JP2009286927A - Stress-induced light emitter, production method thereof, and composite material and level sensor each using the same - Google Patents

Stress-induced light emitter, production method thereof, and composite material and level sensor each using the same Download PDF

Info

Publication number
JP2009286927A
JP2009286927A JP2008142132A JP2008142132A JP2009286927A JP 2009286927 A JP2009286927 A JP 2009286927A JP 2008142132 A JP2008142132 A JP 2008142132A JP 2008142132 A JP2008142132 A JP 2008142132A JP 2009286927 A JP2009286927 A JP 2009286927A
Authority
JP
Japan
Prior art keywords
stress
luminescent material
metal
stimulated luminescent
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008142132A
Other languages
Japanese (ja)
Other versions
JP5574314B2 (en
Inventor
Chengzhou Li
承周 李
Chao-Nan Xu
超男 徐
Yoshio Adachi
芳雄 安達
Hiroshi Yamada
浩志 山田
Keiko Nishikubo
桂子 西久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008142132A priority Critical patent/JP5574314B2/en
Publication of JP2009286927A publication Critical patent/JP2009286927A/en
Application granted granted Critical
Publication of JP5574314B2 publication Critical patent/JP5574314B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stress-induced light emitter which has an improved stress-induced light intensity in spite of containing a reduced amount of a rare earth metal and to provide a production method thereof. <P>SOLUTION: The stress-induced light emitter is a stress-induced light emitter containing a matrix material which emits light upon receiving stress and contains a transition metal (except a rare earth metal) and further contains at least either element of Si and Sn, wherein at least part of the element is mixed with the matrix material in a state not solid-dissolved therein. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、応力発光体、その製造方法、それを用いた複合材料及びレベルセンサーに関するものである。   The present invention relates to a stress-stimulated luminescent material, a manufacturing method thereof, a composite material using the stress luminescent material, and a level sensor.

発光材料の励起源としては、紫外線、電子線、X線、放射線、電界、化学反応などが一般的に知られているが、外部から加えられた機械的な力(力学エネルギー)によって、材料が発光する現象もある。この現象は応力発光現象と呼ばれている。   As an excitation source of a luminescent material, ultraviolet rays, electron beams, X-rays, radiation, electric fields, chemical reactions, etc. are generally known. However, the material is generated by mechanical force (mechanical energy) applied from the outside. There is also a phenomenon of light emission. This phenomenon is called a stress luminescence phenomenon.

応力発光現象には、破壊発光と変形発光がある。破壊発光は古くから知られており、固体の破壊によって光が放出される現象である。変形発光は破壊を伴わないものであり、弾性変形領域での発光と塑性変形領域での発光に分けられる。破壊発光現象は、非常に多くの材料系で観察されており、無機物質の約半分は破壊発光の性質を持つといわれている。これに対して、変形発光については、放射線照射したアルカリハライドやある種の高分子で数例の報告例はあるものの、塑性変形領域での微弱な発光であった。   The stress luminescence phenomenon includes destructive luminescence and deformation luminescence. Destructive luminescence has been known for a long time, and is a phenomenon in which light is emitted when a solid is destroyed. Deformed light emission is not accompanied by destruction, and is divided into light emission in an elastic deformation region and light emission in a plastic deformation region. The destructive luminescence phenomenon has been observed in a large number of material systems, and about half of the inorganic substances are said to have destructive luminescence properties. On the other hand, the deformation light emission was weak light emission in the plastic deformation region although there were some reports of radiation-induced alkali halides and certain polymers.

近年、力学エネルギーの小さい弾性変形領域で応力或いはひずみエネルギーに比例して可逆的に強い発光を示す種々の無機材料が報告されている(例えば、特許文献1参照)。これらの多くには、高度に構造を制御した無機結晶骨格の中に、発光中心となる希土類金属を添加している。無機材料や発光中心の種類を選択することにより、紫外〜可視〜赤外の様々な波長で発光する材料が得られている。   In recent years, various inorganic materials that emit reversibly strong light emission in proportion to stress or strain energy in an elastic deformation region with small mechanical energy have been reported (for example, see Patent Document 1). In many of these, a rare earth metal serving as a luminescent center is added in an inorganic crystal skeleton whose structure is highly controlled. Materials that emit light at various wavelengths from ultraviolet to visible to infrared have been obtained by selecting the kind of inorganic material or emission center.

発光中心となる希土類金属として、例えば、ユウロピウムを添加したアルミン酸ストロンチウム(SrAl:Eu、緑色に発光)が挙げられる。人間の視感度は500〜600nmの緑色領域が最も優れていることもあり、ユウロピウム添加アルミン酸ストロンチウムの発光は、肉眼でも十分に確認することができる。さらに、応力発光強度が弾性領域で歪みエネルギーに比例するので、応力発光画像から応力分布を直接可視化できることが実証されている。 Examples of the rare earth metal serving as the luminescent center include strontium aluminate to which europium is added (SrAl 2 O 4 : Eu, luminescent in green). The human visual sensitivity may be best in the green region of 500 to 600 nm, and the luminescence of europium-added strontium aluminate can be sufficiently confirmed with the naked eye. Furthermore, since the stress luminescence intensity is proportional to the strain energy in the elastic region, it has been demonstrated that the stress distribution can be directly visualized from the stress luminescence image.

ところで、Zrなどの遷移金属は、蛍光体において、CaZrOなどの形で蛍光体の母体となったり(特許文献2及び3参照)、真空紫外領域で励起できるリン酸塩系蛍光体の発光中心になったり(特許文献4参照)、Euと共にアルミン酸塩系の母結晶に添加して蛍光の残光を長くする効果を付与したり(特許文献5参照)、酸化イットリウムを母体とし、イットリウムの一部を置換することにより電子線励起による発光輝度を一層向上させたり(特許文献6参照)、表面コーティングによって耐水性や初期発光低下抑制効果を付与したり(特許文献7参照)するといった機能を有することが知られている。
国際公開第2005/097946号パンフレット(2005年10月5日公開) 特開1996−283713号公報(1996年10月29日公開) 特開2001−107038号公報(2001年4月17日公開) 特開2006−282907号公報(2006年10月19日公開) 特開1996−73845号公報(1996年3月19日公開) 特開2006−265396号公報(2006年10月5日公開) 特開2006−124680号公報(2006年5月18日公開)
By the way, transition metal such as Zr becomes the host of the phosphor in the form of CaZrO 3 or the like in the phosphor (see Patent Documents 2 and 3), or the emission center of the phosphate phosphor that can be excited in the vacuum ultraviolet region. (See Patent Document 4), adding to an aluminate-based mother crystal together with Eu to give an effect of lengthening the afterglow of fluorescence (see Patent Document 5), or using yttrium oxide as a base material, Functions such as further improving the light emission luminance by electron beam excitation by replacing a part (see Patent Document 6), and imparting water resistance and an initial light emission decrease suppressing effect by surface coating (see Patent Document 7). It is known to have.
International Publication No. 2005/097946 Pamphlet (October 5, 2005) Japanese Unexamined Patent Publication No. 1996-283713 (released on October 29, 1996) JP 2001-107038 A (published April 17, 2001) JP 2006-282907 A (published on October 19, 2006) Japanese Unexamined Patent Publication No. 1996-73845 (published on March 19, 1996) JP 2006-265396 A (released on October 5, 2006) JP 2006-124680 A (published May 18, 2006)

上述のように応力発光体において発光中心として利用される希土類金属は、超伝導、触媒など様々な材料にも広く活用されている有用な物質である。しかしながら、希土類金属全体の埋蔵量は非常に限られており、日本は特定の国からの供給に依存している。2006年において、希土類金属の上位産出国は中国、インド、タイであり、各国の生産量はそれぞれ世界シェアの93%、3%、2%を占めている。   As described above, the rare earth metal used as the emission center in the stress-stimulated luminescent material is a useful substance that is widely used in various materials such as superconductivity and catalysts. However, the total reserves of rare earth metals are very limited, and Japan relies on supply from certain countries. In 2006, the top producers of rare earth metals were China, India, and Thailand, with each country's production accounting for 93%, 3%, and 2% of the global share, respectively.

このような貴重な資源を確保するために、応力発光体においても、希土類金属の使用量を抑える必要がある。そのため、希土類金属以外の遷移元素等の、より安定供給可能な金属を使用しつつも、応力発光強度の高い応力発光体を開発することが必要である。   In order to secure such a valuable resource, it is necessary to reduce the amount of rare earth metal used in the stress-stimulated luminescent material. Therefore, it is necessary to develop a stress-stimulated luminescent material with high stress luminescence intensity while using a metal that can be supplied more stably, such as transition elements other than rare earth metals.

本発明はこのような事情に鑑みてなされたものであり、その目的は、希土類金属の使用量を抑えながらも、応力発光強度の高い応力発光体とその製造方法を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a stress-stimulated luminescent material having high stress luminescence intensity and a method for producing the same while suppressing the amount of rare earth metal used.

本発明者は、上記課題を解決するため鋭意検討を重ねた。具体的には、希土類金属以外の遷移金属を、応力を受けることで発光する母体材料に対して非固溶状態となるように添加して、応力発光特性にどのような効果を及ぼすかについて検討を行なった。その結果、母体材料に、希土類金属以外の遷移金属を非固溶状態で含ませることで、希土類金属の使用量を抑えながらも、高い応力発光強度の応力発光体が得られることを見出し、本発明を完成させるに至った。   The present inventor has intensively studied to solve the above problems. Specifically, the transition metal other than the rare earth metal is added so as to be in a non-solid solution state with respect to the base material that emits light when subjected to stress, and the effect on the stress emission characteristics is examined. Was done. As a result, it has been found that a stress luminescent material with high stress luminescence intensity can be obtained while containing a transition metal other than a rare earth metal in a non-solid solution state while suppressing the amount of rare earth metal used. The invention has been completed.

すなわち、本発明は以下の発明を包含する。   That is, the present invention includes the following inventions.

本発明に係る応力発光体は、応力を受けることで発光する母体材料を含む応力発光体であって、遷移金属(ただし希土類金属を除く)、Si及びSnのうち少なくとも一つの元素をさらに含み、当該元素の少なくとも一部が母体材料に非固溶状態で含有されてなるものであることを特徴としている。   The stress-stimulated luminescent material according to the present invention is a stress-stimulated luminescent material including a host material that emits light when subjected to stress, and further includes at least one element of transition metal (excluding rare earth metals), Si and Sn, It is characterized in that at least a part of the element is contained in the matrix material in a non-solid solution state.

さらに、本発明に係る応力発光体では、上記元素が、粒子状で上記母体材料の表面に存在することがより好ましい。   Furthermore, in the stress-stimulated luminescent material according to the present invention, it is more preferable that the element is present in the form of particles on the surface of the base material.

さらに、本発明に係る応力発光体では、上記元素の含有量が0.1mol%以上、90mol%以下であることがより好ましい。   Furthermore, in the stress-stimulated luminescent material according to the present invention, the content of the above elements is more preferably 0.1 mol% or more and 90 mol% or less.

さらに、本発明に係る応力発光体では、上記元素の含有量が10mol%以上、90mol%以下であることがより好ましい。   Furthermore, in the stress-stimulated luminescent material according to the present invention, the content of the element is more preferably 10 mol% or more and 90 mol% or less.

さらに、本発明に係る応力発光体では、上記元素の含有量が0.1mol%以上、10mol%未満であることがより好ましい。   Furthermore, in the stress-stimulated luminescent material according to the present invention, the content of the element is more preferably 0.1 mol% or more and less than 10 mol%.

さらに、本発明に係る応力発光体では、上記元素がZr、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Hf、Nb、Mo、Ta及びWからなる群より選択される少なくとも1つの金属であることがより好ましい。   Furthermore, in the stress-stimulated luminescent material according to the present invention, the element is selected from the group consisting of Zr, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Hf, Nb, Mo, Ta, and W. More preferably, it is at least one metal.

さらに、本発明に係る応力発光体では、上記母体材料が金属酸化物、金属窒化物及び金属硫化物からなる群より選択される少なくとも1つの化合物を含み、発光中心として希土類金属をさらに含むことがより好ましい。   Furthermore, in the stress-stimulated luminescent material according to the present invention, the base material includes at least one compound selected from the group consisting of metal oxides, metal nitrides, and metal sulfides, and further includes a rare earth metal as a luminescent center. More preferred.

さらに、本発明に係る応力発光体では、上記金属酸化物がアルミン酸及びアルミノケイ酸からなる群より選択される少なくとも1つの化合物であることがより好ましい。   Furthermore, in the stress-stimulated luminescent material according to the present invention, the metal oxide is more preferably at least one compound selected from the group consisting of aluminate and aluminosilicate.

さらに、本発明に係る応力発光体では、上記希土類金属がEu、Dy、La、Gd、Ce、Sm、Y、Nd、Tb、Pr、Er、Tm、Yb、Sc、Pm、Ho及びLuからなる群より選択される少なくとも1つの金属のイオンであることがより好ましい。   Furthermore, in the stress-stimulated luminescent material according to the present invention, the rare earth metal is composed of Eu, Dy, La, Gd, Ce, Sm, Y, Nd, Tb, Pr, Er, Tm, Yb, Sc, Pm, Ho, and Lu. More preferably, it is an ion of at least one metal selected from the group.

さらに、本発明に係る複合材料は、上記応力発光体を含むことを特徴としている。   Furthermore, the composite material according to the present invention is characterized by including the stress-stimulated luminescent material.

さらに、本発明に係るレベルセンサーは、上記応力発光体を含むことを特徴としている。   Furthermore, a level sensor according to the present invention is characterized by including the stress-stimulated luminescent material.

また、本発明に係る応力発光体の製造方法は、応力を受けることで発光する母体材料が固溶状態となる組成にて、その原料を混合し、さらに遷移金属(ただし希土類金属を除く)、Si及びSnのうち少なくとも一つの元素を混合する混合工程と、上記混合工程により得られた混合物を焼成する焼成工程と、を含むことを特徴としている。   Further, in the method for producing a stress-stimulated luminescent material according to the present invention, in a composition in which a base material that emits light when subjected to stress is in a solid solution state, the raw materials are mixed, and further a transition metal (excluding rare earth metals), It includes a mixing step of mixing at least one element of Si and Sn, and a baking step of baking the mixture obtained by the mixing step.

本発明に係る応力発光体は、上述のように、応力を受けることで発光する母体材料を含む応力発光体であって、遷移金属(ただし希土類金属を除く)、Si及びSnのうち少なくとも一つの元素をさらに含み、当該元素の少なくとも一部が母体材料に非固溶状態で含有されてなるものである。   As described above, the stress-stimulated luminescent material according to the present invention is a stress-stimulated luminescent material including a base material that emits light when subjected to stress, and includes at least one of transition metals (except rare earth metals), Si, and Sn. An element is further included, and at least a part of the element is contained in the base material in a non-solid solution state.

この応力発光体に存在する非固溶部分は母体材料より硬い相を形成し応力が集中しやすいので、応力発光強度が高いという効果を奏する。   Since the non-solid solution portion present in the stress luminescent material forms a harder phase than the base material and the stress is easily concentrated, the stress luminescence intensity is high.

また、応力発光体中における希土類金属以外の遷移金属、Si及びSnのうち少なくとも一つの元素を含む割合を高めることにより、埋蔵量が限られ、産出国も限定されている希土類金属の使用量を抑えられるという効果も奏する。   In addition, by increasing the proportion of transition metals other than rare earth metals, Si and Sn in the stress-stimulated luminescent material, the amount of rare earth metals used is limited, and the amount of reserves is limited. It also has the effect of being suppressed.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

<1.本発明に係る応力発光体>
本発明に係る応力発光体は、応力を受けることで発光する母体材料を含む応力発光体であって、遷移金属(ただし希土類金属を除く)、Si及びSnのうち少なくとも一つの元素(以下、説明の便宜のため「遷移金属等」という。)をさらに含み、当該遷移金属等の少なくとも一部が母体材料に非固溶状態で含有されてなるものである。
<1. Stress-stimulated luminescent material according to the present invention>
The stress-stimulated luminescent material according to the present invention is a stress-stimulated luminescent material including a host material that emits light upon receiving stress, and includes at least one element of transition metal (excluding rare earth metals), Si, and Sn (hereinafter described) For the sake of convenience, it is referred to as “transition metal etc.”), and at least a part of the transition metal etc. is contained in the base material in a non-solid solution state.

本明細書において、「非固溶状態」とは、独立した元素又は化合物として存在する2種以上の物質が固体として存在しているが、互いに溶けた状態ではなく相分離した状態を意味し、例えば、置換型固溶体、侵入型固溶体のいずれも形成していない状態を意味する。   In the present specification, the “non-solid solution state” means a state where two or more kinds of substances existing as independent elements or compounds exist as a solid, but are not dissolved but phase-separated, For example, it means a state in which neither a substitutional solid solution nor an interstitial solid solution is formed.

また、本明細書において、「遷移金属」とは、周期表3〜12の各族の元素を意味し、「希土類金属」とは、Sc、Y及びランタノイド15元素(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLu)を意味する。ただし、本発明に係る応力発光体において母体材料に対してさらに含まれる遷移金属等からは、希土類金属が除かれる。そこで、説明の便宜のため、以下、単に「遷移金属」という場合、「遷移金属(ただし希土類金属を除く)」を意味するものとする。   In the present specification, “transition metal” means an element of each group of the periodic tables 3 to 12, and “rare earth metal” means 15 elements of Sc, Y and lanthanoid (La, Ce, Pr, Nd). , Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu). However, rare earth metals are excluded from transition metals and the like further included in the base material in the stress-stimulated luminescent material according to the present invention. Therefore, for convenience of explanation, hereinafter, the term “transition metal” simply means “transition metal (excluding rare earth metals)”.

母体材料に対して非固溶状態で含有されている遷移金属等は母体材料より硬い相を形成し、この付近に応力が集中しやすい。この応力集中効果によって、当該遷移金属等を含まない応力発光体と比較して、応力発光体の応力発光強度を更に向上させることができる。さらに、応力集中効果のみではなく、次の理由により応力は高強度が向上したとも考えられる。即ち、Zrのごく一部は母体結晶内に固溶していると考えられる。なぜなら、本発明者らが格子欠陥濃度の解析を行なった結果、Zrを添加することにより、応力発光強度とともに格子欠陥濃度が増大していることが判明したからである。従って、Zrを添加することにより、硬い相が生成して、応力集中しやすくなっただけではなく、さらに、母体結晶に適切な格子欠陥を形成し、変形しやすく(ゆがみやすく)なったとも考えられる。他の遷移金属等も同様である。   A transition metal or the like contained in a non-solid solution state with respect to the base material forms a harder phase than the base material, and stress tends to concentrate in the vicinity thereof. Due to this stress concentration effect, the stress luminescence intensity of the stress luminescent material can be further improved as compared with the stress luminescent material not containing the transition metal or the like. Furthermore, not only the stress concentration effect but also the high strength of the stress is considered to be improved for the following reason. That is, it is considered that a small part of Zr is dissolved in the host crystal. This is because, as a result of the analysis of the lattice defect concentration by the present inventors, it has been found that the lattice defect concentration increases with the stress emission intensity by adding Zr. Therefore, it is considered that the addition of Zr not only facilitates the concentration of stress due to the formation of a hard phase, but also forms appropriate lattice defects in the host crystal and facilitates deformation (easily distorted). It is done. The same applies to other transition metals.

〔1−1.母体材料〕
本発明に係る応力発光体に含まれる母体材料の具体例としては、特に限定されないが、金属酸化物、金属窒化物及び金属硫化物からなる群より選択される少なくとも1つの化合物を含み、発光中心として希土類金属をさらに含むもの等が挙げられる。当該母体材料は電荷補償のために、アルカリ金属及びアルカリ土類金属からなる群より選択される少なくとも1つの金属を含んでいてもよい。本発明に係る応力発光体の母体材料が、アルカリ金属及び/又はアルカリ土類金属を含む場合、その一部は、発光中心となる希土類金属に置換されていてもよい。
[1-1. (Matrix material)
Specific examples of the host material contained in the stress-stimulated luminescent material according to the present invention are not particularly limited, but include at least one compound selected from the group consisting of metal oxides, metal nitrides, and metal sulfides, And those further containing a rare earth metal. The base material may contain at least one metal selected from the group consisting of alkali metals and alkaline earth metals for charge compensation. When the base material of the stress-stimulated luminescent material according to the present invention contains an alkali metal and / or an alkaline earth metal, a part thereof may be substituted with a rare earth metal serving as a luminescence center.

金属酸化物としては、特に限定されないが、アルミン酸塩、アルミノケイ酸塩、リン酸塩、ケイ酸塩、酸化マグネシウム等が挙げられる。中でも、アルミン酸及びアルミノケイ酸からなる群より選択される少なくとも1つの化合物が好ましい。   The metal oxide is not particularly limited, and examples thereof include aluminate, aluminosilicate, phosphate, silicate, magnesium oxide and the like. Among these, at least one compound selected from the group consisting of aluminate and aluminosilicate is preferable.

金属硫化物としては、特に限定されないが、硫化亜鉛、硫化鉄、硫化モリブデン、硫化鉛等が挙げられる。   Although it does not specifically limit as a metal sulfide, Zinc sulfide, iron sulfide, molybdenum sulfide, lead sulfide, etc. are mentioned.

金属窒化物としては、特に限定されないが、窒化アルミニウム、窒化鉄、窒化ニオブ、窒化チタン等が挙げられる。   The metal nitride is not particularly limited, and examples thereof include aluminum nitride, iron nitride, niobium nitride, and titanium nitride.

発光中心となる希土類金属としては、上述の「希土類金属」の範疇であれば特に限定されないが、Eu、Ceがより好ましい。   The rare earth metal serving as the emission center is not particularly limited as long as it is in the above-mentioned “rare earth metal” category, but Eu and Ce are more preferable.

本発明に係る応力発光体は、上述の非固溶状態で含有させる遷移金属等以外に、母体材料が、さらに発光中心として遷移金属等を含んでいてもよい。発光中心となる遷移金属等としては、特に限定されないが、Zr、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Hf、Nb、Mo、Ta、W等が挙げられる。中でも、Mnが好ましい。また、非固溶状態で含有される遷移金属等が発光中心となる場合もある。   In the stress-stimulated luminescent material according to the present invention, in addition to the transition metal to be contained in the non-solid solution state, the base material may further contain a transition metal or the like as the luminescent center. Although it does not specifically limit as a transition metal etc. which become a light emission center, Zr, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Hf, Nb, Mo, Ta, W etc. are mentioned. Among these, Mn is preferable. In addition, a transition metal contained in a non-solid solution state may be the emission center.

アルカリ金属としては特に限定されないが、Na、K、Rb、Cs等が挙げられる。アルカリ土類金属としては特に限定されないが、Ca、Sr、Ba、Ra等が挙げられる。中でも、Sr、Caが好ましい。   Although it does not specifically limit as an alkali metal, Na, K, Rb, Cs etc. are mentioned. Although it does not specifically limit as an alkaline-earth metal, Ca, Sr, Ba, Ra etc. are mentioned. Of these, Sr and Ca are preferable.

アルカリ金属及び/又はアルカリ土類金属の含有量は、希土類金属により置換されることを考慮し、非化学量論組成となるように、母体材料の化学量論組成よりも、0.1mol%から20mol%の範囲分、減らすことが好ましい。これにより、さらに発光強度を向上させることができる。「非化学量論組成」とは、結晶を構成する元素が局所的に過剰又は不足しているため、組成式の元素の係数が簡単な整数比となっていない状態を意味する。   Considering that the content of alkali metal and / or alkaline earth metal is replaced by rare earth metal, from the stoichiometric composition of the base material from 0.1 mol% so as to have a non-stoichiometric composition It is preferable to reduce the amount by 20 mol%. Thereby, the light emission intensity can be further improved. “Non-stoichiometric composition” means a state where the elements of the composition formula do not have a simple integer ratio because the elements constituting the crystal are locally excessive or insufficient.

希土類金属の含有量は、0.1mol%以上、20mol%以下であることが好ましく、0.2mol%以上、10mol%以下であることがより好ましく、0.5mol%以上、5mol%以下であることが特に好ましい。これにより、母体材料を効果的に発光させることができる。   The rare earth metal content is preferably 0.1 mol% or more and 20 mol% or less, more preferably 0.2 mol% or more and 10 mol% or less, and 0.5 mol% or more and 5 mol% or less. Is particularly preferred. Thereby, the base material can be made to emit light effectively.

〔1−2.遷移金属等〕
本発明に係る応力発光体は、応力を受けることで発光する母体材料にさらに、遷移金属等の少なくとも一部が非固溶状態で含有されている。
[1-2. Transition metals, etc.)
In the stress-stimulated luminescent material according to the present invention, at least a part of a transition metal or the like is further contained in a non-solid solution state in the base material that emits light by receiving stress.

遷移金属等は非固溶状態で母体材料に含有されている限り、本発明に係る応力発光体中の遷移金属等の状態は限定されないが、母体材料の表面に粒子状で存在することがより好ましい。なお、粒子サイズは10nm以上、500nm以下であることがより好ましい。   As long as the transition metal or the like is contained in the base material in a non-solid solution state, the state of the transition metal or the like in the stress-stimulated luminescent material according to the present invention is not limited, but it may be present in the form of particles on the surface of the base material. preferable. The particle size is more preferably 10 nm or more and 500 nm or less.

また、本発明に係る応力発光体において、非固溶状態で含有されている遷移金属等は、当該応力発光体に含まれる遷移金属等の一部であってもよく、全てであってもよい。   Further, in the stress-stimulated luminescent material according to the present invention, the transition metal contained in a non-solid state may be a part or all of the transition metal contained in the stress-stimulated luminescent material. .

非固溶状態の遷移金属等の含有量としては、特に限定されないが、0.1mol%以上、90mol%以下が好ましい。   The content of the transition metal in a non-solid solution state is not particularly limited, but is preferably 0.1 mol% or more and 90 mol% or less.

また、当該遷移金属等の含有量が10mol%以上、90mol%以下の場合、一定荷重以上の応力を受けると、応力発光強度が一定となる飽和現象が観測される。飽和応力値を制御し、応力発光の感度調整が可能となる。   In addition, when the content of the transition metal or the like is 10 mol% or more and 90 mol% or less, a saturation phenomenon is observed in which the stress emission intensity becomes constant when a stress of a certain load or more is applied. It is possible to control the saturation stress value and adjust the sensitivity of stress emission.

また、当該遷移金属等の含有量が0.1mol%以上、10mol%未満の場合、本発明に係る応力発光体は、与えられる荷重が増えるに伴い、強い強度で応力発光する。希土類金属の使用量を抑えつつ、応力発光強度が向上した応力発光体を得ることができる。   When the content of the transition metal or the like is 0.1 mol% or more and less than 10 mol%, the stress-stimulated luminescent material according to the present invention emits stress with strong intensity as the applied load increases. A stress-stimulated luminescent material with improved stress luminescence intensity can be obtained while suppressing the amount of rare earth metal used.

本発明に係る応力発光体に非固溶状態で含有している遷移金属等の具体例としては、特に限定されないが、Zr、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Hf、Nb、Mo、Ta及びW等が挙げられる。中でも、Zr及びHfが好ましい。   Although it does not specifically limit as a specific example of the transition metal etc. which are contained in the stress light-emitting body based on this invention in the non-solid solution state, Zr, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn , Hf, Nb, Mo, Ta, W and the like. Of these, Zr and Hf are preferable.

<2.本発明に係る応力発光体の製造方法>
本発明に係る応力発光体の製造方法は、応力を受けることで発光する母体材料が固溶状態となる組成にて、その原料を混合し、さらに遷移金属(ただし希土類金属を除く)等を混合する混合工程と、上記混合工程により得られた混合物を焼成する焼成工程と、を含む。
<2. Method for producing stress-stimulated luminescent material according to the present invention>
The method for producing a stress-stimulated luminescent material according to the present invention is a composition in which a base material that emits light when subjected to stress is in a solid solution state, the raw materials are mixed, and a transition metal (however, excluding rare earth metals) is mixed. And a firing step of firing the mixture obtained by the mixing step.

〔2−1.混合工程〕
本発明に係る応力発光体の製造方法に含まれる混合工程では、母体材料が固溶状態となる組成にて、その原料を混合し、さらに遷移金属(ただし希土類金属を除く)等を混合すればよい。固溶状態となる母体材料に対して、さらに遷移金属等が加えられることで、当該遷移金属の少なくとも一部は母体材料に固溶せず、非固溶状態で混合することとなる。
[2-1. (Mixing process)
In the mixing step included in the method for producing a stress-stimulated luminescent material according to the present invention, the raw materials are mixed in a composition in which the base material is in a solid solution state, and further transition metals (except for rare earth metals) are mixed. Good. When a transition metal or the like is further added to the base material in a solid solution state, at least a part of the transition metal is not dissolved in the base material and is mixed in a non-solid solution state.

母体材料の原料については、固溶状態となる組成になるように、原料を秤量するとよい。応力発光特性を備える構成原子比については、公知の文献(例えば、特許文献1参照)を参考にすればよい。また、例えば、後述の実施例のように、原料として、炭酸ストロンチウムSrCO、酸化アルミニウムAl、酸化ユーロピウムEuを用いる場合は、Sr0.99Eu0.01Alとなるようにすればよいし、炭酸カルシウムCaCO、酸化アルミニウムAl、二酸化ケイ素SiO、酸化ユーロピウムEuを用いる場合は、Ca0.99Eu0.01AlSiとなるようにすればよい。 About the raw material of a base material, it is good to weigh a raw material so that it may become a composition in a solid solution state. For the constituent atomic ratio having the stress luminescence property, a known document (for example, see Patent Document 1) may be referred to. Further, for example, when using strontium carbonate SrCO 3 , aluminum oxide Al 2 O 3 , and europium oxide Eu 2 O 3 as raw materials as in Examples described later, Sr 0.99 Eu 0.01 Al 2 O 4. When using calcium carbonate CaCO 3 , aluminum oxide Al 2 O 3 , silicon dioxide SiO 2 , europium oxide Eu 2 O 3 , Ca 0.99 Eu 0.01 Al 2 Si 2 O It may be set to 8 .

このとき、固溶状態となる母体材料には遷移金属等が含まれていてもよい。つまり、製造される遷移金属等のうちの一部が、母体材料の一部として、固溶状態で含有されていてもよい。例えば、Sr0.99−xEu0.01Alとなる組成の原料に、xmolの遷移金属等の供給源となる原料を加えることで、上述の「母体材料が固溶状態となる組成にて、その原料を混合」することとしてもよい。その上で、さらに遷移金属等を加えると、このさらに加えられた遷移金属等の量だけ非固溶状態になるので、上記混合工程が行なわれることとなる。 At this time, a transition metal or the like may be included in the base material in a solid solution state. That is, a part of the produced transition metal or the like may be contained in a solid solution state as a part of the base material. For example, by adding a raw material serving as a supply source of xmol transition metal or the like to a raw material having a composition of Sr 0.99-x Eu 0.01 Al 2 O 4 , the above-mentioned “matrix material is in a solid solution state. The raw materials may be “mixed in composition”. Further, when a transition metal or the like is further added, the mixed step is performed because the transition metal or the like is added in a non-solid solution state.

母体材料の各原料としては、焼成によって酸化物となるものであれば、特に限定されるものではない。このような原料としては、アルカリ金属又はアルカリ土類金属の無機物(炭酸塩、酸化物、ハロゲン化物、水酸化物、硫酸塩、硝酸塩など)等を用いることができる。また、希土類金属又は遷移金属の無機物(酸化物、硫化物、窒化物、ハロゲン化物、水酸化物、炭酸塩、硫酸塩、硝酸塩など)等を用いることもできる。   Each raw material of the base material is not particularly limited as long as it becomes an oxide by firing. As such a raw material, an inorganic substance (carbonate, oxide, halide, hydroxide, sulfate, nitrate, etc.) of an alkali metal or an alkaline earth metal can be used. In addition, an inorganic substance of a rare earth metal or a transition metal (oxide, sulfide, nitride, halide, hydroxide, carbonate, sulfate, nitrate, or the like) can also be used.

母体材料の各原料及び遷移金属等を添加するタイミングとしては、特に限定されないが、母体材料の各原料を添加後に非固溶状態で混合する遷移金属等の添加を行なう方法、母体材料の各原料の添加と非固溶状態で混合する遷移金属等の添加を同時に行なう方法等が挙げられる。中でも、母体材料の各原料の添加と非固溶状態で混合したい遷移金属等の添加を同時に行なう方法が好ましい。   The timing of adding each raw material of the base material and the transition metal is not particularly limited, but the method of adding the transition metal that is mixed in a non-solid solution state after adding each raw material of the base material, each raw material of the base material And a method of simultaneously adding a transition metal or the like mixed in a non-solid solution state. In particular, a method of simultaneously adding each raw material of the base material and a transition metal to be mixed in a non-solid solution state is preferable.

また、混合する方法については特に限定されず、ボールミル、乳鉢等を用いて行なえばよい。   Moreover, it does not specifically limit about the method of mixing, What is necessary is just to carry out using a ball mill, a mortar, etc.

また、混合工程では、溶媒を用いてもよい。溶媒としては、原料に応じて適宜選択すればよいが、メタノール、エタノール、ブタノール等が挙げられる。   In the mixing step, a solvent may be used. The solvent may be appropriately selected depending on the raw materials, and examples thereof include methanol, ethanol, butanol and the like.

また、混合工程後であって、後述の焼成工程の前に、得られた混合物を乾燥させてもよい。乾燥条件としては特に限定されないが、例えば、50〜200℃で、1〜10時間行なえばよい。また、乾燥させた後の混合物は粉砕してもよい。   Further, the obtained mixture may be dried after the mixing step and before the firing step described later. Although it does not specifically limit as drying conditions, For example, what is necessary is just to carry out for 1 to 10 hours at 50-200 degreeC. Moreover, you may grind | pulverize the mixture after making it dry.

〔2−2.焼成工程〕
焼成工程では、上記混合工程により得られた混合物を焼成すればよい。
[2-2. (Baking process)
In the firing step, the mixture obtained in the mixing step may be fired.

焼成工程を行なう際の雰囲気を形成するための気体としては、特に限定されるものではなく、空気、窒素ガス、不活性ガス(例えばアルゴンガス)、水素含有不活性ガス(例えば水素含有アルゴンガス)等が挙げられる。また、真空中で焼成工程を行なってもよい。中でも、還元雰囲気である水素含有不活性雰囲気がより好ましく、水素含有アルゴンガスがさらに好ましい。水素含有不活性ガスによる還元雰囲気下で焼成工程を行なう場合、水素の含有量としては特に限定されないが、1体積%〜10体積%であることが好ましい。   The gas for forming the atmosphere when performing the firing step is not particularly limited, and air, nitrogen gas, inert gas (for example, argon gas), hydrogen-containing inert gas (for example, hydrogen-containing argon gas) Etc. Moreover, you may perform a baking process in a vacuum. Among these, a hydrogen-containing inert atmosphere that is a reducing atmosphere is more preferable, and hydrogen-containing argon gas is more preferable. When performing a baking process in the reducing atmosphere by hydrogen-containing inert gas, it is although it does not specifically limit as content of hydrogen, It is preferable that it is 1 volume%-10 volume%.

焼成温度については、特に限定されないが、還元雰囲気中においては1000〜1600℃で焼成するとよい。焼成時間としては、特に限定されないが、1〜10時間行なうとよい。昇温及び降温の速度は、特に限定されないが、1〜5℃/minで行なうとよい。   The firing temperature is not particularly limited, but may be fired at 1000 to 1600 ° C. in a reducing atmosphere. Although it does not specifically limit as baking time, It is good to carry out for 1 to 10 hours. Although the rate of temperature increase and temperature decrease is not particularly limited, it may be performed at 1 to 5 ° C./min.

また、焼成工程の前に仮焼成を行ない、焼成工程を本焼成としてもよい。仮焼成を行なう際は、酸化還元雰囲気で行なうことがより好ましく、その温度としては、500〜1000℃がより好ましいが、これに限定されない。   Moreover, temporary baking may be performed before the baking process, and the baking process may be the main baking. When pre-baking is performed, it is more preferably performed in an oxidation-reduction atmosphere, and the temperature is more preferably 500 to 1000 ° C., but is not limited thereto.

<3.本発明に係る複合材料、レベルセンサー>
本発明に係る応力発光体を利用する形態としては、特に限定されるものではなく、粉末又は焼結体の形態として、他の材料と混合して成形する形態として、支持材料の表面に塗布する形態等が挙げられる。粉末や焼結体の形態は、本発明で得られる応力発光体をほぼそのまま利用する形態であり、粉末の粒径や粒度分布、焼結体の形状や大きさ等は特に限定されるものではない。
<3. Composite Material, Level Sensor According to the Present Invention>
The form using the stress-stimulated luminescent material according to the present invention is not particularly limited, and it is applied to the surface of the support material as a form of powder or sintered body, which is mixed with other materials and molded. The form etc. are mentioned. The form of the powder or sintered body is a form in which the stress luminescent material obtained in the present invention is used almost as it is, and the particle size and particle size distribution of the powder, the shape and size of the sintered body are not particularly limited. Absent.

本明細書において「複合材料」とは、他の材料と混合して成形した材料、支持材料の表面に塗布した材料等を意味する。そして、本発明に係る複合材料は上述の本発明に係る応力発光体を含んでいればよい。   In this specification, the “composite material” means a material formed by mixing with other materials, a material applied to the surface of a support material, or the like. And the composite material which concerns on this invention should just contain the stress light-emitting body based on the above-mentioned this invention.

本発明に係る複合材料を、本発明に係る応力発光体をさらに他の材料と混合して製造する場合、本発明に係る応力発光体を高分子材料等と任意比で混合又は埋込んで複合材料を形成することができる。高分子材料としては、例えば、エポキシ樹脂、アクリル樹脂、ウレタン樹脂を挙げることができる。混合条件は特に限定されるものではなく、公知の方法を用いればよい。当該複合材料に機械的な外力を加えたとき、発光体の機械的な変形に伴って発光させることができる。   When the composite material according to the present invention is manufactured by further mixing the stress-stimulated luminescent material according to the present invention with other materials, the stress-stimulated luminescent material according to the present invention is mixed or embedded with a polymer material or the like in an arbitrary ratio to be combined. A material can be formed. Examples of the polymer material include an epoxy resin, an acrylic resin, and a urethane resin. The mixing conditions are not particularly limited, and a known method may be used. When a mechanical external force is applied to the composite material, light can be emitted with mechanical deformation of the light emitter.

また、支持材料の表面に塗布する場合は、例えば、積層構造を有する複合材料となる。他の材料を応力発光体の上に積層した結果、最表面に本発明に係る応力発光体が存在しなくてもよい。支持体は、特に限定されるものではなく、金属、繊維、ゴム、紙、ガラス等いずれであってもよい。当該複合材料に機械的な外力を加えると、材料表面又は内部の発光体層が変形によって発光する。このような方法を用いれば、少ない発光体を用いて大面積な発光が得られる。   Moreover, when apply | coating to the surface of a support material, it becomes a composite material which has a laminated structure, for example. As a result of laminating other materials on the stress luminescent material, the stress luminescent material according to the present invention may not be present on the outermost surface. The support is not particularly limited and may be any of metal, fiber, rubber, paper, glass and the like. When a mechanical external force is applied to the composite material, the surface of the material or the inner light-emitting layer emits light by deformation. If such a method is used, light emission of a large area can be obtained using a small number of light emitters.

本明細書においてレベルセンサーとは、ある一定以上の応力が負荷されると発光強度が飽和して一定値を示す状態を検知し、警告するセンサーを意味する。そして、本発明に係るレベルセンサーは、本発明に係る応力発光体を含んでいればよい。   In this specification, the level sensor means a sensor that detects and warns that a state in which the light emission intensity is saturated and shows a constant value when a certain stress or more is applied. And the level sensor which concerns on this invention should just contain the stress light-emitting body which concerns on this invention.

本発明に係る応力発光体は、母体材料への遷移金属等の添加量を調整することにより、飽和応力値が変化する。この性質を利用すれば、応力発光の感度調整が可能となるため、用途に合わせてレベルセンサーを製造できる。例えば、家屋の壁面や床に、本発明に係る応力発光体を埋め込んでおき過度な荷重が加わった場合に警告を発するレベルセンサーを製造できる。   In the stress-stimulated luminescent material according to the present invention, the saturation stress value is changed by adjusting the amount of transition metal or the like added to the base material. By utilizing this property, the sensitivity of stress luminescence can be adjusted, so that a level sensor can be manufactured according to the application. For example, it is possible to manufacture a level sensor that issues a warning when an excessive load is applied by embedding the stress light emitter according to the present invention on the wall or floor of a house.

以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。   Examples will be shown below, and the embodiments of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail. Further, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims, and the present invention is also applied to the embodiments obtained by appropriately combining the disclosed technical means. It is included in the technical scope of the invention. Moreover, all the literatures described in this specification are used as reference.

〔実施例1〕
炭酸ストロンチウムSrCO、酸化アルミニウムAl、酸化ユーロピウムEu、及びジルコニアZrOを、(1−x)Sr0.99Eu0.01Al・xZrO(x=0.05)の組成となるように、所定量秤量した。具体的には、SrCOを0.2923g、酸化アルミニウムAlを0.2039g、酸化ユーロピウムEuを0.0035g、及びジルコニアZrOを0.0123g秤量した。
[Example 1]
Strontium carbonate SrCO 3 , aluminum oxide Al 2 O 3 , europium oxide Eu 2 O 3 , and zirconia ZrO 2 are converted into (1-x) Sr 0.99 Eu 0.01 Al 2 O 4 .xZrO 2 (x = 0.0). A predetermined amount was weighed so as to obtain the composition of (05). Specifically, 0.2923 g of SrCO 3 , 0.2039 g of aluminum oxide Al 2 O 3 , 0.0035 g of europium oxide Eu 2 O 3, and 0.0123 g of zirconia ZrO 2 were weighed.

次に、秤量した原料をエタノール中に入れて、ボールミルを用いて十分に混合した後、80℃で乾燥させた。得られた混合物を乳鉢で粉砕し、次いで、還元雰囲気(5%水素含有アルゴン)中において、1400℃で4時間焼成した。なお、昇温及び降温は2℃/minの速度でゆっくり行なった。   Next, the weighed raw materials were put in ethanol, mixed thoroughly using a ball mill, and then dried at 80 ° C. The obtained mixture was pulverized in a mortar and then calcined at 1400 ° C. for 4 hours in a reducing atmosphere (5% hydrogen-containing argon). The temperature increase and decrease were performed slowly at a rate of 2 ° C./min.

次に、焼成後に得られた材料を粉砕し、応力発光体の粉末を調製した。   Next, the material obtained after firing was pulverized to prepare a powder of a stress luminescent material.

この粉末を、電子顕微鏡を用いて観察した。結果を図1に示す。図1は本実施例で得た応力発光体を電子顕微鏡で観察した結果を示す図であり、図1の(a)は反射電子像を示し、図1の(b)は実像を示す。図1からZrが母体材料に対して非固溶的に存在している、具体的には、母体材料の表面に粒子状で存在していることが確認できた。   This powder was observed using an electron microscope. The results are shown in FIG. FIG. 1 is a diagram showing the result of observing the stress-stimulated luminescent material obtained in this example with an electron microscope. FIG. 1 (a) shows a reflected electron image, and FIG. 1 (b) shows a real image. From FIG. 1, it was confirmed that Zr was present in a non-solid solution with respect to the base material, specifically, it was present in the form of particles on the surface of the base material.

また、上記粉末についてX線回折(XRD)測定、紫外線励起発光ルミネッセンス(PL)測定、及び応力発光(ML)測定を行なった。   In addition, the powder was subjected to X-ray diffraction (XRD) measurement, ultraviolet excitation luminescence (PL) measurement, and stress luminescence (ML) measurement.

XRDの測定には、RINT−2000;リガク社を用いた。MLについては、C.N. Xu, in Encyclopedia of smart materials, Vol.1 (Ed: M. Schwartz), Wiley, New York pp190 2002に記載のシステムを用いて測定した。このシステムは、万能試験機(RTC−1310A;オリエンテック社)、ならびに、光電子増倍管(R585S;浜松ホトニクス社)及びフォトン計数器(C5410−51;浜松ホトニクス社)からなるフォトン計数システムを備えている。PLの測定には、150Wのキセノンランプを備えた分光蛍光光度計(FP6600;ジャスコ社)を用いた。   For the measurement of XRD, RINT-2000; Rigaku Corporation was used. For ML, C.I. N. Xu, in Encyclopedia of smart materials, Vol. 1 (Ed: M. Schwartz), Wiley, New York pp190 2002. This system includes a universal testing machine (RTC-1310A; Orientec) and a photon counting system comprising a photomultiplier tube (R585S; Hamamatsu Photonics) and a photon counter (C5410-51; Hamamatsu Photonics). ing. For measurement of PL, a spectrofluorometer (FP6600; Jusco) equipped with a 150 W xenon lamp was used.

なお、XRD、PLは、応力発光体の粉末のみを用いて測定を行ない、MLは当該応力発光体の粉末を含む複合材料を用いて測定を行なった。この複合材料は、上記粉末を光学エポキシ樹脂(SpeciFixエポキシ樹脂(Struers社製))に混合し、直径25mm、厚さ15mmのディスク状のペレットとして調製したものである。   XRD and PL were measured using only a stress luminescent material powder, and ML was measured using a composite material containing the stress luminescent material powder. This composite material is prepared by mixing the above powder with an optical epoxy resin (SpeciFix epoxy resin (manufactured by Struers)) as a disk-shaped pellet having a diameter of 25 mm and a thickness of 15 mm.

XRDの測定結果を図2に示す。図2は本実施例及び後述の比較例1にて得た応力発光体のXRDの測定結果を示す図である。図2の矢印で示すピークがZr由来(SrZrO)を示している。 The measurement result of XRD is shown in FIG. FIG. 2 is a diagram showing the XRD measurement results of the stress-stimulated luminescent material obtained in this example and Comparative Example 1 described later. The peak indicated by the arrow in FIG. 2 indicates Zr origin (SrZrO 3 ).

また、MLの測定結果を図3に示す。図3は本実施例、比較例1及び3にて得た応力発光体のMLの測定結果を示す図である。図3に示されるように、実施例1の応力発光体は比較例1及び3の応力発光体に比べて強い発光強度を示すことが確認できた。また、実施例1に係る応力発光体では、応力が増加するに伴い、発光強度が強くなることが示された。ところで、比較例3はジルコニアが固溶状態で母体材料に混合されてなるものである。実施例1と比較例3との比較からジルコニアを非固溶状態で混合してなる応力発光体の発光強度が高いことが示された。   Moreover, the measurement result of ML is shown in FIG. FIG. 3 is a diagram showing the measurement results of ML of the stress-stimulated luminescent material obtained in this example and Comparative Examples 1 and 3. As shown in FIG. 3, it was confirmed that the stress-stimulated luminescent material of Example 1 showed stronger luminescence intensity than the stress-stimulated luminescent materials of Comparative Examples 1 and 3. Moreover, in the stress light-emitting body which concerns on Example 1, it was shown that emitted light intensity becomes strong as stress increases. By the way, Comparative Example 3 is obtained by mixing zirconia with a base material in a solid solution state. Comparison between Example 1 and Comparative Example 3 showed that the luminescent intensity of the stress luminescent material formed by mixing zirconia in a non-solid solution state was high.

また、PLの測定結果を図4に示す。図4は本実施例及び比較例1にて得た応力発光体のPLの測定結果を示す図である。Zr添加の有無による発光ピークシフトがなく、発光色は同じであった。   Moreover, the measurement result of PL is shown in FIG. FIG. 4 is a diagram showing the measurement results of PL of the stress-stimulated luminescent material obtained in this example and Comparative Example 1. There was no emission peak shift due to the presence or absence of Zr addition, and the emission color was the same.

〔実施例2〕
炭酸カルシウムCaCO、Al、SiO、Eu、及びZrOを、(1−x)[Ca0.99Eu0.01AlSi]・xZrO(x=0.05)の組成となるように、所定量秤量した。具体的には、CaCOを0.0999g、Alを0.1020g、SiOを0.0120g、Euを0.0018g、及びZrOを0.0062g秤量した。
[Example 2]
Calcium carbonate CaCO 3 , Al 2 O 3 , SiO 2 , Eu 2 O 3 , and ZrO 2 are converted into (1-x) [Ca 0.99 Eu 0.01 Al 2 Si 2 O 8 ] · xZrO 2 (x = 0.05), a predetermined amount was weighed. Specifically, 0.0999 g of CaCO 3 , 0.1020 g of Al 2 O 3 , 0.0120 g of SiO 2 , 0.0018 g of Eu 2 O 3, and 0.0062 g of ZrO 2 were weighed.

次に、秤量した原料をエタノール中に入れて、ボールミルを用いて十分に混合した後、80℃で乾燥させた。得られた混合物を乳鉢で粉砕し、次に、還元雰囲気(5%水素含有アルゴン)中において、1400℃で4時間焼成した。なお、昇温及び降温は2℃/minの速度でゆっくり行なった。   Next, the weighed raw materials were put in ethanol, mixed thoroughly using a ball mill, and then dried at 80 ° C. The resulting mixture was pulverized in a mortar and then baked at 1400 ° C. for 4 hours in a reducing atmosphere (5% hydrogen-containing argon). The temperature increase and decrease were performed slowly at a rate of 2 ° C./min.

次に、焼成後に得られた材料を粉砕し、応力発光体の粉末を調製した。そして、この粉末について実施例1と同じ方法でML測定を行なった。   Next, the material obtained after firing was pulverized to prepare a powder of a stress luminescent material. And ML measurement was performed by the same method as Example 1 about this powder.

MLの測定結果を図5に示す。図5は本実施例、比較例2にて得た応力発光体のMLの測定結果を示す図である。図5に示されるように、実施例2の応力発光体は比較例2の応力発光体に比べて強い発光強度を示すことが確認できた。また、応力が増加するに伴い、発光強度が強くなることが示された。   The measurement result of ML is shown in FIG. FIG. 5 is a diagram showing the measurement result of ML of the stress-stimulated luminescent material obtained in this example and Comparative Example 2. As shown in FIG. 5, it was confirmed that the stress-stimulated luminescent material of Example 2 showed stronger luminescence intensity than the stress-stimulated luminescent material of Comparative Example 2. It was also shown that the emission intensity increased as the stress increased.

〔実施例3〕
x=0.30、つまり0.70Sr0.99Eu0.01Al・0.30ZrOの組成となるように、ZrOの量を変更した以外は実施例1と同じ方法で応力発光体の合成及びML測定を行なった。具体的には、SrCOを0.2923g、Alを0.2039g、Euを0.0035g、及びZrOを0.1056gとした。
Example 3
x = 0.30, i.e. 0.70Sr 0.99 Eu 0.01 Al 2 O 4 · 0.30ZrO so as to have the composition of 2, except for changing the amount of ZrO 2 is stress in the same manner as in Example 1 Synthesis of the luminescent material and ML measurement were performed. Specifically, SrCO 3 was 0.2923 g, Al 2 O 3 was 0.2039 g, Eu 2 O 3 was 0.0035 g, and ZrO 2 was 0.1056 g.

〔実施例4〕
x=0.50、つまり0.50Sr0.99Eu0.01Al・0.50ZrOの組成となるように、ZrOの量を変更した以外は実施例1と同じ方法で応力発光体の合成及びML測定を行なった。具体的には、SrCOを0.2923g、Alを0.2039g、Euを0.0035g、及びZrOを0.2464gとした。
Example 4
x = 0.50, i.e. 0.50Sr 0.99 Eu 0.01 Al 2 O 4 · 0.50ZrO so as to have the composition of 2, except for changing the amount of ZrO 2 is stress in the same manner as in Example 1 Synthesis of the luminescent material and ML measurement were performed. Specifically, SrCO 3 was 0.2923 g, Al 2 O 3 was 0.2039 g, Eu 2 O 3 was 0.0035 g, and ZrO 2 was 0.2464 g.

〔実施例5〕
x=0.7、つまり0.30Sr0.99Eu0.01Al・0.70ZrOの組成となるように、ZrOの量を変更した以外は実施例1と同じ方法で応力発光体の合成及びML測定を行なった。具体的には、SrCOを0.2923g、Alを0.2039g、Euを0.0035g、及びZrOを0.5749gとした。
Example 5
x = 0.7, i.e. 0.30Sr 0.99 Eu 0.01 Al 2 O 4 · 0.70ZrO so as to have the composition of 2, except for changing the amount of ZrO 2 is stress in the same manner as in Example 1 Synthesis of the luminescent material and ML measurement were performed. Specifically, SrCO 3 was 0.2923 g, Al 2 O 3 was 0.2039 g, Eu 2 O 3 was 0.0035 g, and ZrO 2 was 0.5749 g.

〔実施例6〕
x=0.10、つまり0.90Sr0.99Eu0.01Al・0.10ZrOの組成となるように、ZrOの量を変更した以外は実施例1と同じ方法で応力発光体の合成及びML測定を行なった。具体的には、SrCOを0.2923g、Alを0.2039g、Euを0.0035g、及びZrOを0.0274gとした。
Example 6
Stress is the same as in Example 1 except that the amount of ZrO 2 was changed so that x = 0.10, that is, 0.90Sr 0.99 Eu 0.01 Al 2 O 4 · 0.10ZrO 2. Synthesis of the luminescent material and ML measurement were performed. Specifically, SrCO 3 was 0.2923 g, Al 2 O 3 was 0.2039 g, Eu 2 O 3 was 0.0035 g, and ZrO 2 was 0.0274 g.

次に、実施例3〜6の応力発光体について、実施例1と同じ方法でMLを測定した。結果を図6に示す。図6は実施例3〜6の応力発光体のMLを測定した結果を示す図である。いずれの応力発光体も良好に応力発光することが示された。また、実施例3〜6で加えられる荷重が所定の値以上になると発光強度が飽和することが示された。また、図6から、添加する遷移金属の量を調整することで飽和する発光値を制御できることが示された。   Next, ML was measured for the stress-stimulated luminescent materials of Examples 3 to 6 in the same manner as in Example 1. The results are shown in FIG. FIG. 6 is a diagram showing the results of measuring the ML of the stress-stimulated luminescent material of Examples 3-6. It was shown that any stress-stimulated luminescent material emits stress well. It was also shown that the emission intensity was saturated when the load applied in Examples 3 to 6 exceeded a predetermined value. Further, FIG. 6 shows that the light emission value that is saturated can be controlled by adjusting the amount of transition metal to be added.

〔実施例7〕
ZrOの代わりに酸化亜鉛ZnO、酸化ケイ素SiO、酸化錫SnO又は酸化ハフニウムHfOの何れかを用いた以外は実施例1と同様にして応力発光体を作製し、ML測定を行なった。具体的には、ZnOを0.0081g、SiOを0.0060g、SnOを0.0151g、HfOを0.0210gとした。結果を図7に示す。図7は実施例1及び7のML測定の結果を示す図である。遷移金属としてHfを採用することで、より高い応力発光が得られることが示された。また、ML測定の際の荷重は1000Nとした。
Example 7
A stress luminescent material was prepared in the same manner as in Example 1 except that any one of zinc oxide ZnO, silicon oxide SiO 2 , tin oxide SnO 2, and hafnium oxide HfO 2 was used instead of ZrO 2 , and ML measurement was performed. . Specifically, ZnO was 0.0081 g, SiO 2 was 0.0060 g, SnO 2 was 0.0151 g, and HfO 2 was 0.0210 g. The results are shown in FIG. FIG. 7 is a diagram showing the results of ML measurement in Examples 1 and 7. It was shown that higher stress luminescence can be obtained by using Hf as the transition metal. The load for ML measurement was 1000N.

〔実施例8〕
Zrの添加量と応力発光との関係について確認した。具体的には、ZrOの添加量を様々な量に変更した以外は実施例1と同様にして応力発光体を作製した。具体的には(1−x)(Sr0.99Eu0.01Al)・xZrOの組成式において、xが0、0.005、0.012、0.024、0.036、0.048、0.070、0.1、0.3、0.5、0.7、0.9となるように変更した。また、ML測定の際の荷重は1000Nとした。
Example 8
The relationship between the amount of Zr added and the stress emission was confirmed. Specifically, a stress-stimulated luminescent material was produced in the same manner as in Example 1 except that the amount of ZrO 2 added was changed to various amounts. Specifically, in the composition formula of (1-x) (Sr 0.99 Eu 0.01 Al 2 O 4 ) · xZrO 2 , x is 0, 0.005, 0.012, 0.024, 0.036. 0.048, 0.070, 0.1, 0.3, 0.5, 0.7, 0.9. The load for ML measurement was 1000N.

結果を図8に示す。図8はZrの添加量と応力発光との関係を確認した図である。図8の横軸がZrの添加量を示し、縦軸が応力発光を示す。図8に示すように、xが2.5のときに最も高い応力発光を示した。   The results are shown in FIG. FIG. 8 shows the relationship between the amount of Zr added and stress emission. The horizontal axis in FIG. 8 indicates the amount of Zr added, and the vertical axis indicates the stress emission. As shown in FIG. 8, the highest stress emission was exhibited when x was 2.5.

〔比較例1〕
SrCO、Al、Eu、及びZrOを、(1−x)(Sr0.99Eu0.01Al)・xZrO(x=0)の組成となるように、所定量秤量した(つまり酸化ジルコニアを用いなかった)。具体的には、SrCOを0.2923g、Alを0.2039g及びEuを0.0035gとした。
[Comparative Example 1]
SrCO 3 , Al 2 O 3 , Eu 2 O 3 , and ZrO 2 have a composition of (1-x) (Sr 0.99 Eu 0.01 Al 2 O 4 ) · xZrO 2 (x = 0). Then, a predetermined amount was weighed (that is, zirconia oxide was not used). Specifically, SrCO 3 was 0.2923 g, Al 2 O 3 was 0.2039 g, and Eu 2 O 3 was 0.0035 g.

次に、秤量した原料をエタノールに入れて、ボールミルを用いて十分に混合した後、80℃で乾燥させた。得られた混合物を乳鉢で粉砕し、次いで、還元雰囲気(5%水素含有アルゴン)中において、1400℃で4時間焼成した。なお、昇温及び降温は2℃/minの速度でゆっくり行なった。   Next, the weighed raw materials were put in ethanol, mixed thoroughly using a ball mill, and then dried at 80 ° C. The obtained mixture was pulverized in a mortar and then calcined at 1400 ° C. for 4 hours in a reducing atmosphere (5% hydrogen-containing argon). The temperature increase and decrease were performed slowly at a rate of 2 ° C./min.

次に、焼成後に得られた材料を粉砕し、応力発光体の粉末を調製した。そして、この粉末について実施例1と同じ方法でXRD測定、PL測定及びML測定を行なった。   Next, the material obtained after firing was pulverized to prepare a powder of a stress luminescent material. And XRD measurement, PL measurement, and ML measurement were performed about this powder by the same method as Example 1.

〔比較例2〕
CaCO、Al、SiO、及びEuを、(1−x)[Ca0.99Eu0.01AlSi]・xZrO(x=0)の組成となるように、所定量秤量した。具体的には、CaCOを0.0999g、Alを0.1020g、SiOを0.0120g、及びEuを0.0018gとした。
[Comparative Example 2]
CaCO 3 , Al 2 O 3 , SiO 2 , and Eu 2 O 3 are converted into a composition of (1-x) [Ca 0.99 Eu 0.01 Al 2 Si 2 O 8 ] .xZrO 2 (x = 0) Then, a predetermined amount was weighed. Specifically, CaCO 3 was 0.0999 g, Al 2 O 3 was 0.1020 g, SiO 2 was 0.0120 g, and Eu 2 O 3 was 0.0018 g.

次に、秤量した原料をエタノールに入れて、ボールミルを用いて十分に混合した後、80℃で乾燥させた。得られた混合物を乳鉢で粉砕し、次いで、還元雰囲気(5%水素含有アルゴン)中において、1400℃で4時間焼成した。なお、昇温及び降温は2℃/minの速度でゆっくり行なった。次に、焼成後に得られた材料を粉砕し、応力発光体の粉末を調製した。そして、この粉末について実施例1と同じ方法でML測定を行なった。   Next, the weighed raw materials were put in ethanol, mixed thoroughly using a ball mill, and then dried at 80 ° C. The obtained mixture was pulverized in a mortar and then calcined at 1400 ° C. for 4 hours in a reducing atmosphere (5% hydrogen-containing argon). The temperature increase and decrease were performed slowly at a rate of 2 ° C./min. Next, the material obtained after firing was pulverized to prepare a powder of a stress luminescent material. And ML measurement was performed by the same method as Example 1 about this powder.

〔比較例3〕
炭酸ストロンチウムSrCO、酸化アルミニウムAl、酸化ユーロピウムEu、及びジルコニアZrOを、Sr0.99−xEu0.01Al・xZrO(x=0.05)の組成となるようにした以外は、実施例1と同じ方法で応力発光体の合成及びML測定を行なった。具体的には、SrCOを0.2775g、Alを0.2039g、Euを0.0035g、及びZrOを0.0123gとした。この組成により、応力発光体は非固溶状態の遷移金属が含まれない状態となった。
[Comparative Example 3]
Strontium carbonate SrCO 3 , aluminum oxide Al 2 O 3 , europium oxide Eu 2 O 3 , and zirconia ZrO 2 were mixed with Sr 0.99-x Eu 0.01 Al 2 O 4 .xZrO 2 (x = 0.05). A stress-stimulated luminescent material was synthesized and ML was measured in the same manner as in Example 1 except that the composition was used. Specifically, SrCO 3 was 0.2775 g, Al 2 O 3 was 0.2039 g, Eu 2 O 3 was 0.0035 g, and ZrO 2 was 0.0123 g. With this composition, the stress-stimulated luminescent material was in a state in which a non-solid transition metal was not included.

本発明に係る応力発光材料は、機械的な外力により発光するので、機械的外力を光に変換する光素子として利用することができる。また、発光値が飽和する応力を調整できるので、レベルセンサーにも適用可能である。   Since the stress-stimulated luminescent material according to the present invention emits light by a mechanical external force, it can be used as an optical element that converts the mechanical external force into light. In addition, since the stress at which the light emission value is saturated can be adjusted, it can also be applied to a level sensor.

実施例1で得た応力発光体を電子顕微鏡で観察した結果を示す図である。It is a figure which shows the result of having observed the stress light-emitting body obtained in Example 1 with the electron microscope. 実施例1及び比較例1にて得た応力発光体のXRDの測定結果を示す図である。It is a figure which shows the measurement result of XRD of the stress light-emitting body obtained in Example 1 and Comparative Example 1. 実施例1、比較例1及び3にて得た応力発光体のMLの測定結果を示す図である。It is a figure which shows the measurement result of ML of the stress light-emitting body obtained in Example 1 and Comparative Examples 1 and 3. 実施例1及び比較例1にて得た応力発光体のPLの測定結果を示す図である。It is a figure which shows the measurement result of PL of the stress light-emitting body obtained in Example 1 and Comparative Example 1. 実施例2、比較例2にて得た応力発光体のMLの測定結果を示す図である。It is a figure which shows the measurement result of ML of the stress light-emitting body obtained in Example 2 and Comparative Example 2. 実施例3〜6にて得た応力発光体のMLの測定結果を示す図である。It is a figure which shows the measurement result of ML of the stress light-emitting body obtained in Examples 3-6. 実施例1及び7にて得た応力発光体のMLの測定結果を示す図である。It is a figure which shows the measurement result of ML of the stress light-emitting body obtained in Example 1 and 7. 実施例8にて得た応力発光体のMLの測定結果を示す図である。It is a figure which shows the measurement result of ML of the stress light-emitting body obtained in Example 8.

Claims (12)

応力を受けることで発光する母体材料を含む応力発光体であって、
遷移金属(ただし希土類金属を除く)、Si及びSnのうち少なくとも一つの元素をさらに含み、
当該元素の少なくとも一部が母体材料に非固溶状態で含有されてなるものであることを特徴とする応力発光体。
A stress luminescent material including a host material that emits light by receiving stress,
A transition metal (excluding rare earth metals), Si and Sn further comprising at least one element;
A stress-stimulated luminescent material, wherein at least a part of the element is contained in a matrix material in a non-solid solution state.
上記元素が、粒子状で上記母体材料の表面に存在することを特徴とする請求項1に記載の応力発光体。   2. The stress-stimulated luminescent material according to claim 1, wherein the element is present in the form of particles on the surface of the base material. 上記元素の含有量が0.1mol%以上、90mol%以下であることを特徴とする請求項1又は2記載の応力発光体。   The stress-stimulated luminescent material according to claim 1 or 2, wherein the content of the element is 0.1 mol% or more and 90 mol% or less. 上記元素の含有量が10mol%以上、90mol%以下であることを特徴とする請求項1〜3のいずれか1項に記載の応力発光体。   Content of the said element is 10 mol% or more and 90 mol% or less, The stress light-emitting body of any one of Claims 1-3 characterized by the above-mentioned. 上記元素の含有量が0.1mol%以上、10mol%未満であることを特徴とする請求項1〜3のいずれか1項に記載の応力発光体。   The stress luminescent material according to any one of claims 1 to 3, wherein the content of the element is 0.1 mol% or more and less than 10 mol%. 上記元素がZr、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Hf、Nb、Mo、Ta及びWからなる群より選択される少なくとも1つの金属であることを特徴とする請求項1〜5のいずれか1項に記載の応力発光体。   The element is at least one metal selected from the group consisting of Zr, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Hf, Nb, Mo, Ta, and W. The stress-stimulated luminescent material according to any one of claims 1 to 5. 上記母体材料が金属酸化物、金属窒化物及び金属硫化物からなる群より選択される少なくとも1つの化合物を含み、発光中心として希土類金属をさらに含むことを特徴とする請求項1〜6のいずれか1項に記載の応力発光体。   The base material includes at least one compound selected from the group consisting of metal oxides, metal nitrides, and metal sulfides, and further includes a rare earth metal as an emission center. 2. The stress-stimulated luminescent material according to item 1. 上記金属酸化物がアルミン酸及びアルミノケイ酸からなる群より選択される少なくとも1つの化合物であることを特徴とする請求項7に記載の応力発光体。   The stress-stimulated luminescent material according to claim 7, wherein the metal oxide is at least one compound selected from the group consisting of aluminate and aluminosilicate. 上記希土類金属がEu、Dy、La、Gd、Ce、Sm、Y、Nd、Tb、Pr、Er、Tm、Yb、Sc、Pm、Ho及びLuからなる群より選択される少なくとも1つの金属のイオンであることを特徴とする請求項7に記載の応力発光体。   The rare earth metal is an ion of at least one metal selected from the group consisting of Eu, Dy, La, Gd, Ce, Sm, Y, Nd, Tb, Pr, Er, Tm, Yb, Sc, Pm, Ho, and Lu. The stress-stimulated luminescent material according to claim 7, wherein 請求項1〜9のいずれか1項に記載の応力発光体を含む複合材料。   The composite material containing the stress light-emitting body of any one of Claims 1-9. 請求項1〜9のいずれか1項に記載の応力発光体を含むレベルセンサー。   The level sensor containing the stress light-emitting body of any one of Claims 1-9. 応力を受けることで発光する母体材料が固溶状態となる組成にて、その原料を混合し、さらに遷移金属(ただし希土類金属を除く)、Si及びSnのうち少なくとも一つの元素を混合する混合工程と、
上記混合工程により得られた混合物を焼成する焼成工程と、を含むことを特徴とする応力発光体の製造方法。
Mixing step of mixing raw materials in a composition in which a base material that emits light upon receiving stress is in a solid solution state, and further mixing at least one element of transition metal (excluding rare earth metals), Si and Sn When,
And a firing step of firing the mixture obtained by the mixing step.
JP2008142132A 2008-05-30 2008-05-30 Stress light emitter, method for producing the same, composite material using the same, and level sensor Expired - Fee Related JP5574314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008142132A JP5574314B2 (en) 2008-05-30 2008-05-30 Stress light emitter, method for producing the same, composite material using the same, and level sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008142132A JP5574314B2 (en) 2008-05-30 2008-05-30 Stress light emitter, method for producing the same, composite material using the same, and level sensor

Publications (2)

Publication Number Publication Date
JP2009286927A true JP2009286927A (en) 2009-12-10
JP5574314B2 JP5574314B2 (en) 2014-08-20

Family

ID=41456462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008142132A Expired - Fee Related JP5574314B2 (en) 2008-05-30 2008-05-30 Stress light emitter, method for producing the same, composite material using the same, and level sensor

Country Status (1)

Country Link
JP (1) JP5574314B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102863954A (en) * 2011-07-08 2013-01-09 海洋王照明科技股份有限公司 Europium-doped calcium silicate luminescent material and preparation method and application thereof
JP2014145040A (en) * 2013-01-29 2014-08-14 Sakai Chem Ind Co Ltd Production method of composition for stress light-emitting material, composition for stress light-emitting material obtained by the production method, and stress light-emitting material produced from the composition
JP2015086327A (en) * 2013-10-31 2015-05-07 独立行政法人産業技術総合研究所 Stress luminescent material, stress illuminant and method of producing stress luminescent material
CN105349141A (en) * 2015-11-30 2016-02-24 青岛大学 Niobate luminescent material with elastic stress luminescence property and preparation method thereof
CN105349142A (en) * 2015-11-30 2016-02-24 青岛大学 Niobate elastic stress luminescent material and preparation method thereof
JP2017096016A (en) * 2015-11-26 2017-06-01 鹿島建設株式会社 Concrete construction repair structure and concrete construction repair method
WO2022186378A1 (en) * 2021-03-05 2022-09-09 国立研究開発法人産業技術総合研究所 Stress-stimulated luminescent material and method for producing said stress-stimulated luminescent material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323656A (en) * 2003-04-24 2004-11-18 Ekuran:Kk Manufacturing process of spherical phosphorescent material and spherical phosphorescent material
WO2005097946A1 (en) * 2004-04-09 2005-10-20 National Institute Of Advanced Industrial Science And Technology High-brightness stress light emitting material and production method therefor, and its applications
JP2005350649A (en) * 2004-06-10 2005-12-22 Seoul Semiconductor Co Ltd Luminescent material
JP2006036887A (en) * 2004-07-26 2006-02-09 National Institute Of Advanced Industrial & Technology Stress-induced luminescent composition containing anisotropic stress-induced illuminant and method for producing the same
WO2006038449A1 (en) * 2004-10-05 2006-04-13 Nippon Sheet Glass Company, Limited Light-emitting body dispersed with phosphor particles, method for producing same, and material or article containing such light-emitting body
JP2006152089A (en) * 2004-11-26 2006-06-15 National Institute Of Advanced Industrial & Technology Luminescent material, piezoelectric body, electrostriction body, ferroelectric body, electroluminescent body, stress luminescent body, and manufacturing process of these
JP2006352178A (en) * 2006-10-04 2006-12-28 Nichia Chem Ind Ltd Light emitting apparatus
WO2007023869A1 (en) * 2005-08-25 2007-03-01 National Institute Of Advanced Industrial Science And Technology Stress luminescent structure
JP2007308562A (en) * 2006-05-17 2007-11-29 Okamoto Glass Co Ltd Luminescent glass, illuminating device using this, and display device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323656A (en) * 2003-04-24 2004-11-18 Ekuran:Kk Manufacturing process of spherical phosphorescent material and spherical phosphorescent material
WO2005097946A1 (en) * 2004-04-09 2005-10-20 National Institute Of Advanced Industrial Science And Technology High-brightness stress light emitting material and production method therefor, and its applications
JP2005350649A (en) * 2004-06-10 2005-12-22 Seoul Semiconductor Co Ltd Luminescent material
JP2006036887A (en) * 2004-07-26 2006-02-09 National Institute Of Advanced Industrial & Technology Stress-induced luminescent composition containing anisotropic stress-induced illuminant and method for producing the same
WO2006038449A1 (en) * 2004-10-05 2006-04-13 Nippon Sheet Glass Company, Limited Light-emitting body dispersed with phosphor particles, method for producing same, and material or article containing such light-emitting body
JP2006152089A (en) * 2004-11-26 2006-06-15 National Institute Of Advanced Industrial & Technology Luminescent material, piezoelectric body, electrostriction body, ferroelectric body, electroluminescent body, stress luminescent body, and manufacturing process of these
WO2007023869A1 (en) * 2005-08-25 2007-03-01 National Institute Of Advanced Industrial Science And Technology Stress luminescent structure
JP2007308562A (en) * 2006-05-17 2007-11-29 Okamoto Glass Co Ltd Luminescent glass, illuminating device using this, and display device
JP2006352178A (en) * 2006-10-04 2006-12-28 Nichia Chem Ind Ltd Light emitting apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013042278; 2007年光化学討論会講演要旨集, , P.187 *
JPN6013042280; ナノ学会第6回大会講演予稿集, , P.273 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102863954A (en) * 2011-07-08 2013-01-09 海洋王照明科技股份有限公司 Europium-doped calcium silicate luminescent material and preparation method and application thereof
CN102863954B (en) * 2011-07-08 2014-05-21 海洋王照明科技股份有限公司 Europium-doped calcium silicate luminescent material and preparation method and application thereof
JP2014145040A (en) * 2013-01-29 2014-08-14 Sakai Chem Ind Co Ltd Production method of composition for stress light-emitting material, composition for stress light-emitting material obtained by the production method, and stress light-emitting material produced from the composition
JP2015086327A (en) * 2013-10-31 2015-05-07 独立行政法人産業技術総合研究所 Stress luminescent material, stress illuminant and method of producing stress luminescent material
JP2017096016A (en) * 2015-11-26 2017-06-01 鹿島建設株式会社 Concrete construction repair structure and concrete construction repair method
CN105349141A (en) * 2015-11-30 2016-02-24 青岛大学 Niobate luminescent material with elastic stress luminescence property and preparation method thereof
CN105349142A (en) * 2015-11-30 2016-02-24 青岛大学 Niobate elastic stress luminescent material and preparation method thereof
CN105349142B (en) * 2015-11-30 2017-10-27 青岛大学 A kind of niobates elastic stress luminescent material and preparation method thereof
CN105349141B (en) * 2015-11-30 2017-11-28 青岛大学 A kind of niobate luminescent material of flexible stress irradiance performance and preparation method thereof
WO2022186378A1 (en) * 2021-03-05 2022-09-09 国立研究開発法人産業技術総合研究所 Stress-stimulated luminescent material and method for producing said stress-stimulated luminescent material

Also Published As

Publication number Publication date
JP5574314B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP4868500B2 (en) High-strength stress-stimulated luminescent material that emits ultraviolet light, its manufacturing method, and use thereof
JP5574314B2 (en) Stress light emitter, method for producing the same, composite material using the same, and level sensor
TWI228535B (en) Fluorescent substances for vacuum ultraviolet radiation excited light-emitting devices
JP5356822B2 (en) Light emitting device having improved CaAlSiN light conversion material
JP2001049251A (en) High luminance stress light-emission material, its preparation and light-emitting method using the same material
US20050040366A1 (en) Fluorescent substance and fluorescent composition containing the same
WO2006109659A1 (en) Stress luminescent material, process for producing the same, composite material containing the stress luminescent material, and matrix structure of the stress luminescent material
TW200835774A (en) Phosphor flakes for LEDs made from structured films
JP2014513171A (en) Oxynitride phosphor
JP2008274240A (en) Phosphor
JP2022063325A (en) Light emitting device and fluorescent body
JP4963077B2 (en) Stress-stimulated luminescent material that emits ultraviolet light, method for producing the same, and use thereof
JP2014043539A (en) Alkaline earth metal silicate phosphor and method for producing the same
US11407942B2 (en) Garnet silicate, garnet silicate phosphor, and wavelength converter and light emitting device which use the garnet silicate phosphor
JPWO2018235580A1 (en) Nano-phosphor-attached inorganic particles and wavelength conversion member
JP2007063064A (en) Glass
JP2002220587A (en) Method for producing high-luminance light emitting material
JP5593492B2 (en) Long afterglow phosphor
JP5126837B2 (en) Stress light emitting material and method for producing the same
TW201221621A (en) Green-emitting, garnet-based phosphors in general and backlighting applications
JP2013127060A (en) Nitride phosphor that has adsorbed moisture and method of producing the same
CN103627393B (en) Tungsten molybdate red phosphor powder and preparation method and application thereof
JP6973716B2 (en) Manufacturing method of firing type fluorescent material
JP5955835B2 (en) Phosphor and light emitting device
WO1998006793A1 (en) Process for the preparaiton of aluminate-base phosphor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140624

R150 Certificate of patent or registration of utility model

Ref document number: 5574314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees