対して水平又は角度をつけて送風してもよい。
前記第1および第2工程を2回以上繰り返してもよい。このように、繰り返し成膜することで膜の厚膜化を図ることができる。
前記強誘電体ポリマーは、フッ化ビニリデンと三フッ化エチレンとの共重合体P(VDF/TrFE)、およびフッ化ビニリデンの重合体PVDFのうちの少なくとも一方を主成分とするものである。かかる材料は、強誘電体特性が良好であり、上記強誘電体素子に用いて好適である。
本発明に係る電子機器の製造方法は、上記半導体装置の製造方法又は強誘電体素子の製造方法を有する。かかる方法によれば、高性能の電子機器を製造することができる。また、かかる電子機器の生産性を向上させることができる。
以下、本発明の実施の形態を図面を参照しながら詳細に説明する。なお、同一の機能を有するものには同一もしくは関連の符号を付し、その繰り返しの説明を省略する。
<実施の形態>
図1は、本実施の形態の1T型の強誘電体メモリの形成方法を示す工程断面図である。1T型とは、1つのTFTでメモリセルが構成されることを意味する。この場合、TFTのゲート絶縁膜を強誘電体膜で構成する。
まず、図1(A)に示すように、基板2として例えばガラス基板を準備し、その表面を例えば有機溶剤により洗浄し、乾燥する。ガラス基板の他、ポリイミド、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリアクリレート、ポリカーボネート(PC)、ポリエーテルスルホン(PES)、芳香族ポリエステル(液晶ポリマー)等で構成されるプラスチック基板(樹脂基板)、石英基板、シリコン基板、ガリウム砒素基板等を用いてもよい。
次いで、図1(B)に示すように、基板2上に、ソース電極3およびドレイン電極4を形成する。ソース電極3とドレイン電極4との距離(チャネル長L)は、例えば、35μm、チャネル幅は、例えば、0.3mm程度とする。これらの電極は、例えば、基板2の上部に、所望の領域に開口を有するメタルシャドーマスクを配置し、導電性材料を蒸着することにより形成する。導電性材料としては、Au(金)膜およびCu(銅)膜の積層膜を用いることができる。AuやCuの他、例えば、Pd、Pt、W、Ta、Mo、Al、Cr、Ti、Cu、Ni、Li、Ca、Mgの単層膜、これらの積層膜、または、これらを含む合金等の金属材料を用いてもよい。また、ソース電極3およびドレイン電極4の構成材料としては、上記金属材料の他、ITO、FTO、ATO、SnO2等の透明導電性酸化物、カーボンブラック、カーボンナノチューブ、フラーレン等の炭素材料、ポリアセチレン、ポリピロール、PEDOT(poly−ethylenedioxythiophene)のようなポリチオフェン、ポリアニリン、ポリ(p−フェニレン)、ポリ(p−フェニレンビニレン)、ポリフルオレン、ポリカルバゾール、ポリシランまたはこれらの誘導体等の導電性高分子材料を用いてもよい。これらのうちの1種または2種以上を組み合わせて用いることができる。また、基板2上に上記材料を全面に蒸着した後、エッチング法によりパターニングし、ソース電極3およびドレイン電極4を形成してもよい。また、微粒子状の上記材料を含有する液体材料を所望の領域に塗布し、乾燥、焼成(熱処理)することによりソース電極3およびドレイン電極4を形成してもよい。
次いで、ソース電極3およびドレイン電極4上を含む基板2の表面を、例えば有機溶剤により洗浄し、乾燥した後、図1(C)に示すように、ソース電極3およびドレイン電極4間(チャネル領域)上に半導体膜5を形成する。半導体膜5の形成方法としては、例えば、有機半導体材料として例えばF8T2溶液を基板2上にスピンコート法で塗布した後、乾燥し、焼成する。F8T2は、フルオレン−ビチオフェン(fluorene-bithiophene)共重合体の誘導体である。
有機半導体材料としては、F8T2の他、例えば、ナフタレン、アントラセン、テトラセン、ペンタセン、ヘキサセン、フタロシアニン、ペリレン、ヒドラゾン、トリフェニルメタン、ジフェニルメタン、スチルベン、アリールビニル、ピラゾリン、トリフェニルアミン、トリアリールアミン、オリゴチオフェン、フタロシアニンまたはこれらの誘導体のような低分子の有機半導体材料や、ポリ−N−ビニルカルバゾール、ポリビニルピレン、ポリビニルアントラセン、ポリチオフェン、ポリアルキルチオフェン、ポリヘキシルチオフェン、ポリ(p−フェニレンビニレン)、ポリチニレンビニレン、ポリアリールアミン、ピレンホルムアルデヒド樹脂、エチルカルバゾールホルムアルデヒド樹脂、フルオレン−アリールアミン共重合体またはこれらの誘導体のような高分子の有機半導体材料(共役系高分子材料)が挙げられ、これらのうちの1種または2種以上を組み合わせて用いてもよい。
次いで、図1(D)に示すように、半導体膜5上に、送風配向法を用いてゲート絶縁膜(強誘電体膜)6を形成する。ここでは、強誘電体ポリマーとして、例えば、フッ化ビニリデンと三フッ化エチレンとの共重合体P(VDF/TrFE)を用い、有機溶媒として、例えば、ケトン系溶媒を使用する。このP(VDF/TrFE)溶液6aを基板2上にスピンコート法で塗布した後、塗布液に送風を行いつつヒータ加熱により乾燥、焼成(熱処理)し、ゲート絶縁膜(強誘電体膜)6を形成する(図1(E))。風向は、チャネル幅方向、即ち、ソース電極3からドレイン電極4への方向と直交する方向とし、処理条件として、例えば、基板温度は、120℃程度、ステージの移動速度1m/min、風量(送風量)1m/mim、送風温度は室温(25℃)で処理し、200nm程度のゲート絶縁膜(強誘電体膜)6を形成する。この送風配向工程については後述する。この強誘電体ポリマーとしては、例えば、P(VDF/TrFE)の他、PVDFやこれらを組み合わせた材料を用いることができる。PVDFは、フッ化ビニリデンの重合体である。かかる材料は、強誘電体特性が良好であり、強誘電体膜として用いて好適である。
次いで、図1(E)に示すように、ゲート絶縁膜(強誘電体膜)6上に、ゲート電極7を形成する。ゲート電極7の形成方法としては、例えば、チャネル領域上にAg(銀)などの導電性粒子を分散させた溶液を吐出し、乾燥、焼成することにより、例えば平均の幅が約40μm程度のゲート電極7を形成する。以上の工程により、1T型の強誘電体メモリ1が略完成する。
以下に、図2および図3を参照しながら送風配向法について詳細に説明する。図2および図3は、それぞれ送風配向法に用いられる装置の概略を示す斜視図および断面図である。図2に示すように、P(VDF/TrFE)溶液6aを塗布した基板2をチャンバー(処理室)内に搬送し、ヒータを内蔵したステージ11上に搭載する。なお、このチャンバー内で塗布を行ってもよい。また、チャンバー内は、窒素(N2)やAr(アルゴン)などの不活性ガスによりパージされている。
次いで、P(VDF/TrFE)溶液6aに対し、送風源13の送風口13aから送風しながら、基板2を加熱する。ここでは、チャネル幅方向、即ち、ソース電極3からドレイン電極4への方向と直交する方向(図中のy方向)に送風しながら成膜(乾燥、焼成)を行う。この際、基板(ステージ11)2を、送風方向と逆向きに走査(移動)させてもよい。基板2側を移動させることで、塗布液に対する風圧を大きくすることができる。図中、15は、風向を整えるための壁である。また、送風源13は、風量調節機構が内蔵され、昇降、回転、y方向へ移動可能に支持されている。例えば、図3に示すように、基板2に対して0°から90°の角度で風向を調整できるよう構成されている。なお、送風口13aの形状は、適宜変更可能である。
なお、図2および図3においては、基板2全面に塗布する場合を例に説明したが、基板2上に吐出したP(VDF/TrFE)の液滴(6a)に対し送風配向処理を施してもよい。図4は、本実施の形態の他の態様を示す工程断面図である。図4に示すように、基板2上にインクジェット法を用いてP(VDF/TrFE)溶液6aを滴下する。当該液滴(6a)に対し、送風源13から所定の角度で送風を行いつつ乾燥、焼成する。この場合、液滴が風上から風下へ流れるとともに、基板上に残存する液滴の一部が順次、乾燥、焼成され薄膜となる。
このように、本実施の形態によれば、絶縁性ポリマーを用いた溶液プロセスにおいて、塗布又は吐出溶液に送風を行いながら乾燥および焼成を行ったので、絶縁性ポリマーの主鎖が、送風方向に並び、配向性の良い膜を形成することができる。
特に、チャネル方向と交差(好ましくは直交)する方向に送風を行うことで、チャネルに対して交差する方向に配向面(結晶面)を形成することができ、ソース、ドレイン電極間のリーク電流(オフ電流)を低減することができる。
図5は、本実施の形態の効果を模式的に説明するための平面図(左図)および断面図(右図)である。図5(A)に示すように、絶縁性ポリマーの主鎖9の整列性(配向性)を向上させることができる。例えば、P(VDF/TrFE)は、永久双極子モーメントを有する極性分子であり、その双極子モーメントは炭素の単結合から成る分子鎖を挟んでフッ素側から水素側へ向かうベクトルである。よって、上記送風により、P(VDF/TrFE)の双極子モーメントのベクトル方向を揃えつつ、基板面に対し垂直な方向(すなわち基板の厚さ方向)に結晶面を保ったまま結晶化することが可能である。結果として、b軸が基板面に対し垂直な(010)に優先配向した膜を形成することが可能になる。
一方、図5(B)に示すように、送風を行わない場合には、絶縁性ポリマーの主鎖9の方向がランダムとなり、かかる状態では、焼成しても膜の配向性が低下し、混合配向となりやすい。さらに、送風を行わないスピンコート法で塗布後、送風を行わない成膜方法では、表面エネルギーが最も小さく安定な(110)や(100)に配向しやすい。
このように、結晶性によりその特性が大きく左右される強誘電体膜の結晶面方位を制御することができ、分極量やヒステリシス特性を向上させ、メモリ特性を向上させることができる。
また、本実施の形態の送風配向法によれば、送風源から風量を小さくすることで、膜厚を厚く確保でき、逆に、風量を大きくすることで、膜厚を薄くするなど、風量により膜厚を制御することができる。また、風量を小さくすることで、絶縁性ポリマーの主鎖の整列性(配向性)が低下する場合には、送風配向処理を繰り返すことにより厚膜化してもよい。このように、絶縁性ポリマーの種類によって、風量とその配向性とを調整することにより、膜特性が良好となる条件にて成膜すればよい。なお、上記風量のみならず、基板2の速度を加味した風速(風圧)を調整してもよい。
また、本実施の形態の送風配向法によれば、前述の摩擦転写法のように、ペレットを用いる必要がなく、また、摩擦力より風速はより調整し易く、摩擦転写法による膜より平坦性の良い膜を形成することができる。また、摩擦力(応力)による下層の膜(例えば、電極など)の損傷を低減でき、各種構造のデバイスに使用可能である。また、ピンホールやスパイクの発生も抑えることができる。さらに、薄膜化も容易であり、低電圧駆動も可能となる。
以下に、上記1T型の強誘電体メモリの動作について説明する。半導体膜5は、p型とする。強誘電体メモリ1に対し書込みを行う場合には、先ず、ソース電極3とドレイン電極4とを同電位に保った状態で、ソース電極3(およびドレイン電極4)とゲート電極7との間に、ゲート強誘電体の抗電圧以上の電圧Vwriteを印加する。電圧Vwriteがソース電極3(およびドレイン電極4)に対し負電圧である場合、半導体膜5の強誘電体膜6との界面近傍には、正孔が誘起された(集合した)状態となる。すなわち、トランジスタがon状態になる。電圧Vwriteの印加を停止し、書込みを終了しても、強誘電体膜6の分極状態は維持されるため、トランジスタのon状態は維持される。
一方、電圧Vwriteがソース電極3(およびドレイン電極4)に対し正電圧である場合、半導体膜5の強誘電体膜6との界面近傍には、正孔が誘起されない状態となる。すなわち、トランジスタがoff状態になる。電圧Vwriteの印加を停止し、書込みを終了しても、強誘電体膜6の分極状態は維持されるため、トランジスタのoff状態は維持される。
前述したような書込みにより書き込まれた情報を読出し(再生)するに際しては、ソース電極3とドレイン電極4との間に、読み出し電圧Vread(Vds)を印加して、ソース電極3とドレイン電極4との間を流れる電流Iread(Ids)を検出する。
書き込みの際、ゲート電極に負電圧が印加されていれば、このとき、チャネル領域51にキャリア(本実施形態ではh:ホール)が誘起されているので、ソース電極3とドレイン電極4との間に非常に大きな電流Ireadが流れる。
一方、書き込みの際、ゲート電極に正電圧が印加されていれば、このとき、チャネル領域51にキャリア(本実施形態ではh:ホール)が誘起されていないので、ソース電極3とドレイン電極4との間には殆ど電流Ireadは流れない。
このIreadの差異を検出することにより、この素子は不揮発性メモリとして機能するが、このような読出しでは、ソース電極3(およびドレイン電極4)とゲート電極7との間に電圧を印加しないため、強誘電体膜6の分極状態は変化しない。そのため、強誘電体メモリ1では、非破壊読み出し(NDRO)が可能であり、また、基本的には何回でも読み出しが可能である。
このように、本実施の形態によれば、強誘電体膜の膜特性を向上させることができるため、上記書込み、読み出し特性も良好とすることができる。
なお、本実施の形態においては、半導体装置として1T型の強誘電体メモリを例に説明したが、常誘電体を用いた通常のTFTにも適用可能である。この場合、強誘電体ポリマーに代えて、常誘電体ポリマー(絶縁性ポリマー)を用いる他は、本実施の形態と同様である。当該ポリマーとしては、例えば、ポリビニルフェノールを用いることができる。かかるTFTにおいても送風配向法を用いることにより配向を調整することでオフ電流の低減を図ることができる。また、本実施の形態においては、ソース電極3およびドレイン電極4上に半導体膜5が配置されたTFT(図1(E))を例に説明したが、他の構成のTFTにも適用可能である。図6〜図8は、TFTの構成例を示す断面図である。図6に示すように、半導体膜5上にソース電極3およびドレイン電極4を配置してもよい。また、図7に示すように、ボトムゲート−トップコンタクト構造としてもよく、また、図8に示すように、ボトムゲート−ボトムコンタクト構造としてもよい。いずれのTFTにおいても、ゲート絶縁膜(強誘電体膜)6を送風配向法により形成することで上記効果を奏する。なお、図1と同一の機能を有し、同様に形成可能な箇所には同一の符号を付し、その繰り返しの説明を省略する。
また、1T1C型や2T2C型のような強誘電体キャパシタ(強誘電体素子)を有する強誘電体メモリにも適用可能である。即ち、2つの電極間に挟持された強誘電体膜を形成する際、上記強誘電体膜6と同様に送風配向法を用いることにより配向を調整することで強誘電体特性を向上させることができる。
また、本実施の形態においては、ゲート絶縁膜を例に説明したが、例えば、上記有機半導体膜の成膜時に用いてもよい。また、TFTや強誘電体キャパシタのみならず、ポリマーを含有する溶液を用いた成膜工程を有する装置に広く適用することができる。また、配向させる膜の面方位に限定はなく、膜や装置特性に応じて有効な方位に調整すればよい。
以下に、本発明者による実施例について詳細に説明する。
(実施例)
(サンプル1)上記プロセスにおいて、前述した条件である、基板温度、120℃程度、ステージの移動速度1m/min、風量(送風量)1m/mim、送風温度は室温(25℃)で処理し、200nm程度のゲート絶縁膜(強誘電体膜)6を形成した。
(サンプル2)上記プロセスにおいて、P(VDF/TrFE)溶液をポリビニルフェノールに変更して常誘電体のゲート絶縁膜6を形成した。処理条件は、上記サンプル1の場合と同様である。
(比較用のサンプル3)
P(VDF/TrFE)溶液を用い、送風を行わず、スピンコートした塗布膜を直接乾燥、焼成した。
(比較用のサンプル4)
ポリビニルフェノール溶液を用い、送風を行わず、スピンコートした塗布膜を直接乾燥、焼成した。
上記サンプル1〜4を用いたTFT(半導体装置)について、ソース電極3に対し、ドレイン電極4に−5Vの電位を印加し、また、ソース電極3に対し、ゲート電極に+20Vの電位を印加した場合のオフ電流を測定した。各サンプルについて測定を行いオフ電流の平均値を測定した。
その結果、送風を行ったものでは、オフ電流(リーク電流)の低減効果が確認できた。
また、図6〜図8に示すTFTにおいても、本発明者らの実験により、オフ電流(リーク電流)の低減効果が確認できている。
なお、上記強誘電体メモリは、各種電子機器に組み込むことができる。電子機器に特に限定はないが、例えば、上記メモリを備えたコンピュータ装置一般、携帯電話、PHS、PDA、電子手帳、ICカードなど、記憶装置を必要とするあらゆる装置に組み込むことができる。
また、上記TFTは、例えば、液晶装置の画素トランジスタや駆動回路を構成する駆動トランジスタ等として、各種電気光学装置(電子機器)に組み込むことができる。
このように、本実施の形態の風向配向法を用いて形成した各種デバイスを電子機器に組み込むことにより、その特性を向上させ、また、生産性を向上させることができる。
また、上記発明の実施の形態を通じて説明された実施例や応用例は、用途に応じて適宜に組み合わせて、又は変更若しくは改良を加えて用いることができ、本発明は上述した実施形態の記載に限定されるものではない。
本実施の形態の1T型の強誘電体メモリの形成方法を示す工程断面図である。 送風配向法に用いられる装置の概略を示す斜視図である。 送風配向法に用いられる装置の概略を示す断面図である。 本実施の形態の他の態様を示す工程断面図である。 本実施の形態の効果を模式的に説明するための平面図および断面図である。 TFTの構成例を示す断面図である。 TFTの構成例を示す断面図である。 TFTの構成例を示す断面図である。
符号の説明
1…強誘電体メモリ、2…基板、3…ソース電極、4…ドレイン電極、5……半導体膜、6……ゲート絶縁膜、6a…P(VDF/TrFE)溶液、7…ゲート電極、9…絶縁性ポリマーの主鎖、11…ステージ、13…送風源、13a…送風口、15…壁、L…チャネル長

Claims (15)

  1. 基板と、前記基板の上方に配置されたソース電極およびドレイン電極と、
    前記ソース電極およびドレイン電極間に配置されチャネル部を構成する有機半導体層と、
    前記チャネル部との間にゲート絶縁膜を介して配置されたゲート電極とを有する半導体装置の製造方法であって、
    前記基板の上方に絶縁性ポリマーを材料に含む液体材料を塗布する第1工程と、
    塗布された前記液体材料に対して送風を行いつつ加熱することにより前記ゲート絶縁膜を形成する第2工程と、
    を有することを特徴とする半導体装置の製造方法。
  2. 前記送風の方向は、前記ソース電極から前記ドレイン電極への第1方向と交差する方向である第2方向であることを特徴とする請求項1記載の半導体装置の製造方法。
  3. 前記送風の際に前記基板を前記送風の方向と逆向きに移動させることを特徴とする請求項1又は2記載の半導体装置の製造方法。
  4. 前記送風の際の風速を調整することにより前記絶縁膜の膜厚を調整することを特徴とする請求項1乃至3のいずれか一項記載の半導体装置の製造方法。
  5. 前記送風の際の風向は、前記基板に対して0°から90°の範囲であることを特徴とする請求項1乃至4のいずれか一項記載の半導体装置の製造方法。
  6. 前記第1および第2工程を2回以上繰り返すことを特徴とする請求項1乃至5のいずれか一項記載の半導体装置の製造方法。
  7. 前記絶縁性ポリマーは、強誘電体ポリマーであることを特徴とする請求項1乃至6のいずれか一項記載の半導体装置の製造方法。
  8. 前記強誘電体ポリマーは、フッ化ビニリデンと三フッ化エチレンとの共重合体P(VDF/TrFE)、およびフッ化ビニリデンの重合体PVDFのうちの少なくとも一方を主成分とするものである請求項7記載の半導体装置の製造方法。
  9. 基板の上方に配置された第1電極と、前記第1電極と強誘電体膜を介して配置された第2電極とを有する強誘電体素子の製造方法であって、
    前記基板の上方に強誘電体ポリマーを材料に含む液体材料を塗布する第1工程と、
    塗布された前記液体材料に対して送風を行いつつ加熱することにより前記強誘電体膜を形成する第2工程と、
    を有することを特徴とする強誘電体素子の製造方法。
  10. 前記送風の際に前記基板を前記送風の方向と逆向きに移動させることを特徴とする請求項9記載の強誘電体素子の製造方法。
  11. 前記送風の際の風速を調整することにより前記絶縁膜の膜厚を調整することを特徴とする請求項9又は10記載の強誘電体素子の製造方法。
  12. 前記送風の際の風向は、前記基板に対して0°から90°の範囲であることを特徴とする請求項9乃至11のいずれか一項記載の強誘電体素子の製造方法。
  13. 前記第1および第2工程を2回以上繰り返すことを特徴とする請求項9乃至12のいずれか一項記載の強誘電体素子の製造方法。
  14. 前記強誘電体ポリマーは、フッ化ビニリデンと三フッ化エチレンとの共重合体P(VDF/TrFE)、およびフッ化ビニリデンの重合体PVDFのうちの少なくとも一方を主成分とするものである請求項13記載の強誘電体素子の製造方法。
  15. 請求項1乃至8のいずれか一項記載の半導体装置の製造方法又は請求項9乃至14のいずれか一項記載の強誘電体素子の製造方法を有することを特徴とする電子機器の製造方法。
JP2008145892A 2008-06-03 2008-06-03 半導体装置の製造方法、強誘電体素子の製造方法および電子機器の製造方法 Pending JP2009295678A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008145892A JP2009295678A (ja) 2008-06-03 2008-06-03 半導体装置の製造方法、強誘電体素子の製造方法および電子機器の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008145892A JP2009295678A (ja) 2008-06-03 2008-06-03 半導体装置の製造方法、強誘電体素子の製造方法および電子機器の製造方法

Publications (1)

Publication Number Publication Date
JP2009295678A true JP2009295678A (ja) 2009-12-17

Family

ID=41543629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008145892A Pending JP2009295678A (ja) 2008-06-03 2008-06-03 半導体装置の製造方法、強誘電体素子の製造方法および電子機器の製造方法

Country Status (1)

Country Link
JP (1) JP2009295678A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209410A (ja) * 2011-03-29 2012-10-25 Seiko Epson Corp 半導体装置の製造方法、強誘電体素子の製造方法および電子機器の製造方法
WO2014061451A1 (ja) * 2012-10-19 2014-04-24 株式会社ニコン 薄膜形成装置及び薄膜形成方法
JP2015111741A (ja) * 2015-03-12 2015-06-18 セイコーエプソン株式会社 半導体装置
JP2016213280A (ja) * 2015-05-01 2016-12-15 国立大学法人金沢大学 電界効果トランジスタ

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209410A (ja) * 2011-03-29 2012-10-25 Seiko Epson Corp 半導体装置の製造方法、強誘電体素子の製造方法および電子機器の製造方法
WO2014061451A1 (ja) * 2012-10-19 2014-04-24 株式会社ニコン 薄膜形成装置及び薄膜形成方法
KR20150067191A (ko) * 2012-10-19 2015-06-17 가부시키가이샤 니콘 박막 형성 장치 및 박막 형성 방법
CN104737279A (zh) * 2012-10-19 2015-06-24 株式会社尼康 薄膜形成装置及薄膜形成方法
JPWO2014061451A1 (ja) * 2012-10-19 2016-09-05 株式会社ニコン 薄膜形成装置及び薄膜形成方法
CN107255870A (zh) * 2012-10-19 2017-10-17 株式会社尼康 基板处理装置及基板处理方法
KR20180100715A (ko) * 2012-10-19 2018-09-11 가부시키가이샤 니콘 박막 형성 장치 및 박막 형성 방법
KR102015163B1 (ko) * 2012-10-19 2019-08-27 가부시키가이샤 니콘 박막 형성 장치 및 박막 형성 방법
KR102081141B1 (ko) * 2012-10-19 2020-02-25 가부시키가이샤 니콘 박막 형성 장치 및 박막 형성 방법
JP2015111741A (ja) * 2015-03-12 2015-06-18 セイコーエプソン株式会社 半導体装置
JP2016213280A (ja) * 2015-05-01 2016-12-15 国立大学法人金沢大学 電界効果トランジスタ

Similar Documents

Publication Publication Date Title
US7485576B2 (en) Method of forming conductive pattern, thin film transistor, and method of manufacturing the same
JP2007258282A (ja) 半導体装置、半導体装置の製造方法および記憶装置
US6812509B2 (en) Organic ferroelectric memory cells
Khan et al. All‐polymer bistable resistive memory device based on nanoscale phase‐separated PCBM‐ferroelectric blends
US20070278481A1 (en) Organic electronic device
US20070242202A1 (en) Active matrix substrate, electro-optical device, electronic apparatus, and manufacturing method of active matrix substrate
JP2005079598A (ja) 有機半導体を用いた薄膜トランジスタ表示板及びその製造方法
KR20130053097A (ko) 인쇄기술을 이용한 낸드 플래시 유기메모리 및 이의 제조방법
KR100984182B1 (ko) 비휘발성 메모리 장치 및 이의 제조 방법
CN101188198A (zh) 有机强电介质膜的形成法、存储元件的制法、存储装置
JP4124243B2 (ja) 記憶素子の製造方法、記憶素子、記憶装置、および電子機器、ならびにトランジスタの製造方法
JP2009295678A (ja) 半導体装置の製造方法、強誘電体素子の製造方法および電子機器の製造方法
Boampong et al. Solution‐processed dual gate ferroelectric–ferroelectric organic polymer field‐effect transistor for the multibit nonvolatile memory
Kim et al. Flexible and printed organic nonvolatile memory transistor with bilayer polymer dielectrics
US7868322B2 (en) Method for fabricating an organic thin film transistor by oxidation and selective reduction of organic semiconductor material
JP2007173728A (ja) 有機強誘電体キャパシタの製造方法、有機強誘電体キャパシタ、有機強誘電体メモリ、および電子機器
KR20160048444A (ko) 고분자 절연체와 나노 플로팅 게이트를 이용한 비휘발성 유기 메모리 장치 및 그 제조방법
US20090072225A1 (en) Flat panel display device having organic thin film transistor and manufacturing method thereof
KR101190570B1 (ko) 플렉서블 유기 메모리 소자 및 그 제조방법
US20080012014A1 (en) Thin film transistor, method of preparing the same, and flat panel display device including the thin film transistor
US20070126001A1 (en) Organic semiconductor device and method of fabricating the same
JP2007227595A (ja) 有機薄膜トランジスタの製造方法
JP5724529B2 (ja) 半導体装置の製造方法、強誘電体素子の製造方法および電子機器の製造方法
US20100022032A1 (en) Method of forming organic ferroelectric film, method of manufacturing memory element, memory device, and electronic apparatus
US20150295193A1 (en) Semiconductor device using paper as a substrate and method of manufacturing the same