JP5001749B2 - Cogeneration equipment - Google Patents

Cogeneration equipment Download PDF

Info

Publication number
JP5001749B2
JP5001749B2 JP2007212979A JP2007212979A JP5001749B2 JP 5001749 B2 JP5001749 B2 JP 5001749B2 JP 2007212979 A JP2007212979 A JP 2007212979A JP 2007212979 A JP2007212979 A JP 2007212979A JP 5001749 B2 JP5001749 B2 JP 5001749B2
Authority
JP
Japan
Prior art keywords
heat exchanger
hot air
heat
temperature
air passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007212979A
Other languages
Japanese (ja)
Other versions
JP2009047339A (en
Inventor
信行 由利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007212979A priority Critical patent/JP5001749B2/en
Priority to US12/221,528 priority patent/US20090045625A1/en
Priority to CA002638728A priority patent/CA2638728A1/en
Publication of JP2009047339A publication Critical patent/JP2009047339A/en
Application granted granted Critical
Publication of JP5001749B2 publication Critical patent/JP5001749B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • F24D5/02Hot-air central heating systems; Exhaust gas central heating systems operating with discharge of hot air into the space or area to be heated
    • F24D5/04Hot-air central heating systems; Exhaust gas central heating systems operating with discharge of hot air into the space or area to be heated with return of the air or the air-heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D18/00Small-scale combined heat and power [CHP] generation systems specially adapted for domestic heating, space heating or domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • F24D2101/70Electric generators driven by internal combustion engines [ICE]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2103/00Thermal aspects of small-scale CHP systems
    • F24D2103/10Small-scale CHP systems characterised by their heat recovery units
    • F24D2103/13Small-scale CHP systems characterised by their heat recovery units characterised by their heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/26Internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

この発明はコージェネレーション装置に関し、より具体的には熱需要がないときに電力供給が要求される場合に対処するようにしたコージェネレーション装置に関する。   The present invention relates to a cogeneration apparatus, and more specifically, to a cogeneration apparatus that copes with a case where power supply is required when there is no heat demand.

近年、商用電力系統から電気負荷に至る交流電力の給電路に内燃機関で駆動される発電機を接続し、商用電力系統と連系させて電気負荷に電力を供給すると共に、内燃機関の排熱を利用して加温した温水などを熱負荷に供給するようにした、いわゆるコージェネレーション装置が提案されており、その例として特許文献1記載の技術を挙げることができる。
特開平8−4586号公報
In recent years, a generator driven by an internal combustion engine is connected to an AC power supply path from a commercial power system to an electric load to supply power to the electric load in conjunction with the commercial power system, and exhaust heat from the internal combustion engine. A so-called cogeneration apparatus has been proposed in which warm water or the like warmed by using a heat source is supplied to a heat load, and a technique described in Patent Document 1 can be given as an example.
JP-A-8-4586

特許文献1記載の技術においては、余剰電力が生じるとき、貯湯槽内に配置したヒータに通電して温水を加温することで、即ち、発電機で生じる余剰電気を熱エネルギとして貯蔵することで省エネ効率を向上させると共に、貯蔵した熱エネルギを熱負荷が増加したときに利用可能とすることで負荷変動に対する対応能力を向上させている。   In the technique described in Patent Document 1, when surplus power is generated, the heater disposed in the hot water tank is energized to warm the hot water, that is, the surplus electricity generated by the generator is stored as thermal energy. In addition to improving energy efficiency, the stored heat energy can be used when the heat load increases, thereby improving the ability to cope with load fluctuations.

上記した従来技術は内燃機関の排熱を利用して温水を生成するコージェネレーション装置に関するが、温水に代えて温風を生成するコージェネレーション装置において熱需要がないときに電力供給が必要となる事態も生じ得る。   The above prior art relates to a cogeneration device that generates hot water using exhaust heat of an internal combustion engine, but in a cogeneration device that generates hot air instead of hot water, there is a need for power supply when there is no heat demand Can also occur.

従って、この発明の目的は上記した課題を解決し、内燃機関の排熱を利用して温風を生成するコージェネレーション装置において、熱需要がないときに電力供給が要求される場合、要求に応じて電力を供給するようにしたコージェネレーション装置を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems, and in a cogeneration system that generates warm air using exhaust heat of an internal combustion engine, when power supply is required when there is no heat demand, It is to provide a cogeneration apparatus that supplies electric power.

上記した課題を解決するために、請求項1にあっては、商用電力系統から電気負荷に至る交流電力の給電路に接続可能な発電機と、前記発電機を駆動する内燃機関からなる発電ユニットを少なくとも備えるコージェネレーション装置において、前記内燃機関の冷却水循環路に接続される第1の熱交換器と、バーナの燃焼ガスの吸排気路に接続される第2の熱交換器と、吸気を前記第1の熱交換器と第2の熱交換器の内の少なくとも前記第1の熱交換器に送って熱交換させ、よって生成された温風を温風通路から室内に供給するブロアと、前記温風通路を前記室内と室外のいずれかに選択的に接続する切換手段と、運転状態に応じて前記切換手段の動作を制御する制御手段とを備えると共に、前記制御手段は、熱需要がないときに電力供給が要求されるとき、あるいは前記室内の温度が目標温度より高いとき、前記切換手段を動作させて前記温風通路を前記室外に接続する如く構成した。 In order to solve the above-described problems, in claim 1, a power generation unit comprising a generator connectable to a power supply path of AC power from a commercial power system to an electric load, and an internal combustion engine that drives the generator The first heat exchanger connected to the cooling water circulation path of the internal combustion engine, the second heat exchanger connected to the combustion gas intake / exhaust path of the burner, and the intake air A blower for sending heat to at least the first heat exchanger of the first heat exchanger and the second heat exchanger to exchange heat, and supplying the generated hot air into the room from the hot air passage; The control means includes a switching means for selectively connecting the hot air passage to either the indoor or the outdoor, and a control means for controlling the operation of the switching means in accordance with an operating state, and the control means has no heat demand. Sometimes power supply is required When done, or when the temperature of the chamber is higher than the target temperature, said switching means is operated to as configured for connecting said warm air passage to the outside.

請求項2に係るコージェネレーション装置にあっては、前記切換手段は、前記温風通路に設けられたダンパからなる如く構成した。   In the cogeneration apparatus according to a second aspect, the switching means is constituted by a damper provided in the hot air passage.

請求項3に係るコージェネレーション装置にあっては、前記制御手段は、前記室内の温度が前記目標温度に対して低いとき、前記バーナを燃焼させる如く構成した。 In the cogeneration system according to claim 3, wherein, when the temperature of the chamber is lower with respect to the target temperature, was constructed as the combustion of the burner.

請求項1に係るコージェネレーション装置において、吸気を内燃機関の冷却水循環路に接続される第1の熱交換器とバーナの燃焼ガスの吸排気路に接続される第2の熱交換器の内の少なくとも第1の熱交換器に送って熱交換させ、よって生成された温風を温風通路から室内に供給するブロアと、温風通路を室内と室外のいずれかに選択的に接続する切換手段を備えると共に、運転状態に応じて切換手段の動作を制御する制御手段を備えると共に、熱需要がないときに電力供給が要求されるとき、あるいは室内の温度が目標温度より高いとき、切換手段を動作させて温風通路を室外へ接続する如く構成したので、内燃機関の排熱を利用して温風を生成するコージェネレーション装置において、熱需要がないときに電力供給が要求される場合、温風通路を室外に接続するように切換手段の動作を制御することで、要求に応じて電力を供給することが可能となる。 In the cogeneration apparatus according to claim 1, the first heat exchanger connected to the cooling water circulation path of the internal combustion engine and the second heat exchanger connected to the combustion gas intake / exhaust path of the burner are provided. A blower for supplying at least the first heat exchanger to exchange heat and supplying the generated hot air into the room from the hot air passage; and switching means for selectively connecting the hot air passage to either the indoor or the outdoor And a control means for controlling the operation of the switching means according to the operating state, and when the power supply is required when there is no heat demand, or when the indoor temperature is higher than the target temperature, the switching means is provided. since the warm air path is operated and as configured to connect to the outside, in the cogeneration system for generating and utilizing the exhaust heat of the internal combustion engine warm air, when the power supply is required when there is no heat demand, temperature By controlling the operation of the switching means to connect the passageway to the outdoor, it is possible to supply power on demand.

請求項2に係るコージェネレーション装置にあっては、切換手段は温風通路に設けられたダンパからなる如く構成したので、上記した効果に加え、温風通路の室内または室外への接続を容易に行うことができる。   In the cogeneration apparatus according to claim 2, since the switching means is configured to be composed of a damper provided in the hot air passage, in addition to the above-described effect, the connection of the hot air passage to the room or the outside can be easily performed. It can be carried out.

請求項3に係るコージェネレーション装置にあっては、制御手段は室内の温度が目標温度に対して低いとき、バーナを燃焼させる如く構成したので、上記した効果に加え、熱需要に応じてバーナを燃焼させることで、熱供給量の不足を回避することができる。   In the cogeneration apparatus according to claim 3, since the control means is configured to burn the burner when the indoor temperature is lower than the target temperature, in addition to the above-described effects, the burner is set according to the heat demand. By making it burn, a shortage of heat supply can be avoided.

以下、添付図面に即してこの発明に係るコージェネレーション装置を実施するための最良の形態について説明する。   The best mode for carrying out a cogeneration apparatus according to the present invention will be described below with reference to the accompanying drawings.

図1は、この発明の実施例に係るコージェネレーション装置を模式的に示す模式図である。   FIG. 1 is a schematic view schematically showing a cogeneration apparatus according to an embodiment of the present invention.

図示の如く、コージェネレーション装置(符号10で示す)は、商用電源(商用電力系統)12から家庭内電気負荷(電気負荷)14に至る交流電力の給電路(電力線)16に接続可能な発電機(「GEN」と示す)20と、発電機20を駆動する内燃機関(「ENG」と示し、以下「エンジン」という)22と、発電制御部24からなる発電ユニット26を備える。   As shown in the figure, the cogeneration apparatus (denoted by reference numeral 10) is a generator that can be connected to an AC power supply path (power line) 16 from a commercial power source (commercial power system) 12 to a domestic electrical load (electric load) 14. 20 (shown as “GEN”), an internal combustion engine (shown as “ENG”, hereinafter referred to as “engine”) 22 that drives the generator 20, and a power generation unit 26 including a power generation control unit 24.

商用電源12は、単相3線からAC100/200Vで50Hz(または60Hz)の交流電力を出力する。発電ユニット26は一体化され、発電ユニットケース(筐体)30の内部に収容される。   The commercial power supply 12 outputs AC power of 50 Hz (or 60 Hz) at 100/200 V AC from a single-phase three-wire. The power generation unit 26 is integrated and accommodated in a power generation unit case (housing) 30.

より具体的には図示の如く、発電ユニットケース30は仕切り30aで2つの室に仕切られ、図において右の室に発電機20とエンジン22が鉛直方向において上下に配置されると共に、左の室に発電制御部24が収容される。発電制御部24はエンジン22から隔離され、エンジン22からの放熱を可能な限り遮断させられるようにエンジン22とは別室に収容される。   More specifically, as shown in the figure, the power generation unit case 30 is divided into two chambers by a partition 30a. In the figure, the generator 20 and the engine 22 are arranged vertically in the right chamber, and the left chamber The power generation control unit 24 is accommodated in the. The power generation control unit 24 is isolated from the engine 22 and is housed in a separate room from the engine 22 so as to block heat dissipation from the engine 22 as much as possible.

エンジン22は都市ガス(あるいはLPガス)を燃料とする、水冷4サイクルの単気筒OHV型の火花点火式のエンジンであり、例えば163ccの排気量を備える。図示は省略するが、発電ユニットケース30においてエンジン22のシリンダヘッドとシリンダブロックは横(水平)方向に配置され、その内部に1個のピストンが往復動自在に配置される。   The engine 22 is a water-cooled four-cycle single-cylinder OHV type spark ignition engine that uses city gas (or LP gas) as fuel, and has a displacement of, for example, 163 cc. Although illustration is omitted, in the power generation unit case 30, the cylinder head and the cylinder block of the engine 22 are arranged in a horizontal (horizontal) direction, and one piston is arranged in a reciprocating manner in the inside.

吸気ダクト22aから供給された吸気はガス供給源から供給されたガスとミキサで混合され、生成された混合気は燃焼室に流れ、点火されるとき燃焼してピストンを駆動し、発電ユニットケース30において縦(鉛直)方向にピストンに連結されるクランクシャフトを回転させる。よって生じた排ガスは排気管から発電ユニットケース30に接続された排気ダクト32を流れて屋外に排出される。   The intake air supplied from the intake duct 22a is mixed with the gas supplied from the gas supply source by the mixer, and the generated air-fuel mixture flows into the combustion chamber and burns when ignited to drive the piston. The crankshaft connected to the piston is rotated in the vertical (vertical) direction. Thus, the generated exhaust gas flows through the exhaust duct 32 connected to the power generation unit case 30 from the exhaust pipe and is discharged outdoors.

シリンダブロックなどの発熱部位の付近には冷却水循環路34が形成され、その内部を流れる、不凍液からなる冷却水は発熱部位と熱交換してエンジン22を冷却させつつ昇温すると共に、排気管に沿って設けられた排気熱交換器(第1の熱交換器)36を通過してさらに昇温させられる。   A cooling water circulation path 34 is formed in the vicinity of a heat generating part such as a cylinder block, and the cooling water made of antifreeze flowing inside the heat exchanger heats up the heat generating part to cool the engine 22 and raises the temperature in the exhaust pipe. The temperature is further raised by passing through an exhaust heat exchanger (first heat exchanger) 36 provided along.

クランクシャフトの上端にはフライホイールが取り付けられると共に、その内側には多極コイルからなる発電機20が配置される。発電機20はフライホイールとの間で相対回転するとき、交流電力を発電する。発電機20の出力は、発電制御部24に送られる。   A flywheel is attached to the upper end of the crankshaft, and a generator 20 composed of a multipolar coil is disposed inside the flywheel. When the generator 20 rotates relative to the flywheel, it generates AC power. The output of the generator 20 is sent to the power generation control unit 24.

図示は省略するが、発電制御部24は、マイクロコンピュータからなる電子制御ユニット(Electronic Control Unit。以下「ECU」という)と、インバータと、DC/DCコンバータを備える。インバータは、DC/DCコンバータを介して発電機20の出力をAC100/200V(単相)に変換する。   Although not shown, the power generation control unit 24 includes an electronic control unit (Electronic Control Unit; hereinafter referred to as “ECU”) composed of a microcomputer, an inverter, and a DC / DC converter. An inverter converts the output of the generator 20 into AC100 / 200V (single phase) through a DC / DC converter.

発電ユニット26の発電出力は、1.0kW程度である。インバータの出力は、ブレーカ38を介して給電路16に接続される。発電機20は逆に商用電源12からインバータを介して通電されるとき、エンジン22をクランキングするスタータモータとしても機能する。   The power generation output of the power generation unit 26 is about 1.0 kW. The output of the inverter is connected to the power supply path 16 via the breaker 38. Conversely, the generator 20 also functions as a starter motor for cranking the engine 22 when energized from the commercial power supply 12 via the inverter.

発電制御部24のECUは発電機20の機能をスタータとジェネレータの間で切り換えると共に、エンジン22などの動作を制御する。   The ECU of the power generation control unit 24 switches the function of the generator 20 between the starter and the generator and controls the operation of the engine 22 and the like.

コージェネレーション装置10は、発電ユニット26に加え、温風暖房ユニット40を備える。   The cogeneration apparatus 10 includes a hot air heating unit 40 in addition to the power generation unit 26.

温風暖房ユニット40は、エンジン22の冷却水循環路34に接続される排熱熱交換器(第1の熱交換器)42と、バーナ44と、バーナ44の燃焼ガスの吸排気路44aに接続される顕熱熱交換器(第2の熱交換器)44bと潜熱熱交換器(第2の熱交換器)44cと、吸気を排熱熱交換器42、および顕熱熱交換器44bと潜熱熱交換器44cの少なくともいずれか、より具体的にはその双方に送って熱交換させ、よって生成された温風を温風通路から室内に供給するブロア46と、温風暖房ユニット制御部(制御手段)50を備える。   The hot air heating unit 40 is connected to an exhaust heat exchanger (first heat exchanger) 42 connected to the coolant circulation path 34 of the engine 22, a burner 44, and a combustion gas intake / exhaust path 44 a of the burner 44. Sensible heat exchanger (second heat exchanger) 44b and latent heat exchanger (second heat exchanger) 44c, exhaust air heat exhaust heat exchanger 42, and sensible heat exchanger 44b and latent heat A blower 46 that sends heat to the room through at least one of the heat exchangers 44c, more specifically, both of them to exchange heat, and a hot air passage, and a hot air heating unit controller (control) Means) 50.

温風暖房ユニット40は温風暖房ユニットケース52に収容されると共に、温風通路を介して各部屋に接続される。   The hot air heating unit 40 is accommodated in the hot air heating unit case 52 and is connected to each room via a hot air passage.

図2と図3はその温風通路(符号54で示す)などを示す説明図である。温風通路54には温風通路54を室内(各部屋)と室外(屋外)のいずれかに選択的に接続するダンパ(切換手段)56が設けられる。ダンパ56は電動モータ56aで開閉自在なドアからなる。   2 and 3 are explanatory views showing the warm air passage (indicated by reference numeral 54) and the like. The warm air passage 54 is provided with a damper (switching means) 56 that selectively connects the hot air passage 54 to either the room (each room) or the outdoors (outdoor). The damper 56 is a door that can be opened and closed by an electric motor 56a.

電動モータ56aは給電路16に接続されて電源が供給されると共に、その動作、より具体的にはダンパ56の開閉動作は温風暖房ユニット制御部50によって制御される。図2はダンパ56が温風通路54を室外(屋外)に接続する場合、図3はダンパ56が温風通路54を室内に接続する場合を示す。   The electric motor 56a is connected to the power supply path 16 to be supplied with power, and its operation, more specifically, the opening / closing operation of the damper 56 is controlled by the hot air heating unit controller 50. 2 shows a case where the damper 56 connects the hot air passage 54 outdoors (outdoors), and FIG. 3 shows a case where the damper 56 connects the hot air passage 54 indoors.

以下、上記した構成を個別に説明する。   Hereinafter, the above-described configuration will be described individually.

発電ユニット26と温風暖房ユニット40は、前記した冷却水循環路34で接続される。即ち、冷却水循環路34はエンジン22から温風暖房ユニット40に向けて延び、ブロア46の付近に配置された排熱熱交換器42に接続され、そこでブロア46で吸引された各部屋の冷気と熱交換させられた後、エンジン22に戻る。   The power generation unit 26 and the hot air heating unit 40 are connected by the cooling water circulation path 34 described above. That is, the cooling water circulation path 34 extends from the engine 22 toward the hot air heating unit 40 and is connected to the exhaust heat exchanger 42 disposed in the vicinity of the blower 46, where the cold air in each room sucked by the blower 46 is connected. After the heat exchange, the engine 22 is returned.

冷気は排熱熱交換器42での熱交換で昇温させられて温風となり、ブロア46によって送風ダクト(図示せず)から温風通路54に供給され、図3に示す如く、温風通路54を通って各部屋に供給され、各部屋を暖房する。   The cold air is heated by heat exchange in the exhaust heat exchanger 42 to become hot air, and is supplied from a blower duct (not shown) to the hot air passage 54 by the blower 46. As shown in FIG. It is supplied to each room through 54 and heats each room.

バーナ44は燃焼ファンで屋外から吸排気路44aを介して空気を吸引し、供給ガスと混合させて燃焼させる。それにより生じた燃焼ガスは顕熱熱交換器44bと潜熱熱交換器44cを通り、吸排気路44aから屋外に放出される。   The burner 44 is a combustion fan that sucks air from outside through the intake / exhaust passage 44a, mixes it with the supply gas, and burns it. The combustion gas generated thereby passes through the sensible heat exchanger 44b and the latent heat exchanger 44c and is discharged to the outside from the intake / exhaust passage 44a.

顕熱熱交換器44bと潜熱熱交換器44cは、ブロア46の送風ダクト(図示せず)を通る空気と熱交換して昇温させる。具体的には、顕熱熱交換器44bは燃焼ガスの露点までの熱を放熱し、潜熱熱交換器44cは露点以下の熱を放熱する。潜熱熱交換器44cで発生する凝縮水はドレンパイプ(図示せず)を介して屋外に排出される。   The sensible heat exchanger 44b and the latent heat exchanger 44c raise the temperature by exchanging heat with air passing through a blower duct (not shown) of the blower 46. Specifically, the sensible heat exchanger 44b radiates heat up to the dew point of the combustion gas, and the latent heat exchanger 44c radiates heat below the dew point. The condensed water generated in the latent heat exchanger 44c is discharged outdoors through a drain pipe (not shown).

ブロア46は各部屋から冷気を吸引する一方、排熱熱交換器42で熱交換によって昇温させられると共に、バーナ44の燃焼によってさらに昇温させられた温風を送風ダクトから各部屋に送風し、各部屋を暖房する。   While the blower 46 draws in cold air from each room, the temperature is raised by heat exchange in the exhaust heat exchanger 42, and hot air heated further by combustion of the burner 44 is blown from the air duct to each room. Heat each room.

温風暖房ユニット制御部(以下「温風制御部」という)50も発電制御部24のECUと同様、マイクロコンピュータからなるECU(電子制御ユニット)を備える。温風制御部50のECUは、発電制御部24のECUと通信自在に接続されると共に、リモートコントローラ(図に「リモコン」と示す)60にも通信自在に接続される。リモートコントローラ60はユーザによって操作され、目標室温などの設定に使用される。   Similarly to the ECU of the power generation control unit 24, the hot air heating unit control unit (hereinafter referred to as “hot air control unit”) 50 also includes an ECU (electronic control unit) formed of a microcomputer. The ECU of the hot air control unit 50 is communicably connected to the ECU of the power generation control unit 24 and is also communicably connected to a remote controller 60 (shown as “remote control” in the drawing). The remote controller 60 is operated by a user and used for setting a target room temperature and the like.

図1においてTは温度センサ、Vはバルブ、Pはポンプを示し、信号線の図示は一部省略するが、それらは温風制御部50に電気的に接続される。温風制御部50は温度センサ62,64,66の出力に基づき、バルブVとポンプPの動作を制御してエンジン22の排熱の回収と、ブロア46とバーナ44の動作を制御する。   In FIG. 1, T is a temperature sensor, V is a valve, P is a pump, and signal lines are partially omitted, but they are electrically connected to the hot air control unit 50. The hot air control unit 50 controls the operation of the valve V and the pump P based on the outputs of the temperature sensors 62, 64, 66 to control the exhaust heat recovery of the engine 22 and the operation of the blower 46 and the burner 44.

即ち、温風制御部50は、排熱ポンプ70を駆動して冷却水循環路34を流れる冷却水を排熱熱交換器42に圧送し、冷却水循環路34を流れる循環水とブロア46で吸引された各部屋の冷気と熱交換させる。   That is, the hot air controller 50 drives the exhaust heat pump 70 to pump the cooling water flowing through the cooling water circulation path 34 to the exhaust heat heat exchanger 42, and is sucked by the circulating water flowing through the cooling water circulation path 34 and the blower 46. Heat exchange with cold air in each room.

尚、排気熱交換器36の内部での凝縮水の溜り込みによる腐食防止とエンジンオイルの耐久性を考慮し、温風制御部50は、冷却水のエンジン22の入口温度が例えば70℃となるように制御する。   In consideration of corrosion prevention due to accumulation of condensed water inside the exhaust heat exchanger 36 and durability of engine oil, the hot air control unit 50 sets the inlet temperature of the engine 22 of cooling water to, for example, 70 ° C. To control.

温風制御部50の動作をさらに説明する。   The operation of the hot air control unit 50 will be further described.

先ず、商用電源12と連系してコージェネレーション装置10を運転する場合を説明する。   First, the case where the cogeneration apparatus 10 is operated in conjunction with the commercial power supply 12 will be described.

(a)暖房運転
温風制御部50は、各部屋に配置された温度センサ62(符号62で各部屋のセンサをまとめて示す)の出力と、リモートコントローラ60(符号60で各部屋のリモートコントローラをまとめて示す)を介してユーザから設定された温度(目標温度)と比較し、検出温度が設定温度を下回ると、発電制御部24に指令して発電ユニット26を稼動させると共に、検出温度が設定温度に達すると、稼動を停止させる。以降、それを繰り返す。
(A) Heating operation The warm air control unit 50 outputs the output of a temperature sensor 62 (collectively indicated by reference numeral 62) in each room and a remote controller 60 (reference numeral 60 indicates a remote controller in each room). When the detected temperature falls below the set temperature, the power generation control unit 24 is instructed to operate the power generation unit 26 and the detected temperature is When the set temperature is reached, operation is stopped. Then repeat it.

(b)バーナの稼動
温風制御部50は、規定時間を経過しても検出された室温が設定温度に達しないとき、あるいは検出された室温と設定温度との差が既定値を超えるとき、発電ユニット26の稼動のみでは不足と判断し、設定温度に達するまでバーナ44を稼動(燃焼)させ、バーナ44で昇温された温風をブロア46で各部屋に供給する。尚、検出温度が設定温度に達すると、バーナ44の稼動を停止させる。
(B) Operation of burner When the detected room temperature does not reach the set temperature even after the specified time has elapsed, or when the difference between the detected room temperature and the set temperature exceeds a predetermined value, It is determined that only the operation of the power generation unit 26 is insufficient, the burner 44 is operated (combusted) until the set temperature is reached, and the warm air heated by the burner 44 is supplied to each room by the blower 46. When the detected temperature reaches the set temperature, the operation of the burner 44 is stopped.

このように、温風制御部50は、室内の温度(室温)が目標温度に対して低いとき、バーナ44を燃焼させ、よって温風の温度を昇温させる。   As described above, when the indoor temperature (room temperature) is lower than the target temperature, the hot air control unit 50 burns the burner 44 and thereby raises the temperature of the hot air.

(c)暖房不要の場合
前記した如く、暖房不要、即ち、熱需要がないときに電力供給が要求される場合が生じ得る。例えば、商用電力系統(商用電源)12の電力が不足するときに電力を供給するような、熱主電従運転ではないときに暖房要求がない場合であり、より具体的には発電ユニット26を稼動して電気負荷14に電力を供給すると、温風からなる熱エネルギも供給されるような場合である。設定温度に対して検出された室温が高いときも同様である。
(C) When heating is not required As described above, there may be a case where power supply is required when heating is not required, that is, when there is no heat demand. For example, it is a case where there is no heating request when the main power operation is not performed, such as supplying power when the power of the commercial power system (commercial power source) 12 is insufficient. In this case, when the electric load 14 is operated and electric power is supplied, thermal energy including hot air is also supplied. The same applies when the detected room temperature is higher than the set temperature.

その場合、温風制御部50は、ダンパ56の電動モータ56aに通電し、ダンパ56を図3から図2に示す状態に駆動し、温風通路54が室外(屋外)に接続するようにダンパ56の動作を制御する。   In that case, the hot air control unit 50 energizes the electric motor 56a of the damper 56, drives the damper 56 to the state shown in FIGS. 3 to 2, and the damper so that the hot air passage 54 is connected to the outside (outdoor). 56 operations are controlled.

これにより、発電ユニット26を駆動し、要求に応じて電気負荷14にて電力を供給することができる。尚、温風制御部50は、電力供給運転が終了すると、ダンパ56を図2から図3に示す状態に復帰させる。   Thereby, the electric power generation unit 26 can be driven and electric power can be supplied with the electric load 14 as required. The hot air control unit 50 returns the damper 56 to the state shown in FIGS. 2 to 3 when the power supply operation is completed.

次いで、商用電源12に停電が発生した場合など、商用電源12と連系せず、自立的にコージェネレーション装置10を運転する場合を説明する。   Next, a case where the cogeneration apparatus 10 is operated independently without being connected to the commercial power source 12 such as when a power failure occurs in the commercial power source 12 will be described.

その場合、発電制御部24は、停電発生と同時に発電ユニット26を起動させる。発電制御部24のECUは、電気負荷14に応じて発電ユニット26を運転して発電させる。ECUは、電気負荷が増加すると電圧が降下する一方、電気負荷が減少すると電圧が上昇することから、一定の電圧となるように、発電出力を調整する。   In that case, the power generation control unit 24 activates the power generation unit 26 simultaneously with the occurrence of a power failure. The ECU of the power generation control unit 24 operates the power generation unit 26 according to the electric load 14 to generate power. The ECU decreases the voltage when the electric load increases, while the voltage increases when the electric load decreases. Therefore, the ECU adjusts the power generation output so that the voltage is constant.

発電ユニット26が動作すると、発電出力しないアイドル運転時も含め、熱出力が生じるが、温風制御部50は、熱需要に応じて上記した商用電源12との連系時と同様の暖房運転、バーナ駆動などを行う。熱需要がない場合に上記した如くダンパ56の動作を制御することも同様である。   When the power generation unit 26 operates, a heat output is generated including an idle operation in which no power generation is output, but the hot air control unit 50 performs a heating operation similar to that in the connection with the commercial power supply 12 according to the heat demand. Burner drive is performed. The same applies to controlling the operation of the damper 56 as described above when there is no heat demand.

上記の如く、この実施例においては、商用電源(商用電力系統)12から家庭内電気負荷(電気負荷)14に至る交流電力の給電路(電力線)16に接続可能な発電機20と、前記発電機を駆動するエンジン(内燃機関)22からなる発電ユニット26を少なくとも備えるコージェネレーション装置10において、前記エンジン22の冷却水循環路34に接続される排気熱交換器(第1の熱交換器)36と排熱熱交換器(第1の熱交換器)42と、バーナ44の燃焼ガスの吸排気路44aに接続される顕熱熱交換器(第2の熱交換器)44bと潜熱熱交換器(第2の熱交換器)44cと、吸気を前記排気熱交換器36と排熱熱交換器42と、顕熱熱交換器44bと潜熱熱交換器44cの内の少なくとも排気熱交換器36と排熱熱交換器42に、より具体的には排気熱交換器36と排熱熱交換器42と顕熱熱交換器44bと潜熱熱交換器44cに送って熱交換させ、よって生成された温風を温風通路54から室内に供給するブロア46と、前記温風通路54を前記室内と室外のいずれかに選択的に接続するダンパ(切換手段)56と、運転状態に応じて、より具体的には熱需要がないときに電力供給が要求される場合、前記切換手段の動作を制御する温風制御部(制御手段)50とを備えると共に、前記制御手段50は、熱需要がないときに電力供給が要求されるとき、あるいは前記室内の温度が設定温度(目標温度)より高いとき、前記ダンパ(切換手段)56を動作させて前記温風通路54を前記室外に接続する如く構成した。 As described above, in this embodiment, the generator 20 that can be connected to the AC power supply path (power line) 16 from the commercial power source (commercial power system) 12 to the home electrical load (electric load) 14, the power generation An exhaust heat exchanger (first heat exchanger) 36 connected to a cooling water circulation path 34 of the engine 22 in the cogeneration apparatus 10 including at least a power generation unit 26 composed of an engine (internal combustion engine) 22 for driving the machine; An exhaust heat exchanger (first heat exchanger) 42, a sensible heat exchanger (second heat exchanger) 44b connected to the combustion gas intake / exhaust passage 44a of the burner 44, and a latent heat exchanger ( (Second heat exchanger) 44c, exhaust air at the exhaust heat exchanger 36 and exhaust heat exchanger 42, sensible heat exchanger 44b and latent heat exchanger 44c, and at least exhaust heat exchanger 36 and exhaust heat. In the heat heat exchanger 42 More specifically, the heat is sent to the exhaust heat exchanger 36, the exhaust heat exchanger 42, the sensible heat exchanger 44b, and the latent heat exchanger 44c to exchange heat, and the generated hot air is passed through the hot air passage 54 to the room. When there is no demand for heat, more specifically, depending on the operating state, a blower 46 to be supplied, a damper (switching means) 56 that selectively connects the hot air passage 54 to either the indoor or the outdoor When a power supply is required, a hot air control unit (control means) 50 for controlling the operation of the switching means is provided , and the control means 50 is requested to supply power when there is no heat demand. Alternatively, when the indoor temperature is higher than a set temperature (target temperature), the damper (switching means) 56 is operated to connect the hot air passage 54 to the outside of the room .

これにより、熱需要がないときに電力供給が要求される場合には温風通路54を室外に接続するようにダンパ(切換手段)56の動作を制御することで、要求に応じて電力を供給することが可能となる。設定温度に対して室温が高い場合も同様である。   Thus, when power supply is required when there is no heat demand, the operation of the damper (switching means) 56 is controlled so as to connect the hot air passage 54 to the outside of the room, thereby supplying power as required. It becomes possible to do. The same applies when the room temperature is higher than the set temperature.

また、前記切換手段は前記温風通路54に設けられたダンパ56からなる如く構成したので、上記した効果に加え、温風通路54の室内または室外(屋外)への接続を容易に行うことができる。   Further, since the switching means is constituted by the damper 56 provided in the hot air passage 54, in addition to the above-described effects, the hot air passage 54 can be easily connected to the room or outdoors (outdoors). it can.

また、前記制御手段は前記室内の温度が前記(設定温度)目標温度に対して低いとき、前記バーナ44を燃焼させる如く構成したので、上記した効果に加え、熱需要に応じてバーナ44を燃焼させることで、熱供給量の不足を回避することができる。 Further, when the control means the temperature of the chamber is lower with respect to the (set temperature) the target temperature, since it is configured as to burn the burner 44, in addition to the effects mentioned above, the combustion burner 44 in response to the heat demand By doing so, it is possible to avoid a shortage of heat supply.

尚、上記において、発電機20の駆動源として都市ガス・LPガスを燃料とするガスエンジンとしたが、ガソリン燃料などを使用するエンジンであっても良い。   In the above description, the gas engine using city gas / LP gas as fuel is used as a drive source of the generator 20, but an engine using gasoline fuel or the like may be used.

また、発電機20の出力およびエンジン22の排気量などを具体的な値で示したが、それらは例示であって限定されるものではないこともいうまでもない。   Moreover, although the output of the generator 20, the displacement of the engine 22 and the like are shown as specific values, it goes without saying that these are merely examples and are not limited.

この発明の実施例に係るコージェネレーション装置を全体的に示すブロック図である。1 is a block diagram generally showing a cogeneration apparatus according to an embodiment of the present invention. 図1に示す温風暖房ユニットの温風通路を示す説明図である。It is explanatory drawing which shows the warm air path of the warm air heating unit shown in FIG. 同様に、図1に示す温風暖房ユニットの温風通路を示す説明図である。Similarly, it is explanatory drawing which shows the warm air path of the warm air heating unit shown in FIG.

符号の説明Explanation of symbols

10 コージェネレーション装置、12 商用電源(商用電力系統)、14 家庭内電気負荷(電気負荷)、16 給電路(電力線)、20 発電機、22 エンジン(内燃機関)、24 発電制御部、26 発電ユニット、34 冷却水循環路、36 排気熱交換器(第1の熱交換器)、40 温風暖房ユニット、42 排熱熱交換器(第1の熱交換器)、44 バーナ、44a 吸排気路、44b 顕熱熱交換器(第2の熱交換器)、44c 潜熱熱交換器(第2の熱交換器)、50 温風暖房ユニット制御部(温風制御部、制御手段)、54 温風通路、56 ダンパ(切換手段)   DESCRIPTION OF SYMBOLS 10 Cogeneration apparatus, 12 Commercial power supply (commercial power system), 14 Domestic electric load (electric load), 16 Feeding path (power line), 20 Generator, 22 Engine (internal combustion engine), 24 Power generation control part, 26 Power generation unit , 34 Cooling water circulation path, 36 Exhaust heat exchanger (first heat exchanger), 40 Warm air heating unit, 42 Exhaust heat exchanger (first heat exchanger), 44 Burner, 44a Intake / exhaust path, 44b Sensible heat exchanger (second heat exchanger), 44c latent heat exchanger (second heat exchanger), 50 hot air heating unit control section (hot air control section, control means), 54 hot air passage, 56 Damper (switching means)

Claims (3)

商用電力系統から電気負荷に至る交流電力の給電路に接続可能な発電機と、前記発電機を駆動する内燃機関からなる発電ユニットを少なくとも備えるコージェネレーション装置において、
a.前記内燃機関の冷却水循環路に接続される第1の熱交換器と、
b.バーナの燃焼ガスの吸排気路に接続される第2の熱交換器と、
c.吸気を前記第1の熱交換器と第2の熱交換器の内の少なくとも前記第1の熱交換器に送って熱交換させ、よって生成された温風を温風通路から室内に供給するブロアと、
d.前記温風通路を前記室内と室外のいずれかに選択的に接続する切換手段と、
e.運転状態に応じて前記切換手段の動作を制御する制御手段と、
を備えると共に、前記制御手段は、熱需要がないときに電力供給が要求されるとき、あるいは前記室内の温度が目標温度より高いとき、前記切換手段を動作させて前記温風通路を前記室外に接続することを特徴とするコージェネレーション装置。
In a cogeneration apparatus comprising at least a generator that can be connected to a power supply path of AC power from a commercial power system to an electrical load, and a power generation unit composed of an internal combustion engine that drives the generator,
a. A first heat exchanger connected to the cooling water circuit of the internal combustion engine;
b. A second heat exchanger connected to the combustion gas intake and exhaust passage of the burner;
c. A blower that sends intake air to at least the first heat exchanger of the first heat exchanger and the second heat exchanger to exchange heat, and supplies the generated hot air into the room from the hot air passage. When,
d. Switching means for selectively connecting the warm air passage to either the room or the outside;
e. Control means for controlling the operation of the switching means according to the operating state;
The provided Rutotomoni, wherein, when the power supply is required when there is no heat demand, or when the temperature of the chamber is higher than the target temperature, the outdoor said hot air passage by operating the switching means A cogeneration device characterized by being connected to .
前記切換手段は、前記温風通路に設けられたダンパからなることを特徴とする請求項1記載のコージェネレーション装置。   2. The cogeneration apparatus according to claim 1, wherein the switching means includes a damper provided in the hot air passage. 前記制御手段は、前記室内の温度が前記目標温度に対して低いとき、前記バーナを燃焼させることを特徴とする請求項1または2記載のコージェネレーション装置。 Wherein, when the temperature of the chamber is lower with respect to the target temperature, the cogeneration system according to claim 1 or 2, wherein the combusting said burner.
JP2007212979A 2007-08-17 2007-08-17 Cogeneration equipment Expired - Fee Related JP5001749B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007212979A JP5001749B2 (en) 2007-08-17 2007-08-17 Cogeneration equipment
US12/221,528 US20090045625A1 (en) 2007-08-17 2008-08-04 Cogeneration system
CA002638728A CA2638728A1 (en) 2007-08-17 2008-08-14 Dampered flow waste heat management system for a grid and local use ic-engine generator set

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007212979A JP5001749B2 (en) 2007-08-17 2007-08-17 Cogeneration equipment

Publications (2)

Publication Number Publication Date
JP2009047339A JP2009047339A (en) 2009-03-05
JP5001749B2 true JP5001749B2 (en) 2012-08-15

Family

ID=40362367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007212979A Expired - Fee Related JP5001749B2 (en) 2007-08-17 2007-08-17 Cogeneration equipment

Country Status (3)

Country Link
US (1) US20090045625A1 (en)
JP (1) JP5001749B2 (en)
CA (1) CA2638728A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5144169B2 (en) * 2007-08-17 2013-02-13 本田技研工業株式会社 Cogeneration equipment
JP4886667B2 (en) * 2007-11-19 2012-02-29 本田技研工業株式会社 Cogeneration equipment
US8237299B2 (en) * 2009-06-26 2012-08-07 Larry Andrews Power generation systems, processes for generating energy at an industrial mine site, water heating systems, and processes of heating water
EA201290480A1 (en) * 2009-12-08 2013-07-30 Электромоушн Энерджи Корпорейшн SYNERGETIC ENERGY ECOSYSTEM
ITAP20100012A1 (en) * 2010-08-11 2010-11-10 Italo Pennoni BOILER FOR DOMESTIC AND / OR COMPANY ENVIRONMENTAL HEATING WITH INCORPORATED SAFETY ELECTRIC CURRENT GENERATOR, BOTH POWERED BY GAS OR METHANE OR HYDROMETHANE.
US10036347B1 (en) * 2013-07-19 2018-07-31 Raymond C. Sherry Standby energy generating system
CN103953457B (en) * 2014-03-21 2015-06-17 哈尔滨工程大学 Multi-stage crossed heat exchange device of MDO (Marine Diesel Oil)-LNG (Liquefied Natural Gas) dual-fuel engine
EP2963354A1 (en) * 2014-07-03 2016-01-06 Munters Italy S.p.A. A hot air generator for a combined heat and power apparatus
US10641132B2 (en) * 2017-07-17 2020-05-05 DOOSAN Heavy Industries Construction Co., LTD Supercritical CO2 power generating system for preventing cold-end corrosion
US11859834B2 (en) 2020-10-07 2024-01-02 Axiom Energy Group, LLC Micro-combined heat and power system with exterior generator and heating system compatibility and method of use

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2189895A (en) * 1936-06-15 1940-02-13 Fairbanks Morse & Co Heating and ventilating system
US3610567A (en) * 1969-04-14 1971-10-05 Ilg Ind Inc Ventilating system
DE2231117A1 (en) * 1972-06-26 1974-01-10 Eberspaecher J HEATING DEVICE, PRESENTLY FOR VEHICLES WITH WATER-COOLED COMBUSTION ENGINE
US4121562A (en) * 1975-06-06 1978-10-24 Grott Frank S Energy conservation kit for household furnaces
JPS57164233A (en) * 1981-04-03 1982-10-08 Nec Corp Room heating system with waste heat of large power amplifier
US4438340A (en) * 1981-07-27 1984-03-20 Armiger Dennis L Domestic electric generator and steam heating plant
US4557253A (en) * 1982-11-12 1985-12-10 Atlantic Richfield Company Solar collector employing conventional siding, and air distribution system therefor
US4762170A (en) * 1987-11-16 1988-08-09 Paccar Inc. Auxiliary power system for trucks and other heavy duty vehicles
US5322534A (en) * 1993-02-11 1994-06-21 Kaiser David M Self-cleaning upside-down air filter
NL1015319C2 (en) * 2000-05-26 2001-11-27 Enatec Micro Cogen B V Device and method for the coupled generation of heat and electricity.
JP3631107B2 (en) * 2000-06-09 2005-03-23 株式会社日本製鋼所 Cogeneration system using micro gas turbine waste heat gas
JP3815302B2 (en) * 2001-11-12 2006-08-30 株式会社デンソー Air conditioner for vehicles
US6523357B1 (en) * 2001-12-04 2003-02-25 Takuma Co., Ltd. Absorption refrigerator
US6792766B2 (en) * 2002-10-04 2004-09-21 Cascade Manufacturing, L.P. Zone demand controlled dual air conditioning system and controller therefor
WO2004040208A1 (en) * 2002-10-30 2004-05-13 Mitsubishi Denki Kabushiki Kaisha Air conditioner
US7040544B2 (en) * 2003-11-07 2006-05-09 Climate Energy, Llc System and method for warm air space heating with electrical power generation
US7284709B2 (en) * 2003-11-07 2007-10-23 Climate Energy, Llc System and method for hydronic space heating with electrical power generation
US20050184167A1 (en) * 2004-02-24 2005-08-25 Stanley Bach Heating, ventilating, and air-conditioning system utilizing a pressurized liquid and a fluid-turbine generator
JP2005265249A (en) * 2004-03-17 2005-09-29 Osaka Gas Co Ltd Hot-water supply/air conditioning system
KR100579576B1 (en) * 2004-08-17 2006-05-15 엘지전자 주식회사 Steam supply and power generation system
KR100624816B1 (en) * 2004-08-17 2006-09-20 엘지전자 주식회사 Steam supply and power generation system
KR100644828B1 (en) * 2004-12-10 2006-11-15 엘지전자 주식회사 Steam supply and power generation system
KR100591320B1 (en) * 2004-12-13 2006-06-19 엘지전자 주식회사 Air-conditioner using cogeneration system
KR100680199B1 (en) * 2004-12-14 2007-02-08 엘지전자 주식회사 Control method of steam supply and power generation system
US7398778B2 (en) * 2005-01-24 2008-07-15 Air Hydronic Product Solutions, Inc. Solar and heat pump powered electric forced hot air hydronic furnace
KR100638223B1 (en) * 2005-06-16 2006-10-27 엘지전자 주식회사 Electric generation air condition system
KR100634810B1 (en) * 2005-07-12 2006-10-16 엘지전자 주식회사 Electric generation air condition system

Also Published As

Publication number Publication date
JP2009047339A (en) 2009-03-05
US20090045625A1 (en) 2009-02-19
CA2638728A1 (en) 2009-02-17

Similar Documents

Publication Publication Date Title
JP5001749B2 (en) Cogeneration equipment
US8093734B2 (en) Cogeneration system
JP4886667B2 (en) Cogeneration equipment
JP4949325B2 (en) Cogeneration equipment
US8049350B2 (en) Method and apparatus for controlling cogeneration system
US8354755B2 (en) Cogeneration system
JP5043558B2 (en) Cogeneration equipment
JP4896081B2 (en) Cogeneration equipment
JP5001748B2 (en) Cogeneration equipment
JP5107798B2 (en) Cogeneration equipment
JP4892436B2 (en) Cogeneration equipment
JP2009124922A (en) Cogeneration system
US20120193911A1 (en) Cogeneration apparatus
JP2009047052A (en) Co-generation apparatus
JP2013100791A (en) Cogeneration apparatus
JP6251066B2 (en) Cogeneration equipment
KR102644820B1 (en) Gas engine power generation system
JP2009121442A (en) Co-generation apparatus
KR200319289Y1 (en) Electricity and Heating Supply Device that use Co-generation GHP
KR100462833B1 (en) Electricity and Heating Supply Method and the Device that use Co-generation GHP
JP5808718B2 (en) Cogeneration equipment
US20070205299A1 (en) Hot air heating system
JP2010255446A (en) Power generating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120502

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees