JP2005321086A - Crank shaft fatigue characteristics improving method and crank shaft - Google Patents

Crank shaft fatigue characteristics improving method and crank shaft Download PDF

Info

Publication number
JP2005321086A
JP2005321086A JP2004271850A JP2004271850A JP2005321086A JP 2005321086 A JP2005321086 A JP 2005321086A JP 2004271850 A JP2004271850 A JP 2004271850A JP 2004271850 A JP2004271850 A JP 2004271850A JP 2005321086 A JP2005321086 A JP 2005321086A
Authority
JP
Japan
Prior art keywords
crankshaft
ultrasonic
curvature
fillet portion
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004271850A
Other languages
Japanese (ja)
Other versions
JP4403044B2 (en
Inventor
Takashi Fujita
崇史 藤田
Toshizo Tarui
敏三 樽井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004271850A priority Critical patent/JP4403044B2/en
Publication of JP2005321086A publication Critical patent/JP2005321086A/en
Application granted granted Critical
Publication of JP4403044B2 publication Critical patent/JP4403044B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of improving the fatigue characteristics of a crank shaft by strengthening a fillet portion, and to provide the crank shaft. <P>SOLUTION: Supersonic blowing treatment is given to the crank shaft on condition that a supersonic vibrator has a frequency of 10-60kHz, a supersonic output of 500-5000W and a thrust of 10-400N. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、フィレット部を有する軸の強化方法であり、特に、自動車等内燃機関のクランクシャフトの疲労特性向上方法およびクランクシャフトに関するものである。   The present invention relates to a method for strengthening a shaft having a fillet portion, and more particularly to a method for improving fatigue characteristics of a crankshaft of an internal combustion engine such as an automobile, and the crankshaft.

図1に示すように内燃機関のクランクシャフト1では、アーム2とピン3またはジャーナル4との接合部が断面アール状のフィレット部5、6となっている。このフィレット部5、6は、クランクシャフト回転時の捻り応力や曲げ応力が集中しやすい箇所となっている。このため、フィレット部を強化することが行なわれており、その方法として、ロール加工法、高周波焼き入れ法等が挙げられる。   As shown in FIG. 1, in a crankshaft 1 of an internal combustion engine, joints between an arm 2 and a pin 3 or a journal 4 are fillet portions 5 and 6 having a rounded cross section. The fillet portions 5 and 6 are locations where torsional stress and bending stress tend to concentrate during crankshaft rotation. For this reason, it is practiced to reinforce the fillet part, and examples thereof include a roll processing method and an induction hardening method.

ロール加工法は、ピン/フランジ、ジャーナル/フランジの境目をフィレットロールにより冷間加工し強度を向上する技術である。従来技術として、例えば、特許文献1では、引張応力のかかる部分の曲率半径を大きくして応力集中を緩和する技術が、また、特許文献2ではフレット部の軸径の減少を抑えて結果として応力集中を緩和する技術が紹介されている。
一方、高周波焼き入れ法は、ピン、ジャーナル部およびピン/フランジ、ジャーナル/フランジ境界のフィレット部の表面を高周波焼き入れによりマルテンサイト化して強度を高める技術である。従来技術として、例えば、特許文献3では焼き割れが生じにくい高周波焼入方法と装置が紹介されている。
特開2002−122126号公報 特開2002−224920号公報 特開2002−173711号公報
The roll processing method is a technique for improving the strength by cold working the boundary between the pin / flange and the journal / flange with a fillet roll. As a conventional technique, for example, Patent Document 1 discloses a technique for reducing the stress concentration by increasing the radius of curvature of a portion where tensile stress is applied, and Patent Document 2 suppresses a decrease in the shaft diameter of the fret portion, resulting in stress. Techniques to ease concentration are introduced.
On the other hand, the induction hardening method is a technique for increasing the strength of the pin, the journal portion, the pin / flange, and the fillet portion at the boundary between the journal / flange and martensite by induction hardening. As a prior art, for example, Patent Document 3 introduces an induction hardening method and apparatus that hardly cause quenching cracks.
JP 2002-122126 A JP 2002-224920 A JP 2002-173711 A

しかしながら、特許文献1に記載の発明では、フィレット成形制御が困難であることからコスト上昇を招き、特許文献2に記載の発明では、十分な加工強化が行えないために疲労強度向上に問題があった。
また、特許文献3に記載の発明に代表される高周波焼入法では、焼き境に生じる引張残留応力のため焼き境の強度が低下するという問題を避けることはできず、フィレット部を強化するために他の部分の劣化を招いていた。
そこで、本発明は、これらの問題点を克服するため、フィレット部を強化することによるクランクシャフトの疲労特性向上方法およびクランクシャフトを提供することを課題とする。
However, the invention described in Patent Document 1 increases the cost because fillet forming control is difficult, and the invention described in Patent Document 2 has a problem in improving fatigue strength because sufficient work strengthening cannot be performed. It was.
In addition, in the induction hardening method represented by the invention described in Patent Document 3, it is impossible to avoid the problem that the strength of the burning boundary decreases due to the tensile residual stress generated in the burning boundary, and to strengthen the fillet portion. The deterioration of other parts was incurred.
Therefore, in order to overcome these problems, an object of the present invention is to provide a method for improving fatigue characteristics of a crankshaft by strengthening a fillet portion and a crankshaft.

本発明は、前述のような従来技術の問題点を解決し、フィレット部に超音波打撃処理を施して強化することによってクランクシャフトの疲労特性向上方法およびクランクシャフトを提供するものであり、その要旨とするところは特許請求の範囲に記載した通りの下記内容である。
(1)超音波振動子の振動数を10〜60kHz、超音波の出力を500〜5000W、超音波振動子のクランクシャフトへの押し付け力を10〜400Nの条件で超音波打撃処理を行なうことを特徴とするクランクシャフトの疲労特性向上方法。
(2)前記超音波振動子の先端部の曲率半径Rが下記(A)式で規定される単独ないしは複数のピンで、フィレット部を打撃処理することを特徴とする請求項1に記載のクランクシャフトの疲労特性向上方法。
(フィレット部の曲率×0.5)≦R≦(フィレット部の曲率×1.05)
・・・・(A)
(3)前記超音波振動子の先端部の曲率半径Rが下記(A)式で規定されるロールで、フィレット部を打撃処理することを特徴とする請求項1に記載のクランクシャフトの疲労特性向上方法。
(フィレット部の曲率×0.5)≦R≦(フィレット部の曲率×1.05)
・・・・(A)
(4)前記フィレット部に超音波打撃処理を施す際に、超音波振動子先端チップのビッカース硬度をH1、クランクシャフトのビッカース硬度をH2としたとき、下式(B)で規定される硬度をもつ超音波振動子で処理することを特徴とする(1)乃至(3)のいずれかに記載のクランクシャフトの疲労特性向上方法。
1.2≦(H1/H2)≦5・・・・(B)
(5)質量%で、C:0.1〜0.8%、Si:0.05〜2.5%、
Mn:0.2〜2%、Al:0.005〜0.1%、N:0.001〜0.02%を含有し、残部がFeおよび不可避的不純物からなり、引張強さが800MPa以上の鋼材からなるクランクシャフトであって、前記クランクシャフトのフィレット部の表層における圧縮残留応力が、前記鋼材の引張強さの50%〜90%であることを特徴とする耐疲労特性に優れたクランクシャフト。
(6)前記鋼材が、質量%で、さらに、Cr:0.1〜2%、Ni:0.1〜2%、Mo:0.1〜2%、Cu:0.1〜2%、Ti:0.003〜0.05%、V:0.05〜0.5%、Nb:0.01〜0.1%の1種または2種以上を含有することを特徴とする(5)に記載の疲労強度に優れたクランクシャフト。
The present invention provides a crankshaft fatigue characteristics improving method and a crankshaft by solving the problems of the prior art as described above and strengthening the fillet portion by applying an ultrasonic hitting process. The following is the contents as described in the claims.
(1) Ultrasonic impact treatment is performed under the conditions of the ultrasonic vibrator having a frequency of 10 to 60 kHz, an ultrasonic output of 500 to 5000 W, and a pressing force of the ultrasonic vibrator to the crankshaft of 10 to 400 N. A method for improving fatigue characteristics of a crankshaft.
(2) The crank according to claim 1, wherein the fillet portion is hit by a single or a plurality of pins whose curvature radius R of the tip of the ultrasonic transducer is defined by the following formula (A). A method for improving the fatigue characteristics of a shaft.
(Curvature of fillet portion × 0.5) ≦ R ≦ (curvature of fillet portion × 1.05)
... (A)
(3) The fatigue characteristics of the crankshaft according to claim 1, wherein the fillet portion is hit with a roll having a radius of curvature R of the tip portion of the ultrasonic transducer defined by the following equation (A). How to improve.
(Curvature of fillet portion × 0.5) ≦ R ≦ (curvature of fillet portion × 1.05)
... (A)
(4) When performing the ultrasonic hitting treatment on the fillet portion, when the Vickers hardness of the tip of the ultrasonic transducer is H1 and the Vickers hardness of the crankshaft is H2, the hardness defined by the following formula (B) The method for improving fatigue characteristics of a crankshaft according to any one of (1) to (3), wherein the processing is performed by an ultrasonic transducer having the crankshaft.
1.2 ≦ (H1 / H2) ≦ 5 (B)
(5) By mass%, C: 0.1 to 0.8%, Si: 0.05 to 2.5%,
Mn: 0.2 to 2%, Al: 0.005 to 0.1%, N: 0.001 to 0.02%, the balance is made of Fe and inevitable impurities, and the tensile strength is 800 MPa or more A crankshaft having excellent fatigue resistance, characterized in that the compressive residual stress in the surface layer of the fillet portion of the crankshaft is 50% to 90% of the tensile strength of the steel material. shaft.
(6) The steel material is mass%, and Cr: 0.1 to 2%, Ni: 0.1 to 2%, Mo: 0.1 to 2%, Cu: 0.1 to 2%, Ti (5), characterized by containing one or more of 0.003-0.05%, V: 0.05-0.5%, Nb: 0.01-0.1% Crankshaft with excellent fatigue strength as described.

本発明により、フィレット部に超音波打撃処理を施して強化することによってクランクシャフトの疲労特性向上方法およびクランクシャフトを提供することができ、このため、クランクシャフトの軽量化、ひいては燃費の向上が可能となるなど、産業上有用な著しい効果を奏する。   According to the present invention, it is possible to provide a method for improving fatigue characteristics of a crankshaft and a crankshaft by strengthening the fillet portion by applying an ultrasonic hitting process. Therefore, it is possible to reduce the weight of the crankshaft and thus improve the fuel efficiency. It has a significant industrially useful effect.

以下、本発明について詳細に説明する。本発明の根幹をなす技術思想は以下の通りである。
部品の疲労強度を向上させるためには、素材の強度を向上させるか、応力集中を緩和するように部品の設計を変更するか、部品の疲労破壊が生じる部位の表面部に圧縮の残留応力を導入するかの3点が考えられる。
本発明者等は、超音波振動する端子で鋼材を打撃することにより、鋼材表面に大きな圧縮の残留応力が付与されることを見いだした。さらにこの超音波打撃処理を部品の疲労破壊が生じる部位に施せば、疲労強度を向上可能であることを見いだした。
Hereinafter, the present invention will be described in detail. The technical idea forming the basis of the present invention is as follows.
In order to improve the fatigue strength of a component, the strength of the material is improved, the design of the component is changed so as to reduce the stress concentration, or a compressive residual stress is applied to the surface of the part where the fatigue failure of the component occurs. There are three possible points to introduce.
The inventors of the present invention have found that a large compressive residual stress is applied to the steel material surface by hitting the steel material with a terminal that vibrates ultrasonically. Furthermore, it has been found that the fatigue strength can be improved by applying this ultrasonic striking treatment to a portion where fatigue fracture of a part occurs.

以下に本発明の限定理由を述べる。
超音波打撃処理行なう部位をフィレット部に限定したのは、クランクシャフトにおいて疲労破壊が主たる問題となるのが、フィレット部だからである。応力集中が生じる狭い場所へ超音波打撃処理を行なうことが有効である。フィレット部からの疲労き裂は、通常図1の5の部分からであり、5の部分にのみ超音波処理を施せば耐疲労特性は向上する。油穴等、疲労破壊が問題となる他の場所にも、超音波処理は有効である。
The reasons for limiting the present invention will be described below.
The reason why the ultrasonic hitting process is limited to the fillet portion is that the fatigue failure is a major problem in the crankshaft because it is the fillet portion. It is effective to perform ultrasonic striking treatment in a narrow place where stress concentration occurs. The fatigue crack from the fillet portion is usually from the portion 5 in FIG. 1, and if only the portion 5 is subjected to ultrasonic treatment, the fatigue resistance is improved. Ultrasonic treatment is also effective in other places where fatigue failure is a problem, such as oil holes.

超音波振動子の振動数を10〜60kHz限定したのは、鋼材に与えられる圧縮の残留応力がこの領域で大きくなるからである。同様に、超音波の出力を500〜5000Wと限定したのも、鋼材に与えられる圧縮の残留応力がこの領域で大きくなるからである。また、押し付け力を10〜400Nに限定したのは、10N未満の押し付け力では十分な残留応力が入らず、400Nを超える押し付け力では、塑性変形が大きくなり、部品の寸法精度が低下するとともに疲労強度も低下するためである。
本発明に用いる超音波振動端子は単独ないしは複数のピン、またはロールが好ましく、超音波打撃ピン先端の形状は、半球状、蒲鉾状、鞍状等が考えられるが特に限定しない。ただし、半球状の先端形状では、フィレット部を処理する時に凸と凸をつきあわせることになるので処理が不安定になる可能性がある。最良は、凸と凹を組み合わせることになる鞍状であるが、超音波打撃ピンの製造コストが高くなる可能性がある。
The reason why the frequency of the ultrasonic vibrator is limited to 10 to 60 kHz is that the compressive residual stress applied to the steel material increases in this region. Similarly, the reason why the ultrasonic output is limited to 500 to 5000 W is that the compressive residual stress applied to the steel material increases in this region. Further, the pressing force is limited to 10 to 400N because sufficient residual stress does not enter when the pressing force is less than 10N, and when the pressing force exceeds 400N, plastic deformation increases, the dimensional accuracy of the parts decreases and fatigue occurs. This is because the strength also decreases.
The ultrasonic vibration terminal used in the present invention is preferably one or a plurality of pins or rolls, and the shape of the tip of the ultrasonic hitting pin may be a hemispherical shape, a saddle shape, a saddle shape or the like, but is not particularly limited. However, in the case of a hemispherical tip shape, when processing the fillet portion, the projections and projections are brought together, so the processing may become unstable. The best is a saddle shape that combines convex and concave, but there is a possibility that the manufacturing cost of the ultrasonic hitting pin becomes high.

<ピン先端およびロールの曲率>
図4の上段に示すようにピン先端の曲率がフィレットの曲率より小さい場合は、処理開始時より溝の底にピン先端が到達し、超音波振動起因の軸ぶれにより溝全体が処理される。
ピン先端の曲率は小さければ小さいほど、接触面積が小さくなるため、超音波のエネルギー密度が増大し、フレット部ないしはジャーナル部の処理部に導入される圧縮応力も大きくなる。しかし、処理による変形のため処理部の曲率はピンの曲率半径に等しくなるため、ピンの曲率半径が処理部の曲率半径の半分以下のときは、応力集中係数が増大し疲労強度はあまり上昇しなくなる。
<Pin tip and roll curvature>
As shown in the upper part of FIG. 4, when the curvature of the pin tip is smaller than the curvature of the fillet, the tip of the pin reaches the bottom of the groove from the start of processing, and the entire groove is processed by the axial shake caused by ultrasonic vibration.
The smaller the curvature of the pin tip, the smaller the contact area, so that the energy density of the ultrasonic wave increases, and the compressive stress introduced into the fret portion or the processing portion of the journal portion also increases. However, since the curvature of the processing part becomes equal to the curvature radius of the pin due to deformation due to processing, when the curvature radius of the pin is less than half of the curvature radius of the processing part, the stress concentration factor increases and the fatigue strength increases so much. Disappear.

一方、図4中段に示すようにピンの先端の曲率が処理部の曲率より大きく、処理部の曲率の1.05倍未満の場合は、処理部が変形し溝底に処理が及ぶので打撃処理の効果が著しいが、図4の下段に示すようにピンの先端の曲率が処理部の曲率より5%以上大きな場合は、処理が溝底に到達しなくなるため、超音波振動子の先端部の曲率半径Rが下記(A)式で規定される単独ないしは複数のピンで、フィレット部を打撃処理することが好ましい。
(フィレット部の曲率×0.5)≦R≦(フィレット部の曲率×1.05)
・・・・(A)
なお、さらに好ましくは、処理部の曲率半径とピン先端の曲率半径は等しいことが望ましい。
On the other hand, as shown in the middle of FIG. 4, when the curvature of the tip of the pin is larger than the curvature of the processing section and less than 1.05 times the curvature of the processing section, the processing section is deformed and the processing reaches the groove bottom. However, if the curvature of the tip of the pin is 5% or more larger than the curvature of the processing portion as shown in the lower part of FIG. 4, the processing does not reach the bottom of the groove. It is preferable that the fillet portion is hit with a single or a plurality of pins whose curvature radius R is defined by the following formula (A).
(Curvature of fillet portion × 0.5) ≦ R ≦ (curvature of fillet portion × 1.05)
... (A)
More preferably, it is desirable that the radius of curvature of the processing portion and the radius of curvature of the pin tip are equal.

本発明における超音波打撃処理はフィレット・ジャーナル部に沿って行なう。フィレット部、ジャーナル部の全周にわたって処理を行なっても良いが、図1の5のフィレット部分がき裂発生点であるので、フィレット5にのみ処理を施すのが効率的である。
例として単独のピンで打撃処理を行う場合、図5に示すようにフレットのき裂発生点(フィレット5)の周り約±30°の範囲について処理を行なえば十分な効果が発揮できる。
また、処理用のピンが複数本ある場合は、フィレットないしはジャーナルに沿って全てのピンが被処理部に接するように配置するのが望ましく、
図6に示すように複数のピンを放射状っもしくは平行に配置することにより、短時間で処理が可能となる。
なお、ロールの場合もピンと同様の理由で上記(A)式により規定される曲率が好ましい。
The ultrasonic hitting process in the present invention is performed along the fillet journal portion. Processing may be performed over the entire circumference of the fillet portion and the journal portion, but since the fillet portion 5 in FIG. 1 is a crack generation point, it is efficient to perform processing only on the fillet 5.
As an example, when the hitting process is performed with a single pin, as shown in FIG. 5, a sufficient effect can be exhibited if the process is performed in a range of about ± 30 ° around the fret crack initiation point (fillet 5).
In addition, when there are a plurality of processing pins, it is desirable to arrange all the pins along the fillet or journal so that they are in contact with the portion to be processed.
As shown in FIG. 6, by arranging a plurality of pins radially or in parallel, processing can be performed in a short time.
In the case of a roll, the curvature defined by the above formula (A) is preferable for the same reason as the pin.

<先端チップの硬度>
先端チップには硬度が要求される。先端チップが被処理材の1.2倍以下のビッカース硬度であると、処理により先端チップが変形し、被処理材に十分な圧縮残留応力が入らなくなることのみならず、チップの寿命が著しく低下し、処理コストを押し上げるため、先端チップは被処理材の1.2倍以上のビッカース硬度を有することが必要である。機能的には、先端チップは硬ければ硬いほど良いが、硬いほど先端チップの製造コストが上昇するため、硬度比の上限を5とすることが好ましい。
従って、超音波振動子先端チップのビッカース硬度をH1、クランクシャフトのビッカース硬度をH2とした時、下記(B)式で規定される硬度を有する超音波振動子で処理することが好ましい。
1.2≦(H1/H2)≦5・・・・(B)
なお、先端チップの素材については特に規定しないが、工具鋼等の合金、シリコンカーバイト、タングステンカーバイト等の焼結材が考えられる。
<Hardness of tip>
The tip is required to have hardness. If the tip tip has a Vickers hardness of 1.2 times or less than that of the material to be treated, the tip tip is deformed by the treatment and not enough compressive residual stress is applied to the material to be treated, and the life of the tip is significantly reduced. In order to increase the processing cost, the tip needs to have a Vickers hardness of 1.2 times or more that of the material to be processed. Functionally, the harder the tip, the better, but the harder the manufacturing cost of the tip, the higher the hardness ratio is preferably 5.
Accordingly, when the Vickers hardness of the tip of the ultrasonic transducer is H1 and the Vickers hardness of the crankshaft is H2, it is preferable to perform processing with an ultrasonic transducer having a hardness defined by the following formula (B).
1.2 ≦ (H1 / H2) ≦ 5 (B)
The material for the tip is not particularly defined, but alloys such as tool steel, sintered materials such as silicon carbide and tungsten carbide are conceivable.

<鋼材成分の限定理由>
本発明のクランクシャフトは、前述のような超音波打撃処理をフィレット部に施すことによって、クランクシャフトのフィレット部の表層における圧縮残留応力が、クランクシャフトを構成する鋼材の引張強さの50%〜90%であることを特徴とする。
本発明のクランクシャフトを構成する鋼材の成分の限定理由を以下に示す。
Cは、鋼を強化するのに有効な元素であるが、0.1%未満では充分な強度が得られない。一方、過多に添加すると靭性が低下するため、添加量の上限を0.8%とする。
Siは、鋼の強化元素として有効であるが、0.05%未満ではその効果がない。一方、過多に添加すると靭性および被削性が低下するため、添加量の上限を2.5%とする。
Mnは、鋼の強化に有効な元素であるが、0.2%未満では充分な効果が得られない。一方、過多に添加すると靭性および被削性が低下するため、添加量の上限を2%とする。
Alは、鋼の脱酸および結晶粒の微細化のために有効な元素であるが、0.005%未満ではその効果がない。一方、過多に添加すると被削性が低下するため、添加量の上限を0.1%とする。
Nは、V炭窒化物やNb炭窒化物を生成し析出強化のために必要な元素であるが、0.001%未満では充分な効果が得られない。一方、過多に添加すると靭性が劣化するため、添加量の上限を0.02%とする。
<Reason for limiting steel components>
In the crankshaft of the present invention, by applying the ultrasonic hitting treatment as described above to the fillet portion, the compressive residual stress in the surface layer of the fillet portion of the crankshaft is 50% to the tensile strength of the steel material constituting the crankshaft. It is characterized by 90%.
The reasons for limiting the components of the steel material constituting the crankshaft of the present invention are shown below.
C is an element effective for strengthening steel, but if it is less than 0.1%, sufficient strength cannot be obtained. On the other hand, if added excessively, toughness decreases, so the upper limit of the amount added is 0.8%.
Si is effective as a steel strengthening element, but less than 0.05% has no effect. On the other hand, if added in excess, the toughness and machinability deteriorate, so the upper limit of the amount added is 2.5%.
Mn is an element effective for strengthening steel, but if it is less than 0.2%, a sufficient effect cannot be obtained. On the other hand, if added in excess, the toughness and machinability deteriorate, so the upper limit of the amount added is 2%.
Al is an element effective for deoxidation of steel and refinement of crystal grains, but if it is less than 0.005%, there is no effect. On the other hand, if added in excess, the machinability decreases, so the upper limit of the amount added is 0.1%.
N is an element necessary for precipitation strengthening by generating V carbonitride and Nb carbonitride, but if it is less than 0.001%, sufficient effects cannot be obtained. On the other hand, if added excessively, the toughness deteriorates, so the upper limit of the amount added is 0.02%.

Cr,Ni,Mo,Cuはいずれも適量の添加においては靱性を損なうことなく強度を増大する元素である。Cr,Ni,Mo,Cuは、いずれも0.1%未満ではその効果はなく、2%を越えると靱性が大きく劣化するため、その添加量の下限をそれぞれ0.1%、上限を2%とする。
Tiは,窒化物・炭化物を生成し、析出強化により強度が上昇するため有効な元素である。さらにTiの窒化物は高温まで固溶せずに残るため、加熱時のオーステナイト粗大化を防止するのに有効である。0.003%未満ではこれらの効果は現れず、0.05%を越えると靱性が劣化するため、その添加量の下限を0.003%、上限を0.05%とする。
Vも、Ti同様窒化物・炭化物を生成し、析出強化により強度が上昇するため有効な元素であるが、効果を享受するためには0.05%以上の添加が必要である。一方、過多に添加すると靭性が劣化するため、添加量の上限を0.5%とする。
Nbも、Ti同様窒化物・炭化物を生成し、析出強化により強度が上昇するため有効な元素であるが、効果を享受するためには0.01%未満では充分な効果が得られない。一方、過多に添加すると靭性が劣化するため、添加量の上限を0.1%とする。
また、これらの元素以外にも、被削性を向上させる元素として、Pb、S、Bi等を添加してもよく、その場合も本発明に含まれる。
なお、上記の元素以外に、P、S等の不可避的不純物が含まれるが、その場合も本発明に含まれる。
Cr, Ni, Mo, and Cu are all elements that increase strength without impairing toughness when added in appropriate amounts. Cr, Ni, Mo, and Cu are not effective when the content is less than 0.1%, and the toughness is greatly deteriorated when the content exceeds 2%. Therefore, the lower limit of addition amount is 0.1% and the upper limit is 2%. And
Ti is an effective element because it produces nitrides and carbides and increases the strength by precipitation strengthening. Furthermore, since the Ti nitride remains without dissolving at high temperatures, it is effective in preventing austenite coarsening during heating. If the content is less than 0.003%, these effects do not appear. If the content exceeds 0.05%, the toughness deteriorates, so the lower limit of the amount added is 0.003% and the upper limit is 0.05%.
V is also an effective element because it produces nitrides and carbides as well as Ti, and the strength is increased by precipitation strengthening. However, in order to enjoy the effect, addition of 0.05% or more is necessary. On the other hand, if added excessively, the toughness deteriorates, so the upper limit of the amount added is 0.5%.
Nb is also an effective element because it produces nitrides and carbides as well as Ti, and the strength is increased by precipitation strengthening. However, if it is less than 0.01%, sufficient effects cannot be obtained in order to enjoy the effect. On the other hand, if added excessively, toughness deteriorates, so the upper limit of the amount added is 0.1%.
In addition to these elements, Pb, S, Bi and the like may be added as elements for improving machinability, and such cases are also included in the present invention.
In addition to the above elements, unavoidable impurities such as P and S are included, but such cases are also included in the present invention.

<引張強度>
本発明のクランクシャフトを構成する鋼材の引張強さの限定理由を以下に示す。
引張強さが800MPa以下の鋼材では、フィレット部の圧縮残留応力の下限規定である50%では十分な疲労強度向上効果が得られないため、その下限値を800MPaとした。
<残留応力>
図2に示すように母材強度が810MPaの場合、残留応力が−400MPa以下の場合に疲労強度の向上効果が著しく、また図3に示すように母材強度が1005MPaの場合、残留応力が−500MPa以下の場合に疲労強度の向上効果が著しい。
従って、本発明が対象とする800MPa以上の強度を持つ鋼材において、引張強さの50%以下の圧縮残留応力では十分な疲労強度向上が認められないことおよび、引張強さの90%以上の圧縮残留応力を付与することは、本発明では困難であることから、その上限を90%とする。
なお、残留応力の測定はX線を用いて行ない、回折X線の強度を測定しピーク強度の半値幅から求めている。
<Tensile strength>
The reasons for limiting the tensile strength of the steel material constituting the crankshaft of the present invention are shown below.
In a steel material having a tensile strength of 800 MPa or less, a sufficient fatigue strength improvement effect cannot be obtained at 50%, which is the lower limit of the compressive residual stress of the fillet portion, so the lower limit value was set to 800 MPa.
<Residual stress>
As shown in FIG. 2, when the base material strength is 810 MPa, the effect of improving the fatigue strength is remarkable when the residual stress is −400 MPa or less, and when the base material strength is 1005 MPa as shown in FIG. In the case of 500 MPa or less, the effect of improving fatigue strength is remarkable.
Therefore, in a steel material having a strength of 800 MPa or more, which is the subject of the present invention, a sufficient fatigue strength improvement cannot be observed with a compressive residual stress of 50% or less of the tensile strength, and a compression of 90% or more of the tensile strength. Since it is difficult to apply the residual stress in the present invention, the upper limit is made 90%.
The residual stress is measured using X-rays, and the intensity of diffracted X-rays is measured and obtained from the half width of the peak intensity.

表1に示す成分の鋼から、クランクシャフトフィレット部を模した環状半円溝付き小野式回転曲げ試験片を切り出した。試験片の軸径Dは6mm、環状半円溝の曲率ρは0.5mm、溝部の軸径dは5mmであった。この試験片を用い表2の条件で試験を行ない、表2の試験結果を得た。試験片の超音波打撃処理は溝部にのみ実施した。
また、この試験片はクランクシャフトを模した物であるが、クランクシャフトと異なり全周にわたって応力条件が同一なため、超音波打撃処理は試験片の溝部全周に施した。この時用いた超音波打撃ピンの形状は蒲鉾状で、先端の曲率は試験片溝の曲率と同一であった。
その結果、本発明の疲労強度向上方法を用いた本発明例は比較例に比べて、大幅な疲労強度向上が認められた。
また、超音波振動子の先端チップの硬度を変えて実験した結果を表3に示す。
前述の、超音波振動子先端チップのビッカース硬度H1と、クランクシャフトのビッカース硬度H2との硬度比H1/H2が1.2〜5の範囲である本発明例において著しく疲労強度の向上効果が確認された。
なお、本実施例における先端チップは主に工具鋼(SUJ2)を用いた。
また、先端チップの硬度が及ぼす影響についての調査は、上記工具鋼を焼き戻したものおよび鋼種Aを用いた。

Figure 2005321086
Figure 2005321086
Figure 2005321086
An Ono rotary bending test piece with an annular semicircular groove simulating a crankshaft fillet portion was cut out from the steel components shown in Table 1. The axial diameter D of the test piece was 6 mm, the curvature ρ of the annular semicircular groove was 0.5 mm, and the axial diameter d of the groove portion was 5 mm. Using this test piece, the test was conducted under the conditions shown in Table 2, and the test results shown in Table 2 were obtained. The ultrasonic hitting treatment of the test piece was performed only on the groove.
Moreover, although this test piece is a thing imitating a crankshaft, since the stress conditions are the same throughout the circumference unlike the crankshaft, the ultrasonic impact treatment was applied to the entire groove of the test piece. The shape of the ultrasonic striking pin used at this time was bowl-shaped, and the curvature of the tip was the same as that of the test piece groove.
As a result, the present invention example using the fatigue strength improving method of the present invention showed a significant improvement in fatigue strength compared to the comparative example.
In addition, Table 3 shows the results of the experiment conducted by changing the hardness of the tip of the ultrasonic vibrator.
In the above-described examples of the present invention in which the hardness ratio H1 / H2 between the Vickers hardness H1 of the tip of the ultrasonic transducer and the Vickers hardness H2 of the crankshaft is in the range of 1.2 to 5, a remarkable improvement effect of fatigue strength has been confirmed. It was done.
In addition, the tool tip (SUJ2) was mainly used for the front-end | tip tip in a present Example.
Further, for the investigation on the influence of the hardness of the tip, tempered tool steel and steel type A were used.
Figure 2005321086
Figure 2005321086
Figure 2005321086

本発明が対象とするクランクシャフトを模式的に示す図である。It is a figure which shows typically the crankshaft which this invention makes object. 母材強度が810Mpaの場合の残留応力と疲労強度との関係を示す図である。It is a figure which shows the relationship between residual stress and fatigue strength in case base material strength is 810 Mpa. 母材強度が1005Mpaの場合の残留応力と疲労強度との関係を示す図である。It is a figure which shows the relationship between residual stress and fatigue strength in case base material strength is 1005 Mpa. ピン先端の曲率半径に応じた打撃部の変形状況を説明する図である。It is a figure explaining the deformation | transformation condition of the hit | damage part according to the curvature radius of a pin front-end | tip. 超音波振動子の配置を例示する図である。It is a figure which illustrates arrangement | positioning of an ultrasonic transducer | vibrator. 超音波振動子の配置を例示する図である。It is a figure which illustrates arrangement | positioning of an ultrasonic transducer | vibrator.

符号の説明Explanation of symbols

1 クランクシャフト
2 アーム
3 ピン
4 ジャーナル
5 フィレット部
1 Crankshaft 2 Arm 3 Pin 4 Journal 5 Fillet

Claims (6)

超音波振動子の振動数を10〜60kHz、超音波の出力を500〜5000W、超音波振動子のクランクシャフトへの押し付け力を10〜400Nの条件で超音波打撃処理を行なうことを特徴とするクランクシャフトの疲労特性向上方法。   The ultrasonic striking process is performed under the conditions of an ultrasonic vibrator having a frequency of 10 to 60 kHz, an ultrasonic output of 500 to 5000 W, and a pressing force of the ultrasonic vibrator to a crankshaft of 10 to 400 N. Crankshaft fatigue characteristics improvement method. 前記超音波振動子の先端部の曲率半径Rが下記(A)式で規定される単独ないしは複数のピンで、フィレット部を打撃処理することを特徴とする請求項1に記載のクランクシャフトの疲労特性向上方法。
(フィレット部の曲率×0.5)≦R≦(フィレット部の曲率×1.05)
・・・・(A)
2. The crankshaft fatigue according to claim 1, wherein the fillet portion is hit with a single or a plurality of pins whose curvature radius R of the tip portion of the ultrasonic transducer is defined by the following formula (A). Characteristic improvement method.
(Curvature of fillet portion × 0.5) ≦ R ≦ (curvature of fillet portion × 1.05)
... (A)
前記超音波振動子の先端部の曲率半径Rが下記(A)式で規定されるロールで、フィレット部を打撃処理することを特徴とする請求項1に記載のクランクシャフトの疲労特性向上方法。
(フィレット部の曲率×0.5)≦R≦(フィレット部の曲率×1.05)
・・・・(A)
2. The method for improving fatigue characteristics of a crankshaft according to claim 1, wherein the fillet portion is hit with a roll having a curvature radius R of the tip portion of the ultrasonic transducer defined by the following expression (A).
(Curvature of fillet portion × 0.5) ≦ R ≦ (curvature of fillet portion × 1.05)
... (A)
前記フィレット部に超音波打撃処理を施す際に、超音波振動子先端チップのビッカース硬度をH1、クランクシャフトのビッカース硬度をH2としたとき、下記(B)式で規定される硬度を有する超音波振動子で処理することを特徴とする請求項1乃至請求項3のいずれかに記載のクランクシャフトの疲労特性向上方法。
1.2≦(H1/H2)≦5・・・・(B)
When performing ultrasonic striking treatment on the fillet portion, an ultrasonic wave having a hardness defined by the following equation (B), where V1 hardness of the tip of the ultrasonic transducer is H1 and Vickers hardness of the crankshaft is H2 The method for improving fatigue characteristics of a crankshaft according to any one of claims 1 to 3, wherein the treatment is performed by a vibrator.
1.2 ≦ (H1 / H2) ≦ 5 (B)
質量%で、
C:0.1〜0.8%、
Si:0.05〜2.5%、
Mn:0.2〜2%、
Al:0.005〜0.1%、
N:0.001〜0.02%
を含有し、残部がFeおよび不可避的不純物からなり、引張強さが800MPa以上の鋼材からなるクランクシャフトであって、前記クランクシャフトのフィレット部の表層における圧縮残留応力が、前記鋼材の引張強さの50%〜90%であることを特徴とする耐疲労特性に優れたクランクシャフト。
% By mass
C: 0.1-0.8%
Si: 0.05 to 2.5%,
Mn: 0.2-2%
Al: 0.005 to 0.1%,
N: 0.001 to 0.02%
A crankshaft made of a steel material having a balance of Fe and inevitable impurities and a tensile strength of 800 MPa or more, wherein the compressive residual stress in the surface layer of the fillet portion of the crankshaft is the tensile strength of the steel material Crankshaft with excellent fatigue resistance, characterized by 50% to 90%
前記鋼材が、質量%で、さらに、
Cr:0.1〜2%、
Ni:0.1〜2%、
Mo:0.1〜2%、
Cu:0.1〜2%、
Ti:0.003〜0.05%、
V:0.05〜0.5%、
Nb:0.01〜0.1%
の1種または2種以上を含有することを特徴とする請求項5に記載の疲労強度に優れたクランクシャフト。
The steel material is in mass%, and
Cr: 0.1 to 2%,
Ni: 0.1 to 2%,
Mo: 0.1 to 2%,
Cu: 0.1 to 2%,
Ti: 0.003 to 0.05%,
V: 0.05-0.5%
Nb: 0.01 to 0.1%
The crankshaft excellent in fatigue strength according to claim 5, comprising one or more of the following.
JP2004271850A 2004-04-09 2004-09-17 Crankshaft fatigue characteristics improvement method Expired - Fee Related JP4403044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004271850A JP4403044B2 (en) 2004-04-09 2004-09-17 Crankshaft fatigue characteristics improvement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004115001 2004-04-09
JP2004271850A JP4403044B2 (en) 2004-04-09 2004-09-17 Crankshaft fatigue characteristics improvement method

Publications (2)

Publication Number Publication Date
JP2005321086A true JP2005321086A (en) 2005-11-17
JP4403044B2 JP4403044B2 (en) 2010-01-20

Family

ID=35468505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004271850A Expired - Fee Related JP4403044B2 (en) 2004-04-09 2004-09-17 Crankshaft fatigue characteristics improvement method

Country Status (1)

Country Link
JP (1) JP4403044B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009279596A (en) * 2008-05-20 2009-12-03 Nippon Steel Corp Forging method of metal and forging device of metal
WO2015141611A1 (en) * 2014-03-20 2015-09-24 本田技研工業株式会社 Crankshaft and method of strengthening shaft component
JP2020530815A (en) * 2017-06-14 2020-10-29 マシネンファブリック アルフィング ケスラー ゲーエムベーハーMaschinenfabrik Alfing Kessler Gesellschaft Mit Beschrankter Haftung Methods and equipment for impact treatment of crankshaft crossovers
CN115388082A (en) * 2021-05-25 2022-11-25 马自达汽车株式会社 Internal combustion engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009279596A (en) * 2008-05-20 2009-12-03 Nippon Steel Corp Forging method of metal and forging device of metal
WO2015141611A1 (en) * 2014-03-20 2015-09-24 本田技研工業株式会社 Crankshaft and method of strengthening shaft component
CN106233008A (en) * 2014-03-20 2016-12-14 本田技研工业株式会社 Bent axle and the Enhancement Method of spindle unit
JPWO2015141611A1 (en) * 2014-03-20 2017-04-06 本田技研工業株式会社 Crankshaft and shaft member strengthening method
US10300523B2 (en) 2014-03-20 2019-05-28 Honda Motor Co., Ltd. Crankshaft and method of strengthening shaft component
JP2020530815A (en) * 2017-06-14 2020-10-29 マシネンファブリック アルフィング ケスラー ゲーエムベーハーMaschinenfabrik Alfing Kessler Gesellschaft Mit Beschrankter Haftung Methods and equipment for impact treatment of crankshaft crossovers
JP7013492B2 (en) 2017-06-14 2022-01-31 マシネンファブリック アルフィング ケスラー ゲーエムベーハー Methods and equipment for impact treatment of crankshaft crossovers
CN115388082A (en) * 2021-05-25 2022-11-25 马自达汽车株式会社 Internal combustion engine
CN115388082B (en) * 2021-05-25 2023-09-05 马自达汽车株式会社 internal combustion engine

Also Published As

Publication number Publication date
JP4403044B2 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
CN1204285C (en) Stainless-steel band, method for inhibiting crack at edge of steel band and method for producing said steel band
JP5585758B2 (en) Crankshaft manufacturing method
JP4555749B2 (en) Method for improving delayed fracture resistance of high strength bolts
CN100516268C (en) High strength machine parts and shaft excellent in fatigue characteristics, and method for improving fatigue characteristics thereof
JP2017122500A (en) Large-sized crank shaft
JP5319374B2 (en) Integrated crankshaft and manufacturing method thereof
JPH0421757A (en) High surface pressure gear
JP4854981B2 (en) Friction welded parts with excellent fatigue resistance and methods for improving the fatigue characteristics
JP4403044B2 (en) Crankshaft fatigue characteristics improvement method
JP4818632B2 (en) Shaft with excellent fatigue resistance and method for improving fatigue characteristics
JP3876384B2 (en) High strength connecting rod and manufacturing method thereof
JP4728884B2 (en) Induction contour hardened steel and induction contour hardened parts with excellent low cycle fatigue characteristics
JP4436225B2 (en) High-strength mechanical parts with excellent fatigue characteristics and methods for improving the fatigue characteristics
WO2005100626A1 (en) Crankshaft excellent in flexural fatigue strength
WO2006030800A1 (en) High strength machine parts and shaft excellent in fatigue characteristics, and method for improving fatigue characteristics thereof
JP4010023B2 (en) Soft nitrided non-tempered crankshaft and manufacturing method thereof
JP2006292108A (en) Crank shaft and its manufacturing method
JP3502744B2 (en) Method of manufacturing shaft-shaped parts for machine structure with excellent fatigue characteristics
JP4374306B2 (en) Connecting rods with excellent fatigue characteristics and methods for improving the fatigue characteristics
JP2004277838A (en) Non-heat treated steel
KR20070021182A (en) High strength machine parts and shaft excellent in fatigue characteristics, and method for improving fatigue characteristics thereof
JP5505264B2 (en) Induction contour hardened steel and induction contour hardened parts with excellent low cycle fatigue characteristics
JP4490874B2 (en) Steel parts having splines and methods for improving their fatigue properties
JP2007332440A (en) Steel material for high frequency induction-hardening having excellent low cycle fatigue property, and induction-hardened component
JP2004136311A (en) Welded joint having high fatigue strength, and method for improving fatigue strength of welded joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091030

R151 Written notification of patent or utility model registration

Ref document number: 4403044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees