JP2009278907A - Method for modifying sugar chain - Google Patents

Method for modifying sugar chain Download PDF

Info

Publication number
JP2009278907A
JP2009278907A JP2008133815A JP2008133815A JP2009278907A JP 2009278907 A JP2009278907 A JP 2009278907A JP 2008133815 A JP2008133815 A JP 2008133815A JP 2008133815 A JP2008133815 A JP 2008133815A JP 2009278907 A JP2009278907 A JP 2009278907A
Authority
JP
Japan
Prior art keywords
sugar chain
glycosidase
reaction
proteoglycan
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008133815A
Other languages
Japanese (ja)
Other versions
JP5470612B2 (en
Inventor
Ikuko Kakizaki
育子 柿崎
Masahiko Endo
正彦 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirosaki University NUC
Original Assignee
Hirosaki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirosaki University NUC filed Critical Hirosaki University NUC
Priority to JP2008133815A priority Critical patent/JP5470612B2/en
Publication of JP2009278907A publication Critical patent/JP2009278907A/en
Application granted granted Critical
Publication of JP5470612B2 publication Critical patent/JP5470612B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide modification method for modifying a sugar chain by an enzymatic technique, which obtains a product having no admixture of glycosidase used in the reaction. <P>SOLUTION: The method for modifying sugar chains includes passing an aqueous solution containing glycosaminoglycan and/or proteoglycan through a glycosidase-immobilized column and hydrolyzing and/or a transglucosylating a sugar chain on the basis of glycosidase action to modify the sugar chain. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、酵素学的手法による糖鎖改変方法において、反応に用いたグリコシダーゼの混入がない生成物を得るための方法に関する。   The present invention relates to a method for obtaining a product free from the contamination of glycosidase used in a reaction in a method for modifying a sugar chain by an enzymatic method.

糖鎖は、核酸、タンパク質に次ぐ第三の“鎖”であり、近年、その役割や機能の実態が次第に明らかになるとともに、糖鎖の機能の向上や改変のための糖鎖工学の研究も盛んに行われていることは当業者に周知の通りである。このような状況において、本発明者のグループは、これまでに、グリコシダーゼの1つであるヒアルロニダーゼを用いて糖鎖を2糖単位で加水分解したり転移させたりすることによる糖鎖改変方法を開発している(例えば非特許文献1および非特許文献2を参照のこと)。この方法は、計画的なデザインのもとで糖鎖を2糖またはその倍数のオリゴ糖の単位で改変できることから、糖鎖工学上において非常に利用価値が高いものである。   Sugar chains are the third “chain” after nucleic acids and proteins. In recent years, the roles and functions of these chains have become increasingly clear, and research on sugar chain engineering for improving and modifying sugar chain functions has also been conducted. It is well known to those skilled in the art that this is actively done. In such a situation, the group of the present inventors has so far developed a method for modifying a sugar chain by hydrolyzing or transferring a sugar chain by a disaccharide unit using hyaluronidase which is one of glycosidases. (For example, see Non-Patent Document 1 and Non-Patent Document 2). Since this method can modify a sugar chain with a disaccharide or a multiple of an oligosaccharide unit under a planned design, it is very useful in terms of glycoengineering.

しかしながら、糖鎖の改変対象となるグリコサミノグリカンやプロテオグリカンを含む水溶液にグリコシダーゼを添加して行う反応系(糖転移反応を行う場合にはさらに供与体となるグリコサミノグリカンやプロテオグリカンを添加)では、反応後に生成物を所定の精製手段(ゲルろ過クロマトグラフィーなど)によって精製しても、反応に用いたグリコシダーゼを生成物から除去することが必ずしも容易ではなく、そのため、生成物の生物学的活性を評価したり利用したりする際や生成物を出発原料として新たに糖鎖改変を行う際、生成物に混入したグリコシダーゼが悪影響を及ぼすことが否めないという問題があった。
K, Takagaki et al., Biochemistry, 33(21), 6503-6507, 1994. H, Saitoh et al., J. Biol. Chem., 270, 3741-3747, 1995.
However, a reaction system in which glycosidase is added to an aqueous solution containing glycosaminoglycan or proteoglycan to be modified with a sugar chain (addition of glycosaminoglycan or proteoglycan as a donor in the case of transglycosylation) Then, even if the product is purified by a predetermined purification means (gel filtration chromatography or the like) after the reaction, it is not always easy to remove the glycosidase used in the reaction from the product. There has been a problem in that glycosidase mixed in the product cannot be adversely affected when the activity is evaluated or used, or when the sugar chain is newly modified using the product as a starting material.
K, Takagaki et al., Biochemistry, 33 (21), 6503-6507, 1994. H, Saitoh et al., J. Biol. Chem., 270, 3741-3747, 1995.

そこで本発明は、酵素学的手法による糖鎖改変方法において、反応に用いたグリコシダーゼの混入がない生成物を得るための方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method for obtaining a product free from the contamination of glycosidase used in a reaction in a method for modifying a sugar chain by an enzymatic method.

上記の点に鑑みてなされた本発明の方法は、請求項1記載の通り、グリコサミノグリカンおよび/またはプロテオグリカンを含む水溶液をグリコシダーゼ固定化カラムに通液し、グリコシダーゼの作用に基づく糖鎖の加水分解反応および/または糖転移反応をカラム内で行うことにより糖鎖を改変することを特徴とする。
また、請求項2記載の方法は、請求項1記載の方法において、グリコシダーゼがヒアルロニダーゼであることを特徴とする。
In the method of the present invention made in view of the above points, as described in claim 1, an aqueous solution containing glycosaminoglycan and / or proteoglycan is passed through a glycosidase-immobilized column, and the sugar chain based on the action of glycosidase is added. The sugar chain is modified by performing a hydrolysis reaction and / or a sugar transfer reaction in a column.
The method according to claim 2 is characterized in that, in the method according to claim 1, the glycosidase is hyaluronidase.

本発明によれば、反応に用いるグリコシダーゼがカラム内に固定化されているので、反応後にグリコシダーゼを除去するための精製工程が不要となる。従って、グリコシダーゼの混入がない高い純度の糖鎖改変生成物の収量の向上を図ることができる。   According to the present invention, since the glycosidase used for the reaction is immobilized in the column, a purification step for removing the glycosidase after the reaction becomes unnecessary. Therefore, it is possible to improve the yield of a high-purity sugar chain modified product free from glycosidase contamination.

本発明の方法は、グリコサミノグリカンおよび/またはプロテオグリカンを含む水溶液をグリコシダーゼ固定化カラムに通液し、グリコシダーゼの作用に基づく糖鎖の加水分解反応および/または糖転移反応をカラム内で行うことにより糖鎖を改変することを特徴とするものである。本発明において「糖鎖の改変」とは、グリコシダーゼの作用に基づく糖鎖の加水分解反応によってその構成糖の一部または全部を欠損させること、糖転移反応によって欠損させた構成糖を新たな構成糖に置換して糖鎖を組み換えることや糖鎖に新たな構成糖を付加して糖鎖を伸長することなど、糖鎖の構成糖を人為的に欠損、置換、付加する操作を意味するものとする。   In the method of the present invention, an aqueous solution containing glycosaminoglycan and / or proteoglycan is passed through a glycosidase-immobilized column, and a sugar chain hydrolysis reaction and / or glycosyltransferase reaction based on the action of glycosidase is performed in the column. It is characterized by modifying the sugar chain. In the present invention, “glycan modification” means that a part or all of the constituent sugars are lost by a hydrolysis reaction of a sugar chain based on the action of glycosidase, or a constituent sugar that has been deleted by a transglycosylation reaction is newly constructed. Means an operation to artificially delete, replace, or add a constituent sugar of a sugar chain, such as recombination of a sugar chain by substitution with a sugar or addition of a new constituent sugar to a sugar chain to extend the sugar chain. Shall.

本発明において糖鎖を改変するために用いるグリコシダーゼは、糖鎖の加水分解活性および/または糖転移活性を有するものであればどのようなものであってもよく、例えば、グリコサミノグリカンとして、ヒアルロン酸の他、コンドロイチン、コンドロイチン硫酸A,C,E、脱硫酸化コンドロイチン硫酸Bなどに作用する精巣性ヒアルロニダーゼ(EC3.2.135:非特許文献1)や、プロテオグリカンのコアタンパク質とグリコサミノグリカン糖鎖の結合部位に存在する共通の橋渡し領域(−GlcA−Gal−Gal−Xyl−セリン)に特異的に作用するエンド−β−キシロシダーゼ、エンド−β−ガラクトシダーゼ、エンド−β−グルクロニダーゼや、エンド−β−キシロシダーゼと同様の酵素活性を有するセルラーゼやキシラナーゼなどのエンド型グリコシダーゼが挙げられる。   The glycosidase used for modifying the sugar chain in the present invention may be any glycosidase having sugar chain hydrolysis activity and / or transglycosylation activity, for example, as glycosaminoglycan, In addition to hyaluronic acid, testicular hyaluronidase (EC 3.2.135: Non-Patent Document 1) acting on chondroitin, chondroitin sulfate A, C, E, desulfated chondroitin sulfate B, and the like, proteoglycan core protein and glycosaminoglycan Endo-β-xylosidase, endo-β-galactosidase, endo-β-glucuronidase, which specifically acts on a common bridging region (-GlcA-Gal-Gal-Xyl-serine) present in the binding site of the sugar chain, -Cellulase and xylose having the same enzyme activity as β-xylosidase Endo-type glycosidase, such as transglutaminase, and the like.

グリコシダーゼ固定化カラムの作製は、酵素固定化カラムの一般的な作製方法に従って行うことができる。その一例としては、CNBr(臭化シアン)活性化セファロースなどのCNBrによって活性化させたビーズ状のアガロースゲルにグリコシダーゼをカップリングさせてガラス製のカラムに充填する方法が挙げられる(グリコシダーゼを固定する担体はビニルポリマーなどの合成樹脂からなるビーズなどであってもよい)。グリコシダーゼをカラム内に固定化することで、その酵素活性の安定化が図られるため、カラムを繰り返し利用できる。また、作製したカラムは3〜5℃で保存することにより、少なくとも3ヶ月はグリコシダーゼの酵素活性を維持しておくことができる(6ヶ月経過後においても約70%の酵素活性の維持が可能)。   The glycosidase-immobilized column can be produced according to a general production method for an enzyme-immobilized column. One example is a method in which a glycosidase is coupled to a beaded agarose gel activated with CNBr, such as CNBr (cyanogen bromide) activated sepharose, and packed into a glass column (glycosidase is immobilized). The carrier may be beads made of a synthetic resin such as vinyl polymer). Since the enzyme activity is stabilized by immobilizing glycosidase in the column, the column can be used repeatedly. In addition, by storing the prepared column at 3 to 5 ° C., the enzyme activity of glycosidase can be maintained for at least 3 months (approximately 70% of enzyme activity can be maintained even after 6 months). .

グリコシダーゼ固定化カラム内での糖鎖の加水分解反応や糖転移反応は、糖鎖改変対象とするグリコサミノグリカンやプロテオグリカンを含む水溶液を、予め至適な緩衝溶液で緩衝化したカラムに通液し(糖転移反応を行う場合にはさらに供与体となるグリコサミノグリカンやプロテオグリカンを通液)、カラム内を所定の反応条件に保つことで行うことができる。例えば、グリコシダーゼとして精巣性ヒアルロニダーゼを用いる場合、好適には36〜38℃、pH3.0〜6.5の条件下において、糖鎖改変対象とするグリコサミノグリカンやプロテオグリカンの糖鎖を、その非還元末端側から構成糖が2糖ずつ遊離するように加水分解することができる。また、好適には2〜50℃、pH5.0〜8.5の条件下において、反応系内に共存させた供与体となるグリコサミノグリカンやプロテオグリカンの糖鎖を加水分解し、その非還元末端側から構成糖を2糖ずつ遊離させるとともに、遊離した構成糖を2糖ずつ糖鎖改変対象とするグリコサミノグリカンやプロテオグリカンの糖鎖の非還元末端側に次々に転移させて糖鎖を伸長することができる。糖鎖をより長く伸長させるためには反応温度は低い方が望ましく、例えば2〜26℃の反応温度では10個以上の2糖単位を、16℃以下の反応温度では20個以上の2糖単位を効率的に転移させることができる。なお、言うまでもないことであるがグリコシダーゼとしてヒアルロニダーゼを用いる場合には糖鎖改変対象や供与体となるグリコサミノグリカンやプロテオグリカンはヒアルロニダーゼの作用を受けるものでなければならない。所定の反応時間(例えば10分間〜3日間)が経過した後、カラムに洗浄液として例えば水や塩化ナトリウム水溶液や酢酸アンモニウム水溶液などを通液して反応液を流出させ、必要な精製手段を適用することで、グリコシダーゼの混入がない糖鎖改変生成物を得ることができる。なお、精製手段は、反応液に含まれる目的生成物や未反応出発原料やこれらの分解物などの物理化学的性状を考慮し、ゲルろ過クロマトグラフィー、陽イオン交換クロマトグラフィー、陰イオン交換クロマトグラフィー、アフィニティークロマトグラフィー、透析、限外ろ過などから適宜採用すればよい。   In the glycosidase-immobilized column, sugar chain hydrolysis and transglycosylation are conducted through a column in which an aqueous solution containing glycosaminoglycan or proteoglycan to be modified is previously buffered with an optimal buffer solution. (In the case of carrying out a sugar transfer reaction, the glycosaminoglycan or proteoglycan serving as a donor is further passed through), and the column interior can be maintained under predetermined reaction conditions. For example, when testicular hyaluronidase is used as a glycosidase, the sugar chain of glycosaminoglycan or proteoglycan to be subjected to sugar chain modification is preferably removed under conditions of 36 to 38 ° C. and pH 3.0 to 6.5. Hydrolysis can be performed so that the constituent sugars are released from the reducing end side by two sugars. In addition, the glycosaminoglycan or proteoglycan sugar chain serving as a donor coexisting in the reaction system is preferably hydrolyzed under the conditions of 2 to 50 ° C. and pH 5.0 to 8.5, and the non-reduction thereof is performed. The constituent sugars are released from the terminal side by two sugars, and the released constituent sugars are transferred one after another to the non-reducing terminal side of the glycosaminoglycan or proteoglycan sugar chain to be modified. Can stretch. In order to extend the sugar chain longer, it is desirable that the reaction temperature is lower, for example, 10 or more disaccharide units at a reaction temperature of 2 to 26 ° C, and 20 or more disaccharide units at a reaction temperature of 16 ° C or less. Can be efficiently transferred. Needless to say, when hyaluronidase is used as a glycosidase, glycosaminoglycan or proteoglycan serving as a sugar chain modification target or donor must be subject to the action of hyaluronidase. After a predetermined reaction time (for example, 10 minutes to 3 days) has passed, for example, water, an aqueous solution of sodium chloride, an aqueous solution of ammonium acetate, or the like is passed through the column as a washing solution, and the reaction solution is discharged, and necessary purification means are applied. Thus, a sugar chain modification product free from glycosidase contamination can be obtained. The purification means is based on gel filtration chromatography, cation exchange chromatography, anion exchange chromatography in consideration of the physicochemical properties of the target product, unreacted starting materials and their decomposition products contained in the reaction solution. , Affinity chromatography, dialysis, ultrafiltration, etc. may be employed as appropriate.

なお、糖鎖改変対象がプロテオグリカンの場合、予めプロテオグリカンにプロテアーゼを作用させてコアタンパク質をペプチドに断片化してからその水溶液をグリコシダーゼ固定化カラムに通液するようにしてもよい。本発明の「プロテオグリカン」には、コアタンパク質をペプチドに断片化したグリカンも含まれるものとする。   In addition, when the sugar chain modification target is a proteoglycan, a protease may act on the proteoglycan in advance to fragment the core protein into a peptide, and the aqueous solution may be passed through a glycosidase-immobilized column. The “proteoglycan” of the present invention includes glycans obtained by fragmenting the core protein into peptides.

また、本発明の方法によれば、例えば、グリコシダーゼを用いてプロテオグリカンのグリコサミノグリカン糖鎖の加水分解反応を行ってその構成糖の一部または全部を欠損させた後、糖転移反応を行って欠損させた構成糖を新たな構成糖に置換して糖鎖を組み換えたり、さらに新たな構成糖を付加して糖鎖を伸長したりする連続工程を、グリコシダーゼ固定化カラムを組み込んだ図1に例示する糖鎖改変装置を用いて繰り返し行うことができる。   In addition, according to the method of the present invention, for example, glycosidase is used to hydrolyze the glycosaminoglycan sugar chain of proteoglycan so that a part or all of the constituent sugars are lost, and then a transglycosylation reaction is performed. The glycosidase-immobilized column is incorporated into the continuous process of replacing sugar chains that have been deleted in this way with new constituent sugars to recombine sugar chains or adding new constituent sugars to extend sugar chains. It can be repeated using the sugar chain modifying apparatus exemplified in the above.

図1に例示する糖鎖改変装置は、糖鎖の加水分解反応を行うための第1のグリコシダーゼ固定化カラム(第1CM)と糖転移反応を行うための第2のグリコシダーゼ固定化カラム(第2CM)を直列に連結したものであり、第1CMと第2CMの間には第1CM内で行う糖鎖の加水分解反応によって得られる生成物の精製手段としての限外ろ過膜ユニットが配置され、第2CMの下流には送液手段としてのペリスタポンプが配置されている。
以下、グリコシダーゼ固定化カラムとしてヒアルロニダーゼ固定化カラムを組み込んだ糖鎖改変装置の使用方法の一例について順を追って説明する。
まず、(1)から出発原料(糖鎖改変対象)であるプロテオグリカンを含む水溶液を第1CMにアプライした後、第1CMの出口のコックを閉じ、第1CM内で糖鎖の加水分解反応を所定の条件下(例えば0.1M酢酸ナトリウム緩衝液−0.15M NaCl,pH4.0〜5.5,37℃)で数時間〜一晩行う。この過程により、プロテオグリカンのグリコサミノグリカン糖鎖は、橋渡し領域の4糖を含む6糖を残して消化され、糖鎖欠損プロテオグリカンと主として4糖からなるグリコサミノグリカン糖鎖の分解断片が第1CM内に生成する。
次に、第1CMの出口のコックを開き、(1)から水を加え、ペリスタポンプを作動させて装置内の流路に反応液が流れるようにすることで、第1CMから流出した反応液に含まれる糖鎖欠損プロテオグリカンと糖鎖分解断片を、限外ろ過膜ユニット(例えばPellicon(商品名) XLデバイス,バイオマックス−5,日本ミリポア社)を循環する過程で分離し(反応液の循環速度は例えば3〜4mL/minが望ましい)、糖鎖分解断片を流路の外に排出するとともに、糖鎖欠損プロテオグリカンを第2CMに導入する。
次に、(2)から糖転移反応を行うための供与体(ドナー)となる長鎖のグリコサミノグリカン(例えばヒアルロン酸であれば150〜250糖、コンドロイチンやコンドロイチン硫酸Aであれば100〜150糖、コンドロイチン硫酸Cであれば50〜100糖が好適である)を第2CMの入口のコックを開いて導入し、糖転移反応を所定の条件下(例えば0.1M Tris−HCl緩衝液,pH7.0,37℃)で数時間〜一晩行う。第2CM内を糖転移反応の至適条件とするために、供与体となるグリコサミノグリカンは、例えば0.2〜1M Tris−HCl緩衝液に溶解して第2CMに導入することが望ましい。この過程により、供与体としたグリコサミノグリカンの糖鎖が加水分解されてその非還元末端側から構成糖が2糖ずつ遊離するとともに、遊離した構成糖が2糖ずつ糖鎖欠損プロテオグリカンが有する6糖からなる糖鎖の非還元末端側に次々に転移して糖鎖が伸長する。所定の反応時間が経過した後、(1)から水を加え、ペリスタポンプを作動させて生成物(糖鎖改変プロテオグリカン)を回収する。
なお、第1CM内での副反応である糖転移反応と第2CM内での副反応である糖鎖の加水分解反応を極力抑制し、第1CM内での糖鎖の加水分解反応と第2CM内での糖転移反応を効率的に行うためには、第2CMの酵素活性は第1CMの酵素活性よりも低いことが望ましい。従って、第1CMとしたカラムを繰り返し利用することで酵素活性が低下したら、新しいカラムに交換するとともに、酵素活性が低下したカラムは第2CMとして使用することで、カラムの有効利用を図ることができる。
The sugar chain modifying apparatus illustrated in FIG. 1 includes a first glycosidase-immobilized column (first CM) for performing a sugar chain hydrolysis reaction and a second glycosidase-immobilized column (second CM) for performing a sugar transfer reaction. ) Are connected in series, and between the first CM and the second CM, an ultrafiltration membrane unit is disposed as a means for purifying a product obtained by hydrolysis reaction of sugar chains performed in the first CM. A peristaltic pump as a liquid feeding means is arranged downstream of 2CM.
Hereinafter, an example of a method for using a sugar chain altering apparatus incorporating a hyaluronidase-immobilized column as a glycosidase-immobilized column will be described step by step.
First, after applying an aqueous solution containing the proteoglycan as a starting material (subject to sugar chain modification) from (1) to the first CM, the outlet cock of the first CM is closed, and the hydrolysis reaction of the sugar chain is performed in the first CM. The reaction is performed for several hours to overnight under the conditions (for example, 0.1 M sodium acetate buffer-0.15 M NaCl, pH 4.0 to 5.5, 37 ° C.). Through this process, the glycosaminoglycan sugar chain of proteoglycan is digested leaving 6 sugars including the 4 sugars in the bridging region, and a glycosaminoglycan sugar chain fragment composed mainly of sugar chain-deficient proteoglycans and tetrasaccharides Generate in 1CM.
Next, the outlet cock of the first CM is opened, water is added from (1), and the peristaltic pump is operated to allow the reaction liquid to flow through the flow path in the apparatus, so that it is included in the reaction liquid flowing out from the first CM. The sugar chain-deficient proteoglycan and the glycosylated fragment are separated in the process of circulating through an ultrafiltration membrane unit (for example, Pellicon (trade name) XL device, Biomax-5, Nihon Millipore). For example, 3-4 mL / min is desirable), and the sugar chain degrading fragment is discharged out of the flow path, and the sugar chain deficient proteoglycan is introduced into the second CM.
Next, from (2), a long-chain glycosaminoglycan serving as a donor (donor) for carrying out the transglycosylation reaction (for example, 150 to 250 sugars for hyaluronic acid, 100 to 250 for chondroitin or chondroitin sulfate A) 150 sugar, 50 to 100 sugars are suitable for chondroitin sulfate C), and the cock at the entrance of the second CM is opened, and the transglycosylation reaction is carried out under predetermined conditions (for example, 0.1 M Tris-HCl buffer, pH 7.0, 37 ° C.) for several hours to overnight. In order to make the second CM the optimum condition for the transglycosylation reaction, it is desirable that the glycosaminoglycan serving as a donor is dissolved in, for example, 0.2 to 1 M Tris-HCl buffer and introduced into the second CM. Through this process, the sugar chain of the glycosaminoglycan used as a donor is hydrolyzed to release two constituent sugars from the non-reducing end side, and the released constituent sugars are contained in sugar chain-deficient proteoglycans by two sugars. The sugar chain is extended by successively transferring to the non-reducing end side of the sugar chain consisting of hexasaccharides. After a predetermined reaction time has elapsed, water is added from (1), and the peristaltic pump is operated to recover the product (sugar chain-modified proteoglycan).
The sugar transfer reaction, which is a side reaction in the first CM, and the hydrolysis reaction of the sugar chain, which is a side reaction in the second CM, are suppressed as much as possible, and the hydrolysis reaction of the sugar chain in the first CM and the second CM In order to efficiently carry out the transglycosylation reaction, the enzyme activity of the second CM is preferably lower than the enzyme activity of the first CM. Therefore, when the enzyme activity is reduced by repeatedly using the first CM column, the column is replaced with a new column, and the column having the reduced enzyme activity is used as the second CM, so that the column can be effectively used. .

以下、本発明を実施例によって詳細に説明するが、本発明は以下の記載に限定して解釈されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is limited to the following description and is not interpreted.

参考例1:ヒアルロニダーゼ固定化カラムの作製
1.2gのウシ精巣性ヒアルロニダーゼ(Type1−S,シグマ社)と、膨潤させる前の乾燥重量で30g(膨潤させた後におけるタンパク質濃度が10mg/mL)のGEヘルスケア社のCNBr活性化セファロース4FFを、0.1Mリン酸緩衝液(pH7.0)中、室温で2時間または4℃で18時間かけてカップリングさせ、直径が15mmで長さが10cmのガラス製のカラムに充填することで作製した(充填した担体のベッドボリュームは3.6mLで高さは2cm)。カップリング効率は11.86%で、担体1mL(ベッドボリューム)あたりのヒアルロニダーゼのタンパク質量と力価はそれぞれ1.2mgと534U程度であった。このようにして作製したカラムは使用時まで4℃で保存した。
Reference example 1: Preparation of hyaluronidase-immobilized column 1.2 g of bovine testicular hyaluronidase (Type1-S, Sigma) and 30 g of dry weight before swelling (protein concentration after swelling is 10 mg / mL) GE Healthcare CNBr activated Sepharose 4FF was coupled in 0.1 M phosphate buffer (pH 7.0) for 2 hours at room temperature or 18 hours at 4 ° C., 15 mm in diameter and 10 cm in length. (The bed volume of the packed carrier is 3.6 mL and the height is 2 cm). The coupling efficiency was 11.86%, and the protein amount and titer of hyaluronidase per 1 mL (bed volume) of the carrier were about 1.2 mg and 534 U, respectively. The column thus prepared was stored at 4 ° C. until use.

実施例1:ヒアルロニダーゼ固定化カラムを用いた糖鎖欠損プロテオグリカンの調製(糖鎖の加水分解反応)
平衡化緩衝液(0.1M酢酸ナトリウム緩衝液−0.15M NaCl,pH5.0)で平衡化したヒアルロニダーゼ固定化カラムに、出発原料(糖鎖改変対象)であるプロテオグリカンとしてヒト尿中トリプシンインヒビター(UTI:わかもと製薬社)を担体1mL(ベッドボリューム)あたり約10mgアプライし(平衡化緩衝液を溶媒として使用)、37℃で18時間保持して糖鎖の加水分解反応を行って糖鎖を分解させた後、反応液をカラムから排出させ、限外ろ過膜(アミコン社)を用いて精製・濃縮することで、糖鎖欠損プロテオグリカンを得た。
Example 1: Preparation of a sugar chain-deficient proteoglycan using a hyaluronidase-immobilized column (sugar chain hydrolysis reaction)
A human urinary trypsin inhibitor (proteoglycan as a starting material (sugar chain modification target) is applied to a hyaluronidase-immobilized column equilibrated with an equilibration buffer (0.1 M sodium acetate buffer-0.15 M NaCl, pH 5.0). Apply about 10 mg of UTI (Wakamoto Pharmaceutical Co., Ltd.) per 1 mL (bed volume) of the carrier (using the equilibration buffer as a solvent) and hold at 37 ° C. for 18 hours to hydrolyze the sugar chain to decompose the sugar chain Then, the reaction solution was discharged from the column, and purified and concentrated using an ultrafiltration membrane (Amicon) to obtain a sugar chain-deficient proteoglycan.

実施例2:ヒアルロニダーゼ固定化カラムを用いた糖鎖改変プロテオグリカンの調製(糖転移反応)
平衡化緩衝液(0.1M Tris−HCl緩衝液,pH7.0)で平衡化したヒアルロニダーゼ固定化カラムに、受容体(アクセプター)としての実施例1で調製した糖鎖欠損プロテオグリカンと供与体(ドナー)としての約200糖からなるヒアルロン酸(紀文フードケミファ社)を同時にアプライした。それぞれのアプライ量は、担体1mL(ベッドボリューム)あたり約15mgと約2mgとした(平衡化緩衝液を溶媒として使用)。4℃で18時間保持して糖転移反応を行って糖鎖を伸長させた後、反応液をカラムから排出させて濃縮することで、糖鎖改変プロテオグリカンを得た。
Example 2: Preparation of a sugar chain-modified proteoglycan using a hyaluronidase-immobilized column (glycosyl transfer reaction)
The sugar chain-deficient proteoglycan prepared in Example 1 as a receptor (acceptor) and a donor (donor) were placed on a hyaluronidase-immobilized column equilibrated with an equilibration buffer (0.1 M Tris-HCl buffer, pH 7.0). ) Hyaluronic acid (Kibun Food Chemifa) consisting of about 200 sugars was simultaneously applied. The amount of each applied was about 15 mg and about 2 mg per 1 mL (bed volume) of the carrier (using an equilibration buffer as a solvent). After maintaining the sugar chain at 4 ° C. for 18 hours to carry out a sugar transfer reaction to extend the sugar chain, the reaction solution was discharged from the column and concentrated to obtain a sugar chain-modified proteoglycan.

(生成物の純度の評価)
実施例1で得られた糖鎖欠損プロテオグリカンと実施例2で得られた糖鎖改変プロテオグリカンの純度を、従来法(試験管内で行う反応系)で得られた糖鎖欠損プロテオグリカンと糖鎖改変プロテオグリカンの純度と比較した結果を図2に示す(CBB染色SDS−PAGE:いずれも反応液の状態のもの)。なお、各レーンは以下の通りである。
レーン1:プロテオグリカン
レーン2:実施例1で得られた糖鎖欠損プロテオグリカン
レーン3:実施例2で得られた糖鎖改変プロテオグリカン
レーン4:従来法で得られた糖鎖欠損プロテオグリカン
レーン5:従来法で得られた糖鎖改変プロテオグリカン
レーン6:ヒアルロニダーゼ
図2から明らかなように、本発明の方法によるレーン2とレーン3では、目的生成物のバンド(矢印1)の他にも出発原料由来のバンド(矢印2で示される低分子UTIなど)が認められるが、従来法によるレーン4とレーン5で認められるヒアルロニダーゼのバンドは認められず、本発明の方法によれば、従来法に比較して高い純度で目的生成物を調製できることがわかった。なお、種々の大きさやベッドボリュームのヒアルロニダーゼ固定化カラムを作製して同様の実験を行っても、結果は同じであった。
(Evaluation of product purity)
The purity of the sugar chain-deficient proteoglycan obtained in Example 1 and that of the sugar chain-modified proteoglycan obtained in Example 2 were compared with the sugar chain-deficient proteoglycan and sugar chain-modified proteoglycan obtained by the conventional method (reaction system carried out in vitro). FIG. 2 shows the result of comparison with the purity of (CBB-stained SDS-PAGE: both in the reaction solution state). Each lane is as follows.
Lane 1: Proteoglycan
Lane 2: sugar chain-deficient proteoglycan obtained in Example 1
Lane 3: sugar chain-modified proteoglycan obtained in Example 2
Lane 4: Sugar chain-deficient proteoglycan obtained by the conventional method
Lane 5: Sugar chain-modified proteoglycan obtained by the conventional method
Lane 6: Hyaluronidase As is apparent from FIG. 2, in the lane 2 and lane 3 according to the method of the present invention, in addition to the target product band (arrow 1), a band derived from the starting material (low molecular weight indicated by arrow 2). UTI, etc.) is recognized, but the hyaluronidase band observed in lanes 4 and 5 by the conventional method is not recognized, and the target product can be prepared with higher purity than the conventional method according to the method of the present invention. I understood. In addition, even if the hyaluronidase fixed column of various sizes and bed volumes was prepared and the same experiment was performed, the result was the same.

本発明は、酵素学的手法による糖鎖改変方法において、反応に用いたグリコシダーゼの混入がない生成物を得るための方法を提供することができる点において産業上の利用可能性を有する。   INDUSTRIAL APPLICABILITY The present invention has industrial applicability in that it can provide a method for obtaining a product free from the contamination of glycosidase used in a reaction in a sugar chain modification method by an enzymatic method.

本発明の方法によって糖鎖の加水分解反応と糖転移反応を連続して行うことができる糖鎖改変装置の一例の構成図である。It is a block diagram of an example of the sugar chain modification apparatus which can perform a sugar chain hydrolysis reaction and a sugar transfer reaction continuously by the method of the present invention. 実施例における本発明の方法によって得られた目的生成物と従来法によって得られた目的生成物の純度の違いを示すSDS−PAGEの結果である。It is the result of SDS-PAGE which shows the difference of the purity of the target product obtained by the method of this invention in an Example, and the target product obtained by the conventional method.

Claims (2)

グリコサミノグリカンおよび/またはプロテオグリカンを含む水溶液をグリコシダーゼ固定化カラムに通液し、グリコシダーゼの作用に基づく糖鎖の加水分解反応および/または糖転移反応をカラム内で行うことにより糖鎖を改変する方法。   An aqueous solution containing glycosaminoglycan and / or proteoglycan is passed through a glycosidase-immobilized column, and the sugar chain is modified by performing hydrolysis reaction and / or transglycosylation reaction in the column based on the action of glycosidase. Method. グリコシダーゼがヒアルロニダーゼである請求項1記載の方法。


The method according to claim 1, wherein the glycosidase is hyaluronidase.


JP2008133815A 2008-05-22 2008-05-22 Sugar chain modification method and sugar chain modification apparatus Active JP5470612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008133815A JP5470612B2 (en) 2008-05-22 2008-05-22 Sugar chain modification method and sugar chain modification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008133815A JP5470612B2 (en) 2008-05-22 2008-05-22 Sugar chain modification method and sugar chain modification apparatus

Publications (2)

Publication Number Publication Date
JP2009278907A true JP2009278907A (en) 2009-12-03
JP5470612B2 JP5470612B2 (en) 2014-04-16

Family

ID=41450070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008133815A Active JP5470612B2 (en) 2008-05-22 2008-05-22 Sugar chain modification method and sugar chain modification apparatus

Country Status (1)

Country Link
JP (1) JP5470612B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252115A (en) * 2010-06-03 2011-12-15 Hirosaki Univ Manufacturing method of hybrid sugar chain
JP2016079402A (en) * 2014-10-16 2016-05-16 地方独立行政法人青森県産業技術センター Decomposition method of proteoglycan, and decomposition product

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193948A (en) * 1984-10-13 1986-05-12 Shimadzu Corp Sucrose sensor
JPS61124399A (en) * 1984-11-19 1986-06-12 Shimadzu Corp Analysis of sugar, and apparatus therefor
JPS63123382A (en) * 1986-11-14 1988-05-27 Suntory Ltd Immobilized microorganism and use thereof
JPH0191792A (en) * 1987-06-12 1989-04-11 Meiji Milk Prod Co Ltd Production of oligosaccharide by column of immobilized enzyme and device therefor
JPH0920672A (en) * 1995-07-04 1997-01-21 Agency Of Ind Science & Technol Antiallergic substance, its production, antiallergic agent and functional food
JPH115745A (en) * 1997-06-13 1999-01-12 Agency Of Ind Science & Technol Anti-hiv active substance and its production
WO2002068661A1 (en) * 2001-02-26 2002-09-06 Toyo Boseki Kabushiki Kaisha FUSED PROTEIN HAVING β1,2-N-ACETYLGLUCOSAMINYLTRANSFERASE II ACTIVITY AND PROCESS FOR PRODUCING THE SAME
JP2005278592A (en) * 2004-03-31 2005-10-13 Hitachi High-Technologies Corp System for purifying sugar chain
JP2006129796A (en) * 2004-11-08 2006-05-25 Denki Kagaku Kogyo Kk Chondroitin 4-sulfate having clear structure and method for producing the same
JP2006335987A (en) * 2005-06-06 2006-12-14 Japan Science & Technology Agency Octasaccharide derived from chondroitin sulfate of shark cartilage
JP2007224216A (en) * 2006-02-24 2007-09-06 Japan Science & Technology Agency Sulfated octasaccharide and decasaccharide derived from chondroitin sulfate of cuttlefish cartilage

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193948A (en) * 1984-10-13 1986-05-12 Shimadzu Corp Sucrose sensor
JPS61124399A (en) * 1984-11-19 1986-06-12 Shimadzu Corp Analysis of sugar, and apparatus therefor
JPS63123382A (en) * 1986-11-14 1988-05-27 Suntory Ltd Immobilized microorganism and use thereof
JPH0191792A (en) * 1987-06-12 1989-04-11 Meiji Milk Prod Co Ltd Production of oligosaccharide by column of immobilized enzyme and device therefor
JPH0920672A (en) * 1995-07-04 1997-01-21 Agency Of Ind Science & Technol Antiallergic substance, its production, antiallergic agent and functional food
JPH115745A (en) * 1997-06-13 1999-01-12 Agency Of Ind Science & Technol Anti-hiv active substance and its production
WO2002068661A1 (en) * 2001-02-26 2002-09-06 Toyo Boseki Kabushiki Kaisha FUSED PROTEIN HAVING β1,2-N-ACETYLGLUCOSAMINYLTRANSFERASE II ACTIVITY AND PROCESS FOR PRODUCING THE SAME
JP2005278592A (en) * 2004-03-31 2005-10-13 Hitachi High-Technologies Corp System for purifying sugar chain
JP2006129796A (en) * 2004-11-08 2006-05-25 Denki Kagaku Kogyo Kk Chondroitin 4-sulfate having clear structure and method for producing the same
JP2006335987A (en) * 2005-06-06 2006-12-14 Japan Science & Technology Agency Octasaccharide derived from chondroitin sulfate of shark cartilage
JP2007224216A (en) * 2006-02-24 2007-09-06 Japan Science & Technology Agency Sulfated octasaccharide and decasaccharide derived from chondroitin sulfate of cuttlefish cartilage

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013020469; 柿崎育子ら: 'ヒアルロニダーゼ固定化カラムを用いた糖転移反応の再検討' BMB2007講演要旨集 , 20071125, pp.4P-0105 *
JPN6013055199; SAITOH,H. et al.: 'Enzymic reconstruction of glycosaminoglycan oligosaccharide chains using the transglycosylation reac' J. Biol. Chem. Vol.270, No.8, 19950224, pp.3741-7 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252115A (en) * 2010-06-03 2011-12-15 Hirosaki Univ Manufacturing method of hybrid sugar chain
JP2016079402A (en) * 2014-10-16 2016-05-16 地方独立行政法人青森県産業技術センター Decomposition method of proteoglycan, and decomposition product

Also Published As

Publication number Publication date
JP5470612B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
ES2340888T3 (en) ENZYMATIC METHOD FOR PROCESSING ALFA-D-GLUCOSILGLICEROL (2-0-GLICERIL-ALFA-D-GLUCOPIRANOSIDA).
Dixit et al. Domain organization and phylogenetic analysis of proteins from the chitin deacetylase gene family of Tribolium castaneum and three other species of insects
Eide et al. Human chitotriosidase-catalyzed hydrolysis of chitosan
ES2869525T3 (en) Method for producing heparan sulfate exhibiting anticoagulant activity
EP1981914B1 (en) Construction of new variants of dextransucrase dsr-s by genetic engineering
Rahman et al. Isolation and characterization of two alginate lyase isozymes, AkAly28 and AkAly33, from the common sea hare Aplysia kurodai
ITPD940042A1 (en) PROCESS FOR THE PREPARATION OF HYALURONIC ACID BY ENZYMATIC SYNTHESIS AND RELATED PHARMACEUTICAL COMPOSITIONS
WO2020034953A1 (en) Method for preparing odd-numbered hyaluronic acid oligosaccharides by double enzyme hydrolysis
JP2019213532A (en) Production of galacto-oligosaccharides
CN103228781B (en) Biotechnological production of chondroitin
TW201309305A (en) Single step heparosan N-deacetylation and depolymerization for making bioengineered heparin
JP5470612B2 (en) Sugar chain modification method and sugar chain modification apparatus
JPWO2004070046A1 (en) Process for producing sugar chain asparagine derivatives
ES2947291T3 (en) Heparan sulfate that presents a high rate of 3-O-sulfation in glucosamine residues
Liu et al. Recombinant expression of a chitosanase and its application in chitosan oligosaccharide production
Yamamoto et al. Purification and characterization of 1, 2-α-mannosidase of Aspergillus oryzae
ES2283585T3 (en) HYPERPERMINED AMYLOPECTIN FOR USE IN PROCEDURES FOR THE SURGICAL OR THERAPEUTIC TREATMENT OF MAMMALS OR IN DIAGNOSTIC PROCEDURES, ESPECIALLY FOR USE AS A PLASMA VOLUME EXTENSOR.
JP5896355B2 (en) Alginate lyase
CN114015737B (en) Preparation method and application of corn glutamine peptide with intestinal barrier protection function
Pang et al. Enzymatic production of low-molecular-weight hyaluronan and its oligosaccharides: A review and prospects
JP5610428B2 (en) Method for producing hybrid sugar chain
JPS6121102A (en) Preparation of chitosan oligosaccharide
Dalmia et al. Characterization of a β-galactosidase fusion protein containing the starch-binding domain of Aspergillus glucoamylase
JPH01285195A (en) Production of difructose-cyanhydride
JP4280390B2 (en) Alginate-degrading enzyme

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140115

R150 Certificate of patent or registration of utility model

Ref document number: 5470612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250