JP2009279596A - Forging method of metal and forging device of metal - Google Patents

Forging method of metal and forging device of metal Download PDF

Info

Publication number
JP2009279596A
JP2009279596A JP2008131907A JP2008131907A JP2009279596A JP 2009279596 A JP2009279596 A JP 2009279596A JP 2008131907 A JP2008131907 A JP 2008131907A JP 2008131907 A JP2008131907 A JP 2008131907A JP 2009279596 A JP2009279596 A JP 2009279596A
Authority
JP
Japan
Prior art keywords
forging
metal
ultrasonic
vibration
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008131907A
Other languages
Japanese (ja)
Other versions
JP5053175B2 (en
Inventor
Takashi Fujita
崇史 藤田
Toshizo Tarui
敏三 樽井
Taku Yoshida
卓 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008131907A priority Critical patent/JP5053175B2/en
Publication of JP2009279596A publication Critical patent/JP2009279596A/en
Application granted granted Critical
Publication of JP5053175B2 publication Critical patent/JP5053175B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a forging method of a metal capable of reducing deformation resistance of a metal material by applying ultrasonic vibration to a machining tool and a die for forging and carrying out molding with less pressurizing force, and also provide a forging device of the metal. <P>SOLUTION: The forging device has a moving tool and a fixing tool which are for plastically processing a workpiece by clamping it and is provided with an ultrasonic resonator mounted at a moving tool side and oscillating ultrasonic vibration, a main body frame for holding these, and a mechanism for pushing out the frame itself. In the forging method of the metal, vibration is applied in the same direction as that of forging to the die. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、金属材料の加振鍛造方法及び鍛造装置に関し、特に鍛造機金型を超音波で加振することにより金属材料の変形抵抗を低下させ、少ない加圧力で成型する鍛造方法及び鍛造装置に関するものである。   The present invention relates to a vibration forging method and a forging device for a metal material, and in particular, a forging method and a forging device for reducing the deformation resistance of a metal material by exciting a forging machine die with ultrasonic waves and molding with a small pressure. It is about.

工具に振動を加えながら加工を行う従来技術として、例えば、非特許文献1では、超音波振動の線引加工への応用例が報告されている。本例では、線引用のダイスを超音波で振動させることにより、加工抵抗の低減効果や工具と材料間の摩擦抵抗の減少効果が認められ、難加工材への適用が提案されているが、この試験は線引き加工による試験であり、超音波の効果は極表層に留まり、素材全体に大加工が要求される鍛造に適用することは困難であった。   As a conventional technique for performing processing while applying vibration to a tool, for example, Non-Patent Document 1 reports an application example of ultrasonic vibration to a drawing process. In this example, by oscillating the line citation dice with ultrasonic waves, the effect of reducing the machining resistance and the effect of reducing the frictional resistance between the tool and the material are recognized, and application to difficult-to-work materials has been proposed. This test was a test by drawing, and the effect of ultrasonic waves remained at the extreme surface layer, and it was difficult to apply to forging where large machining was required for the entire material.

また、特許文献1に記載の幅圧縮加工機では、プレス工具に振動を与え、材料の幅方向の共振振動数付近の振動数で加振することにより、材料中央部での変形を大きくし、幅圧下効率を高める技術が提案されているが、圧縮工具に与える振動周波数が材料の幅に依存するため、鍛造のような大変形加工では、圧下中に超音波の周波数を変える必要があり、鍛造への適用は困難である。   Moreover, in the width compression processing machine described in Patent Document 1, vibration is applied to the press tool, and the vibration at the vicinity of the resonance frequency in the width direction of the material is applied to increase the deformation at the center of the material. Although a technique for increasing the width reduction efficiency has been proposed, since the vibration frequency given to the compression tool depends on the width of the material, in large deformation processing such as forging, it is necessary to change the ultrasonic frequency during reduction, Application to forging is difficult.

また、特許文献2では、板圧延機のロール表面にのみ微小振動を与える技術が報告されているが、表面のみを振動させるために超音波の減衰が大きく、十分な効果を上げることが困難であった。また、超音波出力を上げ、効果を得ようとすると、振動によりロール表面が発熱し、圧延によるロール摩耗が大きくなるという欠点があった。この方法を鍛造に適用したとしても、摩耗が問題となることが予測される。また、超音波の効果は極表層に留まり、素材全体に大加工が要求される鍛造に適用することは困難であった。   Further, in Patent Document 2, a technique for giving minute vibrations only to the roll surface of a plate rolling machine is reported. However, since only the surface is vibrated, the attenuation of ultrasonic waves is large, and it is difficult to achieve a sufficient effect. there were. Further, when trying to obtain an effect by increasing the ultrasonic output, there is a drawback that the roll surface generates heat due to vibration and roll wear due to rolling becomes large. Even if this method is applied to forging, wear is expected to be a problem. Moreover, the effect of the ultrasonic wave is limited to the extreme surface layer, and it has been difficult to apply it to forging in which large machining is required for the entire material.

一方、超音波を用いた加工方法としては、特許文献3等に、超音波カッターの技術が開示されているが、この技術は、超音波振動により被切断材を削り取ること、即ち、切削することにより成り立っており、鍛造に適用することはできない。また、切削では超音波による極表層の変形抵抗低減が有効であるが、素材全体に大加工が要求される鍛造に適用することは困難であった。   On the other hand, as a processing method using ultrasonic waves, the technique of an ultrasonic cutter is disclosed in Patent Document 3, etc., but this technique cuts off a material to be cut by ultrasonic vibration, that is, cuts. It cannot be applied to forging. Also, in cutting, it is effective to reduce the deformation resistance of the extreme surface layer by ultrasonic waves, but it has been difficult to apply to forging where large machining is required for the entire material.

また、特許文献4には、部品の表面を超音波振動子で打撃することにより、表面に圧縮残留応力を付与することを目的とした技術が紹介されているが、この技術は、超音波による局所的な塑性変形を用いるものであり、鍛造のような全体の変形に活用することは困難であった。   Patent Document 4 introduces a technique for applying a compressive residual stress to the surface of the component by striking the surface of the component with an ultrasonic transducer. Local plastic deformation is used, and it has been difficult to utilize it for overall deformation such as forging.

特開昭61−262401号公報JP-A-61-262401 特開平9−174115号公報JP-A-9-174115 特開2001−334494号公報JP 2001-334494 A 特開2006−104551号公報JP 2006-104551 A 第20回塑性加工連合講演会(講演論文集413頁)20th Plastic Working Joint Lecture Meeting (Proceedings 413 pages)

そこで、本発明は、このような問題に鑑みてなされたもので、その目的は、加工用工具や鍛造用金型を超音波で加振することにより金属材料の変形抵抗を低下させ、少ない加圧力で成型することが可能な、金属の鍛造方法及び鍛造装置を提供することにある。   Therefore, the present invention has been made in view of such problems, and the object thereof is to reduce the deformation resistance of a metal material by vibrating a working tool or a forging die with an ultrasonic wave, and to reduce the amount of processing. An object of the present invention is to provide a metal forging method and a forging device that can be molded under pressure.

本発明の要旨とするところは、特許請求の範囲に記載した通りの下記内容である。
(1) 金属を鍛造金型で鍛造する方法であって、超音波振動子からの振動を固定側金型又は可動側金型のいずれかに伝達して、前記超音波振動が伝達された金型を前記金属の加工方向と同一方向に振動させて鍛造することを特徴とする、金属の鍛造方法。
(2) 前記超音波振動は、前記固定側金型に伝達されており、前記超音波振動子からの振動を、前記金属に可動側金型が接している間付与することを特徴とする、(1)記載の金属の鍛造方法。
(3) 前記超音波振動子の振動数を10〜60(kHz)とし、被加工物体積をV(mm)としたとき、超音波の出力を5×V(W)以上、100000(W)以下とし、導波コーンを介して振動させることを特徴とする、(1)または(2)に記載の金属の鍛造方法。
(4) 金属を鍛造する鍛造金型を有する鍛造装置であって、可動側金型または固定側金型のいずれか一方に対して導波コーンを介して超音波振動を印加する超音波振動子を少なくとも有し、前記超音波振動子は、前記金属の加工方向と同一の方向に前記超音波振動を印加可能な位置に設けられていることを特徴とする、金属の鍛造装置。
The gist of the present invention is the following contents as described in the claims.
(1) A method of forging a metal with a forging die, in which vibration from an ultrasonic vibrator is transmitted to either a fixed side mold or a movable side mold, and the ultrasonic vibration is transmitted to the metal. A metal forging method, wherein the forging is performed by vibrating the mold in the same direction as the processing direction of the metal.
(2) The ultrasonic vibration is transmitted to the fixed mold, and the vibration from the ultrasonic vibrator is applied while the movable mold is in contact with the metal. (1) The forging method of the metal as described.
(3) When the frequency of the ultrasonic transducer is 10 to 60 (kHz) and the workpiece volume is V (mm 3 ), the output of the ultrasonic wave is 5 × V (W) or more and 100,000 (W The method for forging a metal according to (1) or (2), characterized in that it is vibrated through a waveguide cone.
(4) An ultrasonic forging device having a forging die for forging metal, and applying ultrasonic vibration to the movable side die or the fixed side die via a waveguide cone And the ultrasonic transducer is provided at a position where the ultrasonic vibration can be applied in the same direction as the processing direction of the metal.

本発明によれば、少ない加圧力で金属材料を塑性加工することが可能であるため、加工装置をコンパクトにすることが可能である。また、変形抵抗の低下により材料を精度良く仕上げることが可能である。鍛造機への適用以外にも、リベット締結機や刻印打刻機等、塑性加工を利用する加工方法への適用が可能であり、産業上有用な著しい効果を奏する。   According to the present invention, since it is possible to plastically process a metal material with a small applied pressure, the processing apparatus can be made compact. Further, it is possible to finish the material with high accuracy by reducing the deformation resistance. In addition to application to a forging machine, the present invention can be applied to a processing method using plastic processing, such as a rivet fastening machine or a stamping machine, and has a remarkable industrially useful effect.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

本発明は、加工用工具を加工方向と同一方向の超音波振動により、変形抵抗を減少させて、小さな加圧力で大変形を起こさせる技術である。   The present invention is a technique for causing a large deformation with a small applied pressure by reducing deformation resistance of a machining tool by ultrasonic vibration in the same direction as the machining direction.

以下、基本原理について説明する。   Hereinafter, the basic principle will be described.

通常、金属材料を塑性変形させて加工するには、極めて大きな力を要する。例えば、鋼材を熱間で鍛造する場合、鍛造部品の大きさにもよるが、普通、数百トンから数千トンの加圧力が必要である。また、この力に耐えるため、プレス機自体も頑丈に造られ、その重さも数十トン以上にもなる。   Usually, extremely large force is required to process a metal material by plastic deformation. For example, when a steel material is forged hot, a pressurizing force of several hundred tons to several thousand tons is usually required depending on the size of the forged part. Moreover, in order to withstand this force, the press machine itself is made rugged and its weight is several tens of tons or more.

この単位面積当たり加圧力である変形抵抗は、温度の上昇と共に低下し、例えば、JIS鋼SCr420では、図1に示すように、800℃の加熱で室温の1/2、1000℃の加熱で室温の1/3、1200℃の加熱で室温の1/6程度に減少する。そのため、同じ形状の部品を、温度を変えて鍛造した場合は、高温での鍛造の方がより少ない加圧力で成形できるため、装置の小型化に有利である。しかしながら、高温に加熱する際に、スケールの生成による歩留まりの悪化や鍛造仕上げ肌の荒れ、更に鍛造後の熱歪みによる鍛造精度の劣化が生じるという不利がある。このため、熱間鍛造は、主に熱間鍛造でしか鍛造できない大形の部品の鍛造に用いられている。   The deformation resistance, which is the applied pressure per unit area, decreases with increasing temperature. For example, in JIS steel SCr420, as shown in FIG. 1, it is 1/2 of room temperature by heating at 800 ° C. and room temperature by heating at 1000 ° C. It decreases to about 1/6 of room temperature by heating at 1/3 and 1200 ° C. Therefore, when parts having the same shape are forged at different temperatures, forging at a high temperature can be formed with less pressing force, which is advantageous for downsizing of the apparatus. However, when heated to a high temperature, there are disadvantages such as a deterioration in yield due to generation of scale, roughening of the forged finish skin, and deterioration of forging accuracy due to thermal distortion after forging. For this reason, hot forging is mainly used for forging large parts that can only be forged by hot forging.

一方、ある一定の出力以上の超音波を金型に付与し鍛造を行うと、超音波振動により被加工部材(金属)表層のみならず内部の転位の運動が促進され、全体の変形抵抗の低減が生じる。また、金型と被加工部材間の動摩擦係数の低減も期待できる。更に、超音波振動の振動エネルギーの多くは熱エネルギーになるため、被鍛造品(金属)の発熱を促し、温度上昇により変形抵抗は、より一層低減する。本発明に係る超音波振動による被鍛造品の発熱は、超音波振動する金型が被鍛造品に接した時点より始まり、金型が離れた時に終わるため、加熱時間は極めて短時間で、更に超音波振動による発熱は被鍛造品内部で生じるため、スケールは発生しない。   On the other hand, when forging is performed by applying ultrasonic waves of a certain level or higher to the mold, ultrasonic vibrations promote not only the surface layer of the workpiece (metal) but also internal dislocations, reducing the overall deformation resistance. Occurs. In addition, a reduction in the coefficient of dynamic friction between the mold and the workpiece can be expected. Furthermore, since most of the vibration energy of ultrasonic vibration becomes thermal energy, heat generation of the forged product (metal) is promoted, and the deformation resistance is further reduced by the temperature rise. Heat generation of the forged product due to ultrasonic vibration according to the present invention starts when the ultrasonically vibrating mold comes into contact with the forged product and ends when the mold leaves, so the heating time is extremely short, Since heat generated by ultrasonic vibration is generated inside the forged product, no scale is generated.

以下に、本発明を実施するための最良の形態について説明する。   The best mode for carrying out the present invention will be described below.

まず、超音波振動の方向であるが、超音波の振動エネルギーを被鍛造材(金属)に効率よく伝えるために、圧下方向と同一方向の振動であることが望ましい。圧下方向と垂直方向の振動では、内部に被鍛造材内部に超音波振動が伝わり難い。   First, regarding the direction of ultrasonic vibration, in order to efficiently transmit ultrasonic vibration energy to the material to be forged (metal), it is desirable that the vibration be in the same direction as the reduction direction. In the vibration in the reduction direction and in the vertical direction, the ultrasonic vibration is difficult to be transmitted inside the forged material.

次に、超音波の伝達方法であるが、超音波振動子を直接工具につけると、エネルギーのロスが大きいため、超音波振動子と工具の間に、超音波の振幅を効率よく増幅するための導波コーンを設けることが望ましい。   Next, there is an ultrasonic transmission method. When an ultrasonic transducer is directly attached to a tool, the energy loss is large, so that the amplitude of the ultrasonic wave is efficiently amplified between the ultrasonic transducer and the tool. It is desirable to provide a waveguide cone.

次に、金型に加える振動数であるが、被鍛造材にエネルギーを伝達するため10〜60kHzの超音波が好ましい。また、超音波の出力は、大きければ大きいほど、転位が運動し易くなり、また、発熱も大きくなるため、変形抵抗は低下する。このため、出力は大きい方が望ましいが、装置の大型化を招くため、限界がある。   Next, regarding the frequency applied to the mold, ultrasonic waves of 10 to 60 kHz are preferable in order to transmit energy to the material to be forged. Also, the greater the output of the ultrasonic wave, the easier the dislocations move, and the greater the heat generation, the lower the deformation resistance. For this reason, it is desirable that the output is large, but there is a limit because the size of the apparatus is increased.

超音波の振動は、常時与えている必要は無く、鍛造時に金型が被鍛造材に接している間だけ付与すれば良い。また、鍛造下死点で金型を保持し、超音波振動を与えれば、鍛造精度が向上するため有効である。更に、下死点で保持したまま、超音波振動を停止すれば、超音波により発熱した被鍛造品は、金型により抜熱されて、拘束冷却されることにより熱歪も低減し、更に鍛造精度が向上する。   The vibration of the ultrasonic wave does not need to be constantly applied, and may be applied only while the mold is in contact with the material to be forged during forging. In addition, holding the mold at the bottom dead center of forging and applying ultrasonic vibration is effective because the forging accuracy is improved. Furthermore, if the ultrasonic vibration is stopped while holding at the bottom dead center, the forged product that is heated by the ultrasonic wave is removed by the mold, and is restrained and cooled to reduce thermal strain. Accuracy is improved.

金型への超音波振動は、上金型・下金型のどちらか一方に付与すれば良い。可動側金型である上金型に付与する場合は、超音波発信器及び金型を保持するフレームを用意し、そのフレームごと移動して、被鍛造材を圧下する機構が必要である。固定側金型である下金型に付与する場合は、上記フレームは必要ないが、超音波振動により被鍛造材の位置がずれる恐れがあるため、超音波振動は上金型が被鍛造材に接した後に付与することが望ましい。   The ultrasonic vibration to the mold may be applied to either the upper mold or the lower mold. In the case of applying to an upper mold which is a movable mold, a mechanism for preparing an ultrasonic transmitter and a frame for holding the mold and moving the frame together to reduce the material to be forged is required. When applying to the lower mold, which is a fixed side mold, the above frame is not necessary, but the position of the material to be forged may be shifted due to ultrasonic vibration, so ultrasonic vibration is applied to the material to be forged by ultrasonic vibration. It is desirable to apply after contact.

なお、本発明では、被鍛造材の変形抵抗が低減するため、金型の強度を弱めること即ち金型の小型化が可能である。また、金型を小型化することにより、超音波の伝達効率も上がるため、装置全体が小型化できる。   In the present invention, since the deformation resistance of the forged material is reduced, the strength of the mold can be reduced, that is, the mold can be downsized. Further, since the transmission efficiency of ultrasonic waves is increased by downsizing the mold, the entire apparatus can be downsized.

図2及び図3に、本発明の一実施形態に係る鍛造装置の概略図を示す。   2 and 3 are schematic views of a forging device according to an embodiment of the present invention.

図2は、上金型に超音波振動を付与する場合の鍛造装置の一例である。上金型に超音波振動を付与する場合の鍛造装置は、例えば図2に示したように、圧下装置1と、本体フレーム2と、可動側金型の一例である上金型3と、固定側金型の一例である下金型4と、導波コーン5と、超音波振動子の一例である超音波発生器6と、サブフレーム7と、を主に備える。   FIG. 2 is an example of a forging device when ultrasonic vibration is applied to the upper mold. The forging device in the case of applying ultrasonic vibration to the upper die is, for example, as shown in FIG. 2, a reduction device 1, a main body frame 2, an upper die 3 which is an example of a movable side die, and a fixed A lower mold 4 that is an example of a side mold, a waveguide cone 5, an ultrasonic generator 6 that is an example of an ultrasonic transducer, and a subframe 7 are mainly provided.

図2に示したように、上金型3の上方には導波コーン5が設けられ、導波コーン5の上方に超音波発生器6が設置されている。超音波発生器6で発生した振動は、導波コーン5を通して増幅され、上金型3に伝えられる。なお、超音波発生器6で発生する振動は、上金型3の移動方向(すなわち、金属の加工方向)と同一方向である、上下方向の振動である。超音波発生器6、導波コーン5及び上金型3は、サブフレーム7に固定され、サブフレーム7は油圧等の圧下装置1によって下方に押し出され、下金型4との間で鍛造が行われる。   As shown in FIG. 2, a waveguide cone 5 is provided above the upper mold 3, and an ultrasonic generator 6 is installed above the waveguide cone 5. The vibration generated by the ultrasonic generator 6 is amplified through the waveguide cone 5 and transmitted to the upper mold 3. The vibration generated by the ultrasonic generator 6 is a vertical vibration that is the same direction as the movement direction of the upper mold 3 (that is, the metal processing direction). The ultrasonic generator 6, the waveguide cone 5, and the upper die 3 are fixed to a subframe 7, and the subframe 7 is pushed downward by a pressure reducing device 1 such as hydraulic pressure, and forged between the lower die 4. Done.

図3は、下金型に超音波振動を付与する場合の鍛造装置の一例である。下金型に超音波振動を付与する場合の鍛造装置は、例えば図3に示したように、圧下装置1と、本体フレーム2と、可動側金型の一例である上金型3と、固定側金型の一例である下金型4と、導波コーン5と、超音波振動子の一例である超音波発生器6と、を主に備える。   FIG. 3 is an example of a forging device when ultrasonic vibration is applied to the lower mold. A forging device for applying ultrasonic vibration to the lower die is, for example, as shown in FIG. 3, a reduction device 1, a main body frame 2, an upper die 3 that is an example of a movable side die, and a fixed A lower mold 4 that is an example of a side mold, a waveguide cone 5, and an ultrasonic generator 6 that is an example of an ultrasonic transducer are mainly provided.

図3に示したように、下金型4の下方には導波コーン5が設けられ、導波コーン5の下方に超音波発生器6が設置されている。超音波発生器6で発生した振動は、導波コーン5を通して増幅され、下金型4に伝えられる。なお、超音波発生器6で発生する振動は、上金型3の移動方向(すなわち、金属の加工方向)と同一方向である、上下方向の振動である。上金型3は、圧下装置1によって下方に押し出され、下金型4との間で鍛造が行われる。   As shown in FIG. 3, a waveguide cone 5 is provided below the lower mold 4, and an ultrasonic generator 6 is installed below the waveguide cone 5. The vibration generated by the ultrasonic generator 6 is amplified through the waveguide cone 5 and transmitted to the lower mold 4. The vibration generated by the ultrasonic generator 6 is a vertical vibration that is the same direction as the movement direction of the upper mold 3 (that is, the metal processing direction). The upper die 3 is pushed downward by the reduction device 1, and forging is performed with the lower die 4.

以下に、本実施形態で用いられる超音波振動子について述べる。   Hereinafter, the ultrasonic transducer used in the present embodiment will be described.

超音波振動子の振動数は、例えば、10〜60kHzであることが好ましい。10kHz未満では、変形抵抗の減少効果が少なくなるおそれがあるからである。また、60kHz超の周波数でも、変形抵抗の減少効果が少なくなるおそれがある。   The frequency of the ultrasonic vibrator is preferably 10 to 60 kHz, for example. This is because if it is less than 10 kHz, the effect of reducing deformation resistance may be reduced. Further, even at a frequency exceeding 60 kHz, there is a possibility that the effect of reducing deformation resistance is reduced.

被加工物体積をV(mm)とした時、超音波振動子で発生する超音波の出力を5×V(W)以上、100000(W)以下とすることが好ましい。5×V(W)未満では、被加工物の超音波振動子に接触している部位(すなわち、被加工物において、超音波振動が伝達されている金型が接触している部位)のみが変形し、均一変形にならない可能性があり、結果として、変形抵抗の軽減効果が少ないおそれがあるからである。超音波出力の下限値は、8×V(W)以上が望ましい。また、上限を100000Wとしたのは、100000W超の超音波出力を得ることが困難であるからである。 When the workpiece volume is V (mm 3 ), the output of the ultrasonic wave generated by the ultrasonic vibrator is preferably 5 × V (W) or more and 100000 (W) or less. If it is less than 5 × V (W), only the part of the workpiece that is in contact with the ultrasonic transducer (that is, the part of the workpiece that is in contact with the mold to which the ultrasonic vibration is transmitted). This is because there is a possibility that it will be deformed and not uniformly deformed, and as a result, the effect of reducing deformation resistance may be small. The lower limit of the ultrasonic output is desirably 8 × V (W) or more. The upper limit is set to 100,000 W because it is difficult to obtain an ultrasonic output exceeding 100,000 W.

図2に示した装置のミニチュアにより、超音波付与により変形抵抗がどれくらい下がるかのテストを実施した。超音波発生器は、出力は700W、振動数は27kHzの磁励式のものを用いた。試験片は、超音波発生器の出力が小さいため、φ4.0mm×6.0mmの円筒形試験片で、試験片材質は純度99.5mass%のアルミと純度99.0mass%の鉛で試験を行った。この円筒形試験片の体積Vは、約75.4mmである。試験は、平板圧縮試験の定加重とし、超音波で振動する上金型はφ30mm×10mmのSKD61を導波コーン先端に固定し、下金型は50mm×100mm×100mmのS45Cのブロックを用いた。試験は、超音波の有無による、圧縮率の変化を調べた。 Using the miniature of the apparatus shown in FIG. 2, a test was conducted to determine how much the deformation resistance is reduced by applying ultrasonic waves. As the ultrasonic generator, a magnetic excitation type having an output of 700 W and a frequency of 27 kHz was used. Since the output of the ultrasonic generator is small, the test piece is a cylindrical test piece of φ4.0 mm × 6.0 mm, and the test piece material is tested with aluminum with a purity of 99.5 mass% and lead with a purity of 99.0 mass%. went. The volume V of this cylindrical test piece is about 75.4 mm 3 . The test was performed with a constant load of the flat plate compression test, the upper die that vibrates with ultrasonic waves was fixed with a SKD61 of φ30 mm × 10 mm at the tip of the waveguide cone, and the lower die was an S45C block of 50 mm × 100 mm × 100 mm. . In the test, the change in compression rate with and without ultrasonic waves was examined.

図4に、アルミを用いて試験を行った結果を示した。また、図4では、出力が400W、500Wおよび600Wの場合における試験結果についても、あわせて示した。300Nの荷重では、超音波なしの対数歪み0.015に対し、700Wにおける結果では0.199の歪みが発生し、同荷重で10倍以上の歪みが生じている。なお、横軸は、対数歪みln(元厚/仕上げ厚)で表している。   FIG. 4 shows the results of testing using aluminum. FIG. 4 also shows the test results when the output is 400 W, 500 W, and 600 W. At a load of 300 N, a logarithmic strain of 0.015 without ultrasonic waves is 0.015 in the result at 700 W, and a strain of 10 times or more is generated at the same load. The horizontal axis represents the logarithmic strain ln (original thickness / finished thickness).

同様に、図5に、鉛を用いて試験を行った結果を示した。100Nの荷重では、超音波なしの対数歪み0.013に対し、超音波あり(700W)では3.20の歪みが発生し、同荷重で約250倍の変形が生じている。   Similarly, FIG. 5 shows the results of testing using lead. At a load of 100 N, a logarithmic strain of 0.013 without an ultrasonic wave is 0.013 with a ultrasonic wave (700 W), and a deformation of about 250 times occurs at the same load.

以上のように、本発明によれば、少ない加重で大きな変形が得られ、即ち、変形抵抗が大幅に軽減されることが判った。アルミ・鉛以外であっても、例えば、鋼の場合も、超音波の出力さえ増やせば、同様に変形抵抗の軽減がなされる。以上のことから、本発明は有効であることが判明した。   As described above, according to the present invention, it has been found that a large deformation can be obtained with a small load, that is, the deformation resistance is greatly reduced. Even in cases other than aluminum and lead, for example, in the case of steel, deformation resistance can be similarly reduced by increasing the output of ultrasonic waves. From the above, it has been found that the present invention is effective.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

変形抵抗の温度依存性を例示するグラフ図である。It is a graph which illustrates the temperature dependence of a deformation resistance. 本発明の一実施形態において、上金型に超音波を付与する場合の鍛造装置を模式的に例示する概略図である。In one Embodiment of this invention, it is the schematic which illustrates typically the forging apparatus in the case of providing an ultrasonic wave to an upper metal mold | die. 同実施形態において、下金型に超音波を付与する場合の鍛造装置を模式的に例示する概略図である。In the embodiment, it is the schematic which illustrates typically the forging apparatus in the case of providing an ultrasonic wave to a lower metal mold | die. 本発明において、アルミを用いた場合の歪み−加重の関係に及ぼす超音波の影響を例示するグラフ図である。In this invention, it is a graph which illustrates the influence of the ultrasonic wave which acts on the distortion-weighting relationship at the time of using aluminum. 本発明において、鉛を用いた場合の歪み−加重の関係に及ぼす超音波の影響を例示するグラフ図である。In this invention, it is a graph which illustrates the influence of the ultrasonic wave which acts on the distortion-weighting relationship at the time of using lead.

符号の説明Explanation of symbols

1 圧下装置
2 本体フレーム
3 可動側金型
4 固定側金型
5 導波コーン
6 超音波振動子
7 サブフレーム
DESCRIPTION OF SYMBOLS 1 Reduction device 2 Main body frame 3 Movable side metal mold 4 Fixed side metal mold 5 Waveguide cone 6 Ultrasonic vibrator 7 Subframe

Claims (4)

金属を鍛造金型で鍛造する方法であって、
超音波振動子からの振動を固定側金型又は可動側金型のいずれかに伝達して、前記超音波振動が伝達された金型を前記金属の加工方向と同一方向に振動させて鍛造することを特徴とする、金属の鍛造方法。
A method of forging a metal with a forging die,
The vibration from the ultrasonic vibrator is transmitted to either the fixed mold or the movable mold, and the mold to which the ultrasonic vibration is transmitted is vibrated in the same direction as the metal processing direction and forged. A metal forging method characterized by the above.
前記超音波振動は、前記固定側金型に伝達されており、
前記超音波振動子からの振動を、前記金属に可動側金型が接している間付与することを特徴とする、請求項1記載の金属の鍛造方法。
The ultrasonic vibration is transmitted to the fixed mold,
The metal forging method according to claim 1, wherein vibration from the ultrasonic vibrator is applied while the movable mold is in contact with the metal.
前記超音波振動子の振動数を10〜60(kHz)とし、被加工物体積をV(mm)としたとき、超音波の出力を5×V(W)以上、100000(W)以下とし、導波コーンを介して振動させることを特徴とする、請求項1または2に記載の金属の鍛造方法。 When the frequency of the ultrasonic vibrator is 10 to 60 (kHz) and the work volume is V (mm 3 ), the output of the ultrasonic wave is 5 × V (W) or more and 100000 (W) or less. The metal forging method according to claim 1, wherein the metal forging is performed through a waveguide cone. 金属を鍛造する鍛造金型を有する鍛造装置であって、
可動側金型または固定側金型のいずれか一方に対して導波コーンを介して超音波振動を印加する超音波振動子を少なくとも有し、
前記超音波振動子は、前記金属の加工方向と同一の方向に前記超音波振動を印加可能な位置に設けられていることを特徴とする、金属の鍛造装置。

A forging device having a forging die for forging metal,
Having at least an ultrasonic transducer that applies ultrasonic vibration via a waveguide cone to either the movable side mold or the fixed side mold;
The metal forging device, wherein the ultrasonic vibrator is provided at a position where the ultrasonic vibration can be applied in the same direction as a processing direction of the metal.

JP2008131907A 2008-05-20 2008-05-20 Metal forging method and metal forging device Expired - Fee Related JP5053175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008131907A JP5053175B2 (en) 2008-05-20 2008-05-20 Metal forging method and metal forging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008131907A JP5053175B2 (en) 2008-05-20 2008-05-20 Metal forging method and metal forging device

Publications (2)

Publication Number Publication Date
JP2009279596A true JP2009279596A (en) 2009-12-03
JP5053175B2 JP5053175B2 (en) 2012-10-17

Family

ID=41450619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008131907A Expired - Fee Related JP5053175B2 (en) 2008-05-20 2008-05-20 Metal forging method and metal forging device

Country Status (1)

Country Link
JP (1) JP5053175B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2352141A1 (en) 2009-12-09 2011-08-03 Roland Corporation Key speed sensor of electronic musical instrument
JP2013006189A (en) * 2011-06-23 2013-01-10 Neturen Co Ltd Device and method for manufacturing hollow rack bar
JP2013099771A (en) * 2011-11-09 2013-05-23 Neturen Co Ltd Method for production of composite member, composite member, and device for production thereof
CN104723031A (en) * 2015-02-06 2015-06-24 西安交通大学 Radial-forging type strain induction semi-solid state extrusion technology for waveguide tube
WO2016056435A1 (en) * 2014-10-09 2016-04-14 昭和電工株式会社 Forging method and forging device
DE102016209404A1 (en) 2015-06-04 2016-12-08 Showa Denko K.K. Forging process and forging
CN106312016A (en) * 2016-10-17 2017-01-11 华中科技大学 Vibrating casting and forging composite forming method for aluminum alloy forgings
CN107413871A (en) * 2017-09-28 2017-12-01 中国地质大学(武汉) A kind of composite ultraphonic vibration aids in micro- extrusion molding process equipment
CN110695108A (en) * 2019-09-16 2020-01-17 中国地质大学(武汉) Multidirectional composite ultrasonic vibration auxiliary extrusion forming processing equipment and forming method
CN111266503A (en) * 2018-12-05 2020-06-12 财团法人金属工业研究发展中心 Ultrasonic auxiliary forming device
CN111534767A (en) * 2020-05-20 2020-08-14 中南大学 Room-temperature cyclic loading high-efficiency shape integrated manufacturing method for aluminum alloy component
CN112453303A (en) * 2020-10-28 2021-03-09 华中科技大学 Micro-channel vibration-assisted plough extrusion-forging composite forming device and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108543898A (en) * 2018-05-10 2018-09-18 江苏大学 Ultrasonic wave added finish forge method and apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4984942A (en) * 1972-12-21 1974-08-15
JPH02251330A (en) * 1989-02-14 1990-10-09 Brother Ind Ltd Forging method
JPH09253770A (en) * 1996-03-22 1997-09-30 Mitsubishi Electric Corp Die
JP2005321086A (en) * 2004-04-09 2005-11-17 Nippon Steel Corp Crank shaft fatigue characteristics improving method and crank shaft

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4984942A (en) * 1972-12-21 1974-08-15
JPH02251330A (en) * 1989-02-14 1990-10-09 Brother Ind Ltd Forging method
JPH09253770A (en) * 1996-03-22 1997-09-30 Mitsubishi Electric Corp Die
JP2005321086A (en) * 2004-04-09 2005-11-17 Nippon Steel Corp Crank shaft fatigue characteristics improving method and crank shaft

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2352141A1 (en) 2009-12-09 2011-08-03 Roland Corporation Key speed sensor of electronic musical instrument
JP2013006189A (en) * 2011-06-23 2013-01-10 Neturen Co Ltd Device and method for manufacturing hollow rack bar
JP2013099771A (en) * 2011-11-09 2013-05-23 Neturen Co Ltd Method for production of composite member, composite member, and device for production thereof
WO2016056435A1 (en) * 2014-10-09 2016-04-14 昭和電工株式会社 Forging method and forging device
JP2016074026A (en) * 2014-10-09 2016-05-12 昭和電工株式会社 Forging method and forging device
US10449596B2 (en) 2014-10-09 2019-10-22 Showa Denko K.K. Forging method and forging device
CN104723031A (en) * 2015-02-06 2015-06-24 西安交通大学 Radial-forging type strain induction semi-solid state extrusion technology for waveguide tube
US9718117B2 (en) 2015-06-04 2017-08-01 Showa Denko K.K. Forging method and forging apparatus
DE102016209404A1 (en) 2015-06-04 2016-12-08 Showa Denko K.K. Forging process and forging
CN106312016A (en) * 2016-10-17 2017-01-11 华中科技大学 Vibrating casting and forging composite forming method for aluminum alloy forgings
CN106312016B (en) * 2016-10-17 2018-01-05 华中科技大学 A kind of aluminum alloy forge piece vibration casting forging combined shaping method
CN107413871A (en) * 2017-09-28 2017-12-01 中国地质大学(武汉) A kind of composite ultraphonic vibration aids in micro- extrusion molding process equipment
CN111266503A (en) * 2018-12-05 2020-06-12 财团法人金属工业研究发展中心 Ultrasonic auxiliary forming device
CN110695108A (en) * 2019-09-16 2020-01-17 中国地质大学(武汉) Multidirectional composite ultrasonic vibration auxiliary extrusion forming processing equipment and forming method
CN111534767A (en) * 2020-05-20 2020-08-14 中南大学 Room-temperature cyclic loading high-efficiency shape integrated manufacturing method for aluminum alloy component
CN111534767B (en) * 2020-05-20 2021-04-06 中南大学 Room-temperature cyclic loading high-efficiency shape integrated manufacturing method for aluminum alloy component
CN112453303A (en) * 2020-10-28 2021-03-09 华中科技大学 Micro-channel vibration-assisted plough extrusion-forging composite forming device and method

Also Published As

Publication number Publication date
JP5053175B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5053175B2 (en) Metal forging method and metal forging device
JP6373935B2 (en) Method and system for locally adjusting residual stress in metal parts
Daud et al. Modelling the effects of superimposed ultrasonic vibrations on tension and compression tests of aluminium
CN105396888B (en) A kind of ultrasonic wave and the equal channel angular pressing pressure device under back pressure synergy
US3495427A (en) Apparatus for altering the cross-sectional shape of a plastically deformable workpiece using high frequency vibrations
JP5558774B2 (en) Extrusion processing apparatus and extrusion processing method
CN104707889B (en) A kind of ultrasonic assistant Sheet Metal Forming Technology
CN102728854A (en) Ultrasonic vibratory turning method
CN107931905A (en) For improving the dither welding system and method for metal material performance
JP2004170388A (en) Method for setting gap and apparatus used for the same
CN207656133U (en) High-frequency vibration welding system for improving metal material performance
Graff Ultrasonic metal forming: Processing
KR101349823B1 (en) Forming and deep drawing apparatus using of ultrasonic vibration
JP4584594B2 (en) Mold and molding method using mold
JP2015024427A (en) Processing method of metal material
CN102806361A (en) Ultrasonic postpositional unidirectional vibration turning method
JP4734370B2 (en) Metal material chamfering apparatus and chamfering method
JP2016147289A (en) Metal mold of press working apparatus, and press working apparatus
KR20090113888A (en) Chamfering device and chamfering method for metallic material
SU337220A1 (en) METHOD FOR PROCESSING SHEET MATERIALS
RU2252859C1 (en) Ultrasonic tool for releasing residual stresses and strengthening surfaces of metals
JPS61202727A (en) Bending device
SU1532596A1 (en) Method of high-temperature thermomechanical treatment of high-speed steels
JPH11300423A (en) Vibration press working method and its metallic die
CN109290382A (en) A kind of pressurizing unit of continuous equal channel angle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120725

R151 Written notification of patent or utility model registration

Ref document number: 5053175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees