JPS6193948A - Sucrose sensor - Google Patents

Sucrose sensor

Info

Publication number
JPS6193948A
JPS6193948A JP59214927A JP21492784A JPS6193948A JP S6193948 A JPS6193948 A JP S6193948A JP 59214927 A JP59214927 A JP 59214927A JP 21492784 A JP21492784 A JP 21492784A JP S6193948 A JPS6193948 A JP S6193948A
Authority
JP
Japan
Prior art keywords
sucrose
glucose
column
sample
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59214927A
Other languages
Japanese (ja)
Inventor
Tetsuo Hiraga
哲男 平賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP59214927A priority Critical patent/JPS6193948A/en
Publication of JPS6193948A publication Critical patent/JPS6193948A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To determine quantitatively and easily the sucrose (cane sugar) in a vital sample, culture liquid, etc. by passing a sample through a column immobilized with the alpha-glucosidase originating from beer enzyme, column immobilized with mutarose and beta-D-glucose detector in this order. CONSTITUTION:The sample injected through a sample injecting port 52 is passed together with an eluate 51 through the column 2 immobilized with the alpha- glucosidase originating from the bear enzyme and acting specifically with su crose ('-GLUCOSIDASe-Type VI(R)' of Sigma Inc., USA, etc.) and the enzyme column 3 immobilized with mutarose in this order. The sucrose in the sample is selectively hydrolyzed in the column 2 and is converted to alpha-D-glucose and beta-D-fructose then the alpha-D-glucose is converted to beta-D-glucose in the column 3. The beta-D-glucose is detected by the detector 4 and the sucrose concn. in the sample is calculated and recorded or displayed in an arithmetic display part 41. The quantitative determination of the sucrose is thus made possible even with the sample in which the other sugar contg. the beta-D-fructofuranosyl group is mixed without the need for a pretreatment, etc.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、スクロース(ショ糖)センサに関する。さ
らに詳しくは、固定化酵素を利用して試料中のショ糖の
定量を行なうことができ、天然物、生体試料、培養液等
の種々の試料中のショ糖の含有量を簡便に測定できるス
クロースセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a sucrose sensor. More specifically, sucrose can be used to quantify sucrose in a sample using an immobilized enzyme, and the sucrose content in various samples such as natural products, biological samples, and culture solutions can be easily measured. Regarding sensors.

(ロ)従来技術 スクロース(ショ糖)は下記に示すごとくβ−D−7フ
クトフフノシルーα−D−4’〜コピフッシト結合から
なシ、加水分解で1分子のβ−り一フルクトースと1分
子のα−D−グyコースを生じることが知られている。
(b) Prior art Sucrose (sucrose) is composed of β-D-7 fuctofufunosyl-α-D-4'-copifusito bonds, as shown below, and upon hydrolysis, one molecule of β-ri-fructose and one It is known to produce the molecule α-D-glucose.

試料中における上記スクロースの定量法として最近、固
定化酵素カラムを備えたセンナを用いる方法が知られて
いる。このセンサは、β−フμクトフフノシダーゼ(イ
ンベμターゼ)をfil定化したカラムに、試料溶液を
通過させることによりスクロースを酵素的に加水分解し
てβ−D−フルクトースとα−D−グ〃コースを生じせ
しめ、これをムタローゼを固定化したカラムに通過させ
ることによりその中のα−D−グ〃コースをβ−D−グ
ルコースに変換せしめ、これをβ−D−グルコース検出
器(例えば、グルコースオキンダーゼ固定化醇素と酸素
電極を組合せたグルコース計等)に導入してグルコース
−量を測定し、これに基づいて試料中のスクロース量を
定量しようとするものである。
Recently, a method using Senna equipped with an immobilized enzyme column has been known as a method for quantifying the above-mentioned sucrose in a sample. This sensor enzymatically hydrolyzes sucrose into β-D-fructose and α-D by passing a sample solution through a column containing β-μfuctofufnosidase (inveμtase). - Generate glucose and pass it through a column on which mutalose is immobilized to convert α-D-glucose therein into β-D-glucose, which is then used as a β-D-glucose detector. (For example, a glucose meter that combines glucose okindase-immobilized sulfur and an oxygen electrode) is used to measure the amount of glucose, and based on this, the amount of sucrose in the sample is determined.

しかしながら、上記β−フルクトフフノシダーゼ固定化
カカラを用いたセンサーにおいては、β−フルクトフラ
ノシダーゼがそもそもβ−D−フフクトフラノシル基t
−S織して加水分解を行なう九め、意図するスクロース
以外にβ−D−フフク′トフフノシル結合を有するオリ
ゴ糖などにも作用してしまい、結局、限られた条件、す
なわちスクロース以外のフラクトフフノシμ基含有糖類
が実質的に存在しない条件下でないとスクロース量を定
量することができないという問題点かあつfC。
However, in the sensor using the β-fructofuranosidase-immobilized Kakara, β-fructofuranosidase originally has a β-D-fructofuranosyl group t.
-S woven to perform hydrolysis, in addition to the intended sucrose, it also acts on oligosaccharides with β-D-fufufunosyl bonds, and in the end, only under limited conditions, i.e., when fructofufunosyl bonds other than sucrose are used. The problem is that the amount of sucrose cannot be determined unless the group-containing saccharide is substantially absent.

(ノリ発明の目的 この発明は、上記問題点を解消すべくなされたものであ
り、他のβ−D−フックトフラノV〜基含有糖類が混在
した試料においても分離等の前処理を行なうことなくス
クロースのみを簡便に検知し定量できるスクロースセン
ナを提供しようとするものである。
(Purpose of the Invention This invention was made to solve the above problems, and it is possible to remove sucrose even in samples containing other β-D-hook tofurano V~ group-containing saccharides without performing any pretreatment such as separation. The purpose is to provide a sucrose senna that can easily detect and quantify only sucrose.

本発明渚らは、スクロースを加水分解しうる酵素には上
記β−)〃クトフフノシダーゼ以外にα−D−グ〃コピ
フッVfi/基を認識して加水分解を行なうα−グルコ
シダーゼが存在する点に想着し、ことに数らるα−グル
コシダーゼの中でもスクロースに対して特異的に作用す
るとされてiるビール酵母起源のα−グlv:1クダー
ゼに着目し、鋭意研究を行なった結果、このα−グルコ
シダーゼが担体に固定化可能で64)かつ固定化した際
においてもスクロースに対する特異的な加水分解作用が
発現されること及びこの固定化α−グ〃コシダーゼ担体
とムタローゼ固定化カラム並びにグルコース検出器を組
合せることによシ、高精度でスクロースの選択的な定量
が可能であることを見出しこの発明に到達した。
In the present invention, Nagisa et al. found that, in addition to the above-mentioned β-) Kutofufunosidase, there is an α-glucosidase that recognizes the α-D-Cutofufu Vfi/ group and performs hydrolysis. As a result of intensive research, we focused on α-glucosidase derived from brewer's yeast, which is said to act specifically on sucrose among other α-glucosidases. , this α-glucosidase can be immobilized on a carrier64), and even when immobilized, a specific hydrolysis effect on sucrose is expressed, and this immobilized α-glucosidase carrier, a mutarose-immobilized column, and The inventors have discovered that sucrose can be selectively quantified with high accuracy by combining a glucose detector, and have thus arrived at this invention.

(ニ)発明の構成 かくしてこの発明によれば、ビール酵母起源のα−グル
コシダーゼを固定化してなる固定化酵素カラムと、ムタ
ローゼを固定化してなる固定化酵素カラムと、β−D−
グ〜コース検出器を順次備えたことを特徴とするスクロ
ースセンナが提供される。
(d) Structure of the invention Thus, according to the present invention, an immobilized enzyme column formed by immobilizing α-glucosidase derived from brewer's yeast, an immobilized enzyme column formed by immobilizing mutalose, and β-D-
A sucrose sensor is provided which is characterized in that it is equipped with a course detector in sequence.

この発明は、要するに従来の固定化β−フルクトフラノ
シダーゼの代わシにビール酵母起源の固定化α−グ〃コ
シダーゼを用いることによシ、種々のβ−D−フヲクト
フラノシル基含有糖類が混在した試料においてもスクロ
ースのみを高精度に定量できるように構成したものであ
る。
In short, the present invention uses immobilized α-glucosidase derived from brewer's yeast instead of conventional immobilized β-fructofuranosidase to produce various β-D-phyctofuranosyl group-containing saccharides. The system is designed so that only sucrose can be quantified with high precision even in samples containing a mixture of sucrose and sucrose.

この発明におけるビール酵母起源のα−グルコシダーゼ
は、例えばシグマ(S工GMA)社(米国)のα−GL
UCOSよりASE −’117pe Mの名称で容易
に入手可能である。
The α-glucosidase derived from brewer's yeast in the present invention is, for example, α-GL manufactured by Sigma (S-GMA) (USA).
It is easily available from UCOS under the name ASE-'117pe M.

この発明に用いる上記α−グルコシダーゼの固定化酵素
カラムは、α−グルコシダーゼを種々の公知の方法で粒
子状や膜状の担体に固定化したものを充填してなる試料
溶液の流通可能なものが挙げられる。これらのうち、担
体として、金属アルコキクドや酸素を配位子とする有機
金属キレート化合物の加水分解によシ生成する金属水酸
化物系のゲル体、ことに粒子状のゲル体を用い、これに
上記α−グルコシダーゼを固定化させたものを用いるの
が、高い活性が得られスクロースのよ〕正確な定量゛を
行なえる点好ましい。この際の担体の原料となる金属7
μコキシドとしては、5i(OCHs)4.5i(OC
J、)4、Ti(OCsHy)4、V(002H5)3
、A#(OCsHy)s、Co(OC&)a、N1(O
CJs)z、Fe(QC,H,)、等が挙げられ、これ
らのうち低級アルコキシンフンが好ましい。また、酸素
を配位子とする有機金属キレート化合物としては、アル
カンジオン又はその誘導体の金属キレート化合物が適し
ており、例えば、2.4−ペンタンジオン(アセチルア
セトン)、3−フエニ/L’−2,4−ペンタンジオン
(3−フェニルアセチルアセトン)、2.4−ヘキサン
ジオン、2.4(又は3,5)−へブタンジオン、2,
2,6.6−チトラメテA/−3,5−ヘプタンジオン
(ジピバロイルメタン)等の低級7μカンジオン類のカ
ルシウム、アルミニウム、チタン、亜鉛、鉄又はカリラ
ムキレート化合物が挙げられる。これら金属7〜コキシ
ドや有機金属キレート化合物はもちろん混合して用いて
もよい。
The α-glucosidase immobilized enzyme column used in the present invention is a column that is filled with α-glucosidase immobilized on a particulate or membrane-like carrier by various known methods and is capable of passing a sample solution. Can be mentioned. Among these, as a carrier, a metal hydroxide-based gel, especially a particulate gel, produced by the hydrolysis of a metal alkoxyde or an organometallic chelate compound having oxygen as a ligand, is used. It is preferable to use the above immobilized α-glucosidase because it provides high activity and enables accurate quantification (as with sucrose). Metal 7 that is the raw material for the carrier in this case
As μcoxide, 5i (OCHs) 4.5i (OC
J, )4, Ti(OCsHy)4, V(002H5)3
, A#(OCsHy)s, Co(OC&)a, N1(O
CJs)z, Fe(QC,H,), etc., and among these, lower alkoxins are preferred. Further, as the organometallic chelate compound having oxygen as a ligand, metal chelate compounds of alkanediones or derivatives thereof are suitable, such as 2,4-pentanedione (acetylacetone), 3-phenylene/L'-2 , 4-pentanedione (3-phenylacetylacetone), 2.4-hexanedione, 2.4 (or 3,5)-hebutanedione, 2,
Examples include calcium, aluminum, titanium, zinc, iron or calylum chelate compounds of lower 7μ candiones such as 2,6,6-titrametheA/-3,5-heptanedione (dipivaloylmethane). Of course, these metal 7-koxides and organometallic chelate compounds may be used in combination.

このような原料を溶解した易揮発性O親水注溶謀溶液(
例えば、低級ア〃コーμ溶液)に酸を添加し放置するこ
とによシ加水分解を進めてゲル化させ、これを乾燥した
のち破砕することによシ、好まじり担体を得る仁とがで
きる。
Easily volatile O hydrophilic injection fusing solution (
For example, by adding an acid to a lower alcohol μ solution and leaving it to stand, hydrolysis proceeds to form a gel, and by drying and crushing this, a carrier can be obtained. .

このような担体へのα−グルコシダーゼの固定化は、通
常、この担体tシランカップリング剤〔例えはγ−アミ
ノプロピ〃トリエトキシシフン、T−クワロプロヒルト
リメトキシシフン、ビニルトリエトキクシフン、γ−グ
リシドキシグロビルトリメトキシシラン、N−β−(ア
ミノエテμ)−γ−アミノプロビルトリメトキシシフン
等〕の水溶液に接触させてシランカップリング剤をゲル
体中に水酸基を介して導入し次いで二官能性の固定化剤
(例えはグμりμアルデヒド等)の水溶液で処理した後
ビール酵母起源のα−グfi/:IVダーゼの水溶液を
接触させてα−グルコシダーゼをシランカップリング剤
伐基との化学結合により固定化することによって行なう
ことができる。ただし、場合によっては臭化シアン活性
化法のようにカップリング剤を介さずしてα−グルコシ
ダーゼを直接固定化することもできる。なおこの際の適
切な固定量は10〜20U/ダ担体である。
The immobilization of α-glucosidase on such a carrier is usually carried out using a silane coupling agent such as γ-aminopropyltriethoxysilane, T-qualoproyltrimethoxysilane, vinyltriethoxysilane, etc. , γ-glycidoxyglobyltrimethoxysilane, N-β-(aminoethylμ)-γ-aminoprobyltrimethoxysilane, etc.) to inject the silane coupling agent into the gel body through the hydroxyl groups. After introduction and subsequent treatment with an aqueous solution of a bifunctional immobilizing agent (such as glycaldehyde), α-glucosidase is transferred to a silane cup by contacting with an aqueous solution of α-glucosidase derived from brewer's yeast. This can be carried out by immobilization by chemical bonding with a ring agent. However, in some cases, it is also possible to directly immobilize α-glucosidase without using a coupling agent, such as in the cyanogen bromide activation method. Note that the appropriate amount of immobilization at this time is 10 to 20 U/da carrier.

この発明に用いるムタローゼの固定化酵素カラムは、そ
れ自体公知のもの金適用す石ことかできるが、やはシ前
述のごとき金属水酸化物系のゲル体を用いるのが好まし
い。
The immobilized mutarose enzyme column used in this invention may be a well-known one, but it is preferable to use a metal hydroxide-based gel as described above.

一方、この発明に用いるβ−D−グ〃コース検出器とし
ては、少なくと4液中のβ−D−グルコースを検知しそ
の量を測定しうるものが種々適用テキ、例えば、グルコ
ースオキシダーゼ固定化酵素カラムと酸素電極とを流路
に組合せカラム通過前後の溶存酸素量の変化を測定して
試料溶液中のグ/L/コース量を測定する方式、グルコ
ースオキシダーゼ固定化膜を被覆した酸素電極からなる
グルコース電gift用いた方式、グルコースオキシダ
ーゼ固定化酵素カラムの通過液にルミノールと赤血塩又
はルミノールとビストリクロロフエニIv蓚酸エステA
/(2)ごとき化学発光剤を混合してその化学発光量に
よジグμコース量を測定する方式などのグルコース検出
器が適用できる。
On the other hand, the β-D-glucose detector used in the present invention can be used in various ways, such as those capable of detecting and measuring the amount of β-D-glucose in at least four liquids. A method in which an enzyme column and an oxygen electrode are combined in a flow path to measure changes in the amount of dissolved oxygen before and after passing through the column to measure the amount of G/L/cose in a sample solution, using an oxygen electrode coated with a glucose oxidase immobilized membrane. A method using a glucose electrolyte, luminol and red blood salt or luminol and bistrichlorophenylene Iv oxalate ester A is added to the flow through a glucose oxidase-immobilized enzyme column.
/(2) A glucose detector such as a method in which a chemiluminescent agent is mixed and the amount of jig μ course is measured based on the amount of chemiluminescence can be applied.

(ホ)実施例 以下この発明を図に示した実施例によシ詳説する0 第1図は、この発明のスクロースセンサーを示す構成説
明図である0図においてスクロースセンサー(1)は、
緩衝液(51)の供給路(5)を備えたα−グルコシダ
ーゼ固定化酵素カカラ(2)と、該カラム(2)から流
路(6)を介して接続されるムタローゼ固定化酵素カラ
ム(3)と、該カラム(3)から流路())を介して接
続されるβ−D−グルコース検出器(4)とを備えてな
るO (41)は演算表示部、(52)は試料導入口で
ある0 上記、a−グルコンダーゼ固定化酵素カラム(2)は、
下記のようにして得られたものである。
(e) Examples The present invention will be explained in detail below with reference to examples shown in the drawings. Fig. 1 is a configuration explanatory diagram showing a sucrose sensor of the invention. In Fig. 1, the sucrose sensor (1) is
an α-glucosidase-immobilized enzyme Kakara (2) equipped with a supply path (5) for a buffer solution (51); and a mutarose-immobilized enzyme column (3) connected from the column (2) via a flow path (6). ) and a β-D-glucose detector (4) connected from the column (3) via a flow path ()). (41) is a calculation display unit, (52) is a sample introduction unit. The above a-glucondase-immobilized enzyme column (2) is
It was obtained as follows.

(担体の作製) テトラエトキシシフン5i(QC2Hs)40.52モ
〃、エタノ−A/ 1.72モμ、水1.82モμ、塩
酸0.028モ〃及び7ツ化水素酸0.058〜0.1
15モルの混合物(pH約1)を室温下で均一になるま
で数十分混合攪拌し友。
(Preparation of carrier) Tetraethoxysifun 5i (QC2Hs) 40.52 mo〃, Ethano-A/1.72 moμ, water 1.82 moμ, hydrochloric acid 0.028 mo〃, and heptathhydrotonic acid 0. 058~0.1
Mix and stir a 15 mol mixture (pH about 1) at room temperature for several minutes until it becomes homogeneous.

次いで80℃のウォーターパス中で3昼夜加熱して加水
分解反応で生じたエチル7μコーμ、水及び残存する塩
酸や未反応の微量のフッ化水素酸を蒸発することによシ
約309の多孔性ゲル状担体を得た。
It was then heated in a water path at 80°C for 3 days and nights to evaporate the 7 μg of ethyl produced by the hydrolysis reaction, water, residual hydrochloric acid, and trace amounts of unreacted hydrofluoric acid, resulting in approximately 309 pores. A gel-like carrier was obtained.

(アミノア〃キ〃化) 上記で得られたゲル状担体を粉砕して120 /20 
Qメツシュのビーズを得た。
(Aminoacrylation) The gel-like carrier obtained above was pulverized to 120/20
Obtained Q-metush beads.

5wt%のγ−アミノプロピμトリエトキシクフン水溶
液i5N塩酸でpH3,5に調整し、この溶液451+
4に対し上記ビーズ状ゲμ状物を各々52投入し、さら
にpH3,5になるように調整した。この混合物を、攪
拌機、温度計、ジムロートを付設した四ツロフフスコに
入れウォーターパスで温度を75℃に保ち、攪拌させな
がら3時間反応を行なった。
5wt% γ-aminopropylμtriethoxykufun aqueous solution i Adjusted to pH 3.5 with 5N hydrochloric acid, and this solution 451+
52 of each of the above bead-like gelatinous materials were added to each of the 4 samples, and the pH was further adjusted to 3.5. This mixture was placed in a Yotsulov Fusco equipped with a stirrer, a thermometer, and a Dimroth, and the temperature was maintained at 75° C. with a water path, and the reaction was carried out for 3 hours while stirring.

反応終了後、ビーズを吸引メンプランフィルターニ移し
、14の蒸留水で未反応のγ−アミノプロピルトリエト
キシンランを除去した後、デシケータ−で乾燥させてア
ミノアルキル化グ〃状担体ヲ得た。このアミンアρキp
化ゲル状物はデシケータ−内で保存する。
After the reaction was completed, the beads were transferred to a suction membrane filter, unreacted γ-aminopropyltriethoxine was removed with distilled water in Step 14, and dried in a desiccator to obtain an aminoalkylated gum support. This Aminea ρkip
Store the gelled material in a desiccator.

(酵素の固定化) 上記アミノアルキル化ゲル状担体(ビーズ状)を二官能
性のグルタルアルデヒド(2,5wt%)のリン酸塩緩
衝溶液(pH7,0) Ic浸漬し、アスピレータ−で
減圧させつつ約30分攪拌下反応させ次。
(Immobilization of enzyme) The above aminoalkylated gel-like carrier (bead-like) was immersed in a phosphate buffer solution (pH 7.0) of bifunctional glutaraldehyde (2.5 wt%), and the pressure was reduced with an aspirator. Next, the mixture was allowed to react for about 30 minutes with stirring.

続いてさらに約30分常圧で攪拌下反応させた。反応温
度は30℃でらった0これをpH7’、oのリン酸塩緩
衝液で充分に洗浄し、乾燥させた。この処理によシゲμ
状物に7μデヒド基を有するシッフベースが導入される
Subsequently, the reaction was continued for about 30 minutes under stirring at normal pressure. The reaction temperature was 30° C., and the mixture was thoroughly washed with a phosphate buffer solution of pH 7’ and dried. This process results in
A Schiff base having a 7μ dehyde group is introduced into the product.

得られたゲル状担体100m9を、ビール酵母起源のα
−グルコシダーゼ含有液(シグマ社を月相VI ;40
U/ダ)50M9のリン酸塩緩衝液(pH7,0)溶液
(10m!’)に浸漬し、30’C下湯せんで5時間ゆ
っくりと振散させて固定化反応を行ない、α−グルコシ
ダーゼ固定化酵素(ビーズ状)を得た。
100 m9 of the obtained gel-like carrier was
- Glucosidase-containing solution (Sigma, Lunar Phase VI; 40
α-glucosidase was immobilized by immersing it in 50M9 phosphate buffer (pH 7,0) solution (10m!') and shaking it slowly for 5 hours in a 30'C hot water bath to perform the immobilization reaction. The converted enzyme (in the form of beads) was obtained.

この固定化酵素を、液入口及び液出口を備えたガラス製
の筒状容器(2,lJ2+’ X 5.0囚)K充填す
ることにより、前記α−グルコシダーゼ固定化酵素カカ
ラ(2)を得た。
The α-glucosidase immobilized enzyme Kakara (2) was obtained by filling this immobilized enzyme in a glass cylindrical container (2, lJ2+' x 5.0 containers) equipped with a liquid inlet and a liquid outlet. Ta.

なお、ムタローゼ固定化酵素カラム(3)は、ムタロー
ゼ800 Ut′上記と同様にしてゲル状担体に固定化
し充填したものを用いた。また、β−D−グ〃コース検
出器(4)としては、高車りリニカルグルコース計((
株)島津製作所製;グ〃コースオキシダーゼの作用によ
りバッチ槽中の液中の溶存酵素の減少速度を検知し、こ
れに基づいて液中のグルコース量を検知する方式)を用
いた0ま九緩衡液(51)はリン酸塩IIc衝液を用い
た。
The mutarose-immobilized enzyme column (3) used was one in which mutarose 800 Ut' was immobilized on a gel carrier and packed in the same manner as described above. In addition, as the β-D-glucose detector (4), a high-speed linear glucose meter ((
Manufactured by Shimadzu Corporation; a method that detects the rate of decrease of dissolved enzyme in the liquid in the batch tank by the action of glucose oxidase, and detects the amount of glucose in the liquid based on this) As the equilibrium solution (51), a phosphate IIc solution was used.

このように構成され九スクロースセンサ(1)において
、スクロースを含んだ試料導入口(52)より導入する
ことによシ、まずカラム(2)内でスクロースが選択的
に加水分解されてα−D−グルコースとβ−D−フルク
トースに変換され、次いでカラム(3)内でα−D−グ
ルコースがβ−D−グpコースに変換され、これがβ−
D−グルコース検出器(4)で検出され、演算表示部(
41)で発車グルコース量をベースとして試料中のスク
ロース濃度が定量されることとなる。
In the nine sucrose sensor (1) constructed in this way, when a sample containing sucrose is introduced through the inlet (52), sucrose is first selectively hydrolyzed in the column (2) and α-D - converted into glucose and β-D-fructose, and then in column (3) α-D-glucose is converted into β-D-glucose, which is converted into β-D-fructose.
It is detected by the D-glucose detector (4), and the calculation display section (
In step 41), the sucrose concentration in the sample is determined based on the starting glucose amount.

種々の濃度のスクロースを含有する試料を用いて、グル
コース生成量との関係を調べた結果を第2図に示した。
FIG. 2 shows the results of investigating the relationship with the amount of glucose produced using samples containing various concentrations of sucrose.

このようにスクロース濃度とグルコース生成量との間に
良好な直線関係が確認された0 (比較例) 上記実施例と同様にして約200 UOビーlv酵母起
源のα−グμコシダーゼを有する固定化酵素ビーズを作
製し、比較例として同様に200 Uのβ−フルクトフ
ラ7シダーゼを有する固定化酵素ビーズヲ作製し、これ
らのフラクトオリゴ糖に対する活性を評価した。なお、
フラクトオリゴ糖は下記のごとく加水分解してグルコー
スとフフクトースとを産生しうるものである。
In this way, a good linear relationship between the sucrose concentration and the amount of glucose produced was confirmed. Enzyme beads were prepared, and as a comparative example, immobilized enzyme beads containing 200 U of β-fructofuranosidase were similarly prepared, and their activity toward fructooligosaccharides was evaluated. In addition,
Fructooligosaccharides can be hydrolyzed to produce glucose and fuctose as described below.

酵素 また、実験は、フラクトオリゴ糖水溶液(5,OW/V
%)50i1中に上記固定化酵素ビーズを入れ、20℃
下スターラーで攪拌し、この時間ごとのグルコース生成
量を前記と同様にグルコース量にて測定することにより
行なった。
In addition, experiments were conducted using a fructooligosaccharide aqueous solution (5, OW/V
%) Place the above immobilized enzyme beads in 50i1 and heat at 20°C.
The mixture was stirred with a lower stirrer, and the amount of glucose produced over time was measured in terms of glucose amount in the same manner as described above.

この結果は第3図に示した。このようにこの発明に用い
るグルコシダーゼ固定化酵素は、β−フルクトフフノシ
ダーゼ固定化酵素に比してグルコース生成速度が低く、
実質的にフラクトオリゴ糖に対して不活性でラシ、スク
ロースに対して選択的な加水分解作用を有することが判
明した。なお、3時間後のグルコース生成量はグルコシ
ダーゼ固定化酵素については4519/(Lgであり、
フラクトフラノシダーゼ固定化酵素については538■
/ジであり、1時間経過後に前者は全く作用していない
ことも判った。
The results are shown in FIG. As described above, the glucosidase-immobilized enzyme used in the present invention has a lower glucose production rate than the β-fructofufunosidase-immobilized enzyme.
It was found that it is substantially inactive against fructooligosaccharides and selectively hydrolyzes sucrose. The amount of glucose produced after 3 hours is 4519/(Lg) for the glucosidase immobilized enzyme.
538■ for fructofuranosidase immobilized enzyme
/di, and it was also found that the former had no effect at all after 1 hour.

(へ)発明の効果 以上述べたごとく、この発明のスクロースセンサーによ
れば、他のβ−D−7μクトフフノシル基含有糖類が混
在した試料においても、分離等の前処理を行なうことな
くスクロースを定量することができ種々の分野において
有用である。ことにβ−D−フルクトフラノシドのオリ
ゴ糖類を含む天然物中のショ糖含量の定量に有用である
(F) Effects of the Invention As stated above, the sucrose sensor of the present invention allows for quantitative determination of sucrose without pretreatment such as separation, even in samples containing other β-D-7μ ctofufnosyl group-containing sugars. It is useful in various fields. It is particularly useful for determining the sucrose content in natural products containing oligosaccharides of β-D-fructofuranoside.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明のスクロースセンナの一実施例を示
す構成説明図、第2図は、同実施例のセンサのスクロー
ス応答性を示すグラフ、第3図はビール酵母起源のα−
グルコシダーゼ固定化酵素のフラクトオリゴ糖に対する
活性を比較例と共に示すグラフでおる。 (1)・・・スクロースセンサ、 (2)・・・ α−グルコシダーゼ固定化酵素カラム、
(3)・・・ムタローゼ固定化酵素カラム、(4)・・
・β−D−グルコース検出器。 代理人 弁理士  野河 倍大− ・53゛ 第 1 図 竺 2 晒 スクロースl友(’/、)
FIG. 1 is a configuration explanatory diagram showing one embodiment of the sucrose sensor of the present invention, FIG. 2 is a graph showing the sucrose responsiveness of the sensor of the same embodiment, and FIG. 3 is a
This is a graph showing the activity of glucosidase-immobilized enzymes on fructooligosaccharides together with comparative examples. (1)... Sucrose sensor, (2)... α-glucosidase immobilized enzyme column,
(3)... Mutarose-immobilized enzyme column, (4)...
- β-D-glucose detector. Agent: Patent attorney: Bedai Nogawa - ・53゛No. 1 Diagram 2: Exposed sucrose l friend ('/,)

Claims (1)

【特許請求の範囲】[Claims] (1)ビール酵母起源のα−グルコシダーゼを固定化し
てなる固定化酵素カラムと、ムタローゼを固定化してな
る固定化酵素カラムと、β−D−グルコース検出器を順
次備えたことを特徴とするスクロースセンサ。
(1) A sucrose characterized by sequentially comprising an immobilized enzyme column formed by immobilizing α-glucosidase derived from brewer's yeast, an immobilized enzyme column formed by immobilizing mutalose, and a β-D-glucose detector. sensor.
JP59214927A 1984-10-13 1984-10-13 Sucrose sensor Pending JPS6193948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59214927A JPS6193948A (en) 1984-10-13 1984-10-13 Sucrose sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59214927A JPS6193948A (en) 1984-10-13 1984-10-13 Sucrose sensor

Publications (1)

Publication Number Publication Date
JPS6193948A true JPS6193948A (en) 1986-05-12

Family

ID=16663876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59214927A Pending JPS6193948A (en) 1984-10-13 1984-10-13 Sucrose sensor

Country Status (1)

Country Link
JP (1) JPS6193948A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0310824A2 (en) * 1987-09-11 1989-04-12 New Oji Paper Co., Ltd. Method and apparatus for the determination of two different substances in a sample using enzyme electrodes
JP2009278907A (en) * 2008-05-22 2009-12-03 Hirosaki Univ Method for modifying sugar chain
CN112710702A (en) * 2021-01-15 2021-04-27 南京工业大学 Sucrose biosensor chip with specific configuration

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58216947A (en) * 1982-06-10 1983-12-16 Matsushita Electric Ind Co Ltd Enzyme electrode for measuring sucrose concentration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58216947A (en) * 1982-06-10 1983-12-16 Matsushita Electric Ind Co Ltd Enzyme electrode for measuring sucrose concentration

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0310824A2 (en) * 1987-09-11 1989-04-12 New Oji Paper Co., Ltd. Method and apparatus for the determination of two different substances in a sample using enzyme electrodes
JP2009278907A (en) * 2008-05-22 2009-12-03 Hirosaki Univ Method for modifying sugar chain
CN112710702A (en) * 2021-01-15 2021-04-27 南京工业大学 Sucrose biosensor chip with specific configuration
CN112710702B (en) * 2021-01-15 2022-03-25 南京工业大学 Sucrose biosensor chip with specific configuration

Similar Documents

Publication Publication Date Title
Sternberg et al. Covalent enzyme coupling on cellulose acetate membranes for glucose sensor development
French et al. Studies on the Schardinger Dextrins. VI. The Molecular Size and Structure of the γ-Dextrin1
Inman et al. Preparation of some immobilized linked enzyme systems and their use in the automated determination of disaccharides
JPS6315168A (en) Method of measuring serum fructosamine content in blood or sample induced from blood
JPH10512669A (en) Chemical sensors and their use
Barlikova et al. Hybrid biosensor for the determination of sucrose
Durand et al. An enzyme electrode for acetylcholine
Searcy et al. An appraisal of methods for serum amylase determination
Olsson et al. Determination of sucrose in the presence of glucose in a flow-injection system with imomobilized multi-enzyme reactors
US4169765A (en) Apparatus for the quantitative determination of α-amylase
JP2007093378A (en) Endotoxin concentration measuring method and endotoxin concentration measuring kit
Nwosu et al. Comparative studies of immobilized enzyme electrodes based on the inhibitory effect of nicotine on choline oxidase and acetylcholinesterase
JPS6193948A (en) Sucrose sensor
Wingard Jr et al. Immobilized enzyme electrodes for the potentiometric measurement of glucose concentration: immobilization techniques and materials
Köneke et al. Reversible coupling of glucoenzymes on fluoride-sensitive FET biosensors based on lectin-glucoprotein binding
Zhang et al. Simultaneous determination of glucose and sucrose by a dual‐working electrode multienzyme sensor flow‐injection system
US5190872A (en) Immobilized alcohol utidase for use in an alcohol measuring apparatus
Ronzhin et al. Modified nanodiamonds as a new carrier for developing reusable enzymatic test-systems for determination of physiologically important substances
JP2648361B2 (en) Permselective membrane and electrode using the same
Matsumoto et al. A novel method for the assay of α-glucosidase inhibitory activity using a multi-channel oxygen sensor
US7267971B2 (en) Process for preparation of thermostable enzyme
US4247647A (en) Apparatus for the quantitative determination of saccharides
JPH025400B2 (en)
EP0166505A2 (en) Isolation and quantitation of alkaline phosphatase
Qin et al. Plant tissue-based chemiluminescence flow biosensor for oxalate