JP5593492B2 - Long afterglow phosphor - Google Patents
Long afterglow phosphor Download PDFInfo
- Publication number
- JP5593492B2 JP5593492B2 JP2009203078A JP2009203078A JP5593492B2 JP 5593492 B2 JP5593492 B2 JP 5593492B2 JP 2009203078 A JP2009203078 A JP 2009203078A JP 2009203078 A JP2009203078 A JP 2009203078A JP 5593492 B2 JP5593492 B2 JP 5593492B2
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- light
- emission
- afterglow
- long afterglow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims description 22
- 238000000295 emission spectrum Methods 0.000 claims description 14
- 230000005284 excitation Effects 0.000 claims description 13
- 229910052735 hafnium Inorganic materials 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- 229910052721 tungsten Inorganic materials 0.000 claims description 9
- 229910052726 zirconium Inorganic materials 0.000 claims description 9
- 229910052745 lead Inorganic materials 0.000 claims description 4
- 230000001747 exhibiting effect Effects 0.000 claims description 2
- 239000000843 powder Substances 0.000 description 17
- 239000013078 crystal Substances 0.000 description 14
- 238000000862 absorption spectrum Methods 0.000 description 13
- 239000002245 particle Substances 0.000 description 10
- 238000010521 absorption reaction Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 229910052692 Dysprosium Inorganic materials 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 229910052693 Europium Inorganic materials 0.000 description 6
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 6
- 229910003668 SrAl Inorganic materials 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 238000002284 excitation--emission spectrum Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000000634 powder X-ray diffraction Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000004677 Nylon Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000002591 computed tomography Methods 0.000 description 2
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 229910001195 gallium oxide Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000002688 persistence Effects 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Luminescent Compositions (AREA)
Description
本発明は、長残光蛍光体に関する。 The present invention relates to a long afterglow phosphor.
長残光蛍光体とは、励起を停止した後も長時間にわたって発光を継続する性質を有する蛍光体で、時計の文字盤や警告灯、非常時の簡易照明にも用いられている。従来、長残光蛍光体としてZnS:Cu系材料が知られているが、近年では可視光の領域に吸収スペクトルを持ち高輝度、長残光に優れた材料としてSrAl2O4:Eu,Dyが広く用いられている(特許文献1参照)。 A long afterglow phosphor is a phosphor having a property of continuing to emit light for a long time after excitation is stopped, and is also used for a clock face of a watch, a warning lamp, and simple emergency lighting. Conventionally, ZnS: Cu-based materials are known as long afterglow phosphors, but in recent years, SrAl 2 O 4 : Eu, Dy is a material having an absorption spectrum in the visible light region and high luminance and long afterglow. Is widely used (see Patent Document 1).
また、CTスキャニング装置に使用される蛍光体としてGd3Sc2Ga3O12:Cr等が開示されている(特許文献2参照)。 Further, Gd 3 Sc 2 Ga 3 as a phosphor for use in CT scanning device O 12: Cr, etc. has been disclosed (see Patent Document 2).
しかし、SrAl2O4:Eu,Dyは、その発光色が緑色を中心に450〜640nmの領域に限られるという欠点があった。また、蛍光灯等の紫外光が発光された状態で照射されたエネルギーを蓄積した後、徐々に光としてエネルギーを放出させることが可能であるが、低消費電力の面から今後の普及が見込まれる白色LED光のように紫外光を含まない白色光の光源に対しては蓄光能力が著しく低下して、実用上、大きな問題となることが考えられている。 However, SrAl 2 O 4 : Eu, Dy has a drawback that its emission color is limited to a region of 450 to 640 nm centering on green. Moreover, it is possible to gradually release energy as light after accumulating the irradiated energy in the state where ultraviolet light such as a fluorescent lamp is emitted, but it is expected to spread in the future from the viewpoint of low power consumption For white light sources that do not contain ultraviolet light, such as white LED light, it is considered that the light storage capability is significantly reduced, which is a major problem in practice.
特許文献2記載の蛍光体も、可視領域より高いエネルギーのX線や紫外線等の領域に応答するものである。さらにCTスキャニング装置には、残光の低い蛍光体が用いられることから、長残光材料としては不適である。 The phosphor described in Patent Document 2 also responds to regions such as X-rays and ultraviolet rays having higher energy than the visible region. Furthermore, since a phosphor with low afterglow is used for the CT scanning apparatus, it is not suitable as a long afterglow material.
このように、今後の普及が見込まれる白色LED光に対して優れた長残光特性を示す材料の開発が望まれている。本発明は上記問題点に鑑み、LEDの白色光の波長領域に吸収ピークを有し、黄色の残光特性を持つ長残光蛍光体を提供することを目的とする。 Thus, development of the material which shows the long afterglow characteristic with respect to the white LED light with which future penetration is anticipated is desired. In view of the above problems, an object of the present invention is to provide a long afterglow phosphor having an absorption peak in the wavelength region of white light of an LED and having a yellow afterglow characteristic.
本発明は、これらの問題を解決するため、以下に示す(1)〜(2)の発明を提供する。
(1)Gd3Sc2−xGa3+xO12 (0≦X≦2)にCeと、Hf、Ti、Zr、WまたはPbのいずれか1以上とをドープしてなり、少なくとも400〜450nmの波長を含む光の励起により、440〜700nmの波長の発光スペクトルを示すことを特徴とする長残光蛍光体。
(2)Ceを0.1〜1.0モル%と、Hf、Ti、Zr、WまたはPbのいずれか1つ以上を合計で0.1〜1.0モル%とをドープしてなる(1)記載の長残光蛍光体。
In order to solve these problems, the present invention provides the following inventions (1) to ( 2 ).
(1) Gd 3 Sc 2−x Ga 3 + x O 12 (0 ≦ X ≦ 2) is doped with Ce and one or more of Hf, Ti, Zr, W, or Pb , and at least 400 to 450 nm A long afterglow phosphor characterized by exhibiting an emission spectrum having a wavelength of 440 to 700 nm by excitation of light including a wavelength.
( 2 ) Dope of 0.1 to 1.0 mol% of Ce and 0.1 to 1.0 mol% in total of any one or more of Hf, Ti, Zr, W or Pb ( 1 ) The long afterglow fluorescent substance of description.
LEDの白色光の波長領域に吸収ピークを有し、黄色の残光特性を持つ長残光蛍光体を提供することができる。 A long afterglow phosphor having an absorption peak in the wavelength region of white light of the LED and having a yellow afterglow characteristic can be provided.
以下、発明をより詳細に説明する。本発明の長残光蛍光体は、Gd3Sc2−xGa3+xO12からなり、少なくとも400〜450nmの波長を含む光の励起により、440〜700nmの発光スペクトルを示す。例えば、紫外〜可視光の白色光励起や紫外光を含まない波長400〜800nmの白色光の励起によって、440〜700nmに亙るブロードな黄色の発光スペクトルを示す。 Hereinafter, the invention will be described in more detail. The long afterglow phosphor of the present invention is made of Gd 3 Sc 2 -xGa 3 + xO 12 and exhibits an emission spectrum of 440 to 700 nm by excitation of light containing a wavelength of at least 400 to 450 nm. For example, a broad yellow emission spectrum ranging from 440 to 700 nm is exhibited by excitation of white light of ultraviolet to visible light or excitation of white light having a wavelength of 400 to 800 nm not including ultraviolet light.
図1は、本発明の実施形態の一つであるGd3Sc2Ga3O12:Ce3+,Hf4+(図中GSGG:Ce,Hfと表記)と従来多く用いられてきたSrAl2O4:Eu,Dyの吸収スペクトルと比較したものである。SrAl2O4:Eu,Dyでは、400nmよりも長波長側では、吸収ピークは見られない。一方、本発明の長残光蛍光体では、436nmに吸収ピークを有していることがわかる。この吸収ピークは、白色LEDの青色成分の波長460nmに近く、白色LEDによる励起が可能であることを示している。 FIG. 1 shows one embodiment of the present invention, Gd 3 Sc 2 Ga 3 O 12 : Ce 3+ , Hf 4+ (indicated as GSGG: Ce, Hf in the figure) and SrAl 2 O 4 that has been used in the past. : Comparison with the absorption spectra of Eu and Dy. In SrAl 2 O 4 : Eu, Dy, no absorption peak is observed on the longer wavelength side than 400 nm. On the other hand, it can be seen that the long afterglow phosphor of the present invention has an absorption peak at 436 nm. This absorption peak is close to the wavelength of 460 nm of the blue component of the white LED and indicates that excitation by the white LED is possible.
Gd3Sc2−xGa3+xO12のXの値は、0≦X≦2、より好ましくは0≦X≦1、さらに好ましくは0≦X<1を取り得る。この範囲で調整することにより、所定の吸収スペクトルを有し、発光および残光特性に優れた長残光蛍光体が得られる。 The value of X in Gd 3 Sc 2−x Ga 3 + x O 12 can take 0 ≦ X ≦ 2, more preferably 0 ≦ X ≦ 1, and still more preferably 0 ≦ X <1. By adjusting within this range, a long afterglow phosphor having a predetermined absorption spectrum and excellent light emission and afterglow characteristics can be obtained.
また本発明の長残光蛍光体は、Gd3Sc2−xGa3+xO12にCeと、Hf、Ti、Zr、W、またはPbのいずれか一つ以上とをドープしてなる。これらをドープすることによって、白色LED光のように紫外光を含まない白色光の光源で蓄光能力に優れた黄色の長残光蛍光体とすることができることを見出した。具体的には、少なくとも400〜450nmの波長を含む光の励起により、540〜580nmの波長に1以上の発光ピークを有し、440〜700nmの波長の発光スペクトルを持つ高輝度の黄色の発光を示す。 The long afterglow phosphor of the present invention is obtained by doping Gd 3 Sc 2 -xGa 3 + xO 12 with Ce and any one or more of Hf, Ti, Zr, W, or Pb. It has been found that by doping them, it is possible to obtain a yellow long afterglow phosphor having excellent light storage ability with a white light source that does not contain ultraviolet light such as white LED light. Specifically, by excitation of light including a wavelength of at least 400 to 450 nm, high-luminance yellow light having an emission peak of 1 or more at a wavelength of 540 to 580 nm and an emission spectrum of 440 to 700 nm is obtained. Show.
Ceは、母材結晶のGd3Sc2−xGa3+xO12中において、Ce3+の形態で存在する。これはCe3+の形態であれば、Gd3+と置換した後の格子のひずみを含めた全エネルギーが低く済むためである。Ce4+でGd3+と置換するとすると、電荷補償にGd3+空孔か格子間O2−を必要となるため、格子のひずみにより全エネルギーが上昇して不安定になると考えられる。発光は、このCe3+のドープによって生じる。励起されたCe3+の最外殻電子が元に戻ったときに発生する現象である。 Ce exists in the form of Ce 3+ in the base material crystal Gd 3 Sc 2−x Ga 3 + x O 12 . This is because, in the case of Ce 3+ , the total energy including the strain of the lattice after substitution with Gd 3+ is sufficient. When to replace the Gd 3+ in ce 4+, because it requires the O 2- between Gd 3+ vacancies or lattice charge compensation is believed that total energy by distortion of the lattice becomes unstable elevated. Light emission is caused by this Ce 3+ doping. This is a phenomenon that occurs when the excited outermost electrons of Ce 3+ return to their original state.
ドープ材であるCe3+は母材結晶により発光色が異なるが、Gd3Sc2−xGa3+xO12にドープすると少なくとも400〜450nmの波長を含む光の励起により、540〜580nmの波長に1以上の発光ピークを有し、440〜700nmの波長の発光スペクトルを持つ高輝度の黄色の発光を示す。例えば、母材結晶Gd3Sc2−xGa3+xO12の組成Xの値が小さいと、発光ピークは短い波長側に現れ、Xを大きくすると長い波長側に現れる。これは、Xの値が変わることによって、Ce3+の周囲の環境、すなわちO2−の位置、方向が変わるためである。本発明の蛍光体の発光は、ヒトの目が最も光を感じ易いといわれる波長555nmに近似しており、実使用に好適である。 Ce 3+ which is a doping material has a different emission color depending on a base crystal, but when doped into Gd 3 Sc 2 -xGa 3 + xO 12 , it is 1 at a wavelength of 540 to 580 nm by excitation of light including a wavelength of at least 400 to 450 nm. It has the above-described emission peak and exhibits high-luminance yellow light emission having an emission spectrum with a wavelength of 440 to 700 nm. For example, when the value of the composition X of the base material crystal Gd 3 Sc 2 -xGa 3 + xO 12 is small, the emission peak appears on the short wavelength side, and when X is increased, it appears on the long wavelength side. This is because the environment around Ce 3+ , that is, the position and direction of O 2− change as the value of X changes. The light emission of the phosphor of the present invention is close to a wavelength of 555 nm, which is said to be most sensitive to human eyes, and is suitable for actual use.
図2は、本発明の実施形態の一つであるGd3Sc2Ga3O12:Ce3+,Hf4+(図中GSGG:Ce,Hfと表記)と従来多く用いられてきたSrAl2O4:Eu,Dyの発光スペクトルと比較したものである。SrAl2O4:Eu,Dyでは、緑色の波長を中心に450〜640nmの領域の波長に限られている。一方、本発明の長残光蛍光体では、560nmに発光ピークを有し、440〜700nmの広範囲にわたってブロードな発光スペクトルを示している。 FIG. 2 shows Gd 3 Sc 2 Ga 3 O 12 : Ce 3+ , Hf 4+ (denoted as GSGG: Ce, Hf in the figure), which is one of the embodiments of the present invention, and SrAl 2 O 4 which has been conventionally used. : Comparison with the emission spectra of Eu and Dy. In SrAl 2 O 4 : Eu, Dy, the wavelength is limited to a wavelength in a range of 450 to 640 nm centering on a green wavelength. On the other hand, the long afterglow phosphor of the present invention has an emission peak at 560 nm and shows a broad emission spectrum over a wide range of 440 to 700 nm.
Gd3Sc2−xGa3+xO12にCe3+をドープして、更にHf、Ti、Zr、W、またはPbのいずれか1以上を共にドープすると、黄色の長残光を示す。このように、ドープする母材結晶と共ドープ金属元素イオンを選択することにより、白色光で種々の発光色を有する長残光蛍光体を得ることができる。すなわち、少なくとも400〜450nmの波長を含む光の励起により、540〜580nmの波長に1以上の発光ピークを有し、440〜700nmの波長の発光スペクトルを持つ高輝度の黄色の発光を示し、残光は2時間以上継続する。 When Gd 3 Sc 2−x Ga 3 + x O 12 is doped with Ce 3+ and further doped with one or more of Hf, Ti, Zr, W, or Pb, a long yellow afterglow is exhibited. Thus, by selecting the base crystal to be doped and the co-doped metal element ions, long afterglow phosphors having various emission colors with white light can be obtained. That is, by excitation of light including a wavelength of at least 400 to 450 nm, it exhibits a high-luminance yellow light having an emission peak of 1 or more at a wavelength of 540 to 580 nm and an emission spectrum of a wavelength of 440 to 700 nm. The light lasts for more than 2 hours.
Hf、Ti、Zr、W、またはPbは、母材結晶のGd3Sc2−xGa3+xO12中において、Hf4+、Ti4+、Zr4+、W4+またはPb4+の4価のイオンとして存在する。これらは、母材結晶のイオンSc3+およびGa3+のイオン径に近く、安定に存在する。 Hf, Ti, Zr, W, or Pb exists as a tetravalent ion of Hf 4+ , Ti 4+ , Zr 4+ , W 4+, or Pb 4+ in the base crystal Gd 3 Sc 2 -x Ga 3 + x O 12 To do. These are close to the ion diameters of the base crystal ions Sc 3+ and Ga 3+ and exist stably.
母材結晶のイオンGd3+、Sc3+およびGa3+は3価であるので、共ドープしたこれらのHf4+、Ti4+、Zr4+、W4+およびPb4+は、Ce3+から飛び出した電子のトラップとして働く。上述のように、発光は、励起されたCe3+の最外殻電子が元にもどるときの現象である。一方、残光はCe3+から飛び出した一部の電子が、一旦結晶中の欠陥に捕まり準安定化した後、室温での熱励起により再び解放されて元のCe3+に戻ったときの発光である。励起された電子が一旦トラップに捕まる分、発光まで時間がかかるため残光としてみえるのである。電子をトラップする深さは、それぞれのイオンで違うため、Ce3+の最外殻電子が元にもどるまでの時間(残光寿命)も異なる。 Since the base crystal ions Gd 3+ , Sc 3+ and Ga 3+ are trivalent, these co-doped Hf 4+ , Ti 4+ , Zr 4+ , W 4+ and Pb 4+ are trapped as electrons that have jumped out of Ce 3+ work. As described above, light emission is a phenomenon when the excited outermost electrons of Ce 3+ return. On the other hand, afterglow is emitted when some of the electrons that have jumped out of Ce 3+ are once trapped by defects in the crystal and metastable, then released again by thermal excitation at room temperature and return to the original Ce 3+. is there. Since the excited electrons are once trapped in the trap, it takes time until the light emission, so it appears as afterglow. Since the depth of trapping electrons is different for each ion, the time (afterglow lifetime) until the outermost electrons of Ce 3+ return to the original is also different.
母体結晶となるGd3Sc2−xGa3+xO12中のCeの濃度が0.1〜1.0モル%、Hf、Ti、Zr、W、またはPbのいずれか1以上の濃度が合計で0.1〜1.0モル%となるようにドープすることが好ましい。Ce3+と、Hf、Ti、Zr、W、またはPbのいずれか1以上との濃度が0.1モル%未満では意図した発光強度および残光が得られない。ドープする量を調整すると発光強度および残光を制御できるが、これらを1.0モル%を超えてドープしても顕著な発光強度および残光の増加が見られない。 Gd 3 Sc 2-x Ga 3 + x O 12 concentration of Ce in the 0.1 to 1.0 mol% as a host crystal, Hf, Ti, Zr, W, or any one or more of the concentration of Pb is in total, It is preferable to dope so that it may become 0.1-1.0 mol%. If the concentration of Ce 3+ and any one or more of Hf, Ti, Zr, W, or Pb is less than 0.1 mol%, the intended emission intensity and afterglow cannot be obtained. The light emission intensity and afterglow can be controlled by adjusting the doping amount, but no significant increase in light emission intensity and afterglow is observed even if these are doped in excess of 1.0 mol%.
本発明の長残光蛍光体は、200〜500nmの波長に吸収スペクトルを持ち、400〜450nmの波長に1以上の吸収ピークを持つ。したがって、紫外光を含まない波長400〜800nmの白色光の励起によって、高強度の発光が可能となる。 The long afterglow phosphor of the present invention has an absorption spectrum at a wavelength of 200 to 500 nm and one or more absorption peaks at a wavelength of 400 to 450 nm. Therefore, high-intensity light emission is possible by excitation of white light having a wavelength of 400 to 800 nm that does not include ultraviolet light.
次に、本発明の長残光蛍光体の製造方法について説明する。本発明の長残光蛍光体は、マイクロ引き下げ法、粉末合成法等の一般的な工程で得られる。 Next, the manufacturing method of the long afterglow fluorescent substance of this invention is demonstrated. The long afterglow phosphor of the present invention can be obtained by general processes such as a micro pull-down method and a powder synthesis method.
単結晶を得ようとした場合、マイクロ引き下げ法で作製することが可能である。平均粒径が10〜50μm、純度が99.99%以上のGd2O3、Sc2O3、Ga2O3と、平均粒径が10〜50μm、純度が99.9%以上のCeO2及びHfO2等を所定量秤量し、乾式混合し、Irるつぼに投入する。次にるつぼをRF加熱し、るつぼ底部から流れ落ちる原料融液をルアグ種結晶上で固化させ、0.05〜0.20mm/minの速度で引き下げる。成長部の温度を約1800℃に保持し、成長管内の雰囲気はガリウム酸化物の解離と蒸発を抑えるためにN2+O2(2%)の混合ガスを用いる。 When a single crystal is to be obtained, it can be produced by a micro pulling method. Gd 2 O 3 , Sc 2 O 3 , Ga 2 O 3 having an average particle diameter of 10 to 50 μm and a purity of 99.99% or more, and CeO 2 having an average particle diameter of 10 to 50 μm and a purity of 99.9% or more. A predetermined amount of HfO 2 and the like are weighed, dry-mixed, and put into an Ir crucible. Next, the crucible is RF-heated, and the raw material melt flowing down from the bottom of the crucible is solidified on the Luag seed crystal and pulled down at a rate of 0.05 to 0.20 mm / min. The temperature of the growth part is maintained at about 1800 ° C., and the atmosphere in the growth tube uses a mixed gas of N 2 + O 2 (2%) in order to suppress dissociation and evaporation of gallium oxide.
粉末状の長残光蛍光体を得ようとした場合、粉末合成法で作製することが可能である。平均粒径が0.1〜10μm、純度が99.99%以上のGd2O3、Sc2O3、Ga2O3と、平均粒径が0.1〜10μm、純度が99.9%以上のCeO2及びHfO2等を所定量秤量し、湿式混合、乾燥後、アルミナ等のるつぼに入れて空気中で1300〜1800℃、1〜24時間焼成することで、Ce3+、Hf4+等がドープされたGd3Sc2−xGa3+xO12粉末が得られる。原料粉末は上記酸化物の他、水酸化物、しゅう酸塩などを用いることもできる。 When an attempt is made to obtain a powdery long afterglow phosphor, it can be produced by a powder synthesis method. Gd 2 O 3 , Sc 2 O 3 , Ga 2 O 3 having an average particle diameter of 0.1 to 10 μm and a purity of 99.99% or more, an average particle diameter of 0.1 to 10 μm, and a purity of 99.9% Ce 3+ , Hf 4+ and the like are obtained by weighing a predetermined amount of the above CeO 2, HfO 2, etc., wet mixing, drying, and placing in a crucible such as alumina and firing in air at 1300-1800 ° C. for 1-24 hours. There doped Gd 3 Sc 2-x Ga 3 + x O 12 powder is obtained. In addition to the above oxides, hydroxides and oxalates can be used as the raw material powder.
得られた粉末はそれ自体が残光特性を示すが、更に、金型成形等で成形体を作製して大気雰囲気中で常圧焼結法で、または粉末をホットプレス型にセットした後に10〜100MPaの圧力をかけながら真空、あるいは非酸化雰囲気でホットプレス焼結することで、相対密度が95%以上の焼結体を容易に得ることもできる。 The obtained powder itself exhibits afterglow characteristics, but further, a molded body is produced by die molding or the like, and is obtained by atmospheric pressure sintering in an air atmosphere or after the powder is set in a hot press mold. A sintered body having a relative density of 95% or more can be easily obtained by hot press sintering in a vacuum or non-oxidizing atmosphere while applying a pressure of ˜100 MPa.
上記酸化物焼結体は、さらに1000℃〜1600℃の酸素を含む雰囲気中で1〜30時間程度アニール処理を施してもよい。これにより発光出力の向上や残光性の向上等の効果が得られる。 The oxide sintered body may be further annealed for about 1 to 30 hours in an atmosphere containing oxygen at 1000 ° C. to 1600 ° C. As a result, effects such as improved light emission output and afterglow can be obtained.
以下、実施例及び比較例を示して、本発明を説明する。なお、光吸収スペクトルは、島津自記分光光度計(UV−2100)を用いて測定した。発光スペクトルおよび強度変化の測定には200WのD2ランプ(Hanau,D200F)および500WのHg-Xeランプ(Ushio,UXM−501MA)を光源とした分光システムを用いた。 Hereinafter, the present invention will be described with reference to examples and comparative examples. In addition, the light absorption spectrum was measured using Shimadzu self-recording spectrophotometer (UV-2100). A spectroscopic system using a 200 W D2 lamp (Hanau, D200F) and a 500 W Hg-Xe lamp (Ushio, UXM-501MA) as a light source was used for measurement of emission spectrum and intensity change.
[実施例1]
Ce3+及びHf4+をドープしたGd3Sc2Ga3O12(以下、Gd3Sc2Ga3O12:Ce3+,Hf4+と表記)をマイクロ引き下げ法で作製した。
[Example 1]
Gd 3 Sc 2 Ga 3 O 12 doped with Ce 3+ and Hf 4+ (hereinafter referred to as Gd 3 Sc 2 Ga 3 O 12 : Ce 3+ , Hf 4+ ) was prepared by a micro pull-down method.
平均粒径が10〜50μm、純度が99.99%以上のGd2O3、Sc2O3、Ga2O3をGd3Sc2Ga3O12になるように各粉末を秤量し、更に純度が99.9%以上のCeO2、HfO2をそれぞれGd3Sc2Ga3O12に対して0.5モル%、1.0モル%となるように秤量して、乾式混合後、Irるつぼに投入した。次にるつぼをRF加熱し、るつぼ底部から流れ落ちる原料融液をルアグ種結晶上で固化させ、0.10mm/minの速度で引き下げた。成長部の温度を1800℃に保持し、成長管内の雰囲気はガリウム酸化物の解離と蒸発を抑えるためにN2+O2(2%)の混合ガスを用いた。 Each powder is weighed so that Gd 2 O 3 , Sc 2 O 3 , and Ga 2 O 3 having an average particle diameter of 10 to 50 μm and a purity of 99.99% or more become Gd 3 Sc 2 Ga 3 O 12. CeO 2 and HfO 2 having a purity of 99.9% or more were weighed to 0.5 mol% and 1.0 mol% with respect to Gd 3 Sc 2 Ga 3 O 12 respectively, and after dry mixing, Ir I put it in a crucible. Next, the crucible was heated by RF, and the raw material melt flowing down from the bottom of the crucible was solidified on the Luag seed crystal and pulled down at a speed of 0.10 mm / min. The temperature of the growth part was kept at 1800 ° C., and the atmosphere in the growth tube used a mixed gas of N 2 + O 2 (2%) in order to suppress dissociation and evaporation of gallium oxide.
得られたGd3Sc2Ga3O12:Ce3+,Hf4+単結晶の励起発光スペクトルを測定した。CeO2及びHfO2のドープ量0.5モル%及び1.0モル%のいずれにおいても、200〜500nmの波長の吸収スペクトルが存在し、560nmを中心に440〜700nmにピークを有する黄色の発光がみられた。また減衰曲線を測定したところ、黄色の残光が6時間継続することが確認された。なお、CeO2及びHfO2のドープ量0.5モル%のGd3Sc2Ga3O12:Ce3+,Hf4+単結晶の吸収(励起)スペクトルを図1に、発光スペクトルを図2に示す。 The excitation emission spectrum of the obtained Gd 3 Sc 2 Ga 3 O 12 : Ce 3+ , Hf 4+ single crystal was measured. In both cases of CeO 2 and HfO 2 doping amounts of 0.5 mol% and 1.0 mol%, there is an absorption spectrum having a wavelength of 200 to 500 nm, and yellow emission having a peak at 440 to 700 nm centering on 560 nm Was seen. When the decay curve was measured, it was confirmed that yellow afterglow continued for 6 hours. In addition, the absorption (excitation) spectrum of Gd 3 Sc 2 Ga 3 O 12 : Ce 3+ , Hf 4+ single crystal with a doping amount of 0.5 mol% of CeO 2 and HfO 2 is shown in FIG. 1, and the emission spectrum is shown in FIG. .
[実施例2]
Gd3Sc2Ga3O12:Ce3+,Hf4+を通常の固相法によって合成した。
[Example 2]
Gd 3 Sc 2 Ga 3 O 12 : Ce 3+ , Hf 4+ was synthesized by a usual solid phase method.
出発原料として平均粒径が0.1〜10μm、純度が99.99%以上のGd2O3、Sc2O3、Ga2O3をGd3Sc2Ga3O12になるように各粉末を秤量し、更に平均粒径が0.1〜10μm、純度が99.9%以上のCeO2、HfO2をそれぞれGd3Sc2Ga3O12に対して0.5モル%、1.0モル%となるように秤量して、これら粉末をボールミル中でエタノール混合した。試料を乾燥後、ナイロンふるいを通して整粒した。整粒粉末を、アルミナるつぼに入れ、1500℃の酸素中にて4時間仮焼きした。粉末X線回折測定の結果から、この合成条件で目的物が得られたことを確認した。
合成したGd3Sc2Ga3O12:Ce3+,Hf4+粉末の励起発光スペクトルを測定したところ、CeO2及びHfO2のドープ量0.5モル%及び1.0モル%のいずれにおいても、200〜500nmの波長の吸収スペクトル、560nmを中心に440〜700nmにピークを有する黄色の発光がみられた。また減衰曲線を測定したところ、黄色の残光が2時間継続することが確認された。吸収スペクトルおよび発光スペクトルは、図1および図2に示したものと近似していた。
Each powder was prepared so that Gd 2 O 3 , Sc 2 O 3 , and Ga 2 O 3 having an average particle diameter of 0.1 to 10 μm and a purity of 99.99% or more as Gd 3 Sc 2 Ga 3 O 12 as starting materials In addition, CeO 2 and HfO 2 having an average particle diameter of 0.1 to 10 μm and a purity of 99.9% or more are 0.5 mol% and 1.0 mol respectively with respect to Gd 3 Sc 2 Ga 3 O 12 . These powders were weighed so as to be mol%, and these powders were mixed with ethanol in a ball mill. The sample was dried and then sized through a nylon sieve. The sized powder was put in an alumina crucible and calcined in oxygen at 1500 ° C. for 4 hours. From the result of the powder X-ray diffraction measurement, it was confirmed that the target product was obtained under these synthesis conditions.
When the excitation emission spectrum of the synthesized Gd 3 Sc 2 Ga 3 O 12 : Ce 3+ , Hf 4+ powder was measured, the doping amount of CeO 2 and HfO 2 was 0.5 mol% and 1.0 mol%. Absorption spectrum at a wavelength of 200 to 500 nm, yellow light emission having a peak at 440 to 700 nm centered at 560 nm was observed. When the decay curve was measured, it was confirmed that yellow afterglow continued for 2 hours. The absorption spectrum and emission spectrum were close to those shown in FIGS.
[実施例3]
Gd3Sc2Ga3O12:Ce3+,Hf4+の焼結体を作製した。
[Example 3]
A sintered body of Gd 3 Sc 2 Ga 3 O 12 : Ce 3+ , Hf 4+ was produced.
実施例2で得られた仮焼粉末を整粒後、面圧40MPaの金型成形で直径15mmの成形体を作製、100MPaの静水圧でCIP成形して成形体を得た。この成形体について、大気雰囲気中で1600℃、20時間の常圧焼結法により焼結体を得た。焼結体の相対密度は98%、粉末X線回折測定の結果から目的の焼結体が得られたことを確認した。 After sizing the calcined powder obtained in Example 2, a molded body having a diameter of 15 mm was produced by die molding with a surface pressure of 40 MPa, and CIP molding was performed with a hydrostatic pressure of 100 MPa to obtain a molded body. About this molded object, the sintered compact was obtained by the atmospheric pressure sintering method of 1600 degreeC and 20 hours in air | atmosphere atmosphere. The relative density of the sintered body was 98%, and it was confirmed that the desired sintered body was obtained from the results of powder X-ray diffraction measurement.
得られたGd3Sc2Ga3O12:Ce3+,Hf4+焼結体の励起発光スペクトルを測定したところ、CeO2及びHfO2のドープ量0.5モル%及び1.0モル%のいずれにおいても、200〜500nmの波長の吸収スペクトルが存在し、560nmを中心に440〜700nmにピークを有する黄色の発光がみられた。また減衰曲線を測定したところ、黄色の残光が4時間継続することが確認された。吸収スペクトルおよび発光スペクトルは、図1および図2に示したものと近似していた。 When the excitation emission spectrum of the obtained Gd 3 Sc 2 Ga 3 O 12 : Ce 3+ , Hf 4+ sintered body was measured, it was found that any of the doping amounts of CeO 2 and HfO 2 was 0.5 mol% and 1.0 mol%. In FIG. 2, an absorption spectrum having a wavelength of 200 to 500 nm was present, and yellow light emission having a peak at 440 to 700 nm centered at 560 nm was observed. When the decay curve was measured, it was confirmed that yellow afterglow continued for 4 hours. The absorption spectrum and emission spectrum were close to those shown in FIGS.
[比較例1]
出発原料として平均粒径が0.1〜10μm、純度が99.99%以上のGd2O3、Sc2O3、Ga2O3をGd3Sc2Ga3O12になるように各粉末を秤量し、ボールミル中でエタノール混合した。試料を乾燥後、ナイロンふるいを通して整粒した。整粒粉末を、アルミナるつぼに入れ、1500℃の酸素中にて4時間仮焼きした。粉末X線回折測定の結果から、この合成条件でGd3Sc2Ga3O12が得られたことを確認した。
[Comparative Example 1]
Each powder was prepared so that Gd 2 O 3 , Sc 2 O 3 , and Ga 2 O 3 having an average particle diameter of 0.1 to 10 μm and a purity of 99.99% or more as Gd 3 Sc 2 Ga 3 O 12 as starting materials Were weighed and mixed with ethanol in a ball mill. The sample was dried and then sized through a nylon sieve. The sized powder was put in an alumina crucible and calcined in oxygen at 1500 ° C. for 4 hours. From the result of the powder X-ray diffraction measurement, it was confirmed that Gd 3 Sc 2 Ga 3 O 12 was obtained under this synthesis condition.
合成したGd3Sc2Ga3O12の励起発光スペクトルを測定したところ、吸収スペクトルの存在は確認されず、発光もみられなかった。 When the excitation emission spectrum of the synthesized Gd 3 Sc 2 Ga 3 O 12 was measured, the presence of an absorption spectrum was not confirmed, and no emission was observed.
[比較例2]
比較例1と同様に平均粒径が0.1〜10μm、純度が99.99%以上のGd2O3、Sc2O3、Ga2O3をGd3Sc2Ga3O12になるように各粉末を秤量し、更に平均粒径が0.1〜10μm、純度が99.9%以上のCeO2をGd3Sc2Ga3O12に対して0.5モル%となるように秤量して、ボールミル中でエタノール混合した。試料を乾燥後、ナイロンふるいを通して整粒した。整粒粉末を、アルミナるつぼに入れ、1500℃の酸素中にて4時間仮焼きした。粉末X線回折測定の結果から、この合成条件でGd3Sc2Ga3O12:Ce3+が得られたことを確認した。
[Comparative Example 2]
As in Comparative Example 1, Gd 2 O 3 , Sc 2 O 3 , and Ga 2 O 3 having an average particle diameter of 0.1 to 10 μm and a purity of 99.99% or more are changed to Gd 3 Sc 2 Ga 3 O 12. Each powder is weighed, and CeO 2 having an average particle diameter of 0.1 to 10 μm and a purity of 99.9% or more is weighed so as to be 0.5 mol% with respect to Gd 3 Sc 2 Ga 3 O 12 . Then, ethanol was mixed in a ball mill. The sample was dried and then sized through a nylon sieve. The sized powder was put in an alumina crucible and calcined in oxygen at 1500 ° C. for 4 hours. From the result of the powder X-ray diffraction measurement, it was confirmed that Gd 3 Sc 2 Ga 3 O 12 : Ce 3+ was obtained under this synthesis condition.
合成したGd3Sc2Ga3O12:Ce3+の励起発光スペクトルを測定したところ、200〜500nmの波長の吸収スペクトルが存在し、560nmを中心に440〜700nmにピークを有する黄色の発光がみられたが、減衰曲線を測定したところ残光は全く見られなかった。 When an excitation emission spectrum of the synthesized Gd 3 Sc 2 Ga 3 O 12 : Ce 3+ was measured, an absorption spectrum with a wavelength of 200 to 500 nm was present, and yellow emission having a peak at 440 to 700 nm centered at 560 nm was observed. However, when the decay curve was measured, no afterglow was observed.
Claims (2)
少なくとも400〜450nmの波長を含む光の励起により、
440〜700nmの波長の発光スペクトルを示すことを特徴とする長残光蛍光体。 Gd 3 Sc 2−x Ga 3 + x O 12 (0 ≦ X ≦ 2) is doped with Ce and one or more of Hf, Ti, Zr, W or Pb ,
By excitation of light comprising a wavelength of at least 400-450 nm,
A long afterglow phosphor characterized by exhibiting an emission spectrum having a wavelength of 440 to 700 nm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009203078A JP5593492B2 (en) | 2009-09-02 | 2009-09-02 | Long afterglow phosphor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009203078A JP5593492B2 (en) | 2009-09-02 | 2009-09-02 | Long afterglow phosphor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011052136A JP2011052136A (en) | 2011-03-17 |
JP5593492B2 true JP5593492B2 (en) | 2014-09-24 |
Family
ID=43941458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009203078A Active JP5593492B2 (en) | 2009-09-02 | 2009-09-02 | Long afterglow phosphor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5593492B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101705095B (en) * | 2009-09-21 | 2011-08-10 | 四川新力光源有限公司 | Yellow light afterglow material and preparation method thereof as well as LED illuminating device using same |
WO2019168169A1 (en) * | 2018-03-02 | 2019-09-06 | 国立大学法人東北大学 | Phosphor |
JP7139988B2 (en) * | 2019-02-13 | 2022-09-21 | Tdk株式会社 | Phosphor and light source |
JP7220363B2 (en) * | 2019-03-28 | 2023-02-10 | パナソニックIpマネジメント株式会社 | WAVELENGTH CONVERSION MEMBER, LIGHT SOURCE DEVICE, AND LIGHTING DEVICE |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2042147A1 (en) * | 1990-06-29 | 1991-12-30 | Veneta G. Tsoukala | Hole-trap-compensated scintillator material |
JPH11310777A (en) * | 1998-04-30 | 1999-11-09 | Toshiba Corp | Phosphor ceramic, and radiation detector and radiographic inspection apparatus using the same |
JP4860368B2 (en) * | 2006-06-27 | 2012-01-25 | 富士フイルム株式会社 | Garnet-type compounds and methods for producing the same |
-
2009
- 2009-09-02 JP JP2009203078A patent/JP5593492B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011052136A (en) | 2011-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3438229B1 (en) | Fluorescent body, light-emitting device, illuminating apparatus, and image display apparatus | |
Zhuang et al. | Enhancement of red persistent luminescence in Cr3+-doped ZnGa2O4 phosphors by Bi2O3 codoping | |
KR101109988B1 (en) | Fluorescent substance, method for producing the same, and light-emitting device using the same | |
TWI284673B (en) | Phosphor, method for producing the same, luminescence apparatus and image display device using the same | |
TWI697544B (en) | Phosphors and uses thereof | |
JP6395701B2 (en) | Composite ceramic containing conversion phosphor and material with negative coefficient of thermal expansion | |
KR101792800B1 (en) | Color tunable upconversion nanophosphor and method of fabricating the same | |
Liu et al. | Preparation and properties of transparent Eu: YAG fluorescent ceramics with different doping concentrations | |
US20080123698A1 (en) | Tb-DOPED LUMINESCENT COMPOUND, LUMINESCENT COMPOSITION AND LUMINESCENT BODY CONTAINING THE SAME, LIGHT EMITTING DEVICE AND SOLID-STATE LASER DEVICE | |
Ji et al. | La2Hf2O7: Ti4+ ceramic scintillator for x-ray imaging | |
Zvonarev et al. | Luminescent properties of alumina ceramics doped with manganese and magnesium | |
Yang et al. | Ultraviolet long afterglow emission in Bi3+ doped CdSiO3 phosphors | |
JP5593492B2 (en) | Long afterglow phosphor | |
Katyayan et al. | Investigation of spectral properties of Eu3+ and Tb3+ doped strontium zirconium trioxide orthorhombic perovskite for optical and sensing applications | |
Suriyamurthy et al. | Investigations on luminescence of rare earths doped CaTiO3: Pr3+ phosphor | |
JP2005154611A (en) | Method for producing sialon fluorescent substance | |
JP2008208238A (en) | Fluorescent substance and method for producing the same and lighting apparatus and image display device equipped with the same | |
JP2007141855A (en) | Luminaire using phosphor, and image display device | |
JP3899492B2 (en) | Method for producing translucent polycrystalline ceramic flash | |
Xu et al. | Scintillation and luminescent properties of cerium doped lutetium aluminum garnet (Ce: LuAG) powders and transparent ceramics | |
KR100733009B1 (en) | Synthesis of the Phosphorescent Phosphor of Strontium Barium Aluminates | |
Sajwan et al. | Recent progress in multicolor tuning of rare earth-doped gadolinium aluminate phosphors GdAlO 3 | |
JP2014234479A (en) | Up-conversion phosphor and method for producing the same | |
US9120973B2 (en) | Fluorescent substance and a production method therefor | |
CN111051472A (en) | Phosphor, light emitting device, image display device, and illumination device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120829 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20120829 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120829 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120903 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130607 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130723 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130924 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20130925 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140624 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140708 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5593492 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |