JPH03164559A - Heat recovery method in cogeneration system - Google Patents

Heat recovery method in cogeneration system

Info

Publication number
JPH03164559A
JPH03164559A JP1301491A JP30149189A JPH03164559A JP H03164559 A JPH03164559 A JP H03164559A JP 1301491 A JP1301491 A JP 1301491A JP 30149189 A JP30149189 A JP 30149189A JP H03164559 A JPH03164559 A JP H03164559A
Authority
JP
Japan
Prior art keywords
cooling water
heat
generator
flow pump
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1301491A
Other languages
Japanese (ja)
Other versions
JP2754802B2 (en
Inventor
Sadao Morita
森田 貞夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP1301491A priority Critical patent/JP2754802B2/en
Publication of JPH03164559A publication Critical patent/JPH03164559A/en
Application granted granted Critical
Publication of JP2754802B2 publication Critical patent/JP2754802B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To suppress the fluctuation of cooling water temperature caused by the output change of a generator by performing the circulation of cooling water using a constant flow pump and a variable flow pump jointly, and regulating the flow of cooling water in relation to the output change of the generator, thereby controlling the cooling water temperature to be constant. CONSTITUTION:A cogeneration system drives a generator 2 by a diesel engine, and its heat recovery is performed by a heat exchanger 3 obtaining hot water directly or indirectly from the cooling water system of the engine 1 and a heat exchanger 6 for performing heating by circulating hot water in an exhaust gas jacket 5. The recovered quantity of heat becomes heat source such as hot water supply in a heat utilizing system 7. In this case, a parallel circuit formed of a constant flow pump 4 and a variable flow pump 9 is provided to circulate cooling water (hot water). The variable flow pump 9 is driven by a motor 10 controlled in its rotating speed by an inverter 11 so as to be regulated in its flow, and the inverter 11 is controlled on the basis of the output of a temperature sensor 12 and a power sensor 13.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、コージェネレーションシステム(熱電併給ノ
ステム)に係り、特に熱回収方式に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a cogeneration system (combined heat and power generation system), and particularly to a heat recovery system.

B1発明の概要 本発明は、原動機の放熱を冷却水の循環で回収する熱回
収方式において、 冷却水の流量を定流量ポンプと可変流量ポンプの併用に
よって制御することにより、 発電機の広出力範囲を許容しながら冷却水循環温度の安
定化を図ったものである。
B1 Summary of the Invention The present invention uses a heat recovery method in which the heat radiated from a prime mover is recovered by circulating cooling water. By controlling the flow rate of cooling water using a combination of a constant flow pump and a variable flow pump, the present invention enables a wide output range of a generator. The aim is to stabilize the cooling water circulation temperature while allowing for

C従来の技術 ]−ジェネレーションシステムでは、自家用発電設備等
における発電設備の排熱を給湯熱源にfll用するもの
が多い。このための熱回収方式は、ディーゼルエンジン
と発電機に代表される発電設備に対して、原動機の冷却
水系からの熱回収と排ガス系からの熱回収が行われろ。
C. Prior Art] - In many generation systems, exhaust heat from power generation equipment such as private power generation equipment is used as a heat source for hot water supply. The heat recovery method for this purpose is to recover heat from the cooling water system of the prime mover and from the exhaust gas system for power generation equipment such as diesel engines and generators.

第2図は従来のコージェネレーションシステムの構成図
を示す。ディーゼルエンジンlにより発電機2を駆動し
、発電機2の発電電力を単独又は商用電源との連係によ
って工場内や病院での電力源とする。一方、熱回収は、
エンジンlの冷却水系から直接又は間接に温水を得ろ熱
交換器3と、この温水を定流量ポンプ4を通して排ガス
ジャケット5内を循環さ仕ることで加温する熱交換器6
の温水系統を設け、この温水系統が回収する熱量を給湯
等の熱源にする熱利用システム7を設ける。
FIG. 2 shows a configuration diagram of a conventional cogeneration system. A generator 2 is driven by a diesel engine 1, and the power generated by the generator 2 is used as a power source in factories and hospitals either alone or in conjunction with a commercial power source. On the other hand, heat recovery
A heat exchanger 3 that obtains hot water directly or indirectly from the cooling water system of the engine 1, and a heat exchanger 6 that heats this hot water by circulating it in the exhaust gas jacket 5 through a constant flow pump 4.
A hot water system is provided, and a heat utilization system 7 is provided in which the amount of heat recovered by this hot water system is used as a heat source for hot water supply, etc.

8は温度調節弁であり、冷却水の一部分流によるlΔに
度調節を行う。
Reference numeral 8 denotes a temperature control valve, which adjusts the degree of lΔ by a partial flow of cooling water.

D1発明が解決しようとする課題 従来のシステム構成において、エンノン1の放熱量は発
電機2の発電電力によって変化し、発電電力は安定供給
のために需要に応じて変化する。
D1 Problems to be Solved by the Invention In the conventional system configuration, the amount of heat dissipated from the ennon 1 changes depending on the power generated by the generator 2, and the generated power changes according to demand for stable supply.

このため、熱回収システムは熱源の放!A皐変化に(1
りって回収熱量、即し循環冷却水温度か変動する。
For this reason, the heat recovery system is designed to release heat from the heat source. Ako change (1
The amount of heat recovered, and therefore the temperature of the circulating cooling water, fluctuates accordingly.

第3図は発電出力と発熱m及び冷却水温度の関係を示し
、発電出力の低下に伴って指敗関敗的に発熱riN及び
冷却水温度が低下してくろ。この変動中る冷却水温度は
そのままでは熱+11用ノステム71’!+11で適正
化を欠く熱源になる。即ち、熱利用ノステム7側で適正
トリ用できる冷却水の定温ライン1Aに対して発電機2
の低出力運転では冷却水温度か低くなって適正(11用
で8なくなるし、高出力運転ては過熱する。
FIG. 3 shows the relationship between the power generation output, heat generation m, and cooling water temperature. As the power generation output decreases, the heat generation riN and the cooling water temperature decrease in a predictable manner. If this fluctuating cooling water temperature is left as it is, it will be 71' for heat +11! +11 makes it a heat source that lacks optimization. In other words, the generator 2
In low output operation, the cooling water temperature becomes low and appropriate (8 for 11 is lost), and in high output operation it overheats.

このため、発電機の運転範囲が制限されたり、熱利用シ
ステム7側でガス等の他の熱源を併用するという設備増
を招く問題があった。
For this reason, there are problems in that the operating range of the generator is restricted, and that the heat utilization system 7 requires the use of other heat sources such as gas in combination, resulting in an increase in equipment.

なお、温度調節弁8による冷却水の一部分流による温度
調節がなされるが、この温度調節では発電機の広範囲出
力運転に対して冷却水の定l益a″帖環を補償しきれな
い。
Although the temperature is controlled by a partial flow of the cooling water by the temperature control valve 8, this temperature control cannot compensate for the constant flow rate of the cooling water over a wide range of output operation of the generator.

本発明の目的は、発電機の広出力範囲を許容しながら冷
却水循環温度の安定化を図った熱回収方式を提供するこ
とにある。
An object of the present invention is to provide a heat recovery system that stabilizes the cooling water circulation temperature while allowing a wide output range of the generator.

E 課題を解決するだめの手段と作用 本発明は上記目的を達成するため、発電機を駆動する原
動機の冷却水温を循環させて熱利用システムの熱源にす
るコーノエネレーンヨノノステムにおいて、前記原動機
の最小用ツノに必要な冷却水の循環を行う定流mポンプ
と、この定流量ポンプに並列に設けられる可変流量ポン
プと、前記冷却水の温度及び発電機の出力又は両者の一
方に応じて前記可変流量ポンプの流量を制御する流量制
御手段とを備え、前記発電機の出力変化に前記可変流量
ポンプの流量を制御して冷却水温度を一定にするように
し、原動機の出力変化による冷却水温度変動を可変流量
ポンプの流量調節によって温度一定住を図る。
E Means and Functions for Solving the Problems In order to achieve the above object, the present invention provides a Konoene Lane system that circulates the cooling water temperature of the prime mover that drives the generator and uses it as a heat source for the heat utilization system. a constant flow m pump that circulates the necessary cooling water to the minimum horn of the pump; a variable flow pump that is installed in parallel with this constant flow pump; a flow rate control means for controlling the flow rate of the variable flow pump, the flow rate control means controlling the flow rate of the variable flow pump in response to changes in the output of the generator to keep the cooling water temperature constant; Temperature fluctuations can be avoided by adjusting the flow rate of a variable flow pump to maintain a constant temperature.

F、実施例 第1図は本発明の一実施例を示すシステム構成図であり
、第2図と同し構成要素は同一符号で示す。定流量ポン
プ4に並列に可変原虫ポンプ9か設けられ、両ポンプに
よる冷却水酒環がなされろ。
F. Embodiment FIG. 1 is a system configuration diagram showing an embodiment of the present invention, and the same components as in FIG. 2 are designated by the same symbols. A variable protozoan pump 9 is provided in parallel with the constant flow pump 4, and both pumps form a cooling water cycle.

可変流量ポンプ9は誘導電動機10によって回転数制御
された駆動がなされてその流量か調節される。電動機1
0の回転数制御はインバータ11による周波数−電圧制
御でなされる。インバータ11は、冷却水系の冷却水温
度を検出する温度センサ12と発電機2の発電出力を検
出する電力センサ(ワJトドランスジユーザ)の雨検出
出力に出力制御(周波数と電圧)がなされる。
The variable flow rate pump 9 is driven by an induction motor 10 whose rotational speed is controlled to adjust its flow rate. Electric motor 1
The rotation speed control at 0 is performed by frequency-voltage control by the inverter 11. The inverter 11 performs output control (frequency and voltage) on the rain detection outputs of a temperature sensor 12 that detects the temperature of the cooling water in the cooling water system and a power sensor that detects the generated output of the generator 2. Ru.

こうした構成において、定量ポンプ4はエンジンIか最
小出力(ブラック始動等)時に必要な冷却水虫を供給し
、エンジンIが最小出力が変化するときに必要な冷却水
量を可変流量ポンプ9の可変速制御で補償し、発電出力
の範囲制約を少なくしながら一定温度の冷却水を循環さ
せる。インバータ11は、温度センサ12の検出温度と
設定温度との比較によって温度制御系を構成することで
冷却水温度を一定に制御しようとするが、この制御では
発電機の出力変化による冷却水温度変化に温度検出遅れ
を伴って冷却水温度の変動幅が大きくなるシステム構成
になることがある。この場合には電力センサ13による
発電機2の出力変化から冷却水温度変化を予測し、イン
バータ11の出力をF HIIj制9114“るこ七で
冷)41水温度の変動幅を小さくずろ。
In this configuration, the metering pump 4 supplies the necessary cooling water when the minimum output of the engine I (such as a black start), and the variable flow rate pump 9 controls the variable speed to control the amount of cooling water required when the minimum output of the engine I changes. , and circulate cooling water at a constant temperature while reducing range constraints on power generation output. The inverter 11 attempts to control the cooling water temperature at a constant level by configuring a temperature control system by comparing the temperature detected by the temperature sensor 12 and the set temperature. However, in this control, the cooling water temperature changes due to changes in the output of the generator. In some cases, the system configuration may be such that the range of fluctuation in the cooling water temperature becomes large due to a delay in temperature detection. In this case, the change in cooling water temperature is predicted from the change in the output of the generator 2 detected by the power sensor 13, and the output of the inverter 11 is changed to a smaller value.

さらに、発電出力の最小運転には定流り1ポンプ4によ
る循環をし、可変流mポンプ9を停止1−il“ること
で冷却水系の運転効率を高めると共にエンジンの過冷却
を回避してエンジン効率を高める。
Furthermore, for minimum power generation output, circulation is performed by constant flow pump 4 and variable flow pump 9 is stopped to increase the operating efficiency of the cooling water system and avoid overcooling of the engine. Increase engine efficiency.

方、発電出力の変動には可変流量ポンプ9によ−で冷却
水温度の変動分をM償し、一定の冷却水温度による熱利
用システム7側の安定運転と熱回収りJ率を向上させる
。また、定流h1ポンプと可変流7t 、17ンブの併
用によってブランクスター[・ら可能にする。
On the other hand, for fluctuations in power generation output, the variable flow rate pump 9 compensates for fluctuations in cooling water temperature, thereby improving stable operation of the heat utilization system 7 and heat recovery rate at a constant cooling water temperature. . In addition, the combination of constant flow h1 pump and variable flow 7t and 17 pumps makes it possible to use a blank star.

なお、実旋例において、エンジノlはディーゼルエンジ
ンに限らずガソリンエノノンなど他の電動機を使用した
コーンエ不し−ンヨンノステムに適用てさろのは勿論で
ある。また、1台のエンジノと発電機による場合を示す
が、複数台のエンジンと発電機を設備したシステムにら
適用できろ。
In the actual example, the engine is not limited to a diesel engine, but can of course be applied to a combustion engine system using other electric motors such as a gasoline engine. Also, although the case with one engine and generator is shown, it can be applied to a system equipped with multiple engines and generators.

また、可変流量ポンプの駆動制御はインバータと電動機
の組み合わせに限られろ乙のでない。
Further, drive control of a variable flow rate pump is not limited to a combination of an inverter and an electric motor.

G 発明の効果 以」二のとおり、本発明によれば、冷却水の循環を定流
t1ポンプと可変流量ポンプを併用し、発電機の出力変
化に対して冷却水原虫を調節することで冷却水温度を一
定にするようにしたため、発電機の出力変化による冷却
水温度変動を無くし、発?li機の出力範囲の制約を無
くしたシステム構築が可能となり、また熱利用システム
側も安定、高効率の運転を可能とする等の効果がある。
G. Effects of the Invention" 2, according to the present invention, cooling water is cooled by using a constant flow t1 pump and a variable flow pump in combination to circulate the cooling water, and adjusting the cooling water protozoa in response to changes in the output of the generator. Since the water temperature is kept constant, fluctuations in the cooling water temperature due to changes in the output of the generator are eliminated, and the water temperature is kept constant. It becomes possible to construct a system that does not have restrictions on the output range of the LI machine, and the heat utilization system also has the effect of enabling stable and highly efficient operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すシステム構成図、第2
図は従来のシステム構成図、第3図はシステムの熱特性
図である。 1−・・ディーゼルエンジン、2・・・発電機、3,6
・熱交換器、4・・・定流量ポンプ、5・・・排ガスノ
ヤケット、7・・・熱利用システム、9・・・可変流量
ポンプ、10・・・誘導電動機、11・・・インバータ
、12・温度センサ、13・・・電力センサ。 1・・ディーゼルエンツノ 2−・発電機 36・鴫交換器 4一定流量ボノブ 5−排ガスジャケット 7・1111和用ノステム 9 可変流量ポツプ 10・誘導電動機 11・・インバータ 21度センサ 131!カセノサ 第2図 従来のノステム構戚図 ノステムの熱特性図
Fig. 1 is a system configuration diagram showing one embodiment of the present invention;
The figure is a conventional system configuration diagram, and FIG. 3 is a diagram of the thermal characteristics of the system. 1-...Diesel engine, 2...Generator, 3,6
・Heat exchanger, 4... Constant flow pump, 5... Exhaust gas noyacket, 7... Heat utilization system, 9... Variable flow pump, 10... Induction motor, 11... Inverter, 12. Temperature sensor, 13... Power sensor. 1... Diesel engine 2 - Generator 36 - Air exchanger 4 Constant flow rate Bonob 5 - Exhaust gas jacket 7 - 1111 Japanese Nostem 9 Variable flow rate pop 10 - Induction motor 11... Inverter 21 Degree sensor 131! Casenosa Figure 2 Conventional nostem structure diagram Thermal characteristics of nostem

Claims (1)

【特許請求の範囲】[Claims] (1)発電機を駆動する原動機の冷却水温を循環させて
熱利用システムの熱源にするコージェネレーションシス
テムにおいて、前記原動機の最小出力に必要な冷却水の
循環を行う定流量ポンプと、この定流量ポンプに並列に
設けられる可変流量ポンプと、前記冷却水の温度及び発
電機の出力又は両者の一方に応じて前記可変流量ポンプ
の流量を制御する流量制御手段とを備え、前記発電機の
出力変化に前記可変流量ポンプの流量を制御して冷却水
温度を一定にすることを特徴とするコージェネレーショ
ンシステムの熱回収方式。
(1) In a cogeneration system that circulates the cooling water temperature of the prime mover that drives the generator and uses it as a heat source for the heat utilization system, there is a constant flow pump that circulates the cooling water necessary for the minimum output of the prime mover, and this constant flow rate. A variable flow rate pump provided in parallel with the pump, and a flow rate control means for controlling the flow rate of the variable flow rate pump according to the temperature of the cooling water and the output of the generator, or one of both, and the output of the generator changes. A heat recovery method for a cogeneration system, characterized in that the flow rate of the variable flow rate pump is controlled to keep the cooling water temperature constant.
JP1301491A 1989-11-20 1989-11-20 Cogeneration system heat recovery equipment Expired - Fee Related JP2754802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1301491A JP2754802B2 (en) 1989-11-20 1989-11-20 Cogeneration system heat recovery equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1301491A JP2754802B2 (en) 1989-11-20 1989-11-20 Cogeneration system heat recovery equipment

Publications (2)

Publication Number Publication Date
JPH03164559A true JPH03164559A (en) 1991-07-16
JP2754802B2 JP2754802B2 (en) 1998-05-20

Family

ID=17897553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1301491A Expired - Fee Related JP2754802B2 (en) 1989-11-20 1989-11-20 Cogeneration system heat recovery equipment

Country Status (1)

Country Link
JP (1) JP2754802B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293448A (en) * 2008-06-03 2009-12-17 Honda Motor Co Ltd Co-generation apparatus
JP2014080904A (en) * 2012-10-16 2014-05-08 Honda Motor Co Ltd Cogeneration apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276246A (en) * 1986-03-13 1987-12-01 エフ・エム・シ−・コ−ポレ−シヨン Overall heating and driving device for deicing car
JPH01119837U (en) * 1988-02-08 1989-08-14

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276246A (en) * 1986-03-13 1987-12-01 エフ・エム・シ−・コ−ポレ−シヨン Overall heating and driving device for deicing car
JPH01119837U (en) * 1988-02-08 1989-08-14

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293448A (en) * 2008-06-03 2009-12-17 Honda Motor Co Ltd Co-generation apparatus
JP2014080904A (en) * 2012-10-16 2014-05-08 Honda Motor Co Ltd Cogeneration apparatus

Also Published As

Publication number Publication date
JP2754802B2 (en) 1998-05-20

Similar Documents

Publication Publication Date Title
AU2010233518B2 (en) Cooling device for a motor vehicle
US6476510B2 (en) System, method, and apparatus for power regulation
AU667679B2 (en) Vehicle cooling system
KR940010453A (en) Electric motor cooling system and electric motor used for this
CN108995552A (en) A kind of heat management system and extended-range vehicle for extended-range vehicle
KR20000022357A (en) Cooling control apparatus and cooling control method for internal combustion engines
CN109578136A (en) Hermetically sealed water cooling mute power generator group
JP2821760B2 (en) Optimal control method for cogeneration system
US8384328B2 (en) Control methodology for an AC starter-generator system
US6481211B1 (en) Turbine engine cycling thermo-mechanical stress control
US20150021925A1 (en) Method to control temperature of engine of generator system
JP2007038874A (en) Cooling system of hybrid vehicle
JPH03164559A (en) Heat recovery method in cogeneration system
JP2005513321A (en) Household cogeneration unit
CN208615707U (en) A kind of heat management system of the range extender system for new energy vehicle
JP2002213242A (en) Cooling controller for movable body
KR101316526B1 (en) Cooling system of thermoelectric generator for vehicle, and control method thereof
CN108528672B (en) Ship cooling system for saving fuel
JPS59170421A (en) Engine cooler
JP2020114137A (en) Warm-up control device for vehicle
JPH0754027Y2 (en) AC power generator by automobile engine
EP3796543B1 (en) Method for operating a brushed direct current electric motor, data processing apparatus, computer program, computer-readable data carrier and a device
RU2264544C2 (en) Heat machine coolant temperature control system
JPH04311655A (en) Dynamo engine stop control device
RU2697597C1 (en) Heat carrier circulation control system in liquid cooling system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees