JP2009286984A - Method for manufacturing polyimide-based film - Google Patents

Method for manufacturing polyimide-based film Download PDF

Info

Publication number
JP2009286984A
JP2009286984A JP2008144305A JP2008144305A JP2009286984A JP 2009286984 A JP2009286984 A JP 2009286984A JP 2008144305 A JP2008144305 A JP 2008144305A JP 2008144305 A JP2008144305 A JP 2008144305A JP 2009286984 A JP2009286984 A JP 2009286984A
Authority
JP
Japan
Prior art keywords
polyimide
drying
superheated steam
resin
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008144305A
Other languages
Japanese (ja)
Other versions
JP5176696B2 (en
Inventor
Tsuyoshi Yatsuka
剛志 八塚
Junichiro Onishi
潤一郎 大西
Katsuya Shino
勝也 示野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2008144305A priority Critical patent/JP5176696B2/en
Publication of JP2009286984A publication Critical patent/JP2009286984A/en
Application granted granted Critical
Publication of JP5176696B2 publication Critical patent/JP5176696B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple method for manufacturing a polyimide-based film which has a superior productivity and also gives a polyimide-based film excellent in heat resistance, durability, dimensional stability and appearance. <P>SOLUTION: The method for manufacturing a polyimide-based film involves manufacturing the polyimide-based film from a laminate obtained by drying a resin solution containing the polyimide-based film coated on a carrier and containing not less than 5 wt.% and not more than 40 wt.% of the residual solvent, and is provided with a step of drying and heat-treatment with super-heated steam. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はポリイミド系樹脂を含む樹脂溶液からポリイミド系樹脂フィルムを製造する方法に関し、より詳しくは過熱水蒸気を用いた乾燥・熱処理する工程を備えてなるポリイミド系樹脂フィルムの製造方法に関するものである。   The present invention relates to a method for producing a polyimide resin film from a resin solution containing a polyimide resin, and more particularly to a method for producing a polyimide resin film comprising a step of drying and heat treatment using superheated steam.

ポリイミドフィルムは耐熱性、耐寒性、機械的強度、電気絶縁性、耐薬品性等の特性が優れる。ポリイミドフィルムは電線用の電気絶縁材料、フレキシブルプリント配線板のベースフィルム、テープオートメイテッドボンディング(TAB)用フィルム等に用いられている。
ポリイミド系樹脂はテトラカルボン酸二無水物とジアミン化合物からポリアミック酸を得、それを閉環反応によりイミド化して作られる。イミド化は脱水剤と触媒を用いて脱水する化学閉環法、加熱することにより脱水する熱閉環法がある。また、両者を併用する方法も知られている。ポリアミック酸を経由する方法以外に側鎖にかさ高い置換基を有する原料や有機溶剤への溶解性を高めた原料を用いることでポリイミド樹脂の溶解性を改良した、有機溶剤可溶ポリイミド系樹脂も知られている。イミド結合をアミド結合に置換することにより有機溶剤への溶解性が高くなる。
ポリイミドフィルムを製造する方法にはポリアミック酸溶液を支持体に塗布乾燥後、イミド化する方法や有機溶剤溶解性ポリイミド系樹脂溶液を塗布乾燥する方法がある。ポリイミドフィルムは一般的には、黄褐色〜黒褐色に着色しているが、脂環族系原料を用いて無色透明にしたもの、ジアミノジフェニルスルフォン系化合物を用いて無色透明にしたものも知られている。さらに、フッ素を含有する原料を用いることにより透明性が向上することも知られている。
ポリイミド系樹脂の溶媒としてはN−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、γ―ブチロラクトン、フェノール、クレゾール等が使われるが、これらの溶剤は高沸点のため乾燥性が悪い。特にN−メチル−2−ピロリドン、N,N−ジメチルアセトアミド等のアミド系溶剤は分子間水素結合により蒸気圧が低いこと、また耐熱性樹脂のガラス転移温度が高いため溶剤の拡散が乏しいこともあり、塗膜中に残留しやすい。残留溶剤は耐熱性の低下や寸法安定性の低下の原因になる。溶剤を残留させないために、乾燥温度や熱処理温度を高くしすぎると、アミド系溶剤の変色も起こり、無色透明ポリイミド系フィルムでは外観が悪くなる。乾燥や熱処理温度が高くなることによる弊害を避けて、溶剤を残留させないために、フィルム化の工程では時間をかけて乾燥や熱処理が行われている。そのため、生産性に問題がある。
過熱水蒸気とは、常圧で飽和水蒸気を加熱して温度を上げた水蒸気のことをいう。過熱水蒸気は温度が150℃以上では放射熱エネルギーが通常の水蒸気と比較して著しく大きくなるため、短時間で物質を加熱することができる。過熱水蒸気は食品の調理、樹脂製品や金属製品の洗浄、食品容器の殺菌、あるいは土壌処理等に用いられている。過熱水蒸気を加熱熱源として用いることは、食品の調理以外ではあまり普及していない。
しかし、過熱水蒸気を一般的な加熱空気と比較すると下記の特徴がある。
(1)加熱空気に比べて熱容量が大きいので、急速加熱が可能。
(2)加熱空気に比べて約2倍の定圧比熱を有するため、加熱能力に優れている。
(3)潜熱のエネルギーを有するので、加熱空気に比べエンタルピーが大きい。
(4)空気による伝熱は対流伝熱に限られるが、過熱水蒸気では対流伝熱、放射伝熱、凝縮伝熱からの複合伝熱作用によるので、熱効率が良い。
過熱水蒸気を加熱熱源として乾燥させることは特許文献1〜6および非特許文献1で知られている。特許文献1〜5はセルロース繊維を主成分とする湿紙の水分を過熱水蒸気によって乾燥させる方法が提案されている。特許文献6はポリオレフィンフィルム、ポリアミドフィルム、ポリエステルフィルムへの塗工フィルムやセロハンの湿潤フィルムへの過熱水蒸気の適用が提案されている。非特許文献1には過熱水蒸気の特性や利用例が示されている。
特許第2907265号公報 特許第2907266号公報 特許第3007542号公報 特許公開2003−41495号公報 特許公開2005−15924号公報 特許公開2007−276283号公報 過熱水蒸気技術集成 (株)エヌ・ティ・エス(2005年発行)
The polyimide film has excellent properties such as heat resistance, cold resistance, mechanical strength, electrical insulation, and chemical resistance. Polyimide films are used for electric insulation materials for electric wires, base films for flexible printed wiring boards, films for tape automated bonding (TAB), and the like.
A polyimide resin is produced by obtaining a polyamic acid from a tetracarboxylic dianhydride and a diamine compound and imidizing it with a ring-closing reaction. The imidization includes a chemical ring closure method in which dehydration is performed using a dehydrating agent and a catalyst, and a thermal ring closure method in which dehydration is performed by heating. Moreover, the method of using both together is also known. Organic solvent-soluble polyimide resins that improve the solubility of polyimide resins by using raw materials that have bulky substituents in the side chain and materials that have increased solubility in organic solvents in addition to the method using polyamic acid Are known. Substituting an amide bond with an amide bond increases the solubility in an organic solvent.
Methods for producing a polyimide film include a method in which a polyamic acid solution is applied and dried on a support and then imidized, and a method in which an organic solvent-soluble polyimide resin solution is applied and dried. Polyimide films are generally colored yellow-brown to black-brown, but those made colorless and transparent using alicyclic materials and those made colorless and transparent using diaminodiphenyl sulfone compounds are also known. Yes. Furthermore, it is also known that transparency is improved by using a raw material containing fluorine.
As a solvent for the polyimide resin, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, γ-butyrolactone, phenol, cresol, and the like are used. In particular, amide solvents such as N-methyl-2-pyrrolidone and N, N-dimethylacetamide have low vapor pressure due to intermolecular hydrogen bonding, and the diffusion of the solvent is poor due to the high glass transition temperature of the heat-resistant resin. Yes, it tends to remain in the coating film. Residual solvent causes a decrease in heat resistance and a decrease in dimensional stability. If the drying temperature or heat treatment temperature is too high in order not to leave the solvent, discoloration of the amide solvent occurs, and the appearance of the colorless and transparent polyimide film is deteriorated. In order to avoid adverse effects caused by an increase in drying and heat treatment temperature and not to leave a solvent, drying and heat treatment are performed over time in the film forming process. Therefore, there is a problem in productivity.
Superheated steam refers to steam that has been heated by heating saturated steam at normal pressure. Since superheated steam has a radiant heat energy significantly higher than that of normal steam at a temperature of 150 ° C. or higher, the substance can be heated in a short time. Superheated steam is used for cooking food, washing resin products and metal products, sterilizing food containers, or treating soil. The use of superheated steam as a heating heat source is not very popular except for cooking food.
However, when superheated steam is compared with general heated air, it has the following characteristics.
(1) Since the heat capacity is larger than that of heated air, rapid heating is possible.
(2) Since it has a constant-pressure specific heat about twice that of heated air, it has excellent heating capacity.
(3) Since it has latent heat energy, its enthalpy is larger than that of heated air.
(4) Although heat transfer by air is limited to convection heat transfer, superheated steam has a high heat efficiency because of the combined heat transfer action from convection heat transfer, radiant heat transfer, and condensation heat transfer.
It is known in Patent Documents 1 to 6 and Non-Patent Document 1 to dry superheated steam as a heating heat source. Patent Documents 1 to 5 propose a method of drying moisture of wet paper mainly composed of cellulose fibers with superheated steam. Patent Document 6 proposes application of superheated steam to a polyolefin film, a polyamide film, a coating film on a polyester film, or a wet cellophane film. Non-Patent Document 1 shows characteristics and utilization examples of superheated steam.
Japanese Patent No. 2907265 Japanese Patent No. 2907266 Japanese Patent No. 3007542 Japanese Patent Publication No. 2003-41495 Japanese Patent Publication No. 2005-15924 Japanese Patent Publication No. 2007-276283 Superheated steam technology assembly NTS Corporation (issued in 2005)

本発明の課題は、キャスト法によるポリイミド系フィルムを製造するに当たり、過熱水蒸気を用いることによる加熱乾燥効率を高められた製造方法を提供することにある。さらに残留溶剤やオーバーヒートによる弊害のないポリイミド系フィルムの製造方法を提供することにある。   An object of the present invention is to provide a production method in which the heating and drying efficiency is enhanced by using superheated steam in producing a polyimide film by a casting method. Furthermore, it is providing the manufacturing method of the polyimide-type film which does not have the bad effect by a residual solvent or overheating.

本発明者等は、ポリイミド系フィルムの製造方法について鋭意研究を重ねた結果、本発明に到達した。すなわち、本発明はポリイミド系樹脂を含む樹脂溶液を金属あるいは耐熱性樹脂からなる支持体上に塗布乾燥して得られる残留溶剤を塗布層中に5重量%以上かつ40重量%以下含有する積層体を、過熱水蒸気を用いて乾燥・熱処理する工程、該支持体からポリイミド系樹脂層を剥離する工程を含むことを特徴とするポリイミド系フィルムの製造方法である。     The inventors of the present invention have arrived at the present invention as a result of intensive studies on a method for producing a polyimide film. That is, the present invention provides a laminate comprising a coating layer containing a residual solvent obtained by coating and drying a resin solution containing a polyimide resin on a support made of a metal or a heat-resistant resin in an amount of 5 wt% or more and 40 wt% or less. Is a process for drying and heat-treating using superheated steam, and a process for peeling the polyimide resin layer from the support.

本発明によりポリイミド系フィルムを効率よく生産できる。また、本発明により得られたポリイミド系フィルムは無色透明な樹脂を用いた場合に起こりやすいアミド系溶剤の着色による弊害を改善することができる。   According to the present invention, a polyimide film can be produced efficiently. In addition, the polyimide film obtained according to the present invention can improve the adverse effects caused by the coloration of the amide solvent, which is likely to occur when a colorless and transparent resin is used.

本発明で用いるポリイミド系樹脂はポリイミド前駆体樹脂、溶剤可溶ポリイミド樹脂、ポリアミドイミド樹脂が挙げられる。ポリイミド系樹脂は通常の方法で重合することができる。例えば、テトラカルボン酸二無水物とジアミンを低温で溶液中で反応させポリイミド前躯体溶液を得る方法、テトラカルボン酸二無水物とジアミンを高温の溶液中で反応させ溶剤可溶性のポリイミド溶液を得る方法、原料としてイソシアネートを用いる方法、原料として酸クロリドを用いる方法などがある。
ポリイミド前躯体樹脂や溶剤可溶ポリイミド樹脂に用いる原料としては、以下に示すような物がある。酸成分としてはピロメリット酸、ベンゾフェノン-3,3’,4,4’-テトラカルボン酸、ビフェニル-3,3’,4,4’-テトラカルボン酸、ジフェニルスルフォン-3,3’,4,4’-テトラカルボン酸、ジフェニルエーテル-3,3’,4,4’-テトラカルボン酸、ナフタレン-2,3,6,7-テトラカルボン酸、ナフタレン-1,2,4,5-テトラカルボン酸、ナフタレン-1,4,5,8-テトラカルボン酸,水素添加ピロメリット酸、水素添加ビフェニル-3,3’,4,4’-テトラカルボン酸等の一無水物、二無水物、エステル化物などを単独、あるいは2種以上の混合物として用いることができる。また、アミン成分としてはp-フェニレンジアミン、m-フェニレンジアミン、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフォン、3,3’-ジアミノジフェニルスルフォン、3,4’-ジアミノビフェニル、3,3-ジアミノビフェニル、3,3’-ジアミノベンズアニリド、4,4’-ジアミノベンズアニリド、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、2,6-トリレンジアミン、2,4-トリレンジアミン、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルプロパン、3,3’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルヘキサフルオロプロパン、3,3’-ジアミノジフェニルヘキサフルオロプロパン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルヘキサフルオロイソプロピリデン、p-キシレンジアミン、m-キシレンジアミン、1,4-ナフタレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、2,7-ナフタレンジアミン、o-トリジン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルフォン、ビス[4-(3-アミノフェノキシ)フェニル]プロパン、ビス[4-(3-アミノフェノキシ)フェニル]スルフォン、ビス[4-(3-アミノフェノキシ)フェニル]ヘキサフロロプロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、シクロヘキシル-1,4-ジアミン、イソフォロンジアミン、水素添加4,4’-ジアミノジフェニルメタン、あるいはこれらに対応するジイソシアネート化合物等の単独あるいは2種以上の混合物を用いることができる。また、これら酸成分、アミン成分の組み合わせで別途重合した樹脂を混合して使用することもできる。
ポリアミドイミド樹脂に用いる原料としては、酸成分としてトリメリット酸無水物、ジフェニルエーテル-3,3’,4’-トリカルボン酸無水物、ジフェニルスルフォン-3,3’,4’-トリカルボン酸無水物、ベンゾフェノン-3,3’,4’-トリカルボン酸無水物、ナフタレン-1,2,4-トリカルボン酸無水物、水素添加トリメリット酸無水物等のトリカルボン酸無水物類が単独あるいは混合物として挙げられる。また、トリカルボン酸無水物の他に、ポリイミド樹脂であげたテトラカルボン酸、それらの無水物やジカルボン酸等を併用して用いることもできる。アミン成分としてはポリイミド樹脂であげたジアミン、あるいはジイソシアネートの単独あるいは混合物が挙げられる。また、これら酸成分、アミン成分の組み合わせで別途重合した樹脂を混合して使用することもできる。
本発明で用いるポリイミド系樹脂溶液の溶剤はポリイミド系樹脂の溶解性が良好であること以外に、水と共沸化合物を気層において形成することや、水と相溶することが過熱水蒸気の効果を高める。さらに水と相溶するような溶剤であれば、蒸発させた溶剤を簡易的に回収することもでき工業的にも有利である。 具体的には、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、テトラメチルウレア、スルフォラン、ジメチルスルフォキシド、γ-ブチロラクトン、シクロヘキサノン、シクロペンタノンを挙げることができる。これらのなかでN-メチル-2-ピロリドン、N,N-ジメチルアセトアミドが好ましい。また、トルエン、キシレン、ジグライム、テトラヒドロフラン、メチルエチルケトン等の溶剤を、溶解性を阻害しない範囲で加えてもかまわない。
本発明の製造方法では過熱水蒸気による乾燥・熱処理をかける前には、ポリイミド系樹脂を含む塗布層には溶剤を5重量%以上40重量%以下の範囲で含有する。残留溶剤が5重量%未満では内部応力に起因するひずみが大きく、このあと過熱水蒸気による加熱によっても、内部応力は完全には緩和できない。そのため、カールや耐熱耐久性が劣る。また、40重量%より多いと過熱水蒸気処理により塗布層の透明性が低下することがあり、また表面凹凸が発生する。残留溶剤を上記の範囲にするために、本発明の装置で過熱水蒸気処理をする前に、別工程で乾燥させても良い。もちろん、乾燥工程と過熱水蒸気処理工程とを連続させてもよい。
本発明で用いる支持体としてはステンレス、アルミニウム、銅、鉄等の金属箔やシート、ポリイミドや熱硬化性樹脂のフィルムやシートが挙げられる。これらのうちステンレス箔、ステンレスシート、アルミニウム箔、アルミニウムシート、ポリイミド特にベンズオキサゾール等の骨格導入による耐熱性を向上させたフィルムあるいはシートが望ましい。
本発明においてポリイミド系フィルムの諸特性、たとえば、機械的特性、電気的特性、滑り性、難燃性、離型性などを改良する目的で他の樹脂や各種添加剤を配合あるいは反応させてもかまわない。例としては、滑剤としてはシリカ、タルク、シリコーン化合物等が挙げられる。難燃剤としては含リン化合物、トリアジン系化合物、水酸化アルミニウム、水酸化マグネシウム等が挙げられる。離型剤としては高級アルコール、高級脂肪酸、高級脂肪酸エステル、高級脂肪酸金属塩等が挙げられる。酸化防止剤や紫外線吸収剤等の安定剤、めっき活性剤、有機や無機の充填剤も挙げられる。また、イソシアネート化合物、エポキシ樹脂、フェノール樹脂等の硬化剤やポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂等の他樹脂を配合してもかまわない。
本発明の製造方法では乾燥・熱処理する熱源として、空気よりも熱容量、比熱が大きい過熱水蒸気を用いる。乾燥・熱処理炉では過熱水蒸気を循環供給しても排出してもかまわない。過熱水蒸気の温度は、樹脂組成や溶剤の種類により最適範囲は異なる。
本発明の製造方法について説明する。ポリイミド系樹脂溶液を支持体に塗布し一次乾燥したのち、さらにより高温での過熱水蒸気による乾燥・熱処理を行う。一次乾燥後のコート層中の残存溶剤率を5〜40%、好ましくは15〜30%の範囲に調整することで溶剤の蒸発に伴う体積収縮の影響や表面平滑性への影響を小さくすることができ、残留応力の減少によるカールの改善に効果がある。一次乾燥条件は60〜150℃で1〜10分が望ましい。
一次乾燥後、過熱水蒸気による乾燥・熱処理を行う。ポリイミド系樹脂がポリイミド前躯体樹脂の場合には、イミド化反応を伴う加熱処理を行う。ポリイミド系樹脂が溶剤可溶ポリイミド樹脂やポリアミドイミド樹脂の場合には加熱により溶剤を除去する。過熱水蒸気による処理は熱風乾燥や赤外線や遠赤外線乾燥と併用してもかまわない。用いる過熱水蒸気の温度は150〜400℃、好ましくは200〜350℃の範囲にする。150℃以下では十分な効果が得られない恐れがある。400℃以上では残留溶剤が突沸し良好な積層体が得られない恐れがあり、また樹脂の劣化の恐れもある。乾燥熱処理時には150℃以上の高温になるため、使用する溶剤が変質し、着色した溶剤の変性物によりフィルムの変色が起こることがある。過熱水蒸気はほぼ完全な無酸素状態ではあるが、空気の混入が起こる場合には、必要により酸素濃度を下げることが必要となる。フィルムの変色を抑えるためには酸素濃度を5%以下、好ましくは0.5%以下に下げることが望ましい。
熱処理後、支持体より剥離する。剥離を容易にするため、予め支持体の表面を離型処理することやポリイミド系樹脂溶液に離型剤を配合する等が望ましい。
Examples of the polyimide resin used in the present invention include a polyimide precursor resin, a solvent-soluble polyimide resin, and a polyamideimide resin. The polyimide resin can be polymerized by a usual method. For example, a method of obtaining a polyimide precursor solution by reacting tetracarboxylic dianhydride and diamine in a solution at low temperature, and a method of obtaining a solvent-soluble polyimide solution by reacting tetracarboxylic dianhydride and diamine in a high temperature solution. There are a method using isocyanate as a raw material and a method using acid chloride as a raw material.
The raw materials used for the polyimide precursor resin and the solvent-soluble polyimide resin include the following. Examples of acid components include pyromellitic acid, benzophenone-3,3 ', 4,4'-tetracarboxylic acid, biphenyl-3,3', 4,4'-tetracarboxylic acid, diphenylsulfone-3,3 ', 4, 4'-tetracarboxylic acid, diphenyl ether-3,3 ', 4,4'-tetracarboxylic acid, naphthalene-2,3,6,7-tetracarboxylic acid, naphthalene-1,2,4,5-tetracarboxylic acid , Monoanhydrides, dianhydrides, esterified products such as naphthalene-1,4,5,8-tetracarboxylic acid, hydrogenated pyromellitic acid, hydrogenated biphenyl-3,3 ', 4,4'-tetracarboxylic acid Etc. can be used alone or as a mixture of two or more. As the amine component, p-phenylenediamine, m-phenylenediamine, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 3,4'-diaminobiphenyl, 3,3-diaminobiphenyl, 3,3'-diaminobenzanilide, 4,4'-diaminobenzanilide, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 3 , 4'-diaminobenzophenone, 2,6-tolylenediamine, 2,4-tolylenediamine, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 4,4'-diaminodiphenylpropane, 3,3'-diaminodiphenylpropane, 4,4'-diaminodiphenylhexafluoropropane, 3,3'-diaminodiphenylhexafluoropropane, 4,4'-diaminodiphenylmeta 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenylhexafluoroisopropylidene, p-xylenediamine, m-xylenediamine, 1,4-naphthalenediamine, 1,5-naphthalenediamine, 2,6- Naphthalenediamine, 2,7-naphthalenediamine, o-tolidine, 2,2'-bis (4-aminophenyl) propane, 2,2'-bis (4-aminophenyl) hexafluoropropane, 1,3-bis ( 3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 2,2-bis [4- (4-aminophenoxy) phenyl] propane Bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] propane, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (3- Aminophenoxy) phenyl] hexafuro Propane, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, One or a mixture of two or more of cyclohexyl-1,4-diamine, isophoronediamine, hydrogenated 4,4′-diaminodiphenylmethane, or the corresponding diisocyanate compounds can be used. In addition, a resin separately polymerized by a combination of these acid component and amine component can be mixed and used.
Raw materials used for polyamideimide resin include trimellitic anhydride, diphenyl ether-3,3 ', 4'-tricarboxylic acid anhydride, diphenylsulfone-3,3', 4'-tricarboxylic acid anhydride, benzophenone as acid component Tricarboxylic acid anhydrides such as -3,3 ′, 4′-tricarboxylic acid anhydride, naphthalene-1,2,4-tricarboxylic acid anhydride, and hydrogenated trimellitic acid anhydride may be used alone or as a mixture. In addition to tricarboxylic acid anhydrides, tetracarboxylic acids mentioned in the polyimide resin, their anhydrides, dicarboxylic acids and the like can also be used in combination. Examples of the amine component include diamines mentioned for polyimide resins, or diisocyanates alone or as a mixture. In addition, a resin separately polymerized by a combination of these acid component and amine component can be mixed and used.
The solvent of the polyimide resin solution used in the present invention is that the solubility of the polyimide resin is good, the formation of water and an azeotropic compound in the gas layer, and the compatibility with water is the effect of superheated steam To increase. Further, if the solvent is compatible with water, the evaporated solvent can be easily recovered, which is industrially advantageous. Specifically, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, tetramethylurea, sulfolane, dimethyl sulfoxide, Examples thereof include γ-butyrolactone, cyclohexanone, and cyclopentanone. Of these, N-methyl-2-pyrrolidone and N, N-dimethylacetamide are preferred. Further, a solvent such as toluene, xylene, diglyme, tetrahydrofuran, methyl ethyl ketone, etc. may be added as long as the solubility is not inhibited.
In the production method of the present invention, before applying drying / heat treatment with superheated steam, the coating layer containing the polyimide resin contains a solvent in the range of 5 wt% to 40 wt%. When the residual solvent is less than 5% by weight, the strain due to the internal stress is large, and the internal stress cannot be completely relieved by heating with superheated steam. Therefore, curl and heat resistance durability are inferior. On the other hand, when the amount is more than 40% by weight, the transparency of the coating layer may be lowered due to the superheated steam treatment, and surface irregularities are generated. In order to make a residual solvent into said range, you may make it dry at another process, before performing a superheated steam process with the apparatus of this invention. Of course, the drying process and the superheated steam treatment process may be continued.
Examples of the support used in the present invention include metal foils and sheets such as stainless steel, aluminum, copper, and iron, and films and sheets of polyimide and thermosetting resins. Among these, a stainless steel foil, a stainless steel sheet, an aluminum foil, an aluminum sheet, a film or a sheet having improved heat resistance by introducing a skeleton such as polyimide, especially benzoxazole, is desirable.
In the present invention, other resins and various additives may be blended or reacted for the purpose of improving various properties of the polyimide film, for example, mechanical properties, electrical properties, slipperiness, flame retardancy, releasability, etc. It doesn't matter. Examples of the lubricant include silica, talc, and silicone compounds. Examples of the flame retardant include phosphorus-containing compounds, triazine compounds, aluminum hydroxide, and magnesium hydroxide. Examples of the releasing agent include higher alcohols, higher fatty acids, higher fatty acid esters, higher fatty acid metal salts and the like. Also included are stabilizers such as antioxidants and UV absorbers, plating activators, and organic and inorganic fillers. Moreover, you may mix | blend other resins, such as hardening | curing agents, such as an isocyanate compound, an epoxy resin, and a phenol resin, a polyester resin, a polyurethane resin, and a polyamide resin.
In the production method of the present invention, superheated steam having a heat capacity and specific heat larger than air is used as a heat source for drying and heat treatment. In the drying / heat treatment furnace, superheated steam may be circulated or discharged. The optimum range of the temperature of superheated steam varies depending on the resin composition and the type of solvent.
The production method of the present invention will be described. After the polyimide resin solution is applied to the support and primarily dried, it is further dried and heat-treated with superheated steam at a higher temperature. By adjusting the residual solvent ratio in the coating layer after primary drying to a range of 5 to 40%, preferably 15 to 30%, the influence of volume shrinkage due to evaporation of the solvent and the influence on surface smoothness should be reduced. This is effective in improving curl due to a decrease in residual stress. The primary drying conditions are preferably 60 to 150 ° C. and 1 to 10 minutes.
After primary drying, drying and heat treatment with superheated steam is performed. When the polyimide resin is a polyimide precursor resin, a heat treatment involving an imidization reaction is performed. When the polyimide resin is a solvent-soluble polyimide resin or polyamideimide resin, the solvent is removed by heating. The treatment with superheated steam may be used in combination with hot air drying or infrared or far infrared drying. The temperature of the superheated steam used is in the range of 150 to 400 ° C, preferably 200 to 350 ° C. If the temperature is 150 ° C. or less, there is a possibility that a sufficient effect cannot be obtained. If the temperature is 400 ° C. or higher, the residual solvent may bump up and a good laminate may not be obtained, and the resin may be deteriorated. Since the temperature becomes higher than 150 ° C. during the drying heat treatment, the solvent used may be denatured, and the color of the film may be changed by the modified product of the colored solvent. Although superheated steam is almost completely oxygen-free, if air contamination occurs, it is necessary to lower the oxygen concentration as necessary. In order to suppress discoloration of the film, it is desirable to reduce the oxygen concentration to 5% or less, preferably 0.5% or less.
After the heat treatment, it is peeled off from the support. In order to facilitate peeling, it is desirable that the surface of the support is subjected to a release treatment in advance, or a release agent is added to the polyimide resin solution.

本発明をさらに詳細に説明するために以下に実施例を挙げるが、本発明は実施例になんら限定されるものではない。なお、実施例に記載された測定値は以下の方法によって測定したものである。
残留溶剤:セイコーインスツル社製、示差熱熱重量同時測定装置EXSTAR6000TG/DTAを用いて150℃〜350℃までの重量減少により、ポリイミド系フィルム中の残留溶剤濃度を求めた。
はんだ耐熱:ポリイミド系フィルムと銅箔(三井金属鉱山製電解銅箔35μm)を共重合ポリエステル樹脂(東洋紡績社製バイロン550)エポキシ樹脂(ジャパンエポキシレジン社製エピビスタイプエポキシ828)およびポリイソシアネート化合物(日本ポリウレタン社製コロネートL)からなる接着剤で貼り合せた。80℃2日間、硬化処理した。得られた銅張積層板の銅箔をサブトラクティブ法によりエッチング加工し、幅1mmの回路パターンを作成した。40℃、65%RHで24時間調湿し、フラックス洗浄した後、20秒間280℃のはんだ浴に浸漬し、顕微鏡により剥がれや膨れの有無を観察した。異常が見られなかった物を○、剥がれや膨れが見られた物を×とした。
寸法変化:ポリイミド系フィルムを用いIPC-FC241(IPC-TM-650,2.2.4(c))により150℃30分の熱処理によるMD,TD方向の寸法変化率を求めた。表中にはMDとTD方向の寸法変化率の大きい方を記載した。
In order to describe the present invention in more detail, examples are given below, but the present invention is not limited to the examples. In addition, the measured value described in the Example is measured by the following method.
Residual solvent: The residual solvent concentration in the polyimide film was determined by weight reduction from 150 ° C. to 350 ° C. using a differential thermothermal gravimetric simultaneous measurement apparatus EXSTAR6000TG / DTA manufactured by Seiko Instruments Inc.
Solder heat resistance: Polyimide film and copper foil (electrolytic copper foil 35 μm made by Mitsui Mining Co., Ltd.) copolymerized polyester resin (Byron 550 made by Toyobo Co., Ltd.) Epoxy resin (Epibis type epoxy 828 made by Japan Epoxy Resin) and polyisocyanate compound It bonded together with the adhesive which consists of (Nippon Polyurethane Co., Ltd. coronate L). Curing treatment was performed at 80 ° C. for 2 days. The copper foil of the obtained copper-clad laminate was etched by a subtractive method to create a circuit pattern with a width of 1 mm. After humidity conditioning at 40 ° C. and 65% RH for 24 hours and flux cleaning, the sample was immersed in a solder bath at 280 ° C. for 20 seconds and observed for peeling or swelling with a microscope. The thing in which abnormality was not seen was set as (circle), and the thing in which peeling and the swelling were seen were set as x.
Dimensional change: The dimensional change rate in the MD and TD directions by heat treatment at 150 ° C. for 30 minutes was determined by IPC-FC241 (IPC-TM-650, 2.2.4 (c)) using a polyimide film. The table shows the larger dimensional change rate in the MD and TD directions.

合成例1
反応容器に無水トリメリット酸192g、3,3’-ジメチル-4,4’-ビフェニルジイソシアネート211g、2,4-トリレンジイソシアネート35g、ナトリウムメチラート0.5gおよびN-メチル-2-ピロリドン2.5Kgを加え、150℃まで1時間かけて昇温し、さらに150℃で5時間反応させた。得られたポリアミドイミド樹脂の対数粘度は1.6でガラス転移温度は320℃であった。
Synthesis example 1
In a reaction vessel, 192 g of trimellitic anhydride, 211 g of 3,3′-dimethyl-4,4′-biphenyl diisocyanate, 35 g of 2,4-tolylene diisocyanate, 0.5 g of sodium methylate and N-methyl-2-pyrrolidone 5 kg was added, the temperature was raised to 150 ° C. over 1 hour, and the reaction was further carried out at 150 ° C. for 5 hours. The obtained polyamideimide resin had a logarithmic viscosity of 1.6 and a glass transition temperature of 320 ° C.

合成例2
N,N-ジメチルアセトアミド850g、4,4’-ジアミノ-2,2’-ジメチルビフェニル47.7gおよび4,4’-ビス(3-アミノフェノキシ)ビフェニル20.7gを反応容器に投入し、攪拌し溶解させた。ついで、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物80.4g加え、室温にて5時間攪拌を続けポリイミド前躯体を得た。
Synthesis example 2
850 g of N, N-dimethylacetamide, 47.7 g of 4,4′-diamino-2,2′-dimethylbiphenyl and 20.7 g of 4,4′-bis (3-aminophenoxy) biphenyl are put into a reaction vessel and stirred. And dissolved. Next, 80.4 g of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride was added, and stirring was continued at room temperature for 5 hours to obtain a polyimide precursor.

合成例3
反応容器に水素添加無水トリメリット酸158g、テレフタル酸33g、3,3’-ジメチル-4,4’-ビフェニルジイソシアネート261g、ヨウ化リチウム0.5gおよびN,N-ジメチルアセトアミド2.5Kgを加え、150℃まで1時間かけて昇温し、さらに150℃で5時間反応させた。得られたポリアミドイミド樹脂の対数粘度は1.2でガラス転移温度は310℃であった。
Synthesis example 3
Add 158 g of hydrogenated trimellitic anhydride, 33 g of terephthalic acid, 261 g of 3,3′-dimethyl-4,4′-biphenyl diisocyanate, 0.5 g of lithium iodide and 2.5 kg of N, N-dimethylacetamide to the reaction vessel, The temperature was raised to 150 ° C. over 1 hour, and further reacted at 150 ° C. for 5 hours. The obtained polyamideimide resin had a logarithmic viscosity of 1.2 and a glass transition temperature of 310 ° C.

<実施例 1>
合成例1で調整したポリアミドイミド溶液をアプリケーターを用いて予めフッ素系離型剤処理したアルミニウム箔(東洋アルミ製50μm)に、乾燥後の厚みが25μmになるように、手塗り塗布し、100℃で5分間熱風により一次乾燥した。さらに過熱水蒸気の発生装置として蒸気過熱装置(第一高周波工業株式会社製「DHF Super-Hi 10」)を用い、10Kg/時間の過熱水蒸気を供給する乾燥・熱処理炉で乾燥・熱処理を行った。アルミニウム箔から剥離後、残留溶剤量、はんだ耐熱性、寸法変化率を測定した。結果を表―1に示す。
<Example 1>
The polyamideimide solution prepared in Synthesis Example 1 was applied by hand to an aluminum foil (50 μm made by Toyo Aluminum) previously treated with a fluorine-based mold release agent using an applicator so that the thickness after drying was 25 μm, and 100 ° C. And primary drying with hot air for 5 minutes. Furthermore, using a steam superheater ("DHF Super-Hi 10" manufactured by Daiichi High Frequency Industrial Co., Ltd.) as a superheated steam generator, drying and heat treatment were performed in a drying and heat treatment furnace for supplying 10 kg / hour of superheated steam. After peeling from the aluminum foil, the amount of residual solvent, solder heat resistance, and dimensional change rate were measured. The results are shown in Table-1.

<実施例 2>
実施例1と同様に、合成例2で調整したポリイミド前躯体溶液をアプリケーターを用いて離型処理アルミニウム箔に、乾燥閉環後の厚みが25μmになるように、手塗り塗布し、120℃で5分間熱風により一次乾燥した。さらに過熱水蒸気の発生装置として蒸気過熱装置(第一高周波工業株式会社製「DHF Super-Hi 10」)を用い、10Kg/時間の過熱水蒸気を供給する乾燥・熱処理炉で乾燥・熱処理を行った。処理条件は120℃から320℃まで15分かけて昇温し、さらに続けて320℃での過熱水蒸気処理を行った。アルミニウム箔から剥離後、残留溶剤量、はんだ耐熱性、寸法変化率を測定した。結果を表―1に示す。
<Example 2>
In the same manner as in Example 1, the polyimide precursor solution prepared in Synthesis Example 2 was hand-applied to a release-treated aluminum foil using an applicator so that the thickness after dry ring closure was 25 μm, and 5 ° C. at 120 ° C. Primary drying with hot air for minutes. Furthermore, using a steam superheater ("DHF Super-Hi 10" manufactured by Daiichi High Frequency Industrial Co., Ltd.) as a superheated steam generator, drying and heat treatment were performed in a drying and heat treatment furnace for supplying 10 kg / hour of superheated steam. The treatment conditions were that the temperature was raised from 120 ° C. to 320 ° C. over 15 minutes, followed by superheated steam treatment at 320 ° C. After peeling from the aluminum foil, the amount of residual solvent, solder heat resistance, and dimensional change rate were measured. The results are shown in Table-1.

<実施例 3>
合成例3で調整したポリアミドイミド溶液にステアリン酸を樹脂分の0.2重量%添加し、これを100μm厚みのステンレス箔にアプリケーターを用いて、乾燥後の厚みが25μmになるように、手塗り塗布し、100℃で5分間熱風により一次乾燥した。さらに過熱水蒸気の発生装置として蒸気過熱装置(第一高周波工業株式会社製「DHF Super-Hi 10」)を用い、10Kg/時間の過熱水蒸気を供給する乾燥・熱処理炉で乾燥・熱処理を行った。ステンレス箔から剥離後、残留溶剤量、寸法変化率を測定した。結果を表―1に示す。
<Example 3>
Stearic acid is added to the polyamideimide solution prepared in Synthesis Example 3 in an amount of 0.2% by weight, and this is applied by hand to a 100 μm thick stainless steel foil so that the thickness after drying is 25 μm. It was applied and primary dried with hot air at 100 ° C. for 5 minutes. Furthermore, using a steam superheater ("DHF Super-Hi 10" manufactured by Daiichi High Frequency Industrial Co., Ltd.) as a superheated steam generator, drying and heat treatment were performed in a drying and heat treatment furnace for supplying 10 kg / hour of superheated steam. After peeling from the stainless steel foil, the amount of residual solvent and the dimensional change rate were measured. The results are shown in Table-1.

<比較例 1>
実施例1と同様に、合成例1で調整したポリアミドイミド溶液をアプリケーターを用いて予め予めフッ素系離型剤処理したアルミニウム箔(東洋アルミ製50μm)に、乾燥後の厚みが25μmになるように、手塗り塗布し、100℃で5分間熱風により一次乾燥した。さらに乾燥・熱処理として熱風循環の乾燥・熱処理炉で乾燥熱処理を行った。アルミニウム箔から剥離後、残留溶剤量、はんだ耐熱性、寸法変化率を測定した。結果を表―1に示す。
<Comparative Example 1>
As in Example 1, the polyamideimide solution prepared in Synthesis Example 1 was preliminarily treated with a fluorine-based mold release agent using an applicator so that the thickness after drying was 25 μm. , Applied by hand, and primary dried with hot air at 100 ° C. for 5 minutes. Further, as a drying and heat treatment, a drying heat treatment was performed in a hot air circulation drying and heat treatment furnace. After peeling from the aluminum foil, the amount of residual solvent, solder heat resistance, and dimensional change rate were measured. The results are shown in Table-1.

<比較例 2>
合成例1で調整したポリアミドイミド溶液をアプリケーターを用いて離型処理アルミニウム箔に、乾燥後の厚みが25μmになるように、手塗り塗布し、280℃で5分間熱風により一次乾燥した。さらに過熱水蒸気の発生装置として蒸気過熱装置(第一高周波工業株式会社製「DHF Super-Hi 10」)を用い、10Kg/時間の過熱水蒸気を供給する乾燥・熱処理炉で乾燥・熱処理を行った。アルミニウム箔から剥がし、残留溶剤量、はんだ耐熱性、寸法変化率を測定した。また、実施例1あるいは比較例1や3と比べてもカールが大きい。結果を表―1に示す。なお、過熱水蒸気による乾燥・熱処理をする前の残留溶剤量は4.1%であった。
<Comparative Example 2>
The polyamideimide solution prepared in Synthesis Example 1 was hand-coated on a release-treated aluminum foil using an applicator so that the thickness after drying was 25 μm, and was primarily dried with hot air at 280 ° C. for 5 minutes. Furthermore, using a steam superheater ("DHF Super-Hi 10" manufactured by Daiichi High Frequency Industrial Co., Ltd.) as a superheated steam generator, drying and heat treatment were performed in a drying and heat treatment furnace for supplying 10 kg / hour of superheated steam. The aluminum foil was peeled off, and the residual solvent amount, solder heat resistance, and dimensional change rate were measured. Further, the curl is larger than that of Example 1 or Comparative Examples 1 and 3. The results are shown in Table-1. The residual solvent amount before drying and heat treatment with superheated steam was 4.1%.

<比較例 3>
合成例1で調整したポリアミドイミド溶液をアプリケーターを用いて離型処理アルミニウム箔に、乾燥後の厚みが25μmになるように、手塗り塗布し、50℃で3分間熱風により一次乾燥した。さらに過熱水蒸気の発生装置として蒸気過熱装置(第一高周波工業株式会社製「DHF Super-Hi 10」)を用い、10Kg/時間の過熱水蒸気を供給する乾燥・熱処理炉で乾燥・熱処理を行った。アルミニウム箔から剥離後、残留溶剤量、はんだ耐熱性、寸法変化率を測定した。また、ポリイミド層は不透明であった。結果を表―1に示す。なお、過熱水蒸気による乾燥・熱処理する前の残留溶剤量は45%であった。
<Comparative Example 3>
The polyamideimide solution prepared in Synthesis Example 1 was hand-coated on a release-treated aluminum foil using an applicator so that the thickness after drying was 25 μm, and was primarily dried with hot air at 50 ° C. for 3 minutes. Furthermore, using a steam superheater ("DHF Super-Hi 10" manufactured by Daiichi High Frequency Industrial Co., Ltd.) as a superheated steam generator, drying and heat treatment were performed in a drying and heat treatment furnace for supplying 10 kg / hour of superheated steam. After peeling from the aluminum foil, the amount of residual solvent, solder heat resistance, and dimensional change rate were measured. The polyimide layer was opaque. The results are shown in Table-1. The residual solvent amount before drying and heat treatment with superheated steam was 45%.

<比較例 4>
合成例2で調整したポリイミド前躯体溶液をアプリケーターを用いて離型処理したアルミニウム箔に、乾燥閉環後の厚みが25μmになるように、手塗り塗布し、120℃で5分間一次乾燥した。さらに、熱風循環炉を用いて、120℃から350℃まで15分かけて昇温し、さらに続けて350℃での熱風乾燥を行った。過熱水蒸気による加熱処理は実施しなかった。アルミニウム箔から剥離後、残留溶剤量、はんだ耐熱性、寸法変化率を測定した。結果を表―1に示す。
<Comparative Example 4>
The polyimide precursor solution prepared in Synthesis Example 2 was hand-coated on an aluminum foil that had been subjected to mold release treatment using an applicator so that the thickness after dry ring closure was 25 μm, and was primarily dried at 120 ° C. for 5 minutes. Furthermore, using a hot air circulating furnace, the temperature was raised from 120 ° C. to 350 ° C. over 15 minutes, and then hot air drying at 350 ° C. was performed. No heat treatment with superheated steam was performed. After peeling from the aluminum foil, the amount of residual solvent, solder heat resistance, and dimensional change rate were measured. The results are shown in Table-1.

<比較例 5>
合成例3で調整したポリアミドイミド溶液にステアリン酸を樹脂分の0.2重量%添加し、これを100μm厚みのステンレス箔にアプリケーターを用いて、乾燥後の厚みが25μmになるように、手塗り塗布し、100℃で5分間熱風により一次乾燥した。さらに熱風循環炉を用いて、乾燥・熱処理を行った。ステンレス箔から剥離後、残留溶剤量、寸法変化率を測定した。結果を表―1に示す。
<Comparative Example 5>
Stearic acid is added to the polyamideimide solution prepared in Synthesis Example 3 in an amount of 0.2% by weight, and this is applied by hand to a 100 μm thick stainless steel foil so that the thickness after drying is 25 μm. It was applied and primary dried with hot air at 100 ° C. for 5 minutes. Furthermore, drying and heat treatment were performed using a hot air circulating furnace. After peeling from the stainless steel foil, the amount of residual solvent and the dimensional change rate were measured. The results are shown in Table-1.

Figure 2009286984
Figure 2009286984

本発明はポリイミド系フィルムの簡便な製造方法に関するものであり、該製造方法を用いることにより、生産性の改善ができ、さらに耐熱性、耐久性や寸法安定性、外観に優れたポリイミド系フィルムを提供することができる。   The present invention relates to a simple method for producing a polyimide film. By using this production method, productivity can be improved, and further, a polyimide film excellent in heat resistance, durability, dimensional stability, and appearance can be obtained. Can be provided.

Claims (1)

ポリイミド系樹脂を含む樹脂溶液を金属あるいは耐熱性樹脂からなる支持体上に塗布乾燥して得られる残留溶剤を塗布層中に5重量%以上かつ40重量%以下含有する積層体を、過熱水蒸気を用いて乾燥・熱処理する工程、該支持体からポリイミド系樹脂層を剥離する工程を含むことを特徴とするポリイミド系フィルムの製造方法。   A laminate containing 5 wt% or more and 40 wt% or less of a residual solvent obtained by applying and drying a resin solution containing a polyimide resin on a support made of a metal or a heat resistant resin, with superheated steam The manufacturing method of the polyimide-type film characterized by including the process of using and drying and heat-processing, and the process of peeling a polyimide-type resin layer from this support body.
JP2008144305A 2008-06-02 2008-06-02 Method for producing polyimide film Active JP5176696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008144305A JP5176696B2 (en) 2008-06-02 2008-06-02 Method for producing polyimide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008144305A JP5176696B2 (en) 2008-06-02 2008-06-02 Method for producing polyimide film

Publications (2)

Publication Number Publication Date
JP2009286984A true JP2009286984A (en) 2009-12-10
JP5176696B2 JP5176696B2 (en) 2013-04-03

Family

ID=41456512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008144305A Active JP5176696B2 (en) 2008-06-02 2008-06-02 Method for producing polyimide film

Country Status (1)

Country Link
JP (1) JP5176696B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017074714A (en) * 2015-10-15 2017-04-20 株式会社カネカ Production method of multilayer polyimide film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330376A (en) * 2004-05-20 2005-12-02 Jsr Corp Method for producing cycloolefin-based polymer film or sheet
JP2007276283A (en) * 2006-04-07 2007-10-25 Futamura Chemical Co Ltd Method for manufacturing film
JP2009086190A (en) * 2007-09-28 2009-04-23 Shin Etsu Polymer Co Ltd Endless belt and image forming apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330376A (en) * 2004-05-20 2005-12-02 Jsr Corp Method for producing cycloolefin-based polymer film or sheet
JP2007276283A (en) * 2006-04-07 2007-10-25 Futamura Chemical Co Ltd Method for manufacturing film
JP2009086190A (en) * 2007-09-28 2009-04-23 Shin Etsu Polymer Co Ltd Endless belt and image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017074714A (en) * 2015-10-15 2017-04-20 株式会社カネカ Production method of multilayer polyimide film

Also Published As

Publication number Publication date
JP5176696B2 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
TWI381035B (en) Adhesive improved by the novel polyimide film
JP2022126664A (en) Metal-clad laminate and circuit board
JP2024040228A (en) Manufacturing method for metal clad laminates
TWI384018B (en) Polyimide film
JP5447365B2 (en) Manufacturing method of laminate
TW202140622A (en) Resin film, metal-clad laminate and circuit board wherein the resin film includes a liquid crystal polymer layer, a first adhesive layer, and a second adhesive layer
KR20240049536A (en) Metal-clad laminate, adhesive sheet, adhesive polyimide resin composition, and circuit board
TW200819501A (en) Polyimide-based resin composition, method of manufacturing thereof and metal laminate
JP2008188954A (en) Base material for single-sided metal-clad laminated sheet and manufacturing method of single-sided metal-clad laminated sheet
JP4941407B2 (en) Copper-clad laminate and method for producing copper-clad laminate
JP2017177604A (en) Polyimide laminate film
JP5176696B2 (en) Method for producing polyimide film
JP2021106248A (en) Metal-clad laminated plate and circuit board
JP5339038B2 (en) Processing method for long objects
JP4183765B2 (en) Manufacturing method of flexible printed wiring board
KR20200022902A (en) Polyimide Film Comprising Crystalline Polyimide Resin and Thermal Conductive Filler and Method for Preparing The Same
JP2008149549A (en) Method for producing metal laminate
JP2022017273A (en) Metal-clad laminate and circuit board
JP2010083094A (en) Surface treated metal foil and metal foil/polyimide resin laminate
WO2011030860A1 (en) Polyimide precursor and polyimide
JP5297573B2 (en) Polyimide film with high adhesiveness
JP7413489B2 (en) Method for manufacturing circuit board with adhesive layer and method for manufacturing multilayer circuit board
JP7371621B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP2009061447A (en) Method of treating long object
JP2022101116A (en) Polyimide, adhesive film, laminate, cover lay film, copper foil with resin, metal-clad laminate, circuit board, and multilayer circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121224

R151 Written notification of patent or utility model registration

Ref document number: 5176696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160118

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350