JP2009293077A - Heat resistant stainless steel wire, heat resistant spring and method for producing heat resistant spring - Google Patents

Heat resistant stainless steel wire, heat resistant spring and method for producing heat resistant spring Download PDF

Info

Publication number
JP2009293077A
JP2009293077A JP2008147442A JP2008147442A JP2009293077A JP 2009293077 A JP2009293077 A JP 2009293077A JP 2008147442 A JP2008147442 A JP 2008147442A JP 2008147442 A JP2008147442 A JP 2008147442A JP 2009293077 A JP2009293077 A JP 2009293077A
Authority
JP
Japan
Prior art keywords
steel wire
stainless steel
heat
heat resistant
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008147442A
Other languages
Japanese (ja)
Inventor
Hiroshi Izumida
寛 泉田
Takeshi Matsumoto
断 松本
Nobue Takamura
伸栄 高村
Teruyuki Murai
照幸 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo SEI Steel Wire Corp
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo SEI Steel Wire Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo SEI Steel Wire Corp, Sumitomo Electric Industries Ltd filed Critical Sumitomo SEI Steel Wire Corp
Priority to JP2008147442A priority Critical patent/JP2009293077A/en
Publication of JP2009293077A publication Critical patent/JP2009293077A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Springs (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat resistant stainless steel wire having high heat resistance and having excellent settling resistance in a high temperature region, to provide a heat resistant spring, and to provide a method for producing the same. <P>SOLUTION: The heat resistant stainless steel wire and heat resistant spring comprise, by mass, 0.04 to 0.08% C, 0.60 to 1.40% Si, 0.5 to 3.0% Mn, 16 to 20% Cr, 7.0 to 10.5% Ni and 0.16 to 0.25% N, and the balance Fe with inevitable impurities, and in which the average crystal grain size in the transverse section is 8 to 20 μm. Further, in the method for producing a heat resistant spring, the resistant stainless steel wire is subjected to spring working, and is thereafter subjected to low temperature annealing at 500 to 650°C for 1 min to <1 hr. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば自動車エンジンの排気系部品など耐熱性が要求される部品、主にばねの素材に使用される耐熱ステンレス鋼線に関する。特に、400℃以上550℃以下の高温域での耐へたり性に優れる耐熱ばね用の耐熱ステンレス鋼線に関する。   The present invention relates to a heat-resistant stainless steel wire used as a part that requires heat resistance, such as an exhaust system part of an automobile engine, mainly as a spring material. In particular, the present invention relates to a heat resistant stainless steel wire for a heat resistant spring having excellent sag resistance in a high temperature range of 400 ° C. to 550 ° C.

自動車のエンジンには、排気ガスを浄化する排気系装置が取り付けられており、例えば、この排気系装置のジョイント部の部品にばねが使用されている。従来、この排気系部品に使用されるばねの素材には、SUS304、SUS316などのオーステナイト系のステンレス鋼線が広く利用されている。また、通常、ステンレス鋼線は、ステンレス鋼を溶解・鋳造し、鍛造・熱間圧延を施して線材とした後、固溶化熱処理と線引き加工とを繰り返すことで製造されている。   An exhaust system device for purifying exhaust gas is attached to an automobile engine. For example, a spring is used as a part of a joint portion of the exhaust system device. Conventionally, austenitic stainless steel wires such as SUS304 and SUS316 have been widely used as the spring material used in the exhaust system parts. In general, a stainless steel wire is manufactured by melting and casting stainless steel, performing forging and hot rolling to obtain a wire, and then repeating solution heat treatment and wire drawing.

近年、環境問題対策として自動車の排ガス規制が強化されつつあり、エンジンや、排ガス浄化用触媒の高効率化を図るため、排気系の使用温度を高くすることが要望されている。しかし、SUS304、SUS316などのステンレス鋼線のばねは、350℃以上の高温環境下において、耐熱性及び耐へたり性の面で不十分であり、使用に適さない。したがって、このような要望に応えるためには、排気系部品に使用されるばねの素材となるステンレス鋼線の耐熱性及び高温域での耐へたり性を改善する必要がある。   In recent years, exhaust gas regulations for automobiles are being strengthened as countermeasures for environmental problems, and in order to increase the efficiency of engines and exhaust gas purification catalysts, it is desired to increase the operating temperature of the exhaust system. However, stainless steel wire springs such as SUS304 and SUS316 are not suitable for use because they are insufficient in terms of heat resistance and sag resistance in a high temperature environment of 350 ° C. or higher. Therefore, in order to meet such a demand, it is necessary to improve the heat resistance and the sag resistance in a high temperature range of a stainless steel wire used as a spring material used for exhaust system parts.

ステンレス鋼線の耐熱性及び高温域での耐へたり性を改善する技術が、例えば特許文献1〜4に開示されている。   For example, Patent Documents 1 to 4 disclose techniques for improving the heat resistance of stainless steel wires and the sag resistance at high temperatures.

特許文献1には、SUS316をベースに、C、Nを増量して固溶強化させたばね用強化ステンレス鋼線が開示されている。また、特許文献1には、ばね用ステンレス鋼線をコイリング後、約500℃×30分間以上の条件で低温焼鈍することが記載さている。   Patent Document 1 discloses a reinforced stainless steel wire for springs in which C and N are increased and solid solution strengthened based on SUS316. Patent Document 1 describes that after coiling a stainless steel wire for a spring, it is annealed at a low temperature under conditions of about 500 ° C. × 30 minutes or more.

特許文献2には、質量%で、C:0.08〜0.15%、及びN:0.25〜0.40%を含有する耐熱ばね用ステンレス鋼線が開示されており、浸入型固溶元素であるC、Nを積極的に添加することで、耐へたり性を改善することが記載されている。   Patent Document 2 discloses a stainless steel wire for heat-resistant springs containing C: 0.08 to 0.15% and N: 0.25 to 0.40% by mass%. C and N which are intrusion-type solid solution elements are disclosed. It is described that sag resistance is improved by positive addition.

特許文献3には、Nを含有し、鋼線の横断面における平均結晶粒径が5μm未満である耐熱ばね用ステンレス鋼線が開示されており、結晶粒径をできるだけ小さくすることで、引張り強さを増加させ、もって耐へたり性を改善することが記載されている。更に、特許文献4では、鋼線の横断面における最大結晶粒径を12μm未満とすることで、応力が集中し易い粗大な結晶をなくし、耐へたり性を改善することが記載されている。また、特許文献3及び4には、W、Mo、Nb、Siなどのフェライト生成元素の添加による固溶強化を行なうことが記載されている。   Patent Document 3 discloses a stainless steel wire for heat-resistant springs containing N and having an average crystal grain size in a cross section of the steel wire of less than 5 μm. By reducing the crystal grain size as much as possible, tensile strength is disclosed. Increasing the thickness and thus improving the sag resistance is described. Furthermore, Patent Document 4 describes that by setting the maximum crystal grain size in the cross section of the steel wire to less than 12 μm, coarse crystals that are likely to concentrate stress are eliminated, and sag resistance is improved. Patent Documents 3 and 4 describe that solid solution strengthening is performed by adding ferrite-forming elements such as W, Mo, Nb, and Si.

特開2000‐297327号公報(段落0006、図3)JP 2000-297327 A (paragraph 0006, FIG. 3) 特開2005‐325381号公報(段落0026、図3)Japanese Patent Laying-Open No. 2005-325381 (paragraph 0026, FIG. 3) 特開2000‐239804号公報(段落0018)JP 2000-239804 A (paragraph 0018) 特開2004‐197205号公報(段落0019)JP 2004-197205 A (paragraph 0019)

最近では、更なる高効率化を図るため、排気系の使用温度をより高くすることが検討されており、最高使用温度を550℃程度にまで引き上げることが試みられている。しかし、従来の耐熱ステンレス鋼線では、このような高温域で優れた耐へたり性を発揮せず、使用に適さない。   Recently, in order to further increase the efficiency, it has been studied to increase the operating temperature of the exhaust system, and attempts have been made to raise the maximum operating temperature to about 550 ° C. However, conventional heat-resistant stainless steel wires do not exhibit excellent sag resistance at such a high temperature range and are not suitable for use.

特許文献1〜4に記載の耐熱ステンレス鋼線は、各文献の実施の形態の記載から明らかなように、使用想定温度が300℃〜400℃であり、400℃〜550℃の高温域、特に450℃以上の高温域での耐へたり性について何ら検討されていない。   As is clear from the description of the embodiments of each document, the heat-resistant stainless steel wires described in Patent Documents 1 to 4 have an assumed use temperature of 300 ° C. to 400 ° C., particularly a high temperature range of 400 ° C. to 550 ° C. No consideration has been given to sag resistance at high temperatures above 450 ° C.

また、特許文献1の耐熱ステンレス鋼線は、Niを10質量%以上、Moを2質量%以上含有するため、原料コストの上昇を招く。   Moreover, since the heat-resistant stainless steel wire of Patent Document 1 contains 10% by mass or more of Ni and 2% by mass or more of Mo, the raw material cost is increased.

特許文献2の耐熱ステンレス鋼線は、Nを0.25%以上含有しているが、これはステンレス鋼の大気溶解での鋳造では取り込むことができない含有量である。そのため、特許文献2の耐熱ステンレス鋼線を製造するには、ステンレス鋼に過剰にNを添加するための特別な設備が必要であり、製造コストの上昇を招く。   The heat-resistant stainless steel wire of Patent Document 2 contains 0.25% or more of N, but this is a content that cannot be taken in by casting of stainless steel in the atmosphere. Therefore, in order to manufacture the heat-resistant stainless steel wire of Patent Document 2, special equipment for adding N excessively to the stainless steel is necessary, resulting in an increase in manufacturing cost.

特許文献3及び4の耐熱ステンレス鋼線は、結晶粒径をできるだけ小さくしようとするものであるが、過度な結晶粒の微細化は、必ずしも高温域での機械的性質の向上に有効であるとは限らない。   The heat resistant stainless steel wires of Patent Documents 3 and 4 are intended to make the crystal grain size as small as possible. However, excessive refinement of crystal grains is not necessarily effective in improving the mechanical properties at high temperatures. Is not limited.

本発明は、上記事情に鑑みてなされたもので、その目的の一つは、高温域での耐へたり性に優れる耐熱ばね用の耐熱ステンレス鋼線を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide a heat-resistant stainless steel wire for a heat-resistant spring that has excellent sag resistance in a high temperature range.

また、本発明の別の目的は、高温域での耐へたり性に優れる耐熱ばね及びその製造方法を提供することにある。   Another object of the present invention is to provide a heat-resistant spring excellent in sag resistance in a high temperature range and a method for producing the same.

通常ばね特性の向上のためにステンレス鋼線といった鋼線において、特許文献3及び4に示されるように、素材となる鋼線の結晶粒径をいかに小さくするかが技術的な課題となっており、耐熱ステンレス鋼線の分野では、このコンセプトに基づき耐へたり性を改善する技術開発が進められている。   Usually, in order to improve the spring characteristics, in steel wires such as stainless steel wires, as shown in Patent Documents 3 and 4, it is a technical problem how to reduce the crystal grain size of the steel wire as a material. In the field of heat-resistant stainless steel wires, technology development to improve sag resistance is being advanced based on this concept.

ここで、”へたり”とは、ある温度以上で応力が負荷された際、鋼線の組織中に存在する転位が鋼線表面或いは結晶粒界に移動・消滅し、塑性変形が生じることによって現れる現象である。通常、鋼線の組織中の転位は、線引き加工により導入され、転位の周りに歪が生じることで、鋼線の強度や硬度を向上させるものである。また、線引き加工の減面率が高くなるほど、結晶粒径が小さくなると共に、転位が多く導入され、歪が増大する傾向がある。そのため、結晶粒径を小さくし、歪を増大させることで、鋼線の弾性限が高くなり、高負荷をかけても塑性変形が生じ難くなるため、ばねにおけるへたりも減少すると考えられていた。   Here, “sag” means that when stress is applied above a certain temperature, dislocations existing in the structure of the steel wire move / disappear on the surface of the steel wire or grain boundaries, resulting in plastic deformation. It is a phenomenon that appears. Usually, dislocations in the structure of a steel wire are introduced by wire drawing, and distortion occurs around the dislocations, thereby improving the strength and hardness of the steel wire. Further, as the area reduction rate of the drawing process increases, the crystal grain size decreases and more dislocations are introduced, and the strain tends to increase. For this reason, by reducing the crystal grain size and increasing the strain, the elastic limit of the steel wire is increased, and plastic deformation hardly occurs even when a high load is applied. .

ところが、本発明者らが鋭意研究を行なった結果、最高使用温度が550℃に達するような従来想定されていなかった高温環境下では、応力が負荷されることによる転位の移動が起こり易く、転位(歪)の導入量と耐へたり性との間に正の相関が認められず、むしろ組織中に転位(歪)が多く導入されると、耐へたり性が低下することが分かった。そして、本発明者らは、耐熱ステンレス鋼線の平均結晶粒径を一定以上に大きくすることが有用であるとの知見を得た。   However, as a result of diligent research by the present inventors, dislocation movement due to stress is likely to occur in a high-temperature environment that has not been assumed in the past such that the maximum use temperature reaches 550 ° C. It was found that no positive correlation was observed between the amount of (strain) introduced and sag resistance, and rather when more dislocations (strain) were introduced into the structure, the sag resistance decreased. The present inventors have obtained knowledge that it is useful to increase the average crystal grain size of the heat-resistant stainless steel wire beyond a certain level.

本発明は以上の知見に基づいてなされたものである。以下、本発明について詳しく説明する。   The present invention has been made based on the above findings. The present invention will be described in detail below.

[耐熱ステンレス鋼線]
本発明の耐熱ステンレス鋼線は、質量%で、C:0.04〜0.08%、Si:0.60〜1.40%、Mn:0.5〜3.0%、Cr:16〜20%、Ni:7.0〜10.5、及びN:0.16〜0.25%を含有し、残部がFe及び不可避的不純物からなり、横断面の平均結晶粒径が8μm以上20μm以下であることを特徴とする。
[Heat resistant stainless steel wire]
The heat-resistant stainless steel wire of the present invention is, in mass%, C: 0.04 to 0.08%, Si: 0.60 to 1.40%, Mn: 0.5 to 3.0%, Cr: 16 to 20%, Ni: 7.0 to 10.5, and N: It contains 0.16 to 0.25%, the balance is made of Fe and inevitable impurities, and the average crystal grain size in the cross section is 8 μm or more and 20 μm or less.

本発明の耐熱ステンレス鋼線は、オーステナイト系のステンレス鋼線である。C、Nなどの浸入型固溶元素が基地であるオーステナイト相(γ相)に固溶することで、結晶格子に歪を生成して強化する固溶強化の他に、組織中の転位を固着させ、強度を向上させる効果(コットレル効果)が期待できる。また、Siなどのフェライト生成元素が固溶することで、耐熱性を向上させる効果が期待できる。   The heat resistant stainless steel wire of the present invention is an austenitic stainless steel wire. Intrusion-type solid solution elements such as C and N dissolve in the base austenite phase (γ phase), and in addition to solid solution strengthening, which generates and strengthens strain in the crystal lattice, anchors dislocations in the structure. And an effect of improving strength (Cottrel effect) can be expected. Moreover, the effect of improving heat resistance can be expected when a ferrite-forming element such as Si is dissolved.

また、鋼線の横断面における平均結晶粒径を8μm以上20μm以下とすることで、高温域での耐へたり性に優れる耐熱ステンレス鋼線を得ることができる。平均結晶粒径を8μm以上とすることで、転位の移動距離が長くなる分、転位が結晶粒界に移動・消滅することを抑制できるので、高温域での耐へたり性が向上する。また、結晶粒径が大きくなるほど、転位の移動・消滅を抑制することができるので、高温域において耐へたり性の向上が期待できる。ところが、例えば自動車のエンジンに取り付けられる排気系装置の場合、エンジンの始動段階においてはその使用温度が低く、このような装置に使用されるばねには、常温環境でも応力が負荷されるため、常温から高温域での耐へたり性が要求される。通常、結晶粒径を大きくすると、十分な歪が導入されず、常温付近での引張り強さなどの機械的性質は低下するため、常温において十分な耐へたり性を発揮できない。そこで、平均結晶粒径の上限を20μmとした。より好ましい平均結晶粒径の上限は16μmである。   Moreover, by setting the average crystal grain size in the cross section of the steel wire to 8 μm or more and 20 μm or less, a heat resistant stainless steel wire having excellent sag resistance in a high temperature range can be obtained. By setting the average crystal grain size to 8 μm or more, it is possible to suppress dislocations from moving to and disappearing from the crystal grain boundaries as much as the distance of dislocations increases, thereby improving sag resistance at high temperatures. In addition, as the crystal grain size increases, dislocation migration and annihilation can be suppressed, so that improvement in sag resistance can be expected at high temperatures. However, in the case of an exhaust system device attached to an automobile engine, for example, the operating temperature is low at the start of the engine, and the spring used in such a device is stressed even in a normal temperature environment. To sag resistance at high temperatures. Usually, when the crystal grain size is increased, sufficient strain is not introduced, and mechanical properties such as tensile strength near room temperature are lowered, so that sufficient sag resistance cannot be exhibited at room temperature. Therefore, the upper limit of the average crystal grain size is set to 20 μm. A more preferable upper limit of the average crystal grain size is 16 μm.

なお、本発明において、横断面とは、鋼線の長手方向に直交する方向に切断した断面のことである。また、平均結晶粒径とは、光学顕微鏡により断面組織を観察し、任意の視野において直線上の結晶粒界との交点間の長さを求め、これを平均した値のことである。   In addition, in this invention, a cross section is a cross section cut | disconnected in the direction orthogonal to the longitudinal direction of a steel wire. The average crystal grain size is a value obtained by observing a cross-sectional structure with an optical microscope, obtaining a length between intersections with a crystal grain boundary on a straight line in an arbitrary visual field, and averaging the lengths.

<化学成分>
本発明の耐熱ステンレス鋼線は、化学成分として、C、Si、Mn、Cr、Ni及びNを含有し、残部がFe及び不可避的不純物からなる。以下、各化学成分の限定理由について述べる。
<Chemical component>
The heat-resistant stainless steel wire of the present invention contains C, Si, Mn, Cr, Ni and N as chemical components, with the balance being Fe and inevitable impurities. The reasons for limiting each chemical component will be described below.

Cは、結晶格子中に侵入型固溶し、歪を生成して強度を高める効果がある。また、Cは、コットレル雰囲気を形成し、組織中の転位を固着させる効果がある。更に、鋼線に含有するCrなどと結合し、炭化物を形成することで、高温強度を高める効果もある。しかし、Crの炭化物が結晶粒界に過剰に存在すると、γ相中のCrの拡散速度が遅いため、粒界近傍にCrの欠乏層が形成され、靭性及び耐食性の低下が生じる。そこで、有効な含有量として、0.04〜0.08質量%と規定した。ばね荷重特性が向上する引張り強さを得るために、0.06〜0.07質量%以上とすることが好ましい。   C has the effect of increasing the strength by forming interstitial solid solution in the crystal lattice and generating strain. C also has the effect of forming a Cottrell atmosphere and fixing dislocations in the structure. Furthermore, it combines with Cr and the like contained in the steel wire to form carbides, thereby increasing the high temperature strength. However, if Cr carbide is excessively present in the grain boundary, the Cr diffusion rate in the γ phase is slow, so a Cr-deficient layer is formed in the vicinity of the grain boundary, resulting in a decrease in toughness and corrosion resistance. Therefore, the effective content is defined as 0.04 to 0.08 mass%. In order to obtain a tensile strength that improves the spring load characteristics, it is preferable that the amount be 0.06 to 0.07% by mass or more.

Siは、固溶することで、耐熱性を高める効果がある。また、Siは、鋼の溶解・精錬時に脱酸剤として機能すると共に、固溶強化による耐熱性の向上効果を得るために、0.60質量%以上必要である。但し、靭性劣化の要因となるため、1.40質量%以下とした。   Si has the effect of improving heat resistance by being dissolved. In addition, Si functions as a deoxidizer during melting and refining of steel, and is required to be 0.60% by mass or more in order to obtain an effect of improving heat resistance by solid solution strengthening. However, it is 1.40% by mass or less because it causes toughness deterioration.

Mnは、鋼の溶解・精錬時の脱酸剤として機能する。また、Mnは、γ相の相安定化にも有効であり、高価なNiの代替元素ともなり得る。更に、γ相中へのNの固溶限を上げる効果もある。但し、高温での耐酸化性の劣化を招くため、0.5〜3.0質量%とした。特に、耐食性を重視する場合、Mnの含有量を0.5〜2.0質量%とすることが好ましい。一方、Nの固溶限を上げる場合、即ち、Nのミクロブローホールを極力少なくするためには、Mnの含有量を2.0〜3.0質量%とすると、目的の効果を得られ易い。但し、この場合は、耐食性に若干の影響を及ぼすため、目的や用途に応じてMnの含有量を調節するとよい。   Mn functions as a deoxidizer during steel melting and refining. Mn is also effective for stabilizing the γ phase and can be an expensive alternative element for Ni. Furthermore, there is an effect of increasing the solid solubility limit of N in the γ phase. However, in order to cause deterioration of oxidation resistance at high temperatures, the content was set to 0.5 to 3.0% by mass. In particular, when emphasizing corrosion resistance, the Mn content is preferably 0.5 to 2.0 mass%. On the other hand, when increasing the solid solubility limit of N, that is, in order to reduce the number of micro blowholes of N as much as possible, when the Mn content is set to 2.0 to 3.0% by mass, the intended effect can be easily obtained. However, in this case, since the corrosion resistance is slightly affected, the content of Mn may be adjusted according to the purpose and application.

Crは、ステンレス鋼の主要な添加元素であり、耐食性、耐熱性、耐酸化性を向上させるのに有効である。そこで、鋼線の他の化学成分からNi当量とCr当量とを算出し、γ相の安定性を考慮した上で必要な耐熱性を得るために16質量%以上とした。但し、靭性劣化の要因となるため、20質量%以下とした。   Cr is a main additive element of stainless steel, and is effective in improving corrosion resistance, heat resistance and oxidation resistance. Therefore, Ni equivalent and Cr equivalent are calculated from other chemical components of the steel wire, and in order to obtain necessary heat resistance in consideration of the stability of the γ phase, it is set to 16% by mass or more. However, to cause deterioration of toughness, the content was set to 20% by mass or less.

Niは、γ相の相安定化に有効なオーステナイト系ステンレス鋼の主要な添加元素である。しかし、Nの含有量を0.2質量%以上とする場合、多量のNiの含有はブローホールの発生原因となる。この場合、Nと親和力の高いMnの添加が有効であり、ブローホールの発生を極力抑制するためには、Mnの含有量を考慮してNiの含有量を調節する必要がある。そこで、γ相の相安定化のために7.0質量%以上、ブローホール発生の抑制及びコスト上昇の抑制のために10.5質量%以下とした。Niの含有量は、7.0〜10.5質量%とすることが好ましいが、10.0質量%未満の場合は、溶解・鋳造工程においてNを容易に固溶させることが可能になるので、製造コスト的にも有利である。   Ni is a main additive element of austenitic stainless steel effective for stabilizing the γ phase. However, when the N content is 0.2% by mass or more, a large amount of Ni causes blowholes. In this case, addition of Mn having a high affinity for N is effective, and in order to suppress the generation of blowholes as much as possible, it is necessary to adjust the Ni content in consideration of the Mn content. Therefore, it is set to 7.0% by mass or more for stabilizing the γ phase, and 10.5% by mass or less for suppressing blowhole generation and cost increase. The Ni content is preferably 7.0 to 10.5% by mass, but if it is less than 10.0% by mass, N can be easily dissolved in the melting / casting process. It is advantageous.

Nは、C同様、侵入型固溶元素、コットレル雰囲気形成元素であり、固溶強化及びコットレル効果による強化に寄与する。また、Nは、鋼線に含有するCrなどと結合し、窒化物を形成することで、高温強度を高める効果もある。但し、γ相中への固溶には限界(固溶限)があり、また多量(0.2質量%以上)のN添加は、溶解・鋳造時のブローホール発生の原因となる。ブローホールは、CrやMnといったNと親和力の高い元素を添加して固溶限を上げることで、ある程度の抑制が可能であるが、より多量(0.25質量%超)のN添加は、鋼を溶解する際の温度や雰囲気を厳密に制御する必要があるため、製造コストの上昇を招く。そこで、有効な含有量として、0.16〜0.25質量%と規定した。   N, like C, is an interstitial solid solution element and a Cottrell atmosphere forming element, and contributes to solid solution strengthening and strengthening by the Cottrell effect. N also has the effect of increasing the high-temperature strength by combining with Cr or the like contained in the steel wire to form a nitride. However, there is a limit (solid solubility limit) for solid solution in the γ phase, and addition of a large amount (0.2% by mass or more) of N causes blowholes during melting and casting. Blowholes can be controlled to some extent by increasing the solid solubility limit by adding elements with high affinity for N, such as Cr and Mn, but adding a large amount (over 0.25 mass%) of N Since it is necessary to strictly control the temperature and atmosphere at the time of melting, the manufacturing cost increases. Therefore, the effective content is defined as 0.16 to 0.25% by mass.

更に、本発明の耐熱ステンレス鋼線は、Moを0.4〜2.0質量%含有することが好ましい。   Furthermore, the heat resistant stainless steel wire of the present invention preferably contains 0.4 to 2.0 mass% of Mo.

Moは、Siと同様に固溶することで、耐熱性を向上させる効果が期待できる。また、Moは、γ相中に置換型固溶し、高温引張り強さ及び耐へたり性の向上に大きく寄与する。そこで、耐へたり性の向上効果を得るために0.4質量%以上とした。但し、多量の添加はばね加工性の劣化、及び原料コストの上昇を招くため、2.0質量%以下とした。   Mo can be expected to have an effect of improving heat resistance by dissolving in the same manner as Si. Mo is a substitutional solid solution in the γ phase, and greatly contributes to the improvement of high-temperature tensile strength and sag resistance. Therefore, in order to obtain the effect of improving sag resistance, the content is set to 0.4% by mass or more. However, addition of a large amount causes deterioration of spring workability and an increase in raw material cost, so it was made 2.0% by mass or less.

<製造条件>
本発明に規定する平均結晶粒径が8μm以上20μm以下の耐熱ステンレス鋼線を得るには、例えば、(1)線引き加工条件、(2)固溶化熱処理条件を制御することにより実現できる。具体的には、結晶粒の平均の結晶粒径を一定以上に大きくするために、線引き加工における減面率を低くする、また、固溶化熱処理における加熱温度を高くする、或いは保持時間を長くすることが挙げられる。
<Production conditions>
In order to obtain a heat-resistant stainless steel wire having an average crystal grain size of 8 μm or more and 20 μm or less as defined in the present invention, for example, it can be realized by controlling (1) drawing process conditions and (2) solution heat treatment conditions. Specifically, in order to increase the average grain size of crystal grains to a certain level or more, the area reduction rate in the drawing process is lowered, the heating temperature in the solution heat treatment is increased, or the holding time is lengthened. Can be mentioned.

(1)線引き加工条件
線引き加工における最終的な減面率(線材に線引き加工を1回以上行ない鋼線としたときの総減面率)は、20〜60%が好ましく、より好ましくは30〜50%である。減面率を上記範囲内とした場合、本発明に規定する平均結晶粒径に制御し易い。但し、減面率を上記範囲外とした場合であっても、後述する固溶化熱処理条件によっては、本発明に規定する平均結晶粒径に制御することができる。
(1) Drawing process conditions The final area reduction rate in the drawing process (total area reduction ratio when the wire rod is drawn once or more to make a steel wire) is preferably 20 to 60%, more preferably 30 to 50%. When the area reduction rate is within the above range, it is easy to control the average crystal grain size defined in the present invention. However, even when the area reduction rate is out of the above range, the average crystal grain size defined in the present invention can be controlled depending on the solution heat treatment conditions described later.

また、線引き加工前の線材はサイズが工業的に規格化されているため、線引き加工の減面率を低減すると、結果的に鋼線における結晶粒径は大きくなる傾向にある。   In addition, since the size of the wire before the drawing process is industrially standardized, if the surface reduction rate of the drawing process is reduced, the crystal grain size in the steel wire tends to increase as a result.

(2)固溶化熱処理条件
固溶化熱処理における加熱温度は、950〜1200℃、特に1000〜1150℃が好ましい。加熱手段としては、例えば雰囲気加熱や高周波加熱を利用することができる。また、保持時間は、鋼線の線径に応じて適宜設定することが好ましく、高周波加熱の場合、0.5〜10分が好ましい。通常、加熱温度を高くする或いは保持時間を長くするほど、結晶粒の成長が起こり、結晶粒の粗大化が進行する。そこで、加熱温度が1000℃未満の場合、保持時間を1分以上とし、加熱温度が1150℃超の場合、保持時間を5分以下とすることが好ましい。勿論、上述する線引き加工条件によっては、加熱温度を上記範囲内で低くすることができる。
(2) Solution heat treatment conditions The heating temperature in the solution heat treatment is preferably 950 to 1200 ° C, particularly preferably 1000 to 1150 ° C. As the heating means, for example, atmospheric heating or high-frequency heating can be used. Moreover, it is preferable to set suitably holding time according to the wire diameter of a steel wire, and 0.5-10 minutes are preferable in the case of high frequency heating. Usually, the higher the heating temperature or the longer the holding time, the more crystal grains grow and the crystal grains become coarser. Therefore, it is preferable that the holding time is 1 minute or more when the heating temperature is less than 1000 ° C., and the holding time is 5 minutes or less when the heating temperature exceeds 1150 ° C. Of course, depending on the drawing process conditions described above, the heating temperature can be lowered within the above range.

ところで、線引き加工条件或いは固溶化熱処理条件により結晶粒径を制御した場合、引張り強さなどの機械的性質に影響を及ぼすと考えられる。そこで、本発明の鋼線は、ばねの加工性を考慮して、引張り強さが1000N/mm2以上1600N/mm2以下を満たすことが好ましい。なお、ここでの引張り強さは、固溶化熱処理及び線引き加工後であって、ばね加工や焼鈍処理前の鋼線における室温での引張り強さのことである。 By the way, when the crystal grain size is controlled by the drawing process conditions or the solution heat treatment conditions, it is considered that the mechanical properties such as tensile strength are affected. Therefore, the steel wire of the present invention, in consideration of the workability of the spring, the tensile strength is preferably satisfies the 1000 N / mm 2 or more 1600 N / mm 2 or less. Here, the tensile strength is the tensile strength at room temperature of the steel wire after the solution heat treatment and the drawing process and before the spring process or annealing process.

[耐熱ばね]
本発明の耐熱ばねは、上記した本発明の耐熱ステンレス鋼線を用いて作製したことを特徴とし、高温域での耐へたり性に優れる。また、ばね加工後に、必要に応じて歪取り焼鈍や窒化処理といった熱処理を行なってもよい。
[Heat resistant spring]
The heat-resistant spring of the present invention is produced using the above-described heat-resistant stainless steel wire of the present invention, and has excellent sag resistance in a high temperature range. Further, after the spring processing, heat treatment such as strain relief annealing or nitriding treatment may be performed as necessary.

[耐熱ばねの製造方法]
本発明の耐熱ばねの製造方法は、上記した本発明の耐熱ステンレス鋼線をばね加工した後、500℃以上650℃以下の条件で1分以上1時間未満の低温焼鈍することを特徴とする。
[Method of manufacturing heat-resistant spring]
The heat-resistant spring manufacturing method of the present invention is characterized in that after the above-described heat-resistant stainless steel wire of the present invention is spring-processed, low-temperature annealing is performed for 1 minute to less than 1 hour under conditions of 500 ° C. or higher and 650 ° C. or lower.

ばね加工後に、上記条件の低温焼鈍を実施することで、高温域での耐へたり性をより向上できる。焼鈍温度は、使用温度域(最高使用温度)以上の温度とすることが好ましい。これは、高温環境下では応力が負荷されると転位の移動が起こり易くなるため、予め使用温度域以上の焼鈍を実施し、転位の移動・消滅を促進させておくことで、ばね使用時にへたりが生じ難くするためである。一方、焼鈍温度が650℃超では、導入した歪の解放が進み過ぎ、常温から高温域に亘って耐へたり性が低下する。そこで、焼鈍温度を500℃以上650℃以下とした。また、焼鈍による耐へたり性の向上効果とばねの生産性を考慮して、焼鈍時間を1分以上1時間未満とした。   By carrying out the low temperature annealing under the above conditions after the spring processing, the sag resistance in the high temperature region can be further improved. The annealing temperature is preferably set to a temperature equal to or higher than the operating temperature range (maximum operating temperature). This is because dislocations are more likely to move when stress is applied in a high-temperature environment. Therefore, annealing above the operating temperature range is performed in advance to promote the movement and disappearance of dislocations. This is to make it difficult to occur. On the other hand, when the annealing temperature is higher than 650 ° C., the introduced strain is released too much, and the sag resistance decreases from room temperature to high temperature range. Therefore, the annealing temperature was set to 500 ° C. or higher and 650 ° C. or lower. In consideration of the effect of improving sag resistance by annealing and the productivity of springs, the annealing time was set to 1 minute or more and less than 1 hour.

本発明の耐熱ステンレス鋼線及び耐熱ばねは、横断面の平均結晶粒径が8μm以上20μm以下であり、高温域での耐へたり性に優れる。特に450℃以上の高温域でも優れた耐へたり性を発揮できる。本発明の耐熱ばねの製造方法は、優れた耐へたり性を有する耐熱ばねを製造できる。   The heat resistant stainless steel wire and heat resistant spring of the present invention have an average crystal grain size of 8 μm or more and 20 μm or less in the cross section, and are excellent in sag resistance in a high temperature range. In particular, it can exhibit excellent sag resistance even at high temperatures of 450 ° C or higher. The heat-resistant spring manufacturing method of the present invention can manufacture a heat-resistant spring having excellent sag resistance.

(実施例1)
表1に示す化学成分の各種ステンレス鋼を溶解・鋳造し、鍛造・熱間圧延を施して、線材に加工した。その後、線材に固溶化熱処理と線引き加工を繰り返し行ない、線径3.0mmの耐熱ステンレス鋼線に加工し、各種ステンレス鋼の試験片を作製した。ここでは、線引き加工条件[減面率:40%]、固溶化熱処理条件[加熱温度:1100℃、保持時間:1分]とした。
(Example 1)
Various stainless steels having chemical components shown in Table 1 were melted and cast, subjected to forging and hot rolling, and processed into wires. Thereafter, solution heat treatment and wire drawing were repeatedly performed on the wire, and processed into a heat-resistant stainless steel wire having a wire diameter of 3.0 mm to prepare various stainless steel test pieces. Here, the drawing process conditions [area reduction: 40%] and the solution heat treatment conditions [heating temperature: 1100 ° C., holding time: 1 minute] were used.

Figure 2009293077
Figure 2009293077

作製した各試験片について、平均結晶粒径及び引張り強さを測定した。その結果を表2に示す。なお、平均結晶粒径及び引張り強さの測定方法は、次のとおりである。   About each produced test piece, the average crystal grain diameter and the tensile strength were measured. The results are shown in Table 2. In addition, the measuring method of an average crystal grain diameter and tensile strength is as follows.

平均結晶粒径は、長手方向に直交する方向に切断した試験片の横断面を電解エッチングした後、倍率1000倍の光学顕微鏡写真を撮影し、写真から測定する。具体的には、写真上の60mm×80mmの視野において、その中心を通るように、縦、横、及び2本の対角線の直線を引く。そして、各直線において直線と結晶粒界との交点間の長さを求め、その平均を算出し、全ての直線での総平均を算出する。これを、この断面における平均結晶粒径とする。ここでは、3断面について測定を行ない、3断面全ての平均を各試験片の平均結晶粒径とする。   The average crystal grain size is measured from a photomicrograph taken at 1000 × magnification after electrolytic etching of the cross section of the test piece cut in the direction perpendicular to the longitudinal direction. Specifically, in a field of view of 60 mm × 80 mm on the photograph, vertical, horizontal, and two diagonal straight lines are drawn so as to pass through the center. And the length between the intersections of a straight line and a grain boundary is calculated | required in each straight line, the average is calculated, and the total average in all the straight lines is calculated. This is the average crystal grain size in this cross section. Here, measurement is performed on three cross sections, and the average of all three cross sections is defined as the average crystal grain size of each test piece.

引張り強さは、試験片を室温(25℃)で15分以上放置した後、室温にて測定する。また、引張り強さは、試験片を低温焼鈍[焼鈍温度:500℃、焼鈍時間:20分]する前と後で測定する。   Tensile strength is measured at room temperature after leaving the specimen at room temperature (25 ° C) for 15 minutes or longer. The tensile strength is measured before and after low-temperature annealing of the test piece [annealing temperature: 500 ° C., annealing time: 20 minutes].

Figure 2009293077
Figure 2009293077

次に、各試験片(焼鈍せず)をばね加工し、表3に示す諸元の圧縮コイルばねとした後、このばねを低温焼鈍して試料を得た。ここでは、低温焼鈍条件[焼鈍温度:500℃、焼鈍時間:20分]とした。   Next, each test piece (not annealed) was subjected to spring processing to obtain a compression coil spring having the specifications shown in Table 3, and then the spring was subjected to low temperature annealing to obtain a sample. Here, low-temperature annealing conditions were set [annealing temperature: 500 ° C., annealing time: 20 minutes].

Figure 2009293077
Figure 2009293077

低温焼鈍を施した各試料について、耐へたり性を評価した。なお、耐へたり性の評価方法は、高温域(400〜550℃)での残留せん断歪を求めることにより評価する。ここで、残留せん断歪は、図1に示すように、試料S(図1(A)参照)に対して、室温にて圧縮荷重を負荷し(負荷せん断応力:500MPa)、歪を一定に保った状態で、400℃,450℃,500℃,550℃の各試験温度で24時間保持する試験を行なう(同(B)参照)。その後、室温で荷重(歪)を解放して(同(C)参照)、ばねのへたり量から求める。その結果を表4に示す。   Each sample subjected to low temperature annealing was evaluated for sag resistance. In addition, the evaluation method of sag resistance evaluates by calculating | requiring the residual shear strain in a high temperature range (400-550 degreeC). Here, as shown in FIG. 1, the residual shear strain is a constant load applied to the sample S (see FIG. 1A) at room temperature (load shear stress: 500 MPa). The test is held for 24 hours at each test temperature of 400 ° C, 450 ° C, 500 ° C and 550 ° C (see (B)). Then, release the load (strain) at room temperature (see (C)), and calculate from the amount of spring sag. The results are shown in Table 4.

具体的には、残留せん断歪(%)は、次式により求められる。
(式)…残留せん断歪(%)=8/π×(P1−P2)×D/(G×d3)×100
但し、
d(mm):線径
D(mm):平均コイル径
P1(N):応力500MPaに相当する荷重
P2(N):試験後に変位a(mm)まで圧縮するときの荷重(図1(D)参照)
a(mm):試験前にP1を負荷したときの変位量(図1(B)参照)
G:横弾性係数(ここでは、一般的なばね用ステンレス鋼線の値6.9×104を使用)
P1及びP2は、いずれも室温にて測定する。
Specifically, the residual shear strain (%) is obtained by the following equation.
(Formula) ... residual shear strain (%) = 8 / π × (P1-P2) × D / (G × d 3) × 100
However,
d (mm): Wire diameter
D (mm): Average coil diameter
P1 (N): Load equivalent to a stress of 500 MPa
P2 (N): Load when compressing to displacement a (mm) after the test (see Fig. 1 (D))
a (mm): Displacement when P1 is loaded before the test (see Fig. 1 (B))
G: Lateral elastic modulus (Here, the value of 6.9 × 10 4 for a general stainless steel wire for springs is used)
P1 and P2 are both measured at room temperature.

また、各試料について平均結晶粒径を測定したところ、ばね加工前の各試験片の平均結晶粒径とほぼ同等であることが確認された。   Moreover, when the average crystal grain size was measured for each sample, it was confirmed that the average crystal grain size was almost the same as that of each test piece before spring processing.

Figure 2009293077
Figure 2009293077

表4の結果から、試料1-1,1-2は、400〜550℃の各試験温度において、残留せん断歪(%)が小さく、耐へたり性に優れることが分かる。特に450℃以上の高温域においても優れた耐へたり性を示し、550℃に達するような高温環境化でも十分に使用することが可能であると考えられる。また、Moを添加することにより、耐へたり性を改善できることが分かる。   From the results of Table 4, it can be seen that Samples 1-1 and 1-2 have small residual shear strain (%) and excellent sag resistance at each test temperature of 400 to 550 ° C. In particular, it exhibits excellent sag resistance even in a high temperature range of 450 ° C. or higher, and is considered to be sufficiently usable even in a high temperature environment reaching 550 ° C. It can also be seen that by adding Mo, the sag resistance can be improved.

また、各試料について、常温での耐へたり性を評価したところ、いずれも十分な耐へたり性を有していることが確認された。   Moreover, when each sample was evaluated for sag resistance at room temperature, it was confirmed that each sample had sufficient sag resistance.

(実施例2)
主に実施例1の固溶化熱処理条件を変更して、平均結晶粒径が異なる各種試験片を作製した。ここでは、実施例1と同様にして、表1の鋼A,Bを線材に加工した後、表5に示す線引き加工条件及び固溶化熱処理条件で、固溶化熱処理と線引き加工を繰り返し行ない、各種試験片を作製した。
(Example 2)
Various test pieces having different average crystal grain sizes were produced mainly by changing the solution heat treatment conditions of Example 1. Here, in the same manner as in Example 1, after steel A and B in Table 1 were processed into wire rods, solution heat treatment and wire drawing were repeated under the wire drawing conditions and solution heat treatment conditions shown in Table 5, A test piece was prepared.

Figure 2009293077
Figure 2009293077

作製した各試験片について、実施例1と同様にして、平均結晶粒径及び引張り強さを測定した。その結果を表6に示す。   About each produced test piece, it carried out similarly to Example 1, and measured the average crystal grain diameter and the tensile strength. The results are shown in Table 6.

また、実施例1と同様にして、各試験片の圧縮コイルばねを作製し、低温焼鈍した後、各試料の耐へたり性を評価した。その結果を表7に示す。   Moreover, after producing the compression coil spring of each test piece and carrying out low temperature annealing similarly to Example 1, the sag-proof property of each sample was evaluated. The results are shown in Table 7.

Figure 2009293077
Figure 2009293077

Figure 2009293077
Figure 2009293077

表6の結果から、平均結晶粒径が小さくなるほど、引張り強さが高くなる傾向が認められる。しかし、表7の結果から、平均結晶粒径が8〜20μmを満たす試料は、450〜550℃の高温域での耐へたり性が高く、耐へたり性に優れることが分かる。これに対し、平均結晶粒径が8μm未満の試料は、高い引張り強さを有しているが、450℃以上の高温域ではへたり度合いが大きい。一方、平均結晶粒径が20μm超の試料は、各試験温度において耐へたり性が低く、高温域での十分な耐へたり性を有していない。例えば、表7の鋼Aについてみると、平均結晶粒径が8〜20μmの試料2-3A,2-4Aは、400〜550℃の各試験温度において、残留せん断歪(%)が0.6以下であり、他の試料と比較して、特に450℃以上の高温域において、へたり難いことが分かる。また、鋼Bについてみると、平均結晶粒径が8〜20μmの試料2-2B,2-3B,2-4Bは、400〜550℃の各試験温度において、残留せん断歪(%)が0.55以下であり、他の試料と比較して、特に450℃以上の高温域において、へたり難いことが分かる。   From the results in Table 6, it can be seen that the tensile strength tends to increase as the average crystal grain size decreases. However, from the results of Table 7, it can be seen that samples satisfying an average crystal grain size of 8 to 20 μm have high sag resistance in a high temperature range of 450 to 550 ° C. and excellent sag resistance. In contrast, a sample having an average crystal grain size of less than 8 μm has high tensile strength, but has a high degree of sag in a high temperature range of 450 ° C. or higher. On the other hand, a sample having an average crystal grain size of more than 20 μm has low sag resistance at each test temperature and does not have sufficient sag resistance at high temperatures. For example, regarding Steel A in Table 7, Samples 2-3A and 2-4A having an average crystal grain size of 8 to 20 μm have a residual shear strain (%) of 0.6 or less at each test temperature of 400 to 550 ° C. It can be seen that compared to other samples, it is difficult to sag particularly in a high temperature range of 450 ° C. or higher. Regarding steel B, samples 2-2B, 2-3B, and 2-4B with an average crystal grain size of 8 to 20 μm have a residual shear strain (%) of 0.55 or less at each test temperature of 400 to 550 ° C. It can be seen that compared to other samples, it is difficult to sag particularly in a high temperature range of 450 ° C. or higher.

また、各試料について、常温での耐へたり性を評価したところ、平均結晶粒径が20μm超の試料2-5A,2-6A,2-5B,2-6Bは、十分な耐へたり性を有していないことが確認された。   Each sample was evaluated for sag resistance at room temperature. Samples 2-5A, 2-6A, 2-5B, and 2-6B with an average crystal grain size of more than 20 μm had sufficient sag resistance. It was confirmed that it does not have.

(実施例3)
主に実施例1の線引き加工条件を変更して、平均結晶粒径が異なる各種試験片を作製した。ここでは、実施例1と同様にして、表1の鋼Bを線材に加工した後、表8に示す線引き加工条件及び固溶化熱処理条件で、固溶化熱処理と線引き加工を繰り返し行ない、各種試験片を作製した。
(Example 3)
Various test pieces having different average crystal grain sizes were produced mainly by changing the drawing process conditions of Example 1. Here, in the same manner as in Example 1, after steel B in Table 1 was processed into a wire rod, solution heat treatment and wire drawing were repeatedly performed under the wire drawing conditions and solution heat treatment conditions shown in Table 8, and various test pieces were obtained. Was made.

Figure 2009293077
Figure 2009293077

作製した各試験片について、実施例1と同様にして、平均結晶粒径を測定した。その結果を表9に示す。また、実施例1と同様にして、各試験片の圧縮コイルばねを作製し、低温焼鈍した後、各試料の耐へたり性を評価した。その結果も表9に併せて示す。   About each produced test piece, it carried out similarly to Example 1, and measured the average crystal grain diameter. The results are shown in Table 9. Moreover, after producing the compression coil spring of each test piece and carrying out low temperature annealing similarly to Example 1, the sag-proof property of each sample was evaluated. The results are also shown in Table 9.

Figure 2009293077
Figure 2009293077

表9の結果から、線引き加工条件(減面率)を変更しても、鋼線の平均結晶粒径を制御できることが分かる。また、この場合であっても、平均結晶粒径が8μm未満の試料と比較して、平均結晶粒径が8〜20μmの試料は、高温域(500℃)での耐へたり性が高く、耐へたり性に優れることが分かる。   From the results of Table 9, it can be seen that the average crystal grain size of the steel wire can be controlled even if the drawing condition (area reduction ratio) is changed. Even in this case, the sample with an average crystal grain size of 8 to 20 μm has higher sag resistance at high temperatures (500 ° C.) than the sample with an average crystal grain size of less than 8 μm. It can be seen that it has excellent sag resistance.

(実施例4)
低温焼鈍条件の影響を調べるため、実施例1と同様にして、表1の鋼Bを材料に用いた平均結晶粒径が12μmの試験片の圧縮コイルばねを作製し、その後、表10に示す各焼鈍温度で低温焼鈍して、各種試料を作製した。作製した各試料について、実施例1と同様にして、耐へたり性を評価した。その結果も表10に併せて示す。なお、焼鈍時間はいずれも20分とした。
Example 4
In order to investigate the influence of the low-temperature annealing conditions, a compression coil spring of a test piece having an average grain size of 12 μm using the steel B of Table 1 as a material was prepared in the same manner as in Example 1, and then shown in Table 10. Various samples were prepared by low-temperature annealing at each annealing temperature. About each produced sample, it carried out similarly to Example 1, and evaluated sag-proof property. The results are also shown in Table 10. The annealing time was 20 minutes in all cases.

Figure 2009293077
Figure 2009293077

表10の結果から、試験温度が500℃の場合、焼鈍温度を500℃以上650℃以下としたとき、大きな耐へたり性の向上効果が得られることが分かる。特に焼鈍温度を600℃としたときに耐へたり性の向上効果が大きい。また、試験温度が400〜550℃の場合であっても、試験温度が500℃の場合と同様の傾向が認められた。一方、焼鈍温度を650℃超とした場合は、常温から高温域に亘って耐へたり性が低下し、耐へたり性の向上効果が十分に得られないことが確認された。   From the results in Table 10, it can be seen that when the test temperature is 500 ° C., a large effect of improving sag resistance is obtained when the annealing temperature is set to 500 ° C. or higher and 650 ° C. or lower. In particular, when the annealing temperature is 600 ° C., the effect of improving sag resistance is large. Further, even when the test temperature was 400 to 550 ° C, the same tendency as when the test temperature was 500 ° C was observed. On the other hand, when the annealing temperature was higher than 650 ° C., it was confirmed that the sag resistance decreased from room temperature to a high temperature range, and the effect of improving the sag resistance could not be sufficiently obtained.

以上の結果から、本発明の耐熱ステンレス鋼線及び耐熱ばねは、高い耐熱性を有しており、常温から高温域での耐へたり性に優れることが分かる。特に450℃以上の高温域においても優れた耐へたり性を示し、550℃に達するような高温環境化でも十分に使用することが可能である。また、本発明の耐熱ばねの製造方法によれば、大きな耐へたり性の向上効果が得られることが分かる。   From the above results, it can be seen that the heat-resistant stainless steel wire and heat-resistant spring of the present invention have high heat resistance, and are excellent in sag resistance from room temperature to high temperature. In particular, it exhibits excellent sag resistance even in a high temperature range of 450 ° C. or higher, and can be used sufficiently even in a high temperature environment reaching 550 ° C. Moreover, according to the manufacturing method of the heat-resistant spring of this invention, it turns out that the big improvement effect of sag resistance is acquired.

なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、鋼線の化学成分を適宜変更したり、線引き加工条件や固溶化熱処理条件を適宜変更してもよい。   Note that the present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the gist of the present invention. For example, the chemical composition of the steel wire may be changed as appropriate, or the drawing process conditions and the solution heat treatment conditions may be changed as appropriate.

本発明の耐熱ステンレス鋼線、耐熱ばね及びその製造方法は、耐熱性が要求されるばね部品、例えば自動車エンジンの排気系部品の他、電気機器部品(ブレーカのスプリングなど)に好適に利用できる。   The heat-resistant stainless steel wire, heat-resistant spring and manufacturing method thereof of the present invention can be suitably used for spring parts that require heat resistance, for example, exhaust parts for automobile engines, as well as electrical equipment parts (such as springs for breakers).

耐へたり性の評価方法を説明するための図である。It is a figure for demonstrating the evaluation method of sag resistance.

符号の説明Explanation of symbols

S 試料(圧縮コイルばね) S sample (compression coil spring)

Claims (4)

質量%で、C:0.04〜0.08%、Si:0.60〜1.40%、Mn:0.5〜3.0%、Cr:16〜20%、Ni:7.0〜10.5、及びN:0.16〜0.25%を含有し、残部がFe及び不可避的不純物からなり、
横断面の平均結晶粒径が8μm以上20μm以下であることを特徴とする耐熱ステンレス鋼線。
Containing 0.04 to 0.08% by mass, Si: 0.60 to 1.40%, Mn: 0.5 to 3.0%, Cr: 16 to 20%, Ni: 7.0 to 10.5, and N: 0.16 to 0.25%, the balance Consists of Fe and inevitable impurities,
A heat-resistant stainless steel wire having an average crystal grain size in a cross section of 8 μm to 20 μm.
更に、質量%で、Mo:0.4〜2.0%を含有することを特徴とする請求項1に記載の耐熱ステンレス鋼線。   Furthermore, Mo: 0.4-2.0% is contained by the mass%, The heat-resistant stainless steel wire of Claim 1 characterized by the above-mentioned. 請求項1又は2に記載の耐熱ステンレス鋼線を用いて作製したことを特徴とする耐熱ばね。   A heat-resistant spring manufactured using the heat-resistant stainless steel wire according to claim 1. 請求項1又は2に記載の耐熱ステンレス鋼線をばね加工した後、500℃以上650℃以下の条件で1分以上1時間未満の低温焼鈍することを特徴とする耐熱ばねの製造方法。   A method for producing a heat-resistant spring, comprising: heat-treating the heat-resistant stainless steel wire according to claim 1 or 2;
JP2008147442A 2008-06-04 2008-06-04 Heat resistant stainless steel wire, heat resistant spring and method for producing heat resistant spring Withdrawn JP2009293077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008147442A JP2009293077A (en) 2008-06-04 2008-06-04 Heat resistant stainless steel wire, heat resistant spring and method for producing heat resistant spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008147442A JP2009293077A (en) 2008-06-04 2008-06-04 Heat resistant stainless steel wire, heat resistant spring and method for producing heat resistant spring

Publications (1)

Publication Number Publication Date
JP2009293077A true JP2009293077A (en) 2009-12-17

Family

ID=41541524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008147442A Withdrawn JP2009293077A (en) 2008-06-04 2008-06-04 Heat resistant stainless steel wire, heat resistant spring and method for producing heat resistant spring

Country Status (1)

Country Link
JP (1) JP2009293077A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103063025A (en) * 2013-01-18 2013-04-24 南京工业大学 Large bottom plate made of forged blank for annular heating furnace and method for manufacturing large bottom plate
CN106181239A (en) * 2016-07-15 2016-12-07 苏州切浦汽车零部件有限公司 The manufacturing process of electric tail gate spring

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103063025A (en) * 2013-01-18 2013-04-24 南京工业大学 Large bottom plate made of forged blank for annular heating furnace and method for manufacturing large bottom plate
CN103063025B (en) * 2013-01-18 2016-06-15 南京工业大学 Adopt the big base plate of rotary heating furnace and the manufacture method thereof of rough forging
CN106181239A (en) * 2016-07-15 2016-12-07 苏州切浦汽车零部件有限公司 The manufacturing process of electric tail gate spring

Similar Documents

Publication Publication Date Title
JP6447799B1 (en) Rolled wire rod for spring steel
JP6017341B2 (en) High strength cold-rolled steel sheet with excellent bendability
KR101747052B1 (en) High-carbon hot-rolled steel sheet and method for manufacturing the same
JP2012140690A (en) Method of manufacturing two-phase stainless steel excellent in toughness and corrosion resistance
JP6079894B2 (en) Wire material, hypereutectoid bainite steel wire, and production method thereof
JP2018188696A (en) Steel material and seamless steel pipe for oil well
JP2019500489A (en) Wire material excellent in cold forgeability and manufacturing method thereof
WO2003062483A1 (en) Steel wire for heat-resistant spring, heat-resistant spring and method for producing heat-resistant spring
JP2017048459A (en) Steel wire for machine structure component
JP2007169688A (en) Steel wire for cold formed spring having excellent cold cuttability and fatigue property and its production method
KR20170007406A (en) Steel for mechanical structure for cold working, and method for producing same
JP6777824B2 (en) Austenitic stainless steel and its manufacturing method
JP5154122B2 (en) High strength stainless steel and high strength stainless steel wire using the same
JP6089657B2 (en) Austenitic stainless steel for high pressure hydrogen having excellent sensitivity to hydrogen embrittlement at low temperature and method for producing the same
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JP2011214058A (en) High-strength stainless steel wire, and method for producing the same
WO2019097691A1 (en) Austenitic stainless steel sheet and method for producing same
JP6093063B1 (en) High-strength stainless steel material excellent in workability and its manufacturing method
JP2019065343A (en) Steel pipe for oil well and manufacturing method therefor
JP2009293077A (en) Heat resistant stainless steel wire, heat resistant spring and method for producing heat resistant spring
JP5708739B2 (en) Method for producing duplex stainless steel using post-heat treatment
WO2017169481A1 (en) Steel wire having excellent fatigue characteristics and method for manufacturing same
JP6191467B2 (en) Free folding steel
WO2017037851A1 (en) Cr-BASED TWO-PHASE ALLOY AND PRODUCT USING SAID TWO-PHASE ALLOY
JPH08100242A (en) Alloy wire with high strength, high toughness and low thermal expansion and its production

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100409