JP2009293448A - Co-generation apparatus - Google Patents

Co-generation apparatus Download PDF

Info

Publication number
JP2009293448A
JP2009293448A JP2008146201A JP2008146201A JP2009293448A JP 2009293448 A JP2009293448 A JP 2009293448A JP 2008146201 A JP2008146201 A JP 2008146201A JP 2008146201 A JP2008146201 A JP 2008146201A JP 2009293448 A JP2009293448 A JP 2009293448A
Authority
JP
Japan
Prior art keywords
exhaust
heat exchanger
exhaust gas
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008146201A
Other languages
Japanese (ja)
Other versions
JP4896081B2 (en
Inventor
Nobuyuki Yuri
信行 由利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008146201A priority Critical patent/JP4896081B2/en
Publication of JP2009293448A publication Critical patent/JP2009293448A/en
Application granted granted Critical
Publication of JP4896081B2 publication Critical patent/JP4896081B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2882Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
    • F01N3/2889Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices with heat exchangers in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/026Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled and formed by bent members, e.g. plates, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/103Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of more than two coaxial conduits or modules of more than two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/06Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for hand-held tools or portables devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/022Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of two or more media in heat-exchange relationship being helically coiled, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/12Safety or protection arrangements; Arrangements for preventing malfunction for preventing overpressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a co-generation apparatus capable of carrying out next operation without complicating the constitution of the apparatus even in a blocked state of an exhaust passage of a heat exchanger due to freezing of condensed water of exhaust gas of an internal combustion engine. <P>SOLUTION: The co-generation apparatus includes a heat exchanger (an exhaust heat exchanger) 30 connected to the internal combustion engine to exchange heat between exhaust gas heat and cooling water of the internal combustion engine to raise temperature. The heat exchanger 30 includes an intake port 30a taking in exhaust gas output from the internal combustion engine; first and second exhaust ports 30b, 30c exhausting the taken-in exhaust gas; and a pressure valve (a pressure release valve) 80 arranged in the second exhaust port 30c and opened when the pressure of the taken-in exhaust gas is a predetermined value or higher. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明はコージェネレーション装置に関し、より具体的には発電機を駆動する内燃機関の冷却水を排気熱と熱交換させて昇温する熱交換器を備えたコージェネレーション装置に関する。   The present invention relates to a cogeneration apparatus, and more specifically, to a cogeneration apparatus including a heat exchanger that raises the temperature by exchanging heat of cooling water of an internal combustion engine that drives a generator with exhaust heat.

近年、商用電力系統から電気負荷に至る交流電力の給電路に内燃機関で駆動される発電機からなる発電ユニットを接続し、商用電力系統と連系させて電気負荷に電力を供給すると共に、内燃機関の排気熱を利用して生成した温水などを熱負荷に供給するようにした、いわゆるコージェネレーション装置が提案されており、その例として特許文献1記載の技術を挙げることができる。尚、特許文献1にあっては、水循環系統に電気ヒータを設け、外気温が低いときに水循環系統が凍結するのを防止することも提案されている。
特開2006−266243号公報(段落0015、図1など)
In recent years, a power generation unit composed of a generator driven by an internal combustion engine is connected to an AC power supply path from a commercial power system to an electrical load to supply power to the electrical load in conjunction with the commercial power system. A so-called cogeneration apparatus has been proposed in which hot water generated by using exhaust heat from an engine is supplied to a heat load, and the technique described in Patent Document 1 can be given as an example. In Patent Document 1, it is also proposed to provide an electric heater in the water circulation system to prevent the water circulation system from freezing when the outside air temperature is low.
Japanese Patent Laying-Open No. 2006-266243 (paragraph 0015, FIG. 1, etc.)

ところで、コージェネレーション装置は、内燃機関の冷却水を排気熱と熱交換させて昇温する熱交換器を備える。内燃機関の排気が前記熱交換器を通過すると、排気中に含まれる水分が凝縮して凝縮水となり、熱交換器の排気経路に滞留することがある。そのような状態でコージェネレーション装置を停止させた場合、外気温が低下すると(具体的には0℃以下に低下すると)、凝縮水が凍結して排気経路が閉塞され、それによってコージェネレーション装置の次回の運転ができないという不具合が生じる恐れがあった。   By the way, a cogeneration apparatus is provided with the heat exchanger which heats the cooling water of an internal combustion engine by heat-exchanging with exhaust heat. When the exhaust gas of the internal combustion engine passes through the heat exchanger, moisture contained in the exhaust gas may be condensed to become condensed water, which may stay in the exhaust path of the heat exchanger. When the cogeneration apparatus is stopped in such a state, when the outside air temperature decreases (specifically, when the temperature decreases to 0 ° C. or lower), the condensed water freezes and the exhaust path is blocked, thereby There was a risk that the next operation could not be performed.

そこで、特許文献1記載の技術のように、凍結防止用の電気ヒータを熱交換器の排気経路に配置することも考えられるが、その場合、装置の構成が複雑になると共に、消費電力が増加するという不都合がある。   Thus, it is conceivable to arrange an electric heater for preventing freezing in the exhaust path of the heat exchanger as in the technique described in Patent Document 1, but in this case, the configuration of the apparatus becomes complicated and the power consumption increases. There is an inconvenience of doing.

従って、この発明の目的は上記した課題を解決し、内燃機関の排気の凝縮水が凍結して熱交換器の排気経路が閉塞された状態であっても、装置の構成を複雑化させることなく、次回の運転を行うことができるようにしたコージェネレーション装置を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems, without complicating the configuration of the apparatus even when the condensed water of the exhaust gas of the internal combustion engine is frozen and the exhaust path of the heat exchanger is closed. An object of the present invention is to provide a cogeneration apparatus that can perform the next operation.

上記した課題を解決するために、請求項1にあっては、商用電力系統から電気負荷に至る交流電力の給電路に接続可能な発電機と前記発電機を駆動する内燃機関からなる発電ユニットと、前記内燃機関に接続されて前記内燃機関の冷却水を排気熱と熱交換させて昇温する熱交換器とを少なくとも備えたコージェネレーション装置において、前記熱交換器が、前記内燃機関から出力される排気を取り入れる取入口と、前記取り入れられた排気を排出する第1、第2の排出口と、前記第2の排出口に配置され、前記取り入れられた排気の圧力が所定値以上のときに開弁する圧力弁とを備える如く構成した。   In order to solve the above-described problem, in claim 1, a generator that can be connected to an AC power supply path from a commercial power system to an electric load, and a power generation unit that includes an internal combustion engine that drives the generator, A cogeneration apparatus connected to the internal combustion engine and having at least a heat exchanger that heats the cooling water of the internal combustion engine by exchanging heat with exhaust heat, and the heat exchanger is output from the internal combustion engine When the pressure of the taken-in exhaust gas is greater than or equal to a predetermined value, the intake port for taking in the exhaust gas, the first and second exhaust ports for discharging the taken-in exhaust gas, and the second exhaust port are arranged. And a pressure valve for opening the valve.

請求項2に係るコージェネレーション装置にあっては、前記第2の排出口は前記第1の排出口より重力方向において上方に設けられる如く構成した。   In the cogeneration apparatus according to the second aspect, the second discharge port is configured to be provided above the first discharge port in the direction of gravity.

請求項3に係るコージェネレーション装置にあっては、前記取入口と前記第1、第2の排出口との間に配置される触媒装置を備える如く構成した。   The cogeneration apparatus according to claim 3 is configured to include a catalyst device disposed between the intake port and the first and second discharge ports.

請求項4に係るコージェネレーション装置にあっては、前記第1、第2の排出口は独立した排気通路でマフラに接続される如く構成した。   In the cogeneration apparatus according to a fourth aspect, the first and second discharge ports are configured to be connected to the muffler through independent exhaust passages.

請求項1に係るコージェネレーション装置にあっては、内燃機関に接続されて内燃機関の冷却水を排気熱と熱交換させて昇温する熱交換器が、内燃機関から出力される排気を取り入れる取入口と、取り入れられた排気を排出する第1、第2の排出口と、第2の排出口に配置され、取り入れられた排気の圧力が所定値以上のときに開弁する圧力弁とを備える如く構成、即ち、熱交換器が排出口を2個備え(第1、第2の排出口)、一方の排出口(第2の排出口)に圧力弁を配置するように構成したので、熱交換器に取り入れられた排気は、通常時(具体的には、第1の排出口が閉塞されないとき)は第1の排出口を介して排出されると共に、第1の排出口が閉塞されて熱交換器に取り入れられた排気の圧力が上昇するときは圧力弁が開弁するため、第2の排出口を介して排出されることとなる。   In the cogeneration apparatus according to claim 1, the heat exchanger connected to the internal combustion engine and heats the cooling water of the internal combustion engine by exchanging heat with the exhaust heat to take in the exhaust output from the internal combustion engine. An inlet, first and second exhaust ports for discharging the introduced exhaust gas, and a pressure valve that is disposed in the second exhaust port and opens when the pressure of the introduced exhaust gas exceeds a predetermined value. In other words, the heat exchanger has two outlets (first and second outlets) and a pressure valve is arranged at one outlet (second outlet). Exhaust gas introduced into the exchanger is discharged through the first discharge port during normal times (specifically, when the first discharge port is not closed), and the first discharge port is closed. When the pressure of the exhaust gas taken into the heat exchanger rises, the pressure valve opens. , And it is discharged through the second outlet.

これにより、内燃機関の排気中の水分が凝縮して生じる凝縮水の凍結によって熱交換器の排気経路である第1の排出口が閉塞された状態であっても、排気を第2の排出口を介して排出させることができ、よって装置の構成の複雑化や消費電力の増加を招くことなく、次回のコージェネレーション装置の運転を行うことができる。   As a result, even if the first exhaust port, which is the exhaust path of the heat exchanger, is closed by freezing of condensed water generated by condensation of moisture in the exhaust gas of the internal combustion engine, the exhaust gas is discharged to the second exhaust port. Therefore, the next operation of the cogeneration apparatus can be performed without incurring a complicated configuration of the apparatus and an increase in power consumption.

請求項2に係るコージェネレーション装置にあっては、第2の排出口は第1の排出口より重力方向において上方に設けられる如く構成したので、上記した効果に加え、第2の排出口において、凝縮水が第1の排出口に比して滞留し難くすることができ、第2の排出口が凝縮水の凍結によって閉塞されるのを回避することができる。   In the cogeneration apparatus according to claim 2, since the second discharge port is configured to be provided above the first discharge port in the direction of gravity, in addition to the above-described effects, in the second discharge port, Condensed water can be made difficult to stay as compared with the first discharge port, and the second discharge port can be prevented from being blocked by freezing of the condensed water.

請求項3に係るコージェネレーション装置にあっては、熱交換器が取入口と第1、第2の排出口との間に配置される触媒装置を備える如く構成、即ち、取入口から取り入れられた排気は触媒装置を通過した後、第1あるいは第2の排出口を介して排出される如く構成したので、上記した効果に加え、第1、第2の排出口のいずれからも触媒装置によって浄化された排気が排出されるようにすることができる。   In the cogeneration apparatus according to claim 3, the heat exchanger is configured to include a catalyst device disposed between the intake port and the first and second exhaust ports, that is, taken from the intake port. Since the exhaust gas passes through the catalyst device and then is discharged through the first or second exhaust port, in addition to the above-described effect, the exhaust gas is purified by the catalyst device from both the first and second exhaust ports. The exhausted exhaust can be discharged.

請求項4に係るコージェネレーション装置にあっては、第1、第2の排出口は独立した排気通路でマフラに接続される如く構成したので、上記した効果に加え、第1の排出口とマフラとを接続する排気通路が凝縮水の凍結によって閉塞される場合であっても、第2の排出口とマフラとを接続する別の排気通路で排気を排出させることができ、よって次回の運転を確実に行うことができる。   In the cogeneration apparatus according to claim 4, since the first and second discharge ports are configured to be connected to the muffler by independent exhaust passages, in addition to the above-described effects, the first discharge port and the muffler Even when the exhaust passage connecting the two is closed by freezing of condensed water, the exhaust can be exhausted by another exhaust passage connecting the second exhaust port and the muffler. It can be done reliably.

以下、添付図面に即してこの発明に係るコージェネレーション装置を実施するための最良の形態について説明する。   The best mode for carrying out a cogeneration apparatus according to the present invention will be described below with reference to the accompanying drawings.

図1は、この発明の実施例に係るコージェネレーション装置を全体的に示すブロック図である。   FIG. 1 is a block diagram generally showing a cogeneration apparatus according to an embodiment of the present invention.

図1において符号10はコージェネレーション装置を示す。コージェネレーション装置10は、商用電源(商用電力系統)12から家庭内電気負荷(電気負荷)14に至る交流電力の給電路(電力線)16に接続可能な、多極コイルからなる発電機(図で「GEN」と示す)20、発電機20を駆動する内燃機関(図で「ENG」と示し、以下「エンジン」という)22、発電制御部24からなる発電ユニット26と、エンジン22に接続されてエンジン22の冷却水を排気熱と熱交換させて昇温する排気熱交換器(熱交換器)30とを備え、屋内に設置される。   In FIG. 1, the code | symbol 10 shows a cogeneration apparatus. The cogeneration apparatus 10 includes a generator (in the figure) composed of a multipolar coil that can be connected to an AC power supply path (power line) 16 from a commercial power source (commercial power system) 12 to a domestic electrical load (electric load) 14. 20, an internal combustion engine (shown as “ENG” in the figure, hereinafter referred to as “engine”) 22, a power generation unit 26 including a power generation control unit 24, and an engine 22. An exhaust heat exchanger (heat exchanger) 30 that heats the cooling water of the engine 22 by exchanging heat with exhaust heat is provided, and is installed indoors.

商用電源12は、単相3線からAC100/200Vで50Hz(または60Hz)の交流電力を出力する。発電ユニット26は一体化され、排気熱交換器30と共に発電ユニットケース(筐体)32の内部に収容される。具体的には、発電ユニットケース32は仕切り32aで2つの室に仕切られ、図において右の室に発電機20とエンジン22が重力方向において上下に配置されると共に、排気熱交換器30も配置される一方、左の室に発電制御部24が収容される。   The commercial power supply 12 outputs AC power of 50 Hz (or 60 Hz) at 100/200 V AC from a single-phase three-wire. The power generation unit 26 is integrated and accommodated in the power generation unit case (housing) 32 together with the exhaust heat exchanger 30. Specifically, the power generation unit case 32 is divided into two chambers by a partition 32a, and the generator 20 and the engine 22 are arranged vertically in the right chamber in the figure, and the exhaust heat exchanger 30 is also arranged. On the other hand, the power generation control unit 24 is accommodated in the left chamber.

エンジン22は都市ガス(あるいはLPガス。以下、単に「ガス」という)を燃料とする、水冷4サイクルの単気筒OHV型の火花点火式のエンジンであり、例えば163ccの排気量を備える。図示は省略するが、発電ユニットケース32においてエンジン22のシリンダヘッドとシリンダブロックは横(水平)方向に配置され、その内部に1個のピストンが往復動自在に配置される。   The engine 22 is a water-cooled four-cycle single-cylinder OHV type spark ignition engine that uses city gas (or LP gas; hereinafter simply referred to as “gas”) as a fuel, and has a displacement of, for example, 163 cc. Although illustration is omitted, in the power generation unit case 32, the cylinder head and the cylinder block of the engine 22 are arranged in the horizontal (horizontal) direction, and one piston is arranged in the inside thereof so as to be able to reciprocate.

吸気ダクト22aから供給された吸気はガス供給源から電磁弁(図示せず)を介して供給されたガス(図に「GAS」と示す)とミキサで混合され、生成された混合気は燃焼室に流れ、点火プラグ(図示せず)で点火されるとき燃焼してピストンを駆動し、発電ユニットケース32において縦(重力)方向にピストンに連結されるクランクシャフトを回転させる。よって生じた排気は排気管(図1で図示省略)から発電ユニットケース32に接続された排気ダクト34を流れ、屋外に排出される。   The intake air supplied from the intake duct 22a is mixed by a mixer with gas (shown as “GAS” in the figure) supplied from a gas supply source via a solenoid valve (not shown), and the generated mixture is a combustion chamber. When it is ignited by a spark plug (not shown), it burns to drive the piston, and the power generation unit case 32 rotates the crankshaft connected to the piston in the longitudinal (gravity) direction. Thus, the generated exhaust gas flows from the exhaust pipe (not shown in FIG. 1) through the exhaust duct 34 connected to the power generation unit case 32 and is discharged outdoors.

符号36はエンジン22を冷却する冷却水(不凍液)の通路(冷却水循環路)を示す。通路36はエンジン22のシリンダブロックなどの発熱部位を通るように形成される。従って、通路36の内部を流れる冷却水は、発熱部位と熱交換してエンジン22を冷却させつつ昇温すると共に、前記した排気熱交換器30も通過して昇温させられる。   Reference numeral 36 indicates a passage (cooling water circulation passage) for cooling water (antifreeze) for cooling the engine 22. The passage 36 is formed so as to pass through a heat generating portion such as a cylinder block of the engine 22. Accordingly, the cooling water flowing inside the passage 36 is heated while exchanging heat with the heat generating portion to cool the engine 22 and also passes through the exhaust heat exchanger 30 and is heated.

発電機20は、クランクシャフトの上端に取り付けられるフライホイール(図示せず)の内側のクランクケース上に固定され、フライホイールとの間で相対回転するとき、交流電力を発電する。発電機20の出力は、発電制御部24に送られる。   The generator 20 is fixed on a crankcase inside a flywheel (not shown) attached to the upper end of the crankshaft, and generates AC power when rotating relative to the flywheel. The output of the generator 20 is sent to the power generation control unit 24.

図示は省略するが、発電制御部24は、マイクロコンピュータからなる電子制御ユニット(Electronic Control Unit。以下「ECU」という)と、インバータと、DC/DCコンバータを備える。インバータは、DC/DCコンバータなどを介して発電機20の出力をAC100/200V(単相)に変換する。   Although not shown, the power generation control unit 24 includes an electronic control unit (Electronic Control Unit; hereinafter referred to as “ECU”) composed of a microcomputer, an inverter, and a DC / DC converter. The inverter converts the output of the generator 20 into AC100 / 200V (single phase) via a DC / DC converter or the like.

発電ユニット26の発電出力は、1.0kW程度である。インバータの出力は、給電路16のブレーカ38よりも下流側に接続される。発電機20は商用電源12からインバータを介して通電されるとき、エンジン22をクランキングするスタータモータとしても機能する。発電制御部24のECUは発電機20の機能をスタータとジェネレータの間で切り換えると共に、エンジン22などの動作を制御する。   The power generation output of the power generation unit 26 is about 1.0 kW. The output of the inverter is connected to the downstream side of the breaker 38 of the power supply path 16. The generator 20 also functions as a starter motor that cranks the engine 22 when energized from the commercial power supply 12 through the inverter. The ECU of the power generation control unit 24 switches the function of the generator 20 between the starter and the generator and controls the operation of the engine 22 and the like.

コージェネレーション装置10は、発電ユニット26に加え、温風暖房ユニット(熱負荷)40を備える。   The cogeneration apparatus 10 includes a hot air heating unit (thermal load) 40 in addition to the power generation unit 26.

温風暖房ユニット40は、エンジン22の冷却水の通路36に接続される排熱熱交換器42と、バーナ44と、バーナ44の燃焼ガスの吸排気路44aに接続される顕熱熱交換器44bと潜熱熱交換器44cと、吸気を排熱熱交換器42、および顕熱熱交換器44bと潜熱熱交換器44cの双方に送って熱交換させ、よって生成された温風を温風通路から室内に供給するブロア46と、温風暖房ユニット制御部50を備える。温風暖房ユニット40は温風暖房ユニットケース52に収容されると共に、温風通路(図示せず)を介して各部屋に接続される。   The hot air heating unit 40 includes an exhaust heat exchanger 42 connected to the cooling water passage 36 of the engine 22, a burner 44, and a sensible heat exchanger connected to the combustion gas intake / exhaust passage 44 a of the burner 44. 44b and the latent heat exchanger 44c, and the intake air is sent to both the exhaust heat exchanger 42 and the sensible heat exchanger 44b and the latent heat exchanger 44c to exchange heat, and the generated hot air is passed through the hot air passage A blower 46 for supplying air to the room and a hot air heating unit controller 50 are provided. The hot air heating unit 40 is accommodated in the hot air heating unit case 52 and connected to each room via a hot air passage (not shown).

以下、上記した構成を個別に説明すると、発電ユニット26と温風暖房ユニット40は、冷却水の通路36で接続される。即ち、冷却水の通路36はエンジン22から温風暖房ユニット40に向けて延びて排熱熱交換器42に接続され、そこでブロア46で吸引された各部屋の冷気と熱交換させられた後、排気熱交換器30を介してエンジン22に戻る。   Hereinafter, the above-described configuration will be described individually. The power generation unit 26 and the hot air heating unit 40 are connected by a cooling water passage 36. That is, the cooling water passage 36 extends from the engine 22 toward the hot air heating unit 40 and is connected to the exhaust heat exchanger 42, where heat is exchanged with the cold air in each room sucked by the blower 46. It returns to the engine 22 through the exhaust heat exchanger 30.

冷気は排熱熱交換器42での熱交換で昇温させられて温風となり、ブロア46によって送風ダクト(図示せず)から前記した温風通路を通って各部屋に供給され、各部屋を暖房する。バーナ44は燃焼ファンで屋外から吸排気路44aを介して空気を吸引し、供給ガスと混合させて燃焼させる。それにより生じた燃焼ガスは顕熱熱交換器44bと潜熱熱交換器44cを通り、吸排気路44aから屋外に放出される。   The cold air is heated by heat exchange in the exhaust heat exchanger 42 to become hot air, and is supplied to each room from a blower duct (not shown) through the hot air passage by the blower 46. Heat up. The burner 44 is a combustion fan that sucks air from outside through the intake / exhaust passage 44a, mixes it with the supply gas, and burns it. The combustion gas generated thereby passes through the sensible heat exchanger 44b and the latent heat exchanger 44c and is discharged to the outside from the intake / exhaust passage 44a.

顕熱熱交換器44bと潜熱熱交換器44cは、ブロア46の送風ダクト(図示せず)を通る空気と熱交換させて昇温させる。具体的には、顕熱熱交換器44bは燃焼ガスの露点までの熱を放熱し、潜熱熱交換器44cは露点以下の熱を放熱する。   The sensible heat exchanger 44 b and the latent heat exchanger 44 c are heated by exchanging heat with air passing through a blower duct (not shown) of the blower 46. Specifically, the sensible heat exchanger 44b radiates heat up to the dew point of the combustion gas, and the latent heat exchanger 44c radiates heat below the dew point.

ブロア46は各部屋から冷気を吸引する一方、排熱熱交換器42で熱交換によって昇温させられると共に、バーナ44の燃焼によってさらに昇温させられた温風を送風ダクトから各部屋に送風し、各部屋を暖房する。   While the blower 46 draws in cold air from each room, the temperature is raised by heat exchange in the exhaust heat exchanger 42, and hot air heated further by combustion of the burner 44 is blown from the air duct to each room. Heat each room.

温風暖房ユニット制御部(以下「温風制御部」という)50も発電制御部24のECUと同様、マイクロコンピュータからなるECU(電子制御ユニット)を備える。温風制御部50のECUは、発電制御部24のECUと通信自在に接続されると共に、リモートコントローラ60(各部屋のリモートコントローラを総称して示す)にも通信自在に接続される。リモートコントローラ60はユーザによって操作され、目標室温などの設定に使用される。   Similarly to the ECU of the power generation control unit 24, the hot air heating unit control unit (hereinafter referred to as “hot air control unit”) 50 also includes an ECU (electronic control unit) formed of a microcomputer. The ECU of the hot air control unit 50 is communicably connected to the ECU of the power generation control unit 24, and is also communicably connected to a remote controller 60 (generally showing the remote controllers in each room). The remote controller 60 is operated by a user and used for setting a target room temperature and the like.

図1においてTは温度センサ62(各部屋のセンサを総称して示す),64,66を、Pは排熱ポンプ70を、Vはバルブ72を示し、信号線の図示は一部省略するが、それらは温風制御部50に電気的に接続される。   In FIG. 1, T is a temperature sensor 62 (generally indicating sensors in each room), 64, 66, P is a heat exhaust pump 70, V is a valve 72, and signal lines are partially omitted. These are electrically connected to the hot air control unit 50.

温風制御部50は、排熱ポンプ70とバルブ72を駆動して通路36を流れる冷却水を排熱熱交換器42に圧送し、通路36を流れる冷却水とブロア46で吸引された各部屋の冷気と熱交換させる。   The hot air control unit 50 drives the exhaust heat pump 70 and the valve 72 to pump the cooling water flowing through the passage 36 to the exhaust heat heat exchanger 42, and each room sucked by the cooling water flowing through the passage 36 and the blower 46. Heat exchange with cold air.

次いで商用電源12と連系してコージェネレーション装置10を運転する際の温風制御部50と発電制御部24の動作を説明すると、暖房運転の場合、温風制御部50は、各部屋に配置された温度センサ62の出力と、リモートコントローラ60を介してユーザから設定された目標室温と比較し、検出温度が目標室温を下回ると、発電制御部24に指令して発電ユニット26を稼動させると共に、検出温度が目標室温に達すると、稼動を停止させる。以降、それを繰り返す。   Next, the operation of the hot air control unit 50 and the power generation control unit 24 when operating the cogeneration apparatus 10 in conjunction with the commercial power source 12 will be described. In the heating operation, the hot air control unit 50 is arranged in each room. The output of the temperature sensor 62 is compared with the target room temperature set by the user via the remote controller 60. When the detected temperature falls below the target room temperature, the power generation control unit 24 is instructed to operate the power generation unit 26. When the detected temperature reaches the target room temperature, the operation is stopped. Then repeat it.

また、温風制御部50は、規定時間を経過しても検出された室温が目標室温に達しないとき、あるいは検出された室温と目標室温との差が既定値を超えるとき、発電ユニット26の稼動のみでは不足と判断し、目標室温に達するまでバーナ44を稼動して燃焼させ、バーナ44で昇温された温風をブロア46で各部屋に供給する。   Further, when the detected room temperature does not reach the target room temperature even after the lapse of the specified time, or when the difference between the detected room temperature and the target room temperature exceeds a predetermined value, the hot air control unit 50 The burner 44 is operated and burned until it reaches the target room temperature, and warm air heated by the burner 44 is supplied to each room by the blower 46.

また、商用電源(商用電力系統)12の電力が不足した場合、発電制御部24は、発電ユニット26を稼動して家庭内電気負荷14に電力を供給する。   When the power of the commercial power source (commercial power system) 12 is insufficient, the power generation control unit 24 operates the power generation unit 26 to supply power to the home electrical load 14.

また、商用電源12に停電が発生した場合など、商用電源12と連系せず、自立的にコージェネレーション装置10を運転する際の動作を説明すると、発電制御部24は、停電発生と同時に発電ユニット26を起動させ、以降、家庭内電気負荷14の増減に応じて一定の電圧となるように、発電出力を調整する。   Further, in the case where a power failure occurs in the commercial power source 12, the operation when the cogeneration apparatus 10 is operated independently without being linked to the commercial power source 12 will be described. The unit 26 is activated, and thereafter, the power generation output is adjusted so that the voltage becomes constant according to the increase / decrease of the household electrical load 14.

尚、発電ユニット26が動作すると、発電出力しないアイドル運転時も含め、熱出力が生じるが、温風制御部50は、熱需要に応じて上記した商用電源12との連系時と同様の暖房運転、バーナ駆動などを行う。   When the power generation unit 26 operates, heat output is generated even during idle operation where power generation output is not generated. However, the hot air control unit 50 performs heating similar to that at the time of connection with the commercial power source 12 according to the heat demand. Operate, burner drive, etc.

図2は、発電ユニットケース32に収容されたエンジン22と排気熱交換器30の接続関係を模式的に示す説明図である。尚、図2においては簡略化のために発電制御部24などの図示を省略すると共に、冷却水の通路36の入出力方向を図1と相違させた。   FIG. 2 is an explanatory diagram schematically showing a connection relationship between the engine 22 housed in the power generation unit case 32 and the exhaust heat exchanger 30. In FIG. 2, the power generation control unit 24 and the like are not shown for simplification, and the input / output direction of the cooling water passage 36 is different from that in FIG.

図2に示す如く、排気熱交換器30はエンジン22の排気管22bに沿って設けられる。冷却水の通路36は排気熱交換器30とエンジン22のシリンダブロックなどの発熱部位を通って温風暖房ユニット40に延び、その内部を流れる冷却水を熱交換によって昇温させる。   As shown in FIG. 2, the exhaust heat exchanger 30 is provided along the exhaust pipe 22 b of the engine 22. The cooling water passage 36 extends to the warm air heating unit 40 through heat generating parts such as the exhaust heat exchanger 30 and the cylinder block of the engine 22 and raises the temperature of the cooling water flowing through the heat exchange by heat exchange.

図3は、図2に模式的に示す排気熱交換器30の実際の構造を示す断面図である。   FIG. 3 is a sectional view showing an actual structure of the exhaust heat exchanger 30 schematically shown in FIG.

図示の如く、排気熱交換器30は筒型、具体的には円筒形を呈し、図において(重力方向において)上部にはエンジン22の排気管22bに接続されてエンジン22から出力される排気を取り入れる取入口30aが穿設される。また、排気熱交換器30の重力方向において下部には取り入れられた排気を排出する第1の排出口30bが穿設される。さらに、排気熱交換器30の上部、具体的には、第1の排出口30bより重力方向において上方であって前記した取入口30aの近傍には、第1の排出口30bと同様、取り入れられた排気を排出する第2の排出口30cが設けられる。   As shown in the figure, the exhaust heat exchanger 30 has a cylindrical shape, specifically, a cylindrical shape, and in the drawing (in the direction of gravity), exhaust gas output from the engine 22 is connected to an exhaust pipe 22b of the engine 22 at the top. An intake port 30a is formed. Further, a first exhaust port 30b for exhausting the exhaust gas taken in is formed in the lower part of the exhaust heat exchanger 30 in the gravity direction. Further, the upper portion of the exhaust heat exchanger 30, specifically, the upper portion in the direction of gravity from the first discharge port 30b and in the vicinity of the intake port 30a is taken in the same way as the first discharge port 30b. A second discharge port 30c is provided for discharging the exhaust.

第1の排出口30bには第1の排気ホース74の一端が接続され、その第1の排気ホース74の他端は、図2に示す如く、マフラ22cに気密に接続される。同様に、第2の排出口30cには第2の排気ホース76の一端が接続されると共に、第2の排気ホース76の他端はマフラ22cに気密に接続される。このように、第1、第2の排出口30b,30cは独立した排気通路(具体的には、第1の排気ホース74と第2の排気ホース76)でマフラ22cに接続される。   One end of a first exhaust hose 74 is connected to the first outlet 30b, and the other end of the first exhaust hose 74 is airtightly connected to the muffler 22c as shown in FIG. Similarly, one end of the second exhaust hose 76 is connected to the second exhaust port 30c, and the other end of the second exhaust hose 76 is airtightly connected to the muffler 22c. As described above, the first and second exhaust ports 30b and 30c are connected to the muffler 22c through independent exhaust passages (specifically, the first exhaust hose 74 and the second exhaust hose 76).

尚、マフラ22cは、前記した排気ダクト34に気密に接続される。従って、エンジン22から排出される排気は、排気熱交換器30を介して第1あるいは第2の排気ホース74,76を通り、マフラ22cで消音されつつ、排気ダクト34から屋外に放出される。また、マフラ22cには凝縮水ホース78が接続され、マフラ22cで排気中の水分が凝縮することによって生じた凝縮水を発電ユニットケース32の外部に排出するように構成される。   The muffler 22c is airtightly connected to the exhaust duct 34 described above. Therefore, the exhaust gas discharged from the engine 22 passes through the first or second exhaust hoses 74 and 76 via the exhaust heat exchanger 30, and is discharged from the exhaust duct 34 to the outside while being silenced by the muffler 22c. In addition, a condensate water hose 78 is connected to the muffler 22c, and the condensate generated by the condensation of moisture in the exhaust gas by the muffler 22c is configured to be discharged to the outside of the power generation unit case 32.

排気熱交換器30の第2の排出口30c(正確には、図3に示す如く、第2の排出口30cと第2の排気ホース76との接続部)には、圧力開放弁(圧力弁)80が配置(介挿)される。   A pressure release valve (pressure valve) is connected to the second exhaust port 30c of the exhaust heat exchanger 30 (more precisely, as shown in FIG. 3, the connecting portion between the second exhaust port 30c and the second exhaust hose 76). ) 80 is arranged (inserted).

図4は、図3に示す圧力開放弁80を拡大して示す拡大断面図である。   FIG. 4 is an enlarged sectional view showing the pressure release valve 80 shown in FIG. 3 in an enlarged manner.

図4に示すように、圧力開放弁80は、第2の排出口30cを閉塞するように配置される弁体80aと、弁体80aの紙面において上方に配置され、弁体80aの上方への変位(変形)を規制するストッパ80bと、弁体80aやストッパ80bを収容する圧力開放弁ボディ80cなどからなる。   As shown in FIG. 4, the pressure release valve 80 is disposed above the valve body 80a on the paper surface of the valve body 80a and the valve body 80a disposed so as to close the second discharge port 30c. It comprises a stopper 80b for regulating displacement (deformation), a pressure release valve body 80c for accommodating the valve body 80a and the stopper 80b, and the like.

弁体80aはゴムなどの弾性材からなると共に、第2の排出口30c側から作用する排気の圧力が所定値以上のとき、想像線で示す如く上方に向けて変位(変形)するように形成される。ストッパ80bは金属材からなると共に、その中央部付近で上方に向けて屈折するように形成される。弁体80aとストッパ80bは図示の如く重ね合わせられ、弁体80aとストッパ80bの端部(紙面において右端)がボルト80dによって熱交換器30に固定される。また、圧力開放弁ボディ80cもボルト80eによって熱交換器30にネジ止めされて固定される。   The valve body 80a is made of an elastic material such as rubber and formed so as to be displaced (deformed) upward as indicated by an imaginary line when the pressure of the exhaust gas acting from the second discharge port 30c side is a predetermined value or more. Is done. The stopper 80b is made of a metal material and is formed so as to be refracted upward in the vicinity of the central portion thereof. The valve body 80a and the stopper 80b are overlapped as shown in the figure, and the ends (the right end in the drawing) of the valve body 80a and the stopper 80b are fixed to the heat exchanger 30 by bolts 80d. The pressure release valve body 80c is also screwed and fixed to the heat exchanger 30 by a bolt 80e.

これにより、圧力開放弁80は、第2の排出口30c側から作用する排気の圧力が所定値未満のときに閉弁する(具体的には、弁体80aが実線で示すように第2の排出口30cを閉塞する)一方、所定値以上のときに開弁する、より具体的には、弁体80aが想像線で示す如く上方に向けて変形し、第2の排出口30cを開放することとなる。尚、前記所定値(圧力開放弁80の動作圧力)は、後述する如く、第1の排出口30bなどが凝縮水の凍結によって閉塞していると判断可能な値(例えば100kPa)に設定される。   As a result, the pressure release valve 80 is closed when the pressure of the exhaust gas acting from the second discharge port 30c side is less than a predetermined value (specifically, the second valve body 80a is indicated by a solid line). On the other hand, the valve body 80a opens when it exceeds a predetermined value. More specifically, the valve body 80a is deformed upward as indicated by an imaginary line, and the second discharge port 30c is opened. It will be. The predetermined value (the operating pressure of the pressure release valve 80) is set to a value (for example, 100 kPa) that can be determined that the first discharge port 30b and the like are blocked by freezing of condensed water, as will be described later. .

図3の説明に戻ると、排気熱交換器30の内部には室30dが形成される。室30dは多孔仕切り30eで中央部と円周部に画成され、中央部には三元触媒装置(触媒装置)82が収容されると共に、円周部にはハニカム状の伝熱管30fが形成される。三元触媒装置82は、排気熱交換器30内の排気の流れにおいて取入口30aの下流側であって、かつ第1、第2の排出口30b,30cの上流側に配置、即ち、排気の流れにおいて取入口30aと第1、第2の排出口30b,30cとの間に配置される。   Returning to the description of FIG. 3, a chamber 30 d is formed inside the exhaust heat exchanger 30. The chamber 30d is divided into a central portion and a circumferential portion by a porous partition 30e. A three-way catalyst device (catalyst device) 82 is accommodated in the central portion, and a honeycomb heat transfer tube 30f is formed in the circumferential portion. Is done. The three-way catalyst device 82 is disposed downstream of the intake port 30a and upstream of the first and second exhaust ports 30b, 30c in the flow of exhaust gas in the exhaust heat exchanger 30, that is, exhaust gas. It arrange | positions between the inlet 30a and the 1st, 2nd discharge ports 30b and 30c in a flow.

次いで排気熱交換器30内における排気の流通経路(排気経路)と通路36から流入する冷却水の流通経路について説明する。エンジン22から出力されて排気管22b、取入口30aを介して取り入れられた排気は、矢印aで示すように三元触媒装置82を流れて浄化された後、矢印bで示すように仕切り30eと伝熱管30fの間を上方に向けて流れる。次いで矢印cで示すように排気は排気熱交換器30の内部の上方に達し、第2の排出口30cの近傍を通過する。   Next, an exhaust flow path (exhaust path) in the exhaust heat exchanger 30 and a flow path of cooling water flowing from the passage 36 will be described. The exhaust gas output from the engine 22 and taken in through the exhaust pipe 22b and the intake port 30a is purified by flowing through the three-way catalyst device 82 as indicated by an arrow a, and then separated from the partition 30e as indicated by an arrow b. It flows upward between the heat transfer tubes 30f. Next, as indicated by an arrow c, the exhaust gas reaches the upper part inside the exhaust heat exchanger 30 and passes through the vicinity of the second exhaust port 30c.

第2の排出口30cに配置された圧力開放弁80にあっては、通常時(第1の排出口30bなどが閉塞されないとき)において閉弁されるため、排気は矢印dで示すように伝熱管30fを流れ、次いで矢印eで示すように下部の第1の排出口30bから排出される。第1の排出口30bから排出された排気は、前記したように、第1の排気ホース74を介してマフラ22c、排気ダクト34へと流れる。   Since the pressure release valve 80 disposed at the second discharge port 30c is closed during normal times (when the first discharge port 30b or the like is not closed), the exhaust is transmitted as indicated by an arrow d. After flowing through the heat pipe 30f, it is discharged from the lower first discharge port 30b as indicated by an arrow e. As described above, the exhaust discharged from the first discharge port 30b flows to the muffler 22c and the exhaust duct 34 via the first exhaust hose 74.

冷却水の通路36は排気熱交換器30に側面で接続され、低温の冷却水は矢印fで示すように開孔30gから排気熱交換器30に入り、次いで矢印g,hで示すように伝熱管30fを螺旋状に流れて排気と熱交換して昇温させられた後(逆に言えば、排気と熱交換して排気を冷却した後)、矢印iで示すように開孔30hから通路36に戻る。   The cooling water passage 36 is connected to the exhaust heat exchanger 30 at the side, and the low-temperature cooling water enters the exhaust heat exchanger 30 through the opening 30g as indicated by an arrow f, and then transmits as indicated by arrows g and h. After the heat pipe 30f flows in a spiral shape and exchanges heat with the exhaust gas to raise the temperature (in other words, after exchanging heat with the exhaust gas and cools the exhaust gas), the passage from the opening 30h is indicated by an arrow i. Return to 36.

上記した如く、エンジン22の排気が排気熱交換器30を通過して冷却、正確には排気熱交換器30の伝熱管30fを通過して冷却されると、排気中に含まれる水分が凝縮して凝縮水が生じる。この凝縮水は排気熱交換器30の排気経路、具体的には、図2,3に破線で示す如く、排気熱交換器30において伝熱管30fが形成される部位、第1の排出口30bの近傍、あるいは第1の排気ホース74などに滞留することがある。   As described above, when the exhaust of the engine 22 passes through the exhaust heat exchanger 30 and is cooled, more precisely, through the heat transfer tube 30f of the exhaust heat exchanger 30, the moisture contained in the exhaust is condensed. Condensate is generated. This condensed water is an exhaust path of the exhaust heat exchanger 30, specifically, as shown by a broken line in FIGS. 2 and 3, the portion where the heat transfer tube 30f is formed in the exhaust heat exchanger 30, the first exhaust port 30b. It may stay in the vicinity or in the first exhaust hose 74 or the like.

凝縮水が滞留した状態で例えばコージェネレーション装置10を停止させた場合、外気温が低下すると(具体的には0℃以下に低下すると)、凝縮水が凍結して排気経路が閉塞され、それによって次回のコージェネレーション装置10の運転ができないという不具合が生じる恐れがある。この発明は上記した不具合を解消することを目的とする。   For example, when the cogeneration apparatus 10 is stopped in a state where the condensed water stays, when the outside air temperature decreases (specifically, when the temperature decreases to 0 ° C. or lower), the condensed water freezes and the exhaust path is blocked. There is a risk that the next time the cogeneration apparatus 10 cannot be operated. An object of the present invention is to eliminate the above-described problems.

その意図から、排気熱交換器30は第2の排出口30cや圧力開放弁80などを備えるように構成される。即ち、凝縮水の凍結によって排気熱交換器30の排気経路(第1の排出口30bや第1の排気ホース74など)が閉塞された状態でコージェネレーション装置10が始動されると、エンジン22の排気は排気管22bから排気熱交換器30に取り入れられ、排気熱交換器30内の圧力が徐々に上昇する。   From that intention, the exhaust heat exchanger 30 is configured to include the second exhaust port 30c, the pressure release valve 80, and the like. That is, when the cogeneration apparatus 10 is started in a state where the exhaust path (the first exhaust port 30b, the first exhaust hose 74, etc.) of the exhaust heat exchanger 30 is closed due to the condensation water being frozen, the engine 22 The exhaust is taken into the exhaust heat exchanger 30 from the exhaust pipe 22b, and the pressure in the exhaust heat exchanger 30 gradually increases.

そして排気熱交換器30に取り入れられた排気の圧力が所定値以上になると、前述した如く、圧力開放弁80は開弁する。これにより、排気熱交換器30内の排気、詳しくは三元触媒装置82を通過して浄化された排気は、矢印kで示すように第2の排出口30cと圧力開放弁80を通った後、第2の排気ホース76、マフラ22cおよび排気ダクト34を流れ、屋外に排出される。   When the pressure of the exhaust gas taken into the exhaust heat exchanger 30 exceeds a predetermined value, the pressure release valve 80 opens as described above. As a result, the exhaust gas in the exhaust heat exchanger 30, specifically the exhaust gas purified through the three-way catalyst device 82, passes through the second outlet 30 c and the pressure release valve 80 as indicated by an arrow k. , Flows through the second exhaust hose 76, the muffler 22c and the exhaust duct 34 and is discharged outdoors.

このように、エンジン22の排気の凝縮水が凍結して排気熱交換器30の排気経路である第1の排出口30bなどが閉塞された状態であっても、排気を第2の排出口30cを介して排出することができ、よってコージェネレーション装置10の運転を支障なく行うことができる。   Thus, even if the condensed water of the exhaust gas from the engine 22 is frozen and the first exhaust port 30b, which is the exhaust path of the exhaust heat exchanger 30, is closed, the exhaust gas is discharged to the second exhaust port 30c. Therefore, the cogeneration apparatus 10 can be operated without any trouble.

さらに、第2の排出口30cからは伝熱管30fで冷却される前の排気、即ち、比較的高温の排気が排出される。従って、第2の排出口30cや圧力開放弁80、およびその下流側に接続される第2の排気ホース76においては排気中の水分が凝縮し難く、よって第2の排出口30cなどが凝縮水の凍結によって閉塞されることはない。   Further, the exhaust before being cooled by the heat transfer tube 30f, that is, the exhaust at a relatively high temperature, is exhausted from the second exhaust port 30c. Accordingly, moisture in the exhaust is difficult to condense in the second exhaust port 30c, the pressure release valve 80, and the second exhaust hose 76 connected to the downstream side thereof, and therefore the second exhaust port 30c and the like are condensed water. It will not be blocked by freezing.

尚、コージェネレーション装置10が始動すると、発電ユニットケース32内の温度はエンジン22の放熱などによって徐々に上昇する。それにより、第1の排出口30bなどで凍結していた凝縮水は解氷されて排気熱交換器30の排気経路が開放されると共に、排気熱交換器30内の圧力が所定値未満となって圧力開放弁80は閉弁する。圧力開放弁80が閉弁すると、排気熱交換器30内の排気は第1の排出口30bを介して排出される。   When the cogeneration apparatus 10 is started, the temperature in the power generation unit case 32 gradually increases due to heat dissipation from the engine 22 or the like. As a result, the condensed water frozen at the first discharge port 30b is defrosted, the exhaust path of the exhaust heat exchanger 30 is opened, and the pressure in the exhaust heat exchanger 30 becomes less than a predetermined value. Thus, the pressure release valve 80 is closed. When the pressure release valve 80 is closed, the exhaust gas in the exhaust heat exchanger 30 is discharged through the first discharge port 30b.

上記の如く、この実施例においては、商用電力系統(商用電源)12から電気負荷(家庭内電気負荷)14に至る交流電力の給電路16に接続可能な発電機20と前記発電機を駆動する内燃機関(エンジン)22からなる発電ユニット26と、前記内燃機関に接続されて前記内燃機関の冷却水を排気熱と熱交換させて昇温する熱交換器(排気熱交換器)30とを少なくとも備えたコージェネレーション装置10において、前記熱交換器30が、前記内燃機関から出力される排気を取り入れる取入口30aと、前記取り入れられた排気を排出する第1、第2の排出口30b,30cと、前記第2の排出口に配置され、前記取り入れられた排気の圧力が所定値以上のときに開弁する圧力弁(圧力開放弁)80とを備える如く構成した。   As described above, in this embodiment, the generator 20 that can be connected to the AC power supply path 16 from the commercial power system (commercial power source) 12 to the electrical load (home electrical load) 14 and the generator are driven. At least a power generation unit 26 comprising an internal combustion engine (engine) 22 and a heat exchanger (exhaust heat exchanger) 30 connected to the internal combustion engine and causing the cooling water of the internal combustion engine to exchange heat with exhaust heat to raise the temperature. In the cogeneration apparatus 10 provided, the heat exchanger 30 includes an intake 30a for taking in the exhaust gas output from the internal combustion engine, and first and second exhaust ports 30b and 30c for discharging the taken-in exhaust gas. And a pressure valve (pressure release valve) 80 that is disposed at the second discharge port and opens when the pressure of the introduced exhaust gas is equal to or higher than a predetermined value.

即ち、排気熱交換器30が排出口を2個備え(第1、第2の排出口30b,30c)、一方の排出口(第2の排出口30c)に圧力開放弁80を配置するように構成したので、排気熱交換器30に取り入れられた排気は、通常時(具体的には、第1の排出口30bが閉塞されないとき)は第1の排出口30bを介して排出されると共に、第1の排出口30bが閉塞されて排気熱交換器30に取り入れられた排気の圧力が上昇するときは圧力開放弁80が開弁するため、第2の排出口30cを介して排出されることとなる。これにより、エンジン22の排気中の水分が凝縮して生じる凝縮水の凍結によって排気熱交換器30の排気経路である第1の排出口30bなどが閉塞された状態であっても、排気を第2の排出口30cを介して排出させることができ、よって装置の構成の複雑化や消費電力の増加を招くことなく、次回のコージェネレーション装置10の運転を行うことができる。   That is, the exhaust heat exchanger 30 includes two discharge ports (first and second discharge ports 30b and 30c), and the pressure release valve 80 is disposed at one of the discharge ports (second discharge port 30c). Since the exhaust gas introduced into the exhaust heat exchanger 30 is normally discharged (specifically, when the first discharge port 30b is not closed), the exhaust gas is discharged through the first discharge port 30b. When the first exhaust port 30b is closed and the pressure of the exhaust gas taken into the exhaust heat exchanger 30 rises, the pressure release valve 80 opens, so that the exhaust is discharged through the second exhaust port 30c. It becomes. As a result, even if the first exhaust port 30b, which is the exhaust path of the exhaust heat exchanger 30, is closed due to the condensation water generated by condensation of moisture in the exhaust gas of the engine 22, the exhaust gas is exhausted. 2 can be discharged through the second discharge port 30c, so that the next operation of the cogeneration apparatus 10 can be performed without complicating the configuration of the apparatus and increasing the power consumption.

また、前記第2の排出口30cは前記第1の排出口30bより重力方向において上方に設けられる如く構成した。これにより、第2の排出口30cにおいて、凝縮水が第1の排出口30bに比して滞留し難くすることができ、第2の排出口30cが凝縮水の凍結によって閉塞されるのを回避することができる。   Further, the second discharge port 30c is configured to be provided above the first discharge port 30b in the direction of gravity. As a result, the condensed water can be less likely to stay in the second outlet 30c than the first outlet 30b, and the second outlet 30c is prevented from being blocked by freezing of the condensed water. can do.

また、前記取入口30aと前記第1、第2の排出口30b,30cとの間に配置される触媒装置(三元触媒装置)82を備える如く構成、即ち、取入口から取り入れられた排気は三元触媒装置82を通過した後、第1あるいは第2の排出口30b,30cを介して排出される如く構成したので、第1、第2の排出口30b,30cのいずれからも三元触媒装置82によって浄化された排気が排出されるようにすることができる。   The exhaust gas taken in from the intake port is configured to include a catalyst device (three-way catalyst device) 82 disposed between the intake port 30a and the first and second discharge ports 30b and 30c. After passing through the three-way catalyst device 82, the three-way catalyst is configured to be discharged through the first or second discharge ports 30b and 30c. The exhaust gas purified by the device 82 can be discharged.

また、前記第1、第2の排出口30b,30cは独立した排気通路(第1、第2の排気ホース74,76)でマフラ22cに接続される如く構成したので、第1の排出口30bとマフラ22cとを接続する排気通路(第1の排気ホース74)が凝縮水の凍結によって閉塞される場合であっても、第2の排出口22cとマフラ22cとを接続する別の排気通路(第2の排気ホース76)で排気を排出させることができ、よって次回のコージェネレーション装置10の運転を確実に行うことができる。   Further, the first and second exhaust ports 30b and 30c are configured to be connected to the muffler 22c by independent exhaust passages (first and second exhaust hoses 74 and 76). Even if the exhaust passage (first exhaust hose 74) that connects the second exhaust port 22c and the muffler 22c is blocked by freezing of the condensed water, another exhaust passage that connects the second exhaust port 22c and the muffler 22c ( Exhaust gas can be discharged by the second exhaust hose 76), so that the next operation of the cogeneration apparatus 10 can be performed reliably.

尚、上記において、発電機20の駆動源を都市ガス・LPガスを燃料とするガスエンジンとしたが、ガソリン燃料などを使用するエンジンであっても良い。また、発電ユニット26の発電出力およびエンジン22の排気量などを具体的な値で示したが、それらは例示であって限定されるものではない。   In the above description, the driving source of the generator 20 is a gas engine using city gas / LP gas as fuel, but it may be an engine using gasoline fuel or the like. Moreover, although the electric power generation output of the electric power generation unit 26, the displacement of the engine 22, etc. were shown by the specific value, these are illustrations and are not limited.

また、実施例において商用電源12が出力する交流電力を100/200Vとしたが、商用電源12が出力する交流電力が100/200Vを超えるときは、それに相応する電圧を発電ユニット26から出力させることはいうまでもない。   In the embodiment, the AC power output from the commercial power source 12 is set to 100 / 200V. However, when the AC power output from the commercial power source 12 exceeds 100 / 200V, the corresponding voltage is output from the power generation unit 26. Needless to say.

この発明の実施例に係るコージェネレーション装置を全体的に示すブロック図である。1 is a block diagram generally showing a cogeneration apparatus according to an embodiment of the present invention. 図1に示す発電ユニットケースに収容された内燃機関(エンジン)と排気熱交換器の接続関係を模式的に示す説明図である。It is explanatory drawing which shows typically the connection relationship of the internal combustion engine (engine) accommodated in the electric power generation unit case shown in FIG. 1, and an exhaust heat exchanger. 図2に模式的に示す排気熱交換器の実際の構造を示す断面図である。It is sectional drawing which shows the actual structure of the exhaust heat exchanger typically shown in FIG. 図3に示す圧力開放弁を拡大して示す拡大断面図である。It is an expanded sectional view which expands and shows the pressure release valve shown in FIG.

符号の説明Explanation of symbols

10 コージェネレーション装置、12 商用電源(商用電力系統)、14 家庭内電気負荷(電気負荷)、16 給電路、20 発電機、22 エンジン(内燃機関)、22c マフラ、26 発電ユニット、30 排気熱交換器(熱交換器)、30a 取入口、30b 第1の排出口、30c 第2の排出口、74 第1の排気ホース(排気通路)、76 第2の排気ホース(排気通路)、80 圧力開放弁(圧力弁)、82 三元触媒装置(触媒装置)   DESCRIPTION OF SYMBOLS 10 Cogeneration apparatus, 12 Commercial power supply (commercial power system), 14 Domestic electric load (electric load), 16 Feeding path, 20 Generator, 22 Engine (internal combustion engine), 22c Muffler, 26 Power generation unit, 30 Exhaust heat exchange (Heat exchanger), 30a inlet, 30b first outlet, 30c second outlet, 74 first exhaust hose (exhaust passage), 76 second exhaust hose (exhaust passage), 80 pressure release Valve (pressure valve), 82 Three-way catalyst device (catalyst device)

Claims (4)

商用電力系統から電気負荷に至る交流電力の給電路に接続可能な発電機と前記発電機を駆動する内燃機関からなる発電ユニットと、前記内燃機関に接続されて前記内燃機関の冷却水を排気熱と熱交換させて昇温する熱交換器とを少なくとも備えたコージェネレーション装置において、前記熱交換器が、
a.前記内燃機関から出力される排気を取り入れる取入口と、
b.前記取り入れられた排気を排出する第1、第2の排出口と、
c.前記第2の排出口に配置され、前記取り入れられた排気の圧力が所定値以上のときに開弁する圧力弁と、
を備えることを特徴とするコージェネレーション装置。
A generator that can be connected to a power supply path of AC power from a commercial power system to an electric load, an internal combustion engine that drives the generator, and the cooling water of the internal combustion engine that is connected to the internal combustion engine exhausts heat In a cogeneration apparatus comprising at least a heat exchanger that raises the temperature by exchanging heat with the heat exchanger,
a. An intake for taking in the exhaust gas output from the internal combustion engine;
b. First and second outlets for discharging the taken-in exhaust;
c. A pressure valve disposed at the second exhaust port and opened when a pressure of the introduced exhaust gas is equal to or higher than a predetermined value;
A cogeneration apparatus comprising:
前記第2の排出口は前記第1の排出口より重力方向において上方に設けられることを特徴とする請求項1記載のコージェネレーション装置。   The cogeneration apparatus according to claim 1, wherein the second discharge port is provided above the first discharge port in the direction of gravity. d.前記取入口と前記第1、第2の排出口との間に配置される触媒装置、
を備えることを特徴とする請求項1または2記載のコージェネレーション装置。
d. A catalyst device disposed between the intake and the first and second outlets;
The cogeneration apparatus according to claim 1, further comprising:
前記第1、第2の排出口は独立した排気通路でマフラに接続されることを特徴とする請求項1から3のいずれかに記載のコージェネレーション装置。   The cogeneration apparatus according to any one of claims 1 to 3, wherein the first and second discharge ports are connected to a muffler through independent exhaust passages.
JP2008146201A 2008-06-03 2008-06-03 Cogeneration equipment Expired - Fee Related JP4896081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008146201A JP4896081B2 (en) 2008-06-03 2008-06-03 Cogeneration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008146201A JP4896081B2 (en) 2008-06-03 2008-06-03 Cogeneration equipment

Publications (2)

Publication Number Publication Date
JP2009293448A true JP2009293448A (en) 2009-12-17
JP4896081B2 JP4896081B2 (en) 2012-03-14

Family

ID=41541848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008146201A Expired - Fee Related JP4896081B2 (en) 2008-06-03 2008-06-03 Cogeneration equipment

Country Status (1)

Country Link
JP (1) JP4896081B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202013100114U1 (en) * 2013-01-10 2014-04-11 Ses Energiesysteme Gmbh Exhaust gas heat exchanger with integrated silencer and arrangement with exhaust gas heat exchanger
EP2746549A2 (en) * 2012-12-21 2014-06-25 EC Power A/S Catalytic converter apparatus
JP2014214635A (en) * 2013-04-23 2014-11-17 アイシン精機株式会社 Cogeneration system
CN108240775A (en) * 2016-12-26 2018-07-03 本田技研工业株式会社 Heat exchanger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03164559A (en) * 1989-11-20 1991-07-16 Meidensha Corp Heat recovery method in cogeneration system
JPH0690725A (en) * 1992-07-31 1994-04-05 Takeda Chem Ind Ltd Frozen food for microwave heating and its production
JP2000045764A (en) * 1998-07-31 2000-02-15 Honda Motor Co Ltd Device for clarifying exhaust gas of engine and recovering exhaust gas heat thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03164559A (en) * 1989-11-20 1991-07-16 Meidensha Corp Heat recovery method in cogeneration system
JPH0690725A (en) * 1992-07-31 1994-04-05 Takeda Chem Ind Ltd Frozen food for microwave heating and its production
JP2000045764A (en) * 1998-07-31 2000-02-15 Honda Motor Co Ltd Device for clarifying exhaust gas of engine and recovering exhaust gas heat thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2746549A2 (en) * 2012-12-21 2014-06-25 EC Power A/S Catalytic converter apparatus
EP2746549A3 (en) * 2012-12-21 2014-11-19 EC Power A/S Catalytic converter apparatus
DE202013100114U1 (en) * 2013-01-10 2014-04-11 Ses Energiesysteme Gmbh Exhaust gas heat exchanger with integrated silencer and arrangement with exhaust gas heat exchanger
JP2014214635A (en) * 2013-04-23 2014-11-17 アイシン精機株式会社 Cogeneration system
CN108240775A (en) * 2016-12-26 2018-07-03 本田技研工业株式会社 Heat exchanger

Also Published As

Publication number Publication date
JP4896081B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP4886667B2 (en) Cogeneration equipment
JP4838225B2 (en) Cogeneration equipment
JP5001749B2 (en) Cogeneration equipment
CN100504230C (en) A domestic thermoelectricity combined production system
US8093733B2 (en) Cogeneration system
US8093734B2 (en) Cogeneration system
JP2009103112A (en) Cogeneration system
JP4896081B2 (en) Cogeneration equipment
KR100868997B1 (en) That the economizer attached the efficient boiler
CN201311059Y (en) Gas water heater with water circulating device
JP5043558B2 (en) Cogeneration equipment
DK2981990T3 (en) PORTABLE AIR HEATING SYSTEM
CN206817441U (en) A kind of steam generation module unit
WO2018018977A1 (en) Gas water heater
JPH07113566A (en) Vaporization-cooled engine for cogeneration
JP2009299532A (en) Co-generation apparatus
JP2009047052A (en) Co-generation apparatus
JP4892436B2 (en) Cogeneration equipment
RU2003127613A (en) METHOD FOR AUTONOMOUS HEATING AND HOT WATER SUPPLY OF THE RESIDENTIAL HOUSE AND AUTONOMOUS HEATING SYSTEM AND HOT WATER SUPPLY OF THE RESIDENTIAL HOUSE
JP2009121442A (en) Co-generation apparatus
JP2013100791A (en) Cogeneration apparatus
US20070205299A1 (en) Hot air heating system
CN206817429U (en) A kind of steam generation module unit lighted a fire using ever-burning flame
JP5808718B2 (en) Cogeneration equipment
JP2001041571A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees