JP2009281556A - Cargo supporting base isolation device - Google Patents

Cargo supporting base isolation device Download PDF

Info

Publication number
JP2009281556A
JP2009281556A JP2008136404A JP2008136404A JP2009281556A JP 2009281556 A JP2009281556 A JP 2009281556A JP 2008136404 A JP2008136404 A JP 2008136404A JP 2008136404 A JP2008136404 A JP 2008136404A JP 2009281556 A JP2009281556 A JP 2009281556A
Authority
JP
Japan
Prior art keywords
support
support column
movable body
load
seismic isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008136404A
Other languages
Japanese (ja)
Other versions
JP4930730B2 (en
Inventor
Yutaka Hasegawa
豊 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daifuku Co Ltd
Original Assignee
Daifuku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daifuku Co Ltd filed Critical Daifuku Co Ltd
Priority to JP2008136404A priority Critical patent/JP4930730B2/en
Publication of JP2009281556A publication Critical patent/JP2009281556A/en
Application granted granted Critical
Publication of JP4930730B2 publication Critical patent/JP4930730B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Warehouses Or Storage Devices (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To continuously expect the excellent base isolation effect over a long period, by unitizing a cargo supporting base isolation device effectively in enhancing earthquake resistance of a cargo support table for supporting a cargo in a cargo storage division of a rack. <P>SOLUTION: This cargo supporting base isolation device is composed of a support column body 16 erected on support members 7a and 7b, a movable body 17 put on this support column body 16 and slidably supported on an upper surface of the support column body 16, and an energizing member 19 interposed between an annular peripheral wall 18 arranged in this movable body 17 and the support column body 16 and energizing and holding the movable body 17 to and in a substantially concentric position to the support column body 16. An upper end support surface 16b of the support column body 16 is formed as a convex spherical surface, and a lower side support object surface 17b of the movable body 17 abutting on the upper end support surface 16b of this support column body 16, is formed as a concave spherical surface larger than a radius of the convex spherical surface for forming the upper end support surface 16b of the support column body 16. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、荷保管用ラックなどの荷支持台として、又は荷支持台の支持手段として使用される荷支持用免震装置に関するものである。   The present invention relates to a load-supporting seismic isolation device used as a load-supporting base such as a load-storage rack or as a supporting means for a load-supporting base.

荷保管用ラックなどの荷支持台の支持手段として使用される荷支持用免震装置は、地震時にラックが荷収納区画の荷出し入れ前後方向に揺れたとき、保管中の荷が荷支持台上を滑動して当該ラックの通路側(ラックに沿って設けられた入出庫用クレーンの走行通路のある側)へ落下する事故を防止するために採用されるものであって、一般的に、ラックの荷収納区画において荷を支持する荷支持台と、荷収納区画の左右両側の隔壁フレームから突設されて前記荷支持台を支持する支持部材との間に介装されるもので、荷支持台を兼用するか又は当該荷支持台を支持する可動体を水平方向に滑動自在に支持する支持柱体と、前記可動体をその滑動領域のほぼ中心位置に付勢保持する付勢部材とから構成される。而して、従来のこの種の荷支持用免震装置は、特許文献1にも記載されるように、前記支持柱体と付勢部材とが支持部材上の離れた位置に並設されており、免震装置としてユニット化されたものでなかったため、支持部材上への取付け作業などにも手間がかかるというだけでなく、支持柱体を中心に水平全方位に可動体を付勢力に抗して滑動自在に支持させることもできなかった。そこで、非特許文献1に示すように、前記可動体を支持柱体に被さって水平全方位に滑動自在に支持される円盤状に構成し、この可動体の前記支持柱体を取り囲む環状周壁と前記支持柱体との間に渦巻きバネなどの付勢部材を介装した、ユニット化された免震装置が考えられた。
特開2008−51238号公報 特願2006−318076号
The seismic isolation device for load support used as a support means for a load support platform such as a load storage rack is designed so that the load being stored is placed on the load support platform when the rack swings in the direction before and after loading / unloading of the load storage section. Is used to prevent an accident from falling to the path side of the rack (the side having the traveling path of the loading / unloading crane provided along the rack). A load supporting base that supports the load in the load storage section and a support member that protrudes from the bulkhead frames on the left and right sides of the load storage section and supports the load support base. A support column that also serves as a base or supports a movable body that supports the load support base in a slidable manner in a horizontal direction, and a biasing member that biases and holds the movable body at a substantially central position of the sliding region. Composed. Thus, in this conventional seismic isolation device for load support, as described in Patent Document 1, the support column body and the urging member are arranged in parallel at a distant position on the support member. Because it was not unitized as a seismic isolation device, it not only took time to mount the support member on the support member, but it also resisted the urging force of the movable body in all horizontal directions around the support column. And could not be supported slidably. Therefore, as shown in Non-Patent Document 1, the movable body is formed in a disk shape that covers the support column body and is slidably supported in all horizontal directions, and an annular peripheral wall that surrounds the support column body of the movable body; A unitized seismic isolation device has been conceived in which an urging member such as a spiral spring is interposed between the support column and the support column.
JP 2008-51238 A Japanese Patent Application No. 2006-318076

非特許文献1に記載される構成では、大径の可動体が小径の支持柱体に支持されて、支持柱体から可動体の周辺部が大きく張り出した状態にあるので、この免震装置で支持された荷支持台又は前記免震装置の可動体そのもので兼用された荷支持台上に荷が積載されるときに、降ろされるときの荷の底面が完全に水平ではなくて傾いていることが原因で、前記可動体の周辺部一箇所が荷で押し下げられて当該可動体が支持柱体に対して傾く恐れがある。このようなとき、大径の可動体の下側被支持面に小径の支持柱体の上端支持面の周縁一箇所が食い込んで傷が付くことになる。このような可動体の下側被支持面上の傷は、支持柱体と可動体との間の円滑な水平相対移動を妨げる要因となり、所期の免震効果が期待できなくなる。   In the configuration described in Non-Patent Document 1, since the large-diameter movable body is supported by the small-diameter support column body and the peripheral portion of the movable body is greatly projected from the support column body, When a load is loaded on a supported load support table or a load support table that is also used as a movable body of the seismic isolation device, the bottom surface of the load when it is lowered is not completely horizontal but inclined. For this reason, there is a possibility that one peripheral portion of the movable body is pushed down by a load and the movable body is inclined with respect to the support column. In such a case, one peripheral edge of the upper end support surface of the small-diameter support column body bites into the lower supported surface of the large-diameter movable body and is damaged. Such damage on the lower supported surface of the movable body becomes a factor that hinders smooth horizontal relative movement between the support column and the movable body, and the expected seismic isolation effect cannot be expected.

本発明は上記のような従来の問題点を解消し得る荷支持用免震装置を提供することを目的とするものであって、請求項1に記載の免震装置は、後述する実施形態の参照符号を付して示すと、支持部材7a,7b上に立設された支持柱体16と、この支持柱体16上に被さって当該支持柱体16の上端支持面25aで滑動自在に支持される可動体17と、この可動体17に設けられた環状周壁18と前記支持柱体16との間に介装されて前記可動体17を前記支持柱体16に対しほぼ同心位置に付勢保持する付勢部材19とから成る荷支持用免震装置において、前記支持柱体16の上端支持面16bが凸球面に形成され、この支持柱体16の上端支持面16bに当接する前記可動体17の下側被支持面17bが、前記支持柱体16の上端支持面16bを形成する凸球面の半径より大きい凹球面に形成された構成となっている。   The object of the present invention is to provide a load-supporting seismic isolation device that can solve the above-mentioned conventional problems, and the seismic isolation device according to claim 1 is an embodiment described later. When indicated by a reference numeral, the support column 16 standing on the support members 7a and 7b and the upper support surface 25a of the support column 16 is slidably supported on the support column 16 The movable body 17 is interposed between the support pillar body 16 and the annular peripheral wall 18 provided on the movable body 17 and the support column body 16 to urge the movable body 17 to a substantially concentric position. In the load-supporting seismic isolation device including the urging member 19 that is held, the upper end support surface 16b of the support column 16 is formed into a convex spherical surface, and the movable body is in contact with the upper end support surface 16b of the support column 16 17 is a lower supported surface 17b of the upper support surface of the support column 16. It has a formed structure on a concave spherical surface larger than the radius of the convex spherical surface forming the 6b.

上記の本発明に係る免震装置を実施する場合、前記可動体17の下側被支持面17bは、当該可動体17の下側面そのものを凹球面に加工して形成することができるが、請求項2に記載のように、可動体17の下側面に張設されたスライドプレート28の下側面で前記下側被支持面17bを形成することができる。   When the seismic isolation device according to the present invention is implemented, the lower supported surface 17b of the movable body 17 can be formed by processing the lower side surface of the movable body 17 into a concave spherical surface. As described in Item 2, the lower supported surface 17b can be formed on the lower surface of the slide plate 28 stretched on the lower surface of the movable body 17.

又、請求項3に記載のように、前記支持柱体16は、支持部材7a,7b上に固定される金属製の支柱本体16aと、この支柱本体16aの上端に取り付けられる合成樹脂製の押え板25から構成し、支柱本体16aの上端には小径段部22を形成し、この支柱本体16aの上端小径段部22に、周囲が支柱本体16aから張り出すリング状緩衝材23を外嵌させ、前記押え板25は、その周辺が前記リング状緩衝材23に被さって当該リング状緩衝材23を固定すると共にその上面が前記支持柱体16の上端被支持面16bを形成するように構成することができる。   According to a third aspect of the present invention, the support column 16 includes a metal column main body 16a fixed on the support members 7a and 7b and a synthetic resin presser attached to the upper end of the column main body 16a. A small-diameter step portion 22 is formed on the upper end of the column main body 16a, and a ring-shaped cushioning material 23 that protrudes from the column main body 16a is fitted around the upper-end small-diameter step portion 22 of the column main body 16a. The presser plate 25 is configured such that its periphery covers the ring-shaped cushioning material 23 and fixes the ring-shaped cushioning material 23, and its upper surface forms the upper end supported surface 16 b of the support column 16. be able to.

更に、請求項4に記載のように、前記支持柱体16の上端支持面16bを合成樹脂で形成し、前記可動体17の下側被支持面17bは金属で形成することができる。   Furthermore, as described in claim 4, the upper end support surface 16b of the support column 16 can be made of synthetic resin, and the lower supported surface 17b of the movable body 17 can be made of metal.

本発明に係る荷支持用免震装置は、例えば荷保管用ラックの各荷収納区画に配設される荷支持台と、当該荷支持台を支持するように荷収納区画の左右両側の隔壁フレームから突設された支持部材との間に介装するか又は、前記支持部材上に配設した本発明免震装置の可動体そのものを荷支持台として使用することができ、係る使用状態において、ラックが地震発生時に荷収納区画の荷出し入れ前後方向に揺れ動いたとき、ラックと一体に前後に揺れ動く支持部材側の支持柱体と荷を支持する側の可動体との間に付勢部材の付勢力に抗しての相対摺接移動が生じ、荷を支持する側の可動体がラックと一体に同一速度、同一振幅で前後方向に揺れ動くことがなくなる。   The seismic isolation device for load support according to the present invention includes, for example, a load support base disposed in each load storage section of a load storage rack, and partition walls on both left and right sides of the load storage section so as to support the load support base. Or the movable body itself of the seismic isolation device of the present invention disposed on the support member can be used as a load support base. When the rack swings in the forward / backward direction of loading / unloading of the load storage section when an earthquake occurs, an urging member is attached between the support column on the support member side that swings back and forth integrally with the rack and the movable body on the load support side. Relative sliding movement occurs against the force, and the movable body on the side supporting the load does not swing in the front-rear direction at the same speed and the same amplitude as the rack.

従って、開放された通路側にラックが揺れ動いたときに可動体を介して荷がラックと一体に通路側に揺れ動くことにより、慣性で荷が荷支持台上を通路側へ滑動し、場合によっては通路側へ落下してしまう恐れがなくなり、所期の免震効果が得られる。この支持部材側の支持柱体と荷を支持する側の可動体との間の前後方向の相対移動は、付勢部材の弾性に抗して行われるので、相対移動後は当該付勢部材が弾性復帰することにより、荷を支持する側の可動体は支持部材上の原点位置に自動復帰するので、荷支持台上で荷が滑動しない限り荷の位置が前後方向に不測に変動することはなく、安全に荷を継続保管することができる。勿論、支持柱体に対して可動体は水平全方位に滑動自在に支持されているので、ラックが左右横方向や斜め方向に揺れた場合も免震効果が期待でき、荷周辺の一部分が荷支持台上から外れ落ちて荷崩れを起こすような恐れも解消する。更に、支持柱体とこれに被さる可動体との間に付勢部材が介装され、支持柱体を支持部材上に取り付けるだけで免震装置の取付けが完了するので、免震装置の取付け作業が簡単容易に行え、組立てコストを削減できる。   Therefore, when the rack swings to the open passage side, the load swings to the passage side integrally with the rack via the movable body, so that the load slides on the load support base due to inertia to the passage side. There is no risk of falling to the aisle side, and the desired seismic isolation effect is obtained. Since the relative movement in the front-rear direction between the support column on the support member side and the movable body on the load support side is performed against the elasticity of the biasing member, the biasing member is moved after the relative movement. By returning elastically, the movable body that supports the load automatically returns to the origin position on the support member.Therefore, unless the load slides on the load support base, the position of the load will not change unexpectedly in the front-rear direction. The load can be safely and continuously stored. Of course, since the movable body is slidably supported in all horizontal directions with respect to the support column, a seismic isolation effect can be expected even when the rack swings in the horizontal and horizontal directions or in an oblique direction. The fear of falling off the support base and causing cargo collapse is also eliminated. Furthermore, an urging member is interposed between the support column and the movable body covering it, and the installation of the seismic isolation device is completed simply by mounting the support column on the support member. Can be done easily and easily, and the assembly cost can be reduced.

而して、上記請求項1に記載の本発明の構成によれば、支持柱体の上端支持面が凸球面に形成され、この支持柱体の上端支持面に当接する可動体の下側被支持面が、前記支持柱体の上端支持面を形成する凸球面の半径より大きい凹球面に形成された構成であるから、支持柱体の上端支持面と可動体の下側被支持面との接触は、支持柱体に対する可動体の水平方向の相対移動や支持柱体に対する可動体の傾動に関係なく常に接線接触となり、小径の支持柱体の上端支持面の周縁一箇所が大径の可動体の下側被支持面に食い込んで傷を付けるような恐れがなくなる。従って、可動体の下側被支持面に付いた傷によって支持柱体と可動体との間の円滑な水平相対移動が妨げられるようなことがなくなり、所期の免震効果を確実且つ長期間にわたって継続的に期待できる。   Thus, according to the configuration of the present invention as set forth in claim 1, the upper support surface of the support column is formed into a convex spherical surface, and the lower cover of the movable member contacting the upper support surface of the support column is formed. Since the support surface is configured to be a concave spherical surface larger than the radius of the convex spherical surface forming the upper end support surface of the support column body, the upper end support surface of the support column body and the lower supported surface of the movable body The contact is always tangential contact regardless of the horizontal relative movement of the movable body relative to the support column and the tilt of the movable body relative to the support column, and one edge of the upper end support surface of the small-diameter support column is movable with a large diameter. There is no risk of damaging the lower supported surface of the body. Therefore, the horizontal horizontal movement between the support column and the movable body is not hindered by scratches on the lower supported surface of the movable body, so that the desired seismic isolation effect can be ensured for a long time. Can be expected continuously.

更に、支持柱体と可動体とが互いに同心状の定位置から水平方向に相対移動したときに支持柱体に対し可動体が下向き荷重に抗して真上に押し上げられることになり、しかも凸球面と凹球面との接触であるから、可動体が支持柱体から水平方向に離れるのに従って、支持柱体と可動体との間に作用する相対移動抑制抵抗力が増大すると共に、支持柱体と可動体との間に作用する、両者を互いに同心状の位置に戻そうとする復元力も増大する。従って、可動体と支持柱体との間の相対移動量が増大するのに伴って、付勢部材から受ける押し戻し方向の弾性反力が大きくなることと相俟って、揺れに対する減衰効果も大きく、確実で効果的な免震効果が得られる。   Furthermore, when the support column body and the movable body are moved relative to each other in the horizontal direction from a concentric fixed position, the movable body is pushed up against the downward load against the support column body, and the convex Since the contact between the spherical surface and the concave spherical surface, as the movable body moves away from the support column body in the horizontal direction, the relative movement suppression resistance force acting between the support column body and the movable body increases, and the support column body The restoring force acting between the movable body and the movable body to return the two to a concentric position also increases. Therefore, along with an increase in the amount of relative movement between the movable body and the supporting column body, coupled with an increase in the elastic reaction force in the pushback direction received from the biasing member, the damping effect on the swing is also large. A reliable and effective seismic isolation effect can be obtained.

尚、請求項2に記載の構成によれば、周囲が環状周壁で取り囲まれている可動体の下側面を凹球面に切削加工するよりも、単なる円形板となるスライドプレートの下側面を凹球面に切削加工する方が簡単容易であるから、結果的に装置の製造コストを下げることができると共に、可動体そのものの材質や下側面の性状に無関係に、好ましい材質と性状を備えた凹球面から成る下側被支持面を形成することができ、所期通りの免震効果を確実に期待できる装置を容易に構成できる。   In addition, according to the structure of Claim 2, rather than cutting the lower surface of the movable body surrounded by the annular peripheral wall into a concave spherical surface, the lower surface of the slide plate, which is a simple circular plate, is formed into a concave spherical surface. Since it is easier and easier to cut, the manufacturing cost of the device can be reduced as a result, and from the concave spherical surface having the preferred material and properties, regardless of the material of the movable body itself and the properties of the lower surface. The lower supported surface which consists of this can be formed, and the apparatus which can anticipate the expected seismic isolation effect reliably can be comprised easily.

又、支持柱体に外嵌して周囲が支持柱体の支柱本体から張り出すリング状緩衝材を設けることにより、ラックが大きく揺れたようなときでも支持柱体と可動体の環状周壁とが直接衝撃的に衝突するのを前記リング状緩衝材によって防止し、衝撃を緩和して荷崩れなどの事故につながる恐れを大幅に抑制できるのであるが、前記リング状緩衝材を取り付ける場合に請求項3に記載の構成によれば、前記支柱本体の上端小径段部にリング状緩衝材を外嵌させて上から押え板を取り付けるだけで良いので、前記リング状緩衝材の取付けが簡単容易に行える。しかも、支持柱体の支柱本体の材質に関係なく、押え板の構成材料を上端支持面に好適な材料とし、この押え板の上面を凸球面に加工するだけで本発明を容易に実施することができる。   In addition, by providing a ring-shaped cushioning material that fits around the support column and the periphery projects from the column main body of the support column, the support column and the annular peripheral wall of the movable body can be connected even when the rack is greatly shaken. The ring-shaped cushioning material prevents a direct impact collision, and the impact can be mitigated and the risk of an accident such as a load collapse can be greatly suppressed. According to the configuration described in 3, the ring-shaped cushioning material can be easily and easily attached because only the ring-shaped cushioning material is externally fitted to the upper end small-diameter stepped portion of the column body and the presser plate is attached from above. . Moreover, regardless of the material of the column body of the support column body, the material of the press plate is made a suitable material for the upper end support surface, and the present invention can be easily implemented only by processing the upper surface of the press plate into a convex spherical surface. Can do.

更に、請求項4に記載の構成によれば、可動体の下側被支持面は金属製であり、この可動体の下側被支持面を支持する支持柱体の上端支持面は合成樹脂製であるから、この支柱本体上端支持面を形成する合成樹脂材に摩擦係数の小さな素材を選択して構成することにより、支持柱体と可動体との間の水平相対移動を円滑に行わせ、以て所期の免震効果を確実に得ることができる。   Furthermore, according to the structure of claim 4, the lower supported surface of the movable body is made of metal, and the upper end support surface of the support column that supports the lower supported surface of the movable body is made of synthetic resin. Therefore, by selecting and configuring a material with a small friction coefficient for the synthetic resin material that forms the support body upper end support surface, the horizontal relative movement between the support column and the movable body is smoothly performed, Thus, the desired seismic isolation effect can be obtained with certainty.

図1は本発明の荷支持装置が適用されたラックの一部分を示しており、1は上下左右両方向に碁盤目状に配置された荷収納区画であって、各荷収納区画1は、左右横方向には垂直に立設された隔壁フレーム2によって区切られると共に、上下方向には本発明の荷支持装置3によって区切られている。各隔壁フレーム2は、前後一対の支柱部材4a,4bを連結部材5によって互いに連結したラチス構造のものであって、荷収納区画1の背面側では、各隔壁フレーム2の後側支柱部材4bが水平や斜めの連結部材6で連結され、荷収納区画1の正面側、即ち、荷収納区画1に対して荷の出し入れを行う入出庫用クレーンの走行通路側では、荷収納区画1に対する荷の出し入れに邪魔にならないレベルで水平連結材(図示省略)により各隔壁フレーム2の前側支柱部材4aどうしが連結されることが知られている。   FIG. 1 shows a part of a rack to which the load supporting apparatus of the present invention is applied. Reference numeral 1 denotes a load storage section arranged in a grid pattern in both the upper, lower, left and right directions. It is delimited by a partition frame 2 standing vertically in the direction, and delimited by a load support device 3 of the present invention in the vertical direction. Each partition frame 2 has a lattice structure in which a pair of front and rear support members 4a and 4b are connected to each other by a connection member 5. On the back side of the load storage compartment 1, the rear support members 4b of each partition frame 2 are On the front side of the load storage section 1, that is, on the traveling passage side of the loading / unloading crane that loads and unloads the load storage section 1, the load is stored in the load storage section 1. It is known that the front strut members 4a of the partition wall frames 2 are connected to each other by a horizontal connecting member (not shown) at a level that does not interfere with taking in and out.

各荷収納区画1の下端位置に配設される荷支持装置3は、荷収納区画1の左右両側の隔壁フレーム2に取り付けられた左右一対の支持部材7a,7bと、各支持部材7a,7b上の前後2個所に配設された合計4つの荷支持台を兼用する免震装置8から構成されている。   The load support device 3 disposed at the lower end position of each load storage section 1 includes a pair of left and right support members 7a and 7b attached to the left and right partition walls 2 of the load storage section 1, and each support member 7a and 7b. It consists of a seismic isolation device 8 that also serves as a total of four load support bases arranged at two places on the front and rear.

以下、具体構造を説明すると、図2〜図4に示すように、左右一対の支持部材7a,7bは、荷収納区画1に対する荷出し入れ前後方向(X方向)と平行で隔壁フレーム2の前後幅とほぼ等しい長さの前後方向棒状部材10と、この前後方向棒状部材10の前後両端から直角外向きに連設された腕木部材11a,11bと、これら各腕木部材11a,11bの先端に取り付けられた取付け部材12a,12bから構成されている。取付け部材12a,12bは、腕木部材11a,11bの高さの倍程度の高さを有するもので、その下半部に腕木部材11a,11bが取り付けられた取り付け部材12a,12bは、図2Bに示すように、隔壁フレーム2の支柱部材4a,4bに横から嵌合した状態で、支柱部材4a,4bに設けられている取付け孔との間に挿通された1本のボルト13とナット14とで支柱部材4a,4bの所定高さ位置に固定される。尚、腕木部材11a,11bには溝形材が、その凹溝部が互いに対向する向きで使用され、前後方向棒状部材10にはアングル材が、一方の水平帯状板部が腕木部材11a,11bの先端上面に重なると共に他方の垂直帯状板部が腕木部材11a,11bの先端に重なる向きで使用されている。図3に示す15は、取付け部材12a,12bの上半部に設けられたボルト挿通孔である。   Hereinafter, the specific structure will be described. As shown in FIGS. 2 to 4, the pair of left and right support members 7 a, 7 b are parallel to the loading / unloading front-rear direction (X direction) with respect to the load storage section 1 and the front-rear width of the partition frame 2. Is attached to the front end of each arm member 11a, 11b, and the arm members 11a, 11b connected to the front and rear ends of the front direction bar member 10 at right angles outward. Mounting members 12a and 12b. The attachment members 12a and 12b have a height about twice the height of the arm members 11a and 11b. The attachment members 12a and 12b with the arm members 11a and 11b attached to the lower half of the attachment members 12a and 12b are shown in FIG. 2B. As shown in the figure, one bolt 13 and a nut 14 inserted between the mounting holes provided in the column members 4a and 4b in a state of being fitted to the column members 4a and 4b of the partition wall frame 2 from the side, Thus, the column members 4a and 4b are fixed at predetermined height positions. It should be noted that the arm members 11a and 11b are provided with a groove-shaped member, and the concave groove portions thereof are opposed to each other, the longitudinal bar member 10 is formed of an angle member, and one horizontal belt-like plate portion of the arm members 11a and 11b. The other vertical belt-like plate portion is used in such a direction that it overlaps the top surface of the tip and the tips of the arm members 11a and 11b. 3 shown in FIG. 3 is a bolt insertion hole provided in the upper half of the attachment members 12a and 12b.

4つの免震装置8は、各支持部材7a,7bにおける前後方向棒状部材10上の前後両端近傍位置にそれぞれ配設された同一構造のものであって、図5〜図6に示すように、前後方向棒状部材10上に立設された支持柱体16と、この支持柱体16に水平全方位に滑動自在に支持される可動体17と、前記支持柱体16を取り囲むように前記可動体17に設けられた環状周壁18と前記支持柱体16との間に介装されて前記可動体17をその滑動範囲内のほぼ中央位置に付勢保持する付勢部材19とから構成されている。   The four seismic isolation devices 8 have the same structure respectively disposed in the vicinity of both front and rear ends on the front and rear direction bar-shaped member 10 in each of the support members 7a and 7b, and as shown in FIGS. A support column 16 erected on the bar member 10 in the front-rear direction, a movable body 17 slidably supported by the support column 16 in all horizontal directions, and the movable body so as to surround the support column 16. And an urging member 19 that is interposed between an annular peripheral wall 18 provided on the rim 17 and the support column 16 and urges and holds the movable body 17 at a substantially central position within its sliding range. .

各免震装置8の具体的構造を説明すると、支持柱体16は、円柱状で金属製の支柱本体16aと、ブチルゴムスポンジなどの弾性材から成るリング状緩衝材23と、円形で合成樹脂製の押え板25とから構成されている。支柱本体16aは、下端面から上向きに設けられたネジ孔20と、下端周面に形成された小径段部21と、上端周面に形成された小径段部22とを備えており、上端小径段部22に上からリング状緩衝材23が外嵌され、このリング状緩衝材23を固定するために支持柱体16の上端面に押え板25が周方向複数本のビス24で取り付けられ、この押え板25の円形の上面が、中心が当該押え板25の垂直軸心線上で上面より十分下方位置にある凸球面に加工されて、当該可動体17を滑動自在に支持する支持柱体16の上端支持面16bを構成している。又、押え板25の上端支持面16bの周縁と当該押え板25の垂直な周側面との間は、尖った角部が形成されないように突曲面を介してつながっている。而して、この支持柱体16(支柱本体16a)が、前後方向棒状部材10の水平帯状板部10aに設けられた上下方向の取付け孔26に下側から上向きに挿通された1本のボルト27をネジ孔20に螺合締結することにより、前後方向棒状部材10の水平帯状板部10a上に固定される。支柱本体16aに取り付けられたリング状緩衝材23は、支柱本体16aより外側に周方向均等に張り出す外径を有する。   The specific structure of each seismic isolation device 8 will be described. The support column 16 is a columnar metal column main body 16a, a ring-shaped cushioning material 23 made of an elastic material such as butyl rubber sponge, and a circular synthetic resin. And presser plate 25. The column main body 16a includes a screw hole 20 provided upward from the lower end surface, a small diameter step portion 21 formed on the lower end peripheral surface, and a small diameter step portion 22 formed on the upper end peripheral surface. A ring-shaped cushioning material 23 is externally fitted to the stepped portion 22 from above, and a presser plate 25 is attached to the upper end surface of the support pillar 16 with a plurality of circumferential screws 24 in order to fix the ring-shaped cushioning material 23. The circular upper surface of the presser plate 25 is processed into a convex spherical surface whose center is located at a position sufficiently below the upper surface on the vertical axis of the presser plate 25 to support the movable body 17 slidably. The upper end support surface 16b is configured. Further, the peripheral edge of the upper end support surface 16b of the presser plate 25 and the vertical peripheral side surface of the presser plate 25 are connected via a projecting curved surface so that a sharp corner is not formed. Thus, the support column 16 (the column main body 16a) is inserted into the vertical mounting hole 26 provided in the horizontal belt-like plate portion 10a of the front / rear direction rod-shaped member 10 upward from the lower side. 27 is screwed and fastened to the screw hole 20 so as to be fixed on the horizontal belt-like plate portion 10a of the bar member 10 in the front-rear direction. The ring-shaped cushioning material 23 attached to the column main body 16a has an outer diameter that projects evenly outward in the circumferential direction from the column main body 16a.

可動体17は、円形の天板部17aの周辺から円形の前記環状周壁18を一体に連設した金属製のものであって、環状周壁18の内周面には、バネ受け用の環状凹溝30が形成され、可動体17の天板部17aの円形下側面には、当該円形下側面のほぼ全域を塞ぐ金属製スライドプレート28が周方向複数本のビス29により取り付けられている。そしてスライドプレート28の下側面は、中心が可動体17の垂直軸心線上でスライドプレート28の下側面より十分下方位置にあって且つ半径が前記支持柱体16の凸球面から成る上端支持面16bの半径より十分大きな凹球面に加工されて、可動体17側の金属製の下側被支持面17bが構成されている。   The movable body 17 is made of metal in which the circular annular peripheral wall 18 is integrally connected from the periphery of the circular top plate portion 17a, and an annular recess for receiving a spring is formed on the inner peripheral surface of the annular peripheral wall 18. A groove 30 is formed, and a metal slide plate 28 is attached to the circular lower side surface of the top plate portion 17 a of the movable body 17 by a plurality of circumferentially-directed screws 29 that closes almost the entire area of the circular lower side surface. The lower surface of the slide plate 28 is centered on the vertical axis of the movable body 17 and is sufficiently below the lower surface of the slide plate 28, and the upper end support surface 16b is formed of a convex spherical surface of the support column 16. A lower supported surface 17b made of metal on the movable body 17 side is formed by processing into a concave spherical surface sufficiently larger than the radius of.

前記可動体17の環状周壁18に設けられた環状凹溝30は、可動体17(スライドプレート28)を支持柱体16(押え板25)の上端支持面25a上に支持させたとき、支柱本体16aの下端小径段部21より高く且つリング状緩衝材23よりも低い位置に設けられている。付勢部材19は、無負荷状態で平らになる渦巻きバネ31から成り、当該渦巻きバネ31の無負荷状態での外径は、前記環状周壁18に設けられたバネ受け用の環状凹溝30の直径より大きく、且つ内径は、前記支持柱体16の小径段部21の直径とほぼ同じである。   The annular groove 30 provided in the annular peripheral wall 18 of the movable body 17 is a column main body when the movable body 17 (slide plate 28) is supported on the upper end support surface 25a of the support column 16 (presser plate 25). It is provided at a position higher than the lower end small diameter step portion 21 of 16 a and lower than the ring-shaped cushioning material 23. The biasing member 19 includes a spiral spring 31 that is flat in an unloaded state, and the outer diameter of the spiral spring 31 in the unloaded state is that of the annular groove 30 for receiving a spring provided in the annular peripheral wall 18. The diameter is larger than the diameter, and the inner diameter is substantially the same as the diameter of the small diameter step portion 21 of the support column 16.

上記のように前後方向棒状部材10の水平帯状板部10a上に支持柱体16を固定するとき、その支柱本体16aの下端小径段部21に渦巻きバネ31の内周部31aを嵌合させた状態で、当該支柱本体16aを水平帯状板部10a上にボルト27で固定する。そして支持柱体16に可動体17を被せるとき、その環状周壁18の環状凹溝30に前記渦巻きバネ31の外周部31bを嵌合させる。即ち、当該渦巻きバネ31の外周部31bを内周部31aに対して引き上げると同時にバネ材を渦巻き方向に絞るようにして外径を縮小させることにより、当該渦巻きバネ31の外周部31bを環状周壁18の環状凹溝30に嵌合させる。この結果、渦巻きバネ31には、外周部31bが内周部31aのレベルまで下がろうとする軸心方向弾性応力と、外周部31bが元の外径に戻ろうとする拡径方向弾性応力とが働くことになり、当該渦巻きバネ31の軸心方向弾性応力により可動体17が引き下げられて、その天板部17aの円形で凹球面から成る金属製の下側被支持面17bが支持柱体16側の円形で凸球面から成る合成樹脂製の上端支持面(押え板25の上面)16bに圧接すると共に、当該渦巻きバネ31の拡径方向弾性応力により可動体17(環状周壁18)が支持柱体16と略同心状となる定位置に付勢保持される。このとき、可動体17の凹球面状の下側被支持面17bの中心位置、即ち、最も上方に凹入した位置に支持柱体16の凸球面状の上端支持面16bが当接しているので、支持柱体16による可動体17の支持レベルは最も低くなっている。   As described above, when the support column 16 is fixed on the horizontal belt-like plate portion 10a of the longitudinal bar member 10, the inner peripheral portion 31a of the spiral spring 31 is fitted to the lower end small-diameter step portion 21 of the column main body 16a. In this state, the column main body 16a is fixed on the horizontal belt-like plate portion 10a with a bolt 27. When the movable body 17 is put on the support pillar 16, the outer peripheral portion 31 b of the spiral spring 31 is fitted into the annular groove 30 of the annular peripheral wall 18. That is, by pulling up the outer peripheral portion 31b of the spiral spring 31 with respect to the inner peripheral portion 31a and simultaneously reducing the outer diameter by constricting the spring material in the spiral direction, the outer peripheral portion 31b of the spiral spring 31 is formed into an annular peripheral wall. 18 annular grooves 30 are fitted. As a result, the spiral spring 31 has an axial elastic stress that causes the outer peripheral portion 31b to lower to the level of the inner peripheral portion 31a and an expanded elastic stress that causes the outer peripheral portion 31b to return to the original outer diameter. The movable body 17 is pulled down by the axial center direction elastic stress of the spiral spring 31, and the lower supported surface 17 b made of a circular and concave spherical surface of the top plate portion 17 a serves as the support column 16. The upper end support surface (upper surface of the pressing plate 25) 16b made of a synthetic resin having a circular and convex spherical surface is pressed against the upper end support surface 16b, and the movable body 17 (the annular peripheral wall 18) is supported by the elastic spring stress in the radial direction of the spiral spring 31. It is biased and held at a fixed position that is substantially concentric with the body 16. At this time, because the convex spherical upper end support surface 16b of the support column 16 is in contact with the center position of the concave supported surface 17b of the concave spherical surface of the movable body 17, that is, the position recessed most upward. The support level of the movable body 17 by the support column 16 is the lowest.

上記の実施形態においては、4つの免震装置8が、荷収納区画1に収納される荷Wの四隅を支持できる位置に配置されて支持部材7a,7bに支持されており、各免震装置8の支持部材7a,7b側の支持柱体16に水平全方位に滑動自在に支持され且つ渦巻きバネ31(付勢部材19)により滑動範囲内のほぼ中央位置に付勢保持された可動体17が、それぞれ荷支持台32を兼用する構成となっている。換言すれば、4つの荷支持台32が、それぞれ免震装置8の支持柱体16と付勢部材19(渦巻きバネ31)を介して支持部材7a,7bに支持されて、荷支持装置3が構成されている。   In the above embodiment, the four seismic isolation devices 8 are arranged at positions that can support the four corners of the load W stored in the load storage section 1 and supported by the support members 7a and 7b. The movable body 17 is slidably supported in all horizontal directions by the support pillars 16 on the support members 7a and 7b side, and is urged and held at a substantially central position within the sliding range by the spiral spring 31 (the urging member 19). However, each is configured to also serve as the load support base 32. In other words, the four load support bases 32 are supported by the support members 7a and 7b via the support column 16 and the biasing member 19 (the spiral spring 31) of the seismic isolation device 8, respectively. It is configured.

上記構成によれば、渦巻きバネ31を水平方向に変形させることができるだけの強さの水平向きの外力が支持柱体16と可動体17との間に相対的に作用すると、支持柱体16と可動体17とは、支持柱体16側のリング状緩衝材23の外周面が可動体17側の環状周壁18の内周面に圧接するまでの範囲内で、支持柱体16側の合成樹脂製の上端支持面16bと可動体17側の金属製の下側被支持面17bとの間の接線接触による相対滑動を伴って、渦巻きバネ31を水平方向に変形させながら水平全方位に相対移動することができる。このとき、支持柱体16に対して可動体17が水平方向に離れるのに伴って、両者間の接線接触位置が支持柱体16側の凸球面状の上端支持面16bの中心位置から周縁方向に移動することになるので、図8に示すように、支持柱体16に対して可動体17がリング状緩衝材23によって制限される限界位置まで何れかの方向に水平相対移動したとき、両者間の接線接触位置が支持柱体16側の凸球面状の上端支持面16bの周縁には達しないで、支持柱体16側の上端支持面16bの周縁と可動体17側の下側被支持面17bとの間に小空隙が確保されるように、支持柱体16側の上端支持面16bの凸球面の半径と可動体17側の下側被支持面17bの凹球面の半径との差を設定して構成しておくことにより、仮に支持柱体16に対して可動体17が傾いても、支持柱体16側の上端支持面16bの周縁一箇所が可動体17側の下側被支持面17bに食い込むことはない。   According to the above configuration, when a horizontal external force that is strong enough to deform the spiral spring 31 in the horizontal direction acts relatively between the support column 16 and the movable body 17, The movable body 17 is a synthetic resin on the support column body 16 side within the range until the outer peripheral surface of the ring-shaped cushioning material 23 on the support column body 16 side comes into pressure contact with the inner peripheral surface of the annular peripheral wall 18 on the movable body 17 side. Relative movement in all horizontal directions while deforming the spiral spring 31 in the horizontal direction with relative sliding by tangential contact between the upper end support surface 16b made of metal and the lower supported surface 17b made of metal on the movable body 17 side can do. At this time, as the movable body 17 moves away from the support column body 16 in the horizontal direction, the tangential contact position between them moves from the center position of the convex spherical upper end support surface 16b on the support column body 16 side to the peripheral direction. As shown in FIG. 8, when the movable body 17 moves horizontally relative to the support column 16 in any direction to the limit position limited by the ring-shaped cushioning material 23, both The tangential contact position between them does not reach the peripheral edge of the convex spherical upper end support surface 16b on the support column 16 side, and the lower supported surface on the movable column 17 side and the peripheral edge of the upper end support surface 16b on the support column 16 side. The difference between the radius of the convex spherical surface of the upper support surface 16b on the support column 16 side and the radius of the concave spherical surface of the lower supported surface 17b on the movable body 17 side so that a small gap is secured between the surface 17b and the surface 17b. By setting and configuring, the support column body 16 is temporarily Even inclined body 17, the peripheral edge one place of the upper end supporting surface 16b of the support column 16 side never bites into the bottom supported surface 17b of the movable member 17 side.

又、支持柱体16と可動体17とが互いに同心状の定位置から水平方向に相対移動したときに支持柱体16に対し可動体17が下向き荷重に抗して真上に押し上げられることになり、しかも凸球面と凹球面との接触であるから、可動体17が支持柱体16から水平方向に離れるのに従って、支持柱体16と可動体17との間の水平方向相対移動の単位量に対する可動体17の揚程が大きくなる。換言すれば、可動体17が支持柱体16から水平方向に離れるのに伴って、両者の相対移動を抑制する抵抗力が増大すると共に、支持柱体16に対して可動体17を元の定位置に戻そうとする水平方向の復元力も増大する。この結果、支持柱体16と可動体17との間の水平方向の相対移動量が増大するのに伴って、圧縮された付勢部材19(渦巻きバネ31)から受ける押し戻し方向の弾性反力が大きくなることと相俟って、支持柱体16と可動体17との間には、この両者の水平方向相対移動を減衰させる作用が働くことになる。   Further, when the support column body 16 and the movable body 17 are moved relative to each other in a horizontal direction from a concentric fixed position, the movable body 17 is pushed up against the support column body 16 against a downward load. In addition, since the contact between the convex spherical surface and the concave spherical surface, the unit amount of the horizontal relative movement between the support column body 16 and the movable body 17 as the movable body 17 moves away from the support column body 16 in the horizontal direction. The lift of the movable body 17 with respect to is increased. In other words, as the movable body 17 moves away from the support column body 16 in the horizontal direction, the resistance force for suppressing the relative movement between the two increases, and the movable body 17 is fixed to the support column body 16. The restoring force in the horizontal direction to return to the position also increases. As a result, as the amount of relative movement in the horizontal direction between the support column 16 and the movable body 17 increases, the elastic reaction force in the push-back direction received from the compressed biasing member 19 (spiral spring 31) is increased. Combined with the increase in size, an action of attenuating the relative movement in the horizontal direction between the support column body 16 and the movable body 17 works.

従って、荷Wを入出庫用クレーンにより空き状態の荷収納区画1内に荷出し入れ前後方向(X方向)に搬入して下ろし、図1に仮想線で示すように、荷Wの底面(パレットに積載されているときはパレットの底面)の四隅を4つの荷支持台32(免震装置8の可動体17)上に支持させた荷支持状態において、地震などによりラックが例えば荷収納区画1の荷出し入れ前後方向(X方向)に揺れ動いたとき、荷Wを支持している4つの荷支持台32(免震装置8の可動体17)に対し、ラックと一体の支持部材7a,7bが支持柱体16を介して各免震装置8の渦巻きバネ31を弾性に抗して正反対方向に交互に変形させながら同方向に揺れ動くことになる。即ち、4つの荷支持台32(免震装置8の可動体17)上で支持された荷Wは、揺れの速度や振幅が想定範囲内であれば殆ど揺れ動かないか又は、支持部材7a,7bの揺れよりも遅れて小さな振幅で揺れ動くことになる。そして、前記のように可動体17と支持柱体16との間には、支持柱体16に対する可動体17の水平方向の揺れを減衰させる作用も働くので、結果として所期の免震効果が得られる。勿論、ラックの揺れが収まったときには、支持柱体16側の凸球面状の上端支持面16bと可動体17側の凹球面状の下側被支持面17bとの上下方向の圧接により可動体17に作用する、当該可動体17を元の定位置に戻そうとする復元力と、水平方向の渦巻きバネ31の弾性復元力とで、荷支持台32(免震装置8の可動体17)は所期の定位置、即ち、支持柱体16に対しほぼ同心位置に自動的に戻される。従って、荷支持台32(免震ユニット8の可動体17)に対して荷Wが滑って移動しない限り、荷収納区画1内での荷Wの位置は変わることがない。   Therefore, the load W is loaded into the empty load storage section 1 by the loading / unloading crane and loaded in the front-rear direction (X direction), and as shown by a virtual line in FIG. In the load supporting state in which the four corners of the bottom of the pallet (when loaded) are supported on the four load supporting bases 32 (the movable body 17 of the seismic isolation device 8), the rack is, for example, in the load storage section 1 due to an earthquake or the like. Support members 7a and 7b integrated with the rack support the four load support bases 32 (movable bodies 17 of the seismic isolation device 8) that support the load W when they swing in the unloading back and forth direction (X direction). The spiral springs 31 of the seismic isolation devices 8 are oscillated in the same direction while alternately deforming in the opposite direction against the elasticity via the column 16. That is, the load W supported on the four load support bases 32 (the movable body 17 of the seismic isolation device 8) hardly swings if the speed and amplitude of the swing are within the assumed range, or the support members 7a, It will swing with a small amplitude later than the swing of 7b. As described above, between the movable body 17 and the support column body 16 also acts to attenuate the horizontal vibration of the movable body 17 with respect to the support column body 16, and as a result, the desired seismic isolation effect is obtained. can get. Of course, when the swing of the rack is settled, the movable body 17 is pressed by the vertical contact between the convex spherical upper end support surface 16b on the support column 16 side and the concave supported lower surface 17b on the movable body 17 side. The load supporting base 32 (the movable body 17 of the seismic isolation device 8) is restored by the restoring force acting on the movable body 17 to return the movable body 17 to the original fixed position and the elastic restoring force of the spiral spring 31 in the horizontal direction. It is automatically returned to the intended fixed position, that is, substantially concentric with respect to the support column 16. Therefore, unless the load W slides and moves with respect to the load support base 32 (the movable body 17 of the seismic isolation unit 8), the position of the load W in the load storage section 1 does not change.

又、各免震装置8に組み込まれたリング状緩衝材23の存在により、ラックが大きく揺れたときなど、支持柱体16と可動体17の環状周壁18とが半径方向に勢い良く衝突するような状況になったとき、リング状緩衝材23が支持柱体16と可動体17の環状周壁18との間で挟まれて圧縮され、衝撃を吸収して、荷支持台32(免震装置8の可動体17)側に大きな衝撃が伝わるのを抑制するので、反動で荷Wが荷支持台32(免震装置8の可動体17)上で滑って移動するのを防止することができ、安全性を高めることができる。   Further, due to the presence of the ring-shaped cushioning material 23 incorporated in each seismic isolation device 8, the support column 16 and the annular peripheral wall 18 of the movable body 17 collide with each other in the radial direction vigorously when the rack is greatly shaken. In such a situation, the ring-shaped cushioning material 23 is sandwiched and compressed between the support column 16 and the annular peripheral wall 18 of the movable body 17, absorbs the impact, and the load support base 32 (the seismic isolation device 8). It is possible to prevent the load W from slipping and moving on the load support base 32 (the movable body 17 of the seismic isolation device 8) due to the reaction. Safety can be increased.

上記の免震作用は、支持柱体16側の上端支持面16bと可動体17側の下側被支持面17bとの間の摩擦抵抗に抗して当該両者が、可動体17の上下移動を伴って円滑に相対滑動することによって実現されるが、支持柱体16側の上端支持面16bは合成樹脂製の押え板25で構成され、可動体17側の下側被支持面17bは金属製のスライドプレート28の下側面で構成されているので、前記支持柱体16側の上端支持面16bを構成する押え板25を摩擦係数の小さな合成樹脂で成形すると共に、可動体17側の金属製の下側被支持面17bを滑らかに仕上げておくことにより、支持柱体16側の上端支持面16bと可動体17側の下側被支持面17bとの間の摩擦抵抗を十分に小さくして、所期通りの免震作用を実現できる。勿論、図示省略しているが、金属製のスライドプレート28を使用しないで、金属製の可動体17の天板部17aの下側面そのものを凹球面に加工して、下側被支持面17bとすることもできる。又、場合によっては、上記実施形態とは逆に、合成樹脂製のスライドプレート28と金属製の押え板25とを使用し、支持柱体16側の上端支持面16bを金属製とし、可動体17側の下側被支持面17bを合成樹脂製とすることもできるし、支持柱体16側の上端支持面16bと可動体17側の下側被支持面17bの両者を合成樹脂製又は金属製とすることも可能である。   The above-mentioned seismic isolation action causes the movable body 17 to move up and down against the frictional resistance between the upper support surface 16b on the support column 16 side and the lower supported surface 17b on the movable body 17 side. Accordingly, the upper support surface 16b on the support column 16 side is composed of a synthetic resin presser plate 25, and the lower supported surface 17b on the movable body 17 side is made of metal. Therefore, the presser plate 25 constituting the upper end support surface 16b on the support column 16 side is formed of a synthetic resin having a small friction coefficient and is made of metal on the movable body 17 side. By smoothly finishing the lower supported surface 17b, the frictional resistance between the upper support surface 16b on the support column 16 side and the lower supported surface 17b on the movable body 17 side is sufficiently reduced. The expected seismic isolation action can be realized. Of course, although not shown, the lower surface itself of the top plate portion 17a of the metal movable body 17 is processed into a concave spherical surface without using the metal slide plate 28, and the lower supported surface 17b. You can also In some cases, contrary to the above embodiment, a synthetic resin slide plate 28 and a metal presser plate 25 are used, and the upper support surface 16b on the support column 16 side is made of metal, so that the movable body The lower supported surface 17b on the 17 side can be made of synthetic resin, and both the upper support surface 16b on the support column 16 side and the lower supported surface 17b on the movable body 17 side are made of synthetic resin or metal. It is also possible to make it.

尚、支持部材7a,7bの構成は、上記実施形態のものに限定されない。例えば図9に示すように、前記腕木部材11a,11bを、荷Wの底面四隅を支持し得る位置に配置される各免震装置8の真下位置に先端部が位置するように、取付け部材12a,12bから水平斜め内向きに延出させ、この腕木部材11a,11bの先端部上に免震装置8(支持柱体16)を直接取り付け、前後方向棒状部材10を省くこともできる。この場合、図示のように腕木部材11a,11bを、取付け部材12a,12bから直角横向きに突設された短尺部材33と、この短尺部材33の先端から水平斜め内向きに固着延出させた長尺部材34とから構成することができるが、一部材から成る腕木部材11a,11bを直接取付け部材12a,12bに水平斜め内向きに延出させるように固着しても良い。   The configuration of the support members 7a and 7b is not limited to that of the above embodiment. For example, as shown in FIG. 9, the arm members 11a and 11b are attached to the mounting members 12a so that the distal ends thereof are positioned directly below the seismic isolation devices 8 arranged at positions where the bottom corners of the load W can be supported. 12b can be extended horizontally inward, and the seismic isolation device 8 (support column 16) can be directly mounted on the tip of the arm members 11a, 11b, thereby omitting the longitudinal bar 10. In this case, as shown in the figure, the arm members 11a and 11b are fixed to the short members 33 projecting from the mounting members 12a and 12b at right angles and laterally, and the length is fixedly extended inward from the front end of the short members 33 in a horizontal oblique direction. However, the arm members 11a and 11b made of a single member may be directly fixed to the mounting members 12a and 12b so as to extend horizontally inward.

更に、以上の実施形態では、各免震装置8の可動体17をそのまま荷支持台32として兼用させているが、図9の仮想線及び図10に示すように、本発明の免震装置8は、荷収納区画1の左右両側に平行に配置される前後方向部材から成る左右一対の荷支持台35の前後両端部を支持する手段としても活用できる。尚、図では支持部材7a,7bとして、前後一対の免震装置8を各別に支持する前後一対の腕木部材11a,11bのみから成る支持部材7a,7bを示しているが、先の実施形態で示すように、前後一対の免震装置8を前後2個所で支持する前後方向棒状部材10を前後一対の腕木部材11a,11bで支持する構成の支持部材7a,7bであっても良い。   Furthermore, in the above embodiment, the movable body 17 of each seismic isolation device 8 is also used as the load support base 32 as it is, but as shown in the phantom line of FIG. 9 and FIG. 10, the seismic isolation device 8 of the present invention. Can also be used as means for supporting both front and rear end portions of a pair of left and right load support bases 35 formed of front and rear direction members arranged in parallel on the left and right sides of the load storage section 1. In the figure, the support members 7a and 7b include support members 7a and 7b composed of only a pair of front and rear arm members 11a and 11b that individually support the pair of front and rear seismic isolation devices 8, respectively. As shown, the support members 7a and 7b may be configured to support the front-rear bar-shaped member 10 that supports the pair of front and rear seismic isolation devices 8 at two front and rear positions by the pair of front and rear arm members 11a and 11b.

A図は荷保管用ラックの一部分を示す横断平面図、B図は同一部分の正面図である。Fig. A is a transverse plan view showing a part of a load storage rack, and Fig. B is a front view of the same portion. A図は1つの荷収納区画内に設けられた荷支持装置を示す平面図、B図はA図のA部拡大図である。A figure is a top view which shows the load support apparatus provided in one load storage division, B figure is the A section enlarged view of A figure. 荷支持装置の正面図である。It is a front view of a load support apparatus. 図3のX−X線断面図である。It is the XX sectional view taken on the line of FIG. A図は免震装置を示す縦断正面図、B図はその免震装置の分解縦断正面図である。Fig. A is a longitudinal front view showing the seismic isolation device, and Fig. B is an exploded longitudinal front view of the seismic isolation device. 免震装置を示す分解横断平面図である。FIG. 免震装置の可動体の変形例を示す縦断側面図である。It is a vertical side view which shows the modification of the movable body of a seismic isolation apparatus. 免震装置の動作状態を示す縦断正面図である。It is a vertical front view which shows the operation state of a seismic isolation apparatus. 第二の実施形態における荷支持装置の片側を示す平面図である。It is a top view which shows the one side of the load support apparatus in 2nd embodiment. 第三の実施形態における荷支持装置の片側を示す側面図である。It is a side view which shows the one side of the load support apparatus in 3rd embodiment.

符号の説明Explanation of symbols

1 荷収納区画
2 隔壁フレーム
3 荷支持装置
4a,4b 支柱部材
5,6 連結部材
7a,7b 支持部材
8 免震装置
9 荷支持台(全体)
10 前後方向棒状部材
11a,11b 腕木部材
12a,12b 取付け部材
16 支持柱体
16a 支柱本体
16b 支柱本体の凸球面状の上端支持面(押え板の上面)
17 可動体(荷支持台32)
17a 可動体の天板部
17b 可動体の凹球面状の下側被支持面(スライドプレートの下側面)
18 可動体の環状周壁
19 付勢部材
21,22 支持柱体の小径段部
23 リング状緩衝材
25 合成樹脂製の押え板
28 金属製のスライドプレート
30 環状凹溝
31 渦巻きバネ(付勢部材)
32 荷支持台(免震装置の可動体17)
35 前後方向部材から成る荷支持台
DESCRIPTION OF SYMBOLS 1 Load storage section 2 Bulkhead frame 3 Load support apparatus 4a, 4b Support | pillar member 5,6 Connection member 7a, 7b Support member 8 Seismic isolation apparatus 9 Load support stand (whole)
10 Bar members 11a and 11b in the front-rear direction Arm members 12a and 12b Attachment member 16 Support column 16a Column body 16b Convex spherical upper end support surface of the column body (upper surface of the pressing plate)
17 Movable body (load support base 32)
17a Top plate portion 17b of movable body Lower supported surface of concave spherical surface of movable body (lower surface of slide plate)
18 Annular peripheral wall 19 of movable body Biasing members 21, 22 Small-diameter stepped portion 23 of support column body Ring-shaped cushioning material 25 Presser plate 28 made of synthetic resin Metal slide plate 30 Annular groove 31 Spiral spring (biasing member)
32 Load support base (movable body 17 of seismic isolation device)
35 Load support base composed of longitudinal members

Claims (4)

支持部材上に立設された支持柱体と、この支持柱体上に被さって当該支持柱体の上端支持面で滑動自在に支持される可動体と、この可動体に設けられた環状周壁と前記支持柱体との間に介装されて前記可動体を前記支持柱体に対しほぼ同心位置に付勢保持する付勢部材とから成る荷支持用免震装置において、前記支持柱体の上端支持面が凸球面に形成され、この支持柱体の上端支持面に当接する前記可動体の下側被支持面が、前記支持柱体の上端支持面を形成する凸球面の半径より大きい凹球面に形成されている、荷支持用免震装置。   A support column erected on the support member; a movable body which is slidably supported on the upper support surface of the support column body; and an annular peripheral wall provided on the movable body. A load supporting seismic isolation device comprising a biasing member interposed between the support column and biasing and holding the movable body at a substantially concentric position with respect to the support column. A concave surface that has a support surface formed into a convex spherical surface, and the lower supported surface of the movable body that contacts the upper end support surface of the support column is larger than the radius of the convex spherical surface that forms the upper end support surface of the support column A seismic isolation device for load support. 前記可動体の下側被支持面が、可動体の下側面に張設されたスライドプレートの下側面で形成されている、請求項1に記載の荷支持用免震装置。   The seismic isolation device for load support according to claim 1, wherein the lower supported surface of the movable body is formed by a lower surface of a slide plate stretched on a lower surface of the movable body. 前記支持柱体は、支持部材上に固定される金属製の支柱本体と、この支柱本体の上端に取り付けられる押え板から構成され、支柱本体の上端には小径段部が形成され、この支柱本体の上端小径段部に、周囲が支柱本体から張り出すリング状緩衝材が外嵌され、前記押え板は、その周辺が前記リング状緩衝材に被さって当該リング状緩衝材を固定すると共にその上面が前記支持柱体の上端被支持面を形成している、請求項1又は2に記載の荷支持用免震装置。   The support column body is composed of a metal column main body fixed on the support member and a press plate attached to the upper end of the column main body, and a small-diameter step portion is formed on the upper end of the column main body. A ring-shaped cushioning material that protrudes from the main body of the support column is externally fitted to the upper-end small-diameter step portion, and the presser plate covers the periphery of the ring-shaped cushioning material to fix the ring-shaped cushioning material and its upper surface. The seismic isolation device for load support according to claim 1 or 2, wherein an upper end supported surface of the support column is formed. 前記支持柱体の上端支持面が合成樹脂で形成され、前記可動体の下側被支持面が金属で形成されている、請求項1〜3の何れか1項に記載の荷支持用免震装置。   The seismic isolation for load support according to any one of claims 1 to 3, wherein an upper end support surface of the support pillar is formed of a synthetic resin, and a lower supported surface of the movable body is formed of a metal. apparatus.
JP2008136404A 2008-05-26 2008-05-26 Seismic isolation device for load support Expired - Fee Related JP4930730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008136404A JP4930730B2 (en) 2008-05-26 2008-05-26 Seismic isolation device for load support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008136404A JP4930730B2 (en) 2008-05-26 2008-05-26 Seismic isolation device for load support

Publications (2)

Publication Number Publication Date
JP2009281556A true JP2009281556A (en) 2009-12-03
JP4930730B2 JP4930730B2 (en) 2012-05-16

Family

ID=41452211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008136404A Expired - Fee Related JP4930730B2 (en) 2008-05-26 2008-05-26 Seismic isolation device for load support

Country Status (1)

Country Link
JP (1) JP4930730B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3287395A4 (en) * 2015-04-20 2019-01-09 Oiles Corporation Seismic-isolation device for rack, and rack

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09242820A (en) * 1996-03-05 1997-09-16 Fujita Corp Base isolating supporting structure
JPH102129A (en) * 1996-06-13 1998-01-06 Suzuki Sogyo Co Ltd Three-dimensional vibration isolation parts
JP2003269532A (en) * 2002-03-14 2003-09-25 Nec Corp Base isolation device
JP2004011883A (en) * 2002-06-11 2004-01-15 Sumitomo Rubber Ind Ltd Damping device
JP2008051238A (en) * 2006-08-25 2008-03-06 Daifuku Co Ltd Load support device for load storage rack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09242820A (en) * 1996-03-05 1997-09-16 Fujita Corp Base isolating supporting structure
JPH102129A (en) * 1996-06-13 1998-01-06 Suzuki Sogyo Co Ltd Three-dimensional vibration isolation parts
JP2003269532A (en) * 2002-03-14 2003-09-25 Nec Corp Base isolation device
JP2004011883A (en) * 2002-06-11 2004-01-15 Sumitomo Rubber Ind Ltd Damping device
JP2008051238A (en) * 2006-08-25 2008-03-06 Daifuku Co Ltd Load support device for load storage rack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3287395A4 (en) * 2015-04-20 2019-01-09 Oiles Corporation Seismic-isolation device for rack, and rack

Also Published As

Publication number Publication date
JP4930730B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP5331446B2 (en) cart
KR101438161B1 (en) Probe card container
JP4736054B2 (en) Load support device for load storage rack
JP5003908B2 (en) Seismic isolation device for load support
JP6136294B2 (en) Vibration control rack warehouse
JP4930730B2 (en) Seismic isolation device for load support
JP5370654B2 (en) Seismic isolation device for load support
TW201834937A (en) Anti-vibration pallet and glass packaging body
JP4947437B2 (en) Load support device for load storage rack
JP5288246B2 (en) Load support device for load storage rack
JP2003252411A (en) Base isolation system for warehouse, and base isolation pallet
JP2015181558A (en) Installation base for fire extinguisher
JP2008127203A (en) Cargo support device of cargo storage rack
JP2001163447A (en) Transfer device and automated guided vehicle using this
JP6398281B2 (en) Seismic isolation structure
JP2008050123A (en) Load support device for load storage rack
JP6753072B2 (en) Seismic isolation device
JP2008133075A (en) Load supporting device of rack for load storage
JP2011105347A (en) Transfer pallet
CN210212492U (en) Transport trolley
JP2008133074A (en) Load supporting device of rack for load storage
JP2000291726A (en) Ball bearing-type base isolation load-carrying platform
JP6399868B2 (en) Seismic isolation system for automatic warehouse racks
JP2015160642A (en) Pallet
JP6662104B2 (en) Seismic isolation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120131

R150 Certificate of patent or registration of utility model

Ref document number: 4930730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees