JP2009277817A - Solar cell device and solar cell system - Google Patents

Solar cell device and solar cell system Download PDF

Info

Publication number
JP2009277817A
JP2009277817A JP2008126702A JP2008126702A JP2009277817A JP 2009277817 A JP2009277817 A JP 2009277817A JP 2008126702 A JP2008126702 A JP 2008126702A JP 2008126702 A JP2008126702 A JP 2008126702A JP 2009277817 A JP2009277817 A JP 2009277817A
Authority
JP
Japan
Prior art keywords
solar cell
lens
hole
convex lens
cell device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008126702A
Other languages
Japanese (ja)
Other versions
JP4878354B2 (en
Inventor
Toshimi Koyama
敏美 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Entertainment Corp
Original Assignee
Aruze Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aruze Corp filed Critical Aruze Corp
Priority to JP2008126702A priority Critical patent/JP4878354B2/en
Publication of JP2009277817A publication Critical patent/JP2009277817A/en
Application granted granted Critical
Publication of JP4878354B2 publication Critical patent/JP4878354B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve photoelectric conversion efficiency of a solar cell per identical solar light projection area. <P>SOLUTION: An outside housing 2 in a sealed box shape covers a periphery of a plurality of solar cell panels 6. A reflecting mirror 5 is formed inside the outside housing 2. A lens array 8 of a plurality of lenses 8a is provided over the outside housing 2. Holes 12 are formed in the top of the outside housing 2 to allow light beams converged by the respective convex lenses 8a to enter the outside housing 2. A diameter direction of each of the plurality of convex lenses 8a and a surface direction of each solar cell panel 6 forms a right angle or acute angle. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、太陽電池装置及び太陽電池システムに関する。   The present invention relates to a solar cell device and a solar cell system.

近年、環境に対して配慮する人々の関心や、従来の電気エネルギー取得手段の代替用途という側面から、太陽電池が注目されている。しかし、太陽電池自体の製造コスト、ランニングコスト等が莫大であるのにもかかわらず、このコストに見合った発電効果が得られているとは言いがたい。そして、これらの要因に対して太陽電池の構造が単純な場合には、製造コストは安価となるものの光電変換効率は依然として低いままであり、一方、これらの要因に対して光電変換効率を向上させる各種設備を太陽電池に設ける場合には、製造コストが高価なものとなることが、未だに太陽電池が十分に普及していない理由のひとつである。   2. Description of the Related Art In recent years, solar cells have attracted attention from the viewpoints of people who consider the environment and alternative uses of conventional means for acquiring electrical energy. However, despite the enormous manufacturing costs and running costs of the solar cell itself, it is difficult to say that a power generation effect commensurate with this cost is obtained. And when the structure of the solar cell is simple with respect to these factors, the manufacturing cost is low, but the photoelectric conversion efficiency remains low, while the photoelectric conversion efficiency is improved with respect to these factors. In the case where various facilities are provided in a solar cell, the high manufacturing cost is one of the reasons why the solar cell is not yet widely used.

そこで、近年、太陽電池の発電効率を向上させるため、レンズやミラーによる集光装置を用い、一日の時間帯や季節の変動による影響を低減して集光効率を高め、発電効率の向上を図ろうとした集光型太陽電池が研究されている。   Therefore, in recent years, in order to improve the power generation efficiency of solar cells, a condensing device using lenses and mirrors has been used to reduce the influence of daily time zones and seasonal fluctuations to increase the light collection efficiency and improve the power generation efficiency. A concentrating solar cell to be designed has been studied.

例えば、特許文献1に開示の技術では、太陽光を集光する集光反射素子と太陽電池との間に直線状スリットを有する光反射層を設けて太陽光を集光して太陽電池に照射し、かつ、太陽電池に入射されなかった反射光は再び光反射層で反射させるようにして、集光反射素子と太陽電池との間で光を多重反射させ、太陽電池の光電変換効率を向上させようとしている。
特開2004‐111453号公報
For example, in the technique disclosed in Patent Document 1, a light reflecting layer having a linear slit is provided between a condensing reflection element that condenses sunlight and a solar cell to collect sunlight and irradiate the solar cell. In addition, the reflected light that is not incident on the solar cell is reflected again by the light reflecting layer, so that the light is multiply reflected between the condensing reflection element and the solar cell, thereby improving the photoelectric conversion efficiency of the solar cell. I am trying to let you.
JP 2004-111453 A

しかしながら、元来光電変換効率が低い太陽電池において、太陽光の同一投影面積当たりの光電変換効率を向上させるための手段については従来提案されていなかった。   However, conventionally, no means has been proposed for improving the photoelectric conversion efficiency per the same projected area of sunlight in a solar cell having a low photoelectric conversion efficiency.

本発明の目的は、太陽電池において太陽光の同一投影面積当たりの光電変換効率を向上させることができるようにすることである。   The objective of this invention is enabling it to improve the photoelectric conversion efficiency per the same projected area of sunlight in a solar cell.

(1)本発明は、複数個の太陽電池パネルと、この複数個の太陽電池パネルの周囲を覆っている覆部材と、前記覆部材の前記太陽電池パネル側に設けられた反射部材と、前記覆部材上に設けられ複数個並べられている凸レンズと、前記覆部材上に穿たれ前記各凸レンズでそれぞれ集光された光を前記太陽電池パネル側にそれぞれ入射させる複数個の孔と、を備え、前記複数個の凸レンズの径方向と前記各太陽電池パネルの面方向とは直角又は鋭角をなしている、太陽電池装置。   (1) The present invention provides a plurality of solar cell panels, a covering member covering the periphery of the plurality of solar cell panels, a reflecting member provided on the solar cell panel side of the covering member, A plurality of convex lenses provided on the covering member and arranged in a line; and a plurality of holes that are formed on the covering member and allow light collected by the convex lenses to enter the solar cell panel side. A solar cell device in which the radial direction of the plurality of convex lenses and the surface direction of each solar cell panel form a right angle or an acute angle.

(2)この場合に、前記凸レンズは、球面レンズであり、前記孔は、前記球面レンズで集光された光の光束に合った丸孔である、ようにしてもよい。   (2) In this case, the convex lens may be a spherical lens, and the hole may be a round hole that matches a light beam condensed by the spherical lens.

(3)この場合に、前記凸レンズは、非球面レンズであり、前記孔は、前記非球面レンズで集光された光の光束に合った丸孔である、ようにしてもよい。   (3) In this case, the convex lens may be an aspheric lens, and the hole may be a round hole that matches a light beam condensed by the aspheric lens.

(4)また、前記孔は、前記反射面側が最も狭くなっていて前記凸レンズに向けて漸次広くなっており、前記凸レンズは、その焦点が前記孔の最も狭くなっている位置に合っている、ようにしてもよい。   (4) Further, the hole is narrowest on the reflecting surface side and gradually widens toward the convex lens, and the convex lens is aligned with the position where the focal point is the narrowest of the hole, You may do it.

(5)別の本発明は、(1)〜(4)のいずれかに記載の太陽電池装置と、太陽の位置を検出するセンサと、前記太陽電池装置の向きを可変する移動機構と、前記センサの検出に基づいて前記移動機構で前記太陽電池装置の向きを前記凸レンズを透過した太陽光が前記孔を透過するように制御する制御手段と、を備えている太陽電池システムである。   (5) Another aspect of the present invention provides the solar cell device according to any one of (1) to (4), a sensor that detects the position of the sun, a moving mechanism that varies the orientation of the solar cell device, And a control means for controlling the solar cell device so that the sunlight transmitted through the convex lens is transmitted through the hole based on detection of a sensor.

(1)の発明によれば、複数個の凸レンズの径方向は複数個の太陽電池パネルの各面方向とは直角又は鋭角をなしているので、凸レンズで集光されて孔を通過した光の光軸は複数個の太陽電池パネルの各面方向と平行又は鋭角をなし、光の光軸が太陽電池パネルに垂直に入射する場合に比べて太陽光の同一投影面積当たりの太陽電池パネルの面積を高くすることができる。そして、孔を通過した光は覆部材の太陽電池パネル側に設けられた反射部材と太陽電池パネルとの間で多重反射を繰り返して、太陽電池パネルでの光電変換に効率良く寄与するので、太陽光の同一投影面積当たりの光電変換効率を向上させることができる。   According to the invention of (1), since the radial direction of the plurality of convex lenses forms a right angle or acute angle with the direction of each surface of the plurality of solar cell panels, the light collected by the convex lens and passed through the hole The optical axis is parallel or acute with each surface direction of a plurality of solar cell panels, and the area of the solar cell panel per the same projected area of sunlight as compared with the case where the optical axis of light is perpendicularly incident on the solar cell panel Can be high. And the light that has passed through the hole repeats multiple reflections between the reflective member provided on the solar cell panel side of the covering member and the solar cell panel, and contributes efficiently to photoelectric conversion in the solar cell panel. The photoelectric conversion efficiency per the same projected area of light can be improved.

(2)(3)の発明によれば、凸レンズが球面レンズ又は非球面レンズであり、球面レンズ又は非球面レンズが集光した光が通過する孔は球面レンズ又は非球面レンズで集光された光の光束に合った丸孔であるため、球面レンズ又は非球面レンズが集光した光が通過する孔の広さが最小限となり、覆部材の孔から漏れる光を最低限に抑制して、光電変換効率をさらに向上させることができる。   (2) According to the invention of (3), the convex lens is a spherical lens or an aspheric lens, and the hole through which the light collected by the spherical lens or the aspheric lens passes is condensed by the spherical lens or the aspheric lens Because it is a round hole that matches the luminous flux of light, the size of the hole through which the light collected by the spherical lens or aspheric lens passes is minimized, and the light leaking from the hole of the covering member is minimized, Photoelectric conversion efficiency can be further improved.

(4)の発明によれば、孔は反射面側が最も狭くなっていて、球面レンズは、その焦点が前記孔の最も狭くなっている位置に合っているので、球面レンズが集光した光が通過する孔の広さをさらに小さくし、覆部材の孔から漏れる光をさらに抑制して、光電変換効率をさらに向上させることができる。   According to the invention of (4), since the hole is narrowest on the reflection surface side, and the spherical lens is aligned with the position where the focal point is the narrowest of the hole, the light collected by the spherical lens is It is possible to further improve the photoelectric conversion efficiency by further reducing the size of the passing hole and further suppressing light leaking from the hole of the covering member.

(5)の発明によれば、季節や時間帯に関係なく太陽光が孔を通って多孔質層に入射するようにできるので、季節や時間帯に関わらず光電変換効率の高い太陽光発電を行うことができる。   According to the invention of (5), since sunlight can enter the porous layer through the hole regardless of the season or time zone, solar power generation with high photoelectric conversion efficiency can be achieved regardless of the season or time zone. It can be carried out.

以下、本発明の一実施の形態について説明する。図1は、本実施の形態の太陽電池装置の縦断面図であり、図2は、同太陽電池装置の縦断面図である。この太陽電池装置1は、密閉箱状の外側筐体2を備えている。外側筐体2の内部は板状の仕切部材3により複数の空間に仕切られ、さらに仕切部材3により仕切られた各空間においては、外側筐体2の内部の底面から複数枚の板状の支持部材4が起立している。この支持部材4は当該各空間において等間隔に配置されている。   Hereinafter, an embodiment of the present invention will be described. FIG. 1 is a longitudinal sectional view of the solar cell device of the present embodiment, and FIG. 2 is a longitudinal sectional view of the solar cell device. The solar cell device 1 includes a sealed box-shaped outer casing 2. The inside of the outer casing 2 is partitioned into a plurality of spaces by a plate-like partition member 3, and in each space partitioned by the partition member 3, a plurality of plate-like supports are provided from the bottom surface inside the outer casing 2. The member 4 stands up. The support members 4 are arranged at equal intervals in each space.

外側筐体2の内周面には全体に反射部材となる反射ミラー5が設けられている。支持部材4の両面(あるいは片面だけでもよい)にはそれぞれ太陽電池パネル6が設けられている。これにより、外側筐体2内は反射ミラー5と太陽電池パネル6とに囲まれた複数の空間7に仕切られている。支持部材4の基端部分や側縁部分には太陽電池パネル6から電力を取り出すための導電電極11が設けられている。   A reflection mirror 5 serving as a reflection member is provided on the inner peripheral surface of the outer casing 2 as a whole. Solar cell panels 6 are respectively provided on both surfaces (or only one surface) of the support member 4. Thereby, the inside of the outer housing 2 is partitioned into a plurality of spaces 7 surrounded by the reflection mirror 5 and the solar cell panel 6. Conductive electrodes 11 for taking out electric power from the solar cell panel 6 are provided at the base end portion and the side edge portion of the support member 4.

各空間7の中央部の上部においては、外側筐体2に孔12が穿たれている。そして、外側筐体2上には、複数個の凸レンズ8aから構成されるレンズアレイ8が設けられている。図3は、レンズアレイ8の平面図である。各凸レンズ8aに対して垂直に入射する光Lの光軸は各孔12の位置に合っていて、各凸レンズ8aに対して垂直に入射した光Lは、凸レンズ8aでそれぞれ集光されて孔12を通過し、外側筐体2内の空間7内に入射する。各レンズ8aは各空間7に1対1に対応していて、各レンズ8aでそれぞれ集光された光Lは個別の各空間7に入射する。   In the upper part of the central part of each space 7, a hole 12 is formed in the outer casing 2. On the outer housing 2, a lens array 8 composed of a plurality of convex lenses 8a is provided. FIG. 3 is a plan view of the lens array 8. The optical axis of the light L that is perpendicularly incident on each convex lens 8a is aligned with the position of each hole 12, and the light L that is perpendicularly incident on each convex lens 8a is condensed by the convex lens 8a. And enters the space 7 in the outer casing 2. Each lens 8 a has a one-to-one correspondence with each space 7, and the light L collected by each lens 8 a enters each individual space 7.

各レンズ8aの径方向と各太陽電池パネル6の面方向とは直角又は鋭角をなし、望ましくはほぼ直角をなしている。よって、各レンズ8aに垂直に入射して集光された光Lの光軸方向と各太陽電池パネル6の面方向とは並行か又は鋭角をなし、望ましくはほぼ並行である。   The radial direction of each lens 8a and the surface direction of each solar cell panel 6 form a right angle or an acute angle, and preferably a substantially right angle. Therefore, the optical axis direction of the light L incident perpendicularly to each lens 8a and condensed and the surface direction of each solar cell panel 6 are parallel or have an acute angle, and are preferably substantially parallel.

図4は、凸レンズ8aと孔12との配置を示す縦断面図である。外側筐体2の孔12は、球面レンズ又は非球面レンズである凸レンズ8aで集光されて横断面がほぼ円形である光束Lが通過するに際して、この光束Lに合った丸孔になっている。   FIG. 4 is a longitudinal sectional view showing the arrangement of the convex lenses 8 a and the holes 12. The hole 12 of the outer housing 2 is a round hole that matches the light beam L when the light beam L having a substantially circular cross section passes through the convex lens 8a that is a spherical lens or an aspherical lens. .

この孔12は、反射ミラー5の反射面5a側の部分12aが最も狭くなっていて凸レンズ8aに向けて漸次広くなっている。そして、凸レンズ8aは、その焦点が孔12の最も狭くなっている反射面5aの位置に合っている。   The hole 12 has the narrowest portion 12a on the reflecting surface 5a side of the reflecting mirror 5 and gradually becomes wider toward the convex lens 8a. The convex lens 8a is aligned with the position of the reflecting surface 5a where the focal point of the hole 12 is the narrowest.

図5は、太陽電池パネル6の縦断面図である。この太陽電池パネル6は、色素増感型太陽電池パネルの例であり、基板22、基板23、透明電極24、透明電極25、電解質層26及び多孔質層27から構成されている。すなわち、太陽電池パネル6は、透明なガラスやプラスチックなどから構成され、互いに対向している基板22及び基板23を備えている。基板22の内側にはPt蒸着などで形成された透明電極24が設けられ、基板23の内側には同じくPt蒸着などで形成された透明電極(対向電極)25が設けられている。透明電極24と透明電極25との間には電解質層26が設けられている。電解質層26は例えばホウ素を溶かした電解液である。   FIG. 5 is a longitudinal sectional view of the solar cell panel 6. This solar cell panel 6 is an example of a dye-sensitized solar cell panel, and includes a substrate 22, a substrate 23, a transparent electrode 24, a transparent electrode 25, an electrolyte layer 26, and a porous layer 27. That is, the solar cell panel 6 includes a substrate 22 and a substrate 23 that are made of transparent glass, plastic, or the like and face each other. A transparent electrode 24 formed by Pt vapor deposition or the like is provided inside the substrate 22, and a transparent electrode (counter electrode) 25 also formed by Pt vapor deposition or the like is provided inside the substrate 23. An electrolyte layer 26 is provided between the transparent electrode 24 and the transparent electrode 25. The electrolyte layer 26 is an electrolytic solution in which, for example, boron is dissolved.

電解質層6と透明電極4との間には多孔質層7が形成されている。この多孔質層7は、例えば酸化チタン層であり、ルテニウム錯体など、光を吸収して励起する色素を含んでいる。この多孔質層7において光電変換が行なわれる。   A porous layer 7 is formed between the electrolyte layer 6 and the transparent electrode 4. The porous layer 7 is, for example, a titanium oxide layer, and contains a dye that absorbs light and excites, such as a ruthenium complex. Photoelectric conversion is performed in the porous layer 7.

なお、太陽電池パネル6は、色素増感型太陽電池パネルに限定されるものではなく、Si系太陽電池などであってもよい。   The solar cell panel 6 is not limited to a dye-sensitized solar cell panel, and may be a Si-based solar cell.

以上説明した太陽電池装置1によれば、複数個の凸レンズ8aの径方向は複数個の太陽電池パネル6の各面方向とは直角又は鋭角をなしているので、凸レンズ8aで集光されて孔12を通過した光の光軸は複数個の太陽電池パネル6の各面方向とそれぞれ平行又は鋭角をなし、光の光軸が太陽電池パネル6に垂直に入射する場合に比べて太陽光の同一投影面積当たりの太陽電池パネルの面積を高くすることができる。そして、外側筐体2は複数個の太陽電池パネル6の周囲を覆っていて、凸レンズ8aで集光され、孔12を通過した光は外側筐体2の内面や仕切部材3の表面に形成された反射ミラー5の反射面5aと太陽電池パネル6との間で多重反射を繰り返して、太陽電池パネル6での光電変換に効率良く寄与するので、太陽光の同一投影面積当たりの光電変換効率を向上させることができる。   According to the solar cell device 1 described above, the radial direction of the plurality of convex lenses 8a forms a right angle or an acute angle with the direction of each surface of the plurality of solar cell panels 6, so that the light is condensed by the convex lens 8a. The optical axis of the light that has passed through 12 is parallel or acute with each surface direction of the plurality of solar cell panels 6, and sunlight is the same as compared with the case where the optical axis of the light is perpendicularly incident on the solar cell panel 6. The area of the solar cell panel per projected area can be increased. And the outer housing | casing 2 has covered the circumference | surroundings of the several solar cell panel 6, is condensed with the convex lens 8a, and the light which passed the hole 12 is formed in the inner surface of the outer housing | casing 2, or the surface of the partition member 3. Since the multiple reflection is repeated between the reflecting surface 5a of the reflecting mirror 5 and the solar cell panel 6 and contributes efficiently to the photoelectric conversion in the solar cell panel 6, the photoelectric conversion efficiency per the same projected area of sunlight is increased. Can be improved.

また、凸レンズ8aが球面レンズであり、凸レンズ8aが集光した光が通過する孔12は凸レンズ8aで集光された光の光束に合った丸孔であるため、凸レンズ8aが集光した光が通過する孔12の広さが最小限となり、外側筐体2の孔12から漏れる光を最低限に抑制して、光電変換効率をさらに向上させることができる。   Further, the convex lens 8a is a spherical lens, and the hole 12 through which the light collected by the convex lens 8a passes is a round hole that matches the light beam collected by the convex lens 8a. The size of the passing hole 12 is minimized, light leaking from the hole 12 of the outer housing 2 is minimized, and the photoelectric conversion efficiency can be further improved.

さらに、孔12は反射ミラー5の反射面5a側が最も狭くなっていて、凸レンズ8aは、その焦点が孔12の最も狭くなっている位置に合っているので、凸レンズ8aが集光した光が通過する孔12の広さをさらに小さくし、外側筐体2の孔12から漏れる光をさらに抑制して、光電変換効率をさらに向上させることができる。   Further, since the hole 12 is narrowest on the reflecting surface 5a side of the reflecting mirror 5, and the convex lens 8a is in the position where the focal point is the narrowest of the hole 12, the light condensed by the convex lens 8a passes therethrough. The size of the hole 12 to be reduced can be further reduced, and light leaking from the hole 12 of the outer housing 2 can be further suppressed, so that the photoelectric conversion efficiency can be further improved.

次に、太陽電池装置1を用いた太陽電池システム101について説明する。図6は、太陽電池システム101の太陽電池装置1部分を上から見た斜視図、図7は、同太陽電池装置1部分を下から見た斜視図、図8は、太陽電池システム101の正面図、図9は、同右側面図である。   Next, the solar cell system 101 using the solar cell device 1 will be described. 6 is a perspective view of the solar cell device 1 portion of the solar cell system 101 as viewed from above, FIG. 7 is a perspective view of the solar cell device 1 portion as viewed from below, and FIG. 8 is a front view of the solar cell system 101. 9 and 9 are right side views of the same.

図6に示すように、前述の太陽電池装置1はマイクロレンズアレイ8側の面を上にして支持板111上に固定されている。支持板111の底面112の両側部には2本のシャフト113の各一端部が固定されていて、この2本のシャフト113の各中間部にはそれぞれ駆動ギア114が取り付けられている。2本のシャフト113の各他端部は台座部115上に設けられた2つの軸支部116に回転自在に軸支されている。また、台座部115上には2つで一組の駆動軸抑え117が2組設けられていて、この駆動軸抑え117の各組にはそれぞれ駆動モータ118と、この駆動モータ118により正逆両方向に回転可能な駆動軸119とが支持されている。各駆動軸119の歯と各駆動ギア114の歯とはそれぞれ噛み合っており、2つの駆動モータ118により各駆動軸119を回転すると、各駆動ギア114が回転し、シャフト113を中心に、支持板111ひいては太陽電池装置1が回転して、太陽電池装置1の向きが変わる。なお、図6においては、1組の駆動軸抑え117については便宜上図示を省略している。   As shown in FIG. 6, the above-described solar cell device 1 is fixed on the support plate 111 with the surface on the microlens array 8 side facing up. One end portions of the two shafts 113 are fixed to both side portions of the bottom surface 112 of the support plate 111, and drive gears 114 are respectively attached to intermediate portions of the two shafts 113. The other end portions of the two shafts 113 are rotatably supported by two shaft support portions 116 provided on the pedestal portion 115. Also, two sets of drive shaft restraints 117 are provided on the pedestal portion 115, and each set of the drive shaft restraints 117 has a drive motor 118 and both forward and reverse directions by the drive motor 118. And a rotatable drive shaft 119 is supported. The teeth of each drive shaft 119 and the teeth of each drive gear 114 are engaged with each other. When each drive shaft 119 is rotated by two drive motors 118, each drive gear 114 is rotated, and the support plate is centered on the shaft 113. As a result, the solar cell device 1 rotates and the direction of the solar cell device 1 changes. In FIG. 6, the illustration of the set of drive shaft restraints 117 is omitted for convenience.

台座部115の底面121の両側部には2本のシャフト122の各一端部が固定されていて、この2本のシャフト122の各中間部にはそれぞれ駆動ギア123が取り付けられている。2本のシャフト122の各他端部は台座部124上に設けられた2つの軸支部125に回転自在に軸支されている。また、台座部124上には2つで一組の駆動軸抑え126が2組設けられていて、この駆動軸抑え126の各組には駆動モータ278と、この駆動モータ127により正逆両方向に回転可能な駆動軸128とがそれぞれ支持されている。各駆動軸128の歯と各駆動ギア123の歯とは噛み合っており、2台の駆動モータ127により各駆動軸128を回転すると、各駆動ギア123が回転し、シャフト122を中心に、支持板111ひいては太陽電池装置1が回転して、太陽電池装置1の向きが変わる。   One end portions of the two shafts 122 are fixed to both side portions of the bottom surface 121 of the pedestal portion 115, and drive gears 123 are respectively attached to intermediate portions of the two shafts 122. The other end portions of the two shafts 122 are rotatably supported by two shaft support portions 125 provided on the pedestal portion 124. Further, two sets of drive shaft restraints 126 are provided on the pedestal portion 124, and each set of the drive shaft restraints 126 is driven in both forward and reverse directions by the drive motor 278 and the drive motor 127. A rotatable drive shaft 128 is supported. The teeth of each drive shaft 128 and the teeth of each drive gear 123 mesh with each other. When each drive shaft 128 is rotated by the two drive motors 127, each drive gear 123 rotates, and the support plate is centered on the shaft 122. As a result, the solar cell device 1 rotates and the direction of the solar cell device 1 changes.

シャフト113の軸方向とシャフト122の軸方向とは互いに直角に交差しており、シャフト113を中心に太陽電池装置1が回転する方向とシャフト122を中心に太陽電池装置1が回転する方向とは異なる。このように2軸(2自由度)により太陽電池装置1を回転することができるので、太陽電池装置1の周囲360度いかなる方向にも太陽電池装置1を傾けることができる。   The axial direction of the shaft 113 and the axial direction of the shaft 122 intersect each other at right angles, and the direction in which the solar cell device 1 rotates around the shaft 113 and the direction in which the solar cell device 1 rotates around the shaft 122 are Different. Thus, since the solar cell device 1 can be rotated by two axes (two degrees of freedom), the solar cell device 1 can be tilted in any direction around 360 ° around the solar cell device 1.

また、支持板111上には、樹脂、ガラスの円柱あるいは水等の透明な液体が満たされた透明な円筒管等により構成される円柱状の位置検出用集光レンズ42が設けられている。この位置検出用集光レンズ42の焦点近傍の円周上には、位置検出センサ43が配列されている。   Further, on the support plate 111, a columnar position detecting condensing lens 42 constituted by a transparent cylindrical tube filled with a transparent liquid such as a resin, a glass column or water is provided. A position detection sensor 43 is arranged on the circumference in the vicinity of the focal point of the position detection condenser lens 42.

図10は、位置検出用集光レンズ42と位置検出センサ43の構成例を示す説明図である。図10(a)では、位置検出用集光レンズ42として、屈折率が1.5程度の円柱が利用されている。この場合には、位置検出用集光レンズ42の焦点は、自分の円周面に一致するので、位置検出用集光レンズ42の周囲に位置検出センサ43が貼り付けられている。位置検出用集光レンズ42に入射した太陽光Lは、位置検出用集光レンズ42の円周上の位置検出センサ43の上に集光され、これによって太陽の位置を検出することができる。   FIG. 10 is an explanatory diagram illustrating a configuration example of the position detection condenser lens 42 and the position detection sensor 43. In FIG. 10A, a cylinder having a refractive index of about 1.5 is used as the position detection condensing lens 42. In this case, since the focal point of the position detection condensing lens 42 coincides with its circumferential surface, the position detection sensor 43 is attached around the position detection condensing lens 42. The sunlight L that has entered the position detection condenser lens 42 is condensed on the position detection sensor 43 on the circumference of the position detection condenser lens 42, whereby the position of the sun can be detected.

一方、図10(b)では、位置検出用集光レンズ42として、屈折率が1.3〜1.4程度のものが使用された例が示される。これは、例えばガラスの円筒の中に水を満たして実現することができる。水の屈折率は1.338であるので、この場合の位置検出用集光レンズ42の焦点は、自分の円周面よりも外側に存在する。従って、位置検出用集光レンズ42の外側に、ガラス等の材質からなる透明円筒管44を、その円周が位置検出用集光レンズ42の焦点に一致するように配置し、ここに位置検出センサ43を貼り付けている。この場合にも、位置検出用集光レンズ42に入射した太陽光Lは、位置検出センサ43の上に集光され、これによって太陽の位置を検出することができる。   On the other hand, FIG. 10B shows an example in which a position detecting condenser lens 42 having a refractive index of about 1.3 to 1.4 is used. This can be achieved, for example, by filling a glass cylinder with water. Since the refractive index of water is 1.338, the focus of the position detecting condensing lens 42 in this case is outside the circumferential surface of itself. Therefore, a transparent cylindrical tube 44 made of a material such as glass is arranged outside the position detection condenser lens 42 so that its circumference coincides with the focal point of the position detection condenser lens 42, and the position detection is performed here. The sensor 43 is pasted. Also in this case, the sunlight L that has entered the position detection condensing lens 42 is condensed on the position detection sensor 43, and thereby the position of the sun can be detected.

図11は、上記位置検出用集光レンズ42の配置例を示す平面図であり、位置検出センサ43については省略されている。図11において、位置検出用集光レンズ42は2つ用意され、互いに軸が直交するように置かれている。これらを、例えば、一方の位置検出用集光レンズ42の軸が南北方向を向き、他方が東西方向を置くように配置する。これにより、軸が南北方向を向いた位置検出用集光レンズ42により太陽の一日の動きが検出でき、軸が東西方向を向いた位置検出用集光レンズ42により太陽の高さの季節変化を検出することができる。なお、これらの太陽の位置は、位置検出センサ43上に太陽光Lが集光される位置の角度の情報として検出され、位置検出センサ43から角度信号として出力される。   FIG. 11 is a plan view showing an arrangement example of the position detection condensing lens 42, and the position detection sensor 43 is omitted. In FIG. 11, two position detection condensing lenses 42 are prepared and placed so that their axes are orthogonal to each other. These are arranged so that, for example, the axis of one position detecting condenser lens 42 is oriented in the north-south direction and the other is placed in the east-west direction. Thereby, the movement of the day of the sun can be detected by the position detecting condensing lens 42 whose axis is directed in the north-south direction, and the seasonal change of the sun height is detected by the position detecting condensing lens 42 whose axis is directed in the east-west direction. Can be detected. The positions of these suns are detected as information on the angle at which the sunlight L is collected on the position detection sensor 43, and are output as angle signals from the position detection sensor 43.

図12は、太陽電池システム101の電気的な接続のブロック図である。制御部41は、マイクロコンピュータを備え、太陽電池システム101の各部を集中的に制御する。制御部41は、位置検出センサ43から太陽光Lが集光される位置を示す角度信号を受けて太陽光Lの入射方向、入射角度を判断する。そして、その判断に応じて2台の駆動モータ118、2台の駆動モータ127を駆動して、太陽電池装置1の向きを制御する。   FIG. 12 is a block diagram of electrical connection of the solar cell system 101. The control unit 41 includes a microcomputer and centrally controls each unit of the solar cell system 101. The control unit 41 receives an angle signal indicating the position where the sunlight L is collected from the position detection sensor 43 and determines the incident direction and the incident angle of the sunlight L. Then, according to the determination, the two drive motors 118 and the two drive motors 127 are driven to control the orientation of the solar cell device 1.

図13は、このような制御により支持板111を傾けた状態を示し、図14は、台座部115を傾けた状態を示し、図15は、支持板111と台座部115の双方を傾けた状態を示す。このような制御を行うことにより、太陽電池システム101は、太陽光Lが太陽電池装置1に対して常に垂直に入射するように制御し、もって、季節や時間帯に関係なく凸レンズ8aで集光された太陽光Lが孔12を通って多孔質層7に入射するようにできるので、季節や時間帯に関わらず光電変換効率の高い太陽光発電を行うことができる。   FIG. 13 shows a state in which the support plate 111 is inclined by such control, FIG. 14 shows a state in which the pedestal portion 115 is inclined, and FIG. 15 shows a state in which both the support plate 111 and the pedestal portion 115 are inclined. Indicates. By performing such control, the solar cell system 101 performs control so that the sunlight L is always incident on the solar cell device 1 vertically, so that the light is condensed by the convex lens 8a regardless of the season or time zone. Since the generated sunlight L can enter the porous layer 7 through the holes 12, it is possible to perform photovoltaic power generation with high photoelectric conversion efficiency regardless of the season or time zone.

なお、太陽の追尾用駆動機構としては、望遠鏡などで用いられる経緯台や赤道儀を使用してもよい。   As the sun tracking drive mechanism, a graticule or an equator used in a telescope may be used.

本発明の一実施形態である太陽電池装置の縦断面図である。It is a longitudinal cross-sectional view of the solar cell apparatus which is one Embodiment of this invention. 同横断面図である。FIG. レンズアレイの平面図である。It is a top view of a lens array. 凸レンズと孔との配置を示す縦断面図である。It is a longitudinal cross-sectional view which shows arrangement | positioning of a convex lens and a hole. 太陽電池パネルの縦断面図である。It is a longitudinal cross-sectional view of a solar cell panel. 太陽電池システムの太陽電池装置部分を上から見た斜視図である。It is the perspective view which looked at the solar cell apparatus part of the solar cell system from the top. 同太陽電池装置部分を下から見た斜視図である。It is the perspective view which looked at the solar cell apparatus part from the bottom. 太陽電池システムの正面図である。It is a front view of a solar cell system. 同右側面図である。It is the same right view. 位置検出用集光レンズと位置検出センサの構成例を示す説明図である。It is explanatory drawing which shows the structural example of the condensing lens for position detection, and a position detection sensor. 位置検出用集光レンズの配置例を示す平面図である。It is a top view which shows the example of arrangement | positioning of the condensing lens for position detection. 太陽電池システムの電気的な接続のブロック図である。It is a block diagram of the electrical connection of a solar cell system. 太陽電池システムで支持板を傾けた状態を示す正面図である。It is a front view which shows the state which inclined the support plate with the solar cell system. 太陽電池システムで台座部を傾けた状態を示す正面図である。It is a front view which shows the state which inclined the base part in the solar cell system. 太陽電池システムで支持板と台座部の双方を傾けた状態を示す正面図である。It is a front view which shows the state which inclined both the support plate and the base part in the solar cell system.

符号の説明Explanation of symbols

1 太陽電池装置
2 外側筐体
3 仕切部材
4 支持部材
5 反射ミラー
6 太陽電池パネル
7 空間
11 導電電極
12 孔
32 回転駆動用モータ
36 回転駆動用モータ
41 制御部
42 位置検出用集光レンズ
43 位置検出センサ
101 太陽電池システム
DESCRIPTION OF SYMBOLS 1 Solar cell apparatus 2 Outer housing | casing 3 Partition member 4 Support member 5 Reflection mirror 6 Solar cell panel 7 Space 11 Conductive electrode 12 Hole 32 Rotation drive motor 36 Rotation drive motor 41 Control part 42 Position detection condensing lens 43 Position Detection sensor 101 Solar cell system

Claims (5)

複数個の太陽電池パネルと、
この複数個の太陽電池パネルの周囲を覆っている覆部材と、
前記覆部材の前記太陽電池パネル側に設けられた反射部材と、
前記覆部材上に設けられ複数個並べられている凸レンズと、
前記覆部材上に穿たれ前記各凸レンズでそれぞれ集光された光を前記太陽電池パネル側にそれぞれ入射させる複数個の孔と、
を備え、
前記複数個の凸レンズの径方向と前記各太陽電池パネルの面方向とは直角又は鋭角をなしている、
太陽電池装置。
A plurality of solar panels;
A covering member covering the periphery of the plurality of solar cell panels;
A reflective member provided on the solar cell panel side of the covering member;
A plurality of convex lenses provided on the covering member and arranged;
A plurality of holes through which the light that is formed on the covering member and collected by the convex lenses is incident on the solar cell panel side;
With
The radial direction of the plurality of convex lenses and the surface direction of each solar cell panel form a right angle or an acute angle,
Solar cell device.
前記凸レンズは、球面レンズであり、
前記孔は、前記球面レンズで集光された光の光束に合った丸孔である、
請求項1に記載の太陽電池装置。
The convex lens is a spherical lens;
The hole is a round hole that matches the light beam collected by the spherical lens.
The solar cell device according to claim 1.
前記凸レンズは、非球面レンズであり、
前記孔は、前記非球面レンズで集光された光の光束に合った丸孔である、
請求項1に記載の太陽電池装置。
The convex lens is an aspheric lens,
The hole is a round hole that matches the light flux collected by the aspheric lens.
The solar cell device according to claim 1.
前記孔は、前記反射面側が最も狭くなっていて前記凸レンズに向けて漸次広くなっており、
前記凸レンズは、その焦点が前記孔の最も狭くなっている位置に合っている、
請求項1〜3の何れかの一項に記載の太陽電池装置。
The hole is narrowest on the reflective surface side and gradually widens toward the convex lens,
The convex lens is aligned with the position where the focal point is the narrowest of the hole,
The solar cell apparatus as described in any one of Claims 1-3.
請求項1〜4のいずれかの一項に記載の太陽電池装置と、
太陽の位置を検出するセンサと、
前記太陽電池装置の向きを可変する移動機構と、
前記センサの検出に基づいて前記移動機構で前記太陽電池装置の向きを前記凸レンズを透過した太陽光が前記孔を透過するように制御する制御手段と、
を備えている太陽電池システム。
The solar cell device according to any one of claims 1 to 4,
A sensor for detecting the position of the sun;
A moving mechanism for changing the orientation of the solar cell device;
Control means for controlling the sunlight transmitted through the convex lens by the moving mechanism so that the sunlight transmitted through the convex lens is transmitted through the hole based on the detection of the sensor;
A solar cell system.
JP2008126702A 2008-05-14 2008-05-14 Solar cell device and solar cell system Expired - Fee Related JP4878354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008126702A JP4878354B2 (en) 2008-05-14 2008-05-14 Solar cell device and solar cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008126702A JP4878354B2 (en) 2008-05-14 2008-05-14 Solar cell device and solar cell system

Publications (2)

Publication Number Publication Date
JP2009277817A true JP2009277817A (en) 2009-11-26
JP4878354B2 JP4878354B2 (en) 2012-02-15

Family

ID=41442985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008126702A Expired - Fee Related JP4878354B2 (en) 2008-05-14 2008-05-14 Solar cell device and solar cell system

Country Status (1)

Country Link
JP (1) JP4878354B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011080831A1 (en) * 2009-12-28 2011-07-07 Ishibashi Hideaki Light-collection photovoltaic generation system
WO2012107608A1 (en) * 2011-02-11 2012-08-16 Caselles Fornes Jaime Device and sheet for using concentrated solar radiation by means of the use of photovoltaic cells
CN102881757A (en) * 2011-07-11 2013-01-16 金英俊 Honeycomb-type solar collector
JP2013149879A (en) * 2012-01-23 2013-08-01 Toyota Body Research & Development Co Ltd Photovoltaic power generation system
KR200471112Y1 (en) 2012-10-29 2014-02-10 이용우 Light Concentrating Member for Solar Cell Module
KR101391616B1 (en) 2012-11-20 2014-05-08 이종은 Sun light for the lens block
WO2021177514A1 (en) * 2020-03-05 2021-09-10 고려대학교 산학협력단 Solar cell module having parallel and series connection structure
EP4148986A3 (en) * 2021-09-10 2023-05-31 Eagle Sekkei, Co., Ltd. Solar power generation apparatus
US11923475B2 (en) 2010-07-13 2024-03-05 S.V.V. Technology Innovations, Inc. Method of making light converting systems using thin light trapping structures and photoabsorptive films

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102620440B (en) * 2012-04-22 2013-09-04 李万红 Box type solar lens group collector field
CN103646982B (en) * 2013-12-11 2016-07-06 中国科学院光电技术研究所 Light trapping structure for thin-film solar cell and manufacturing method

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115192A (en) * 1977-03-18 1978-10-07 Semiyonouitsuchi Sut Domitorii Photocell
JPS5560281A (en) * 1978-10-31 1980-05-07 Univ Tohoku Internal reflection type pigment sensitizing wet photo cell
JPS58135683A (en) * 1982-02-08 1983-08-12 Yoshimoto Ukita Power generation device by solar battery
JPS63318167A (en) * 1987-06-19 1988-12-27 Sharp Corp Power-oriented amorphous solar battery device
US4960468A (en) * 1988-10-20 1990-10-02 The Board Of Trustees Of The Leland Stanford Junior University Photovoltaic converter having apertured reflective enclosure
US5291331A (en) * 1990-07-23 1994-03-01 Miano Juan C Light confining cavity with angular-spatial limitation of the escaping beam
JPH10117007A (en) * 1996-10-11 1998-05-06 Toyota Motor Corp Converging-type solar cell device
JPH1131836A (en) * 1997-07-11 1999-02-02 Hitachi Ltd Condenser type solar power generator and module
JPH11243225A (en) * 1998-02-26 1999-09-07 Hitachi Ltd Solar power-generating device, solar power-generating module, and method for setting solar power-generating system
JP2001210854A (en) * 2000-01-27 2001-08-03 Sanyo Electric Co Ltd Solar cell module
JP2001313410A (en) * 2000-04-27 2001-11-09 Kazuhito Sakaguchi Condensing-type airtight photovoltaic power generation
JP2002198556A (en) * 2000-12-26 2002-07-12 Canon Inc Light condensing solar power generation
JP2002289897A (en) * 2001-03-23 2002-10-04 Canon Inc Concentrating solar cell module and concentrating photovoltaic power generation system
US20030213514A1 (en) * 2002-05-17 2003-11-20 Ugur Ortabasi Concentrating photovoltaic cavity converters for extreme solar-to-electric conversion efficiencies
JP2005019587A (en) * 2003-06-25 2005-01-20 Kuraray Co Ltd Natural lighting equipment and photovoltaic power generator

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115192A (en) * 1977-03-18 1978-10-07 Semiyonouitsuchi Sut Domitorii Photocell
JPS5560281A (en) * 1978-10-31 1980-05-07 Univ Tohoku Internal reflection type pigment sensitizing wet photo cell
JPS58135683A (en) * 1982-02-08 1983-08-12 Yoshimoto Ukita Power generation device by solar battery
JPS63318167A (en) * 1987-06-19 1988-12-27 Sharp Corp Power-oriented amorphous solar battery device
US4960468A (en) * 1988-10-20 1990-10-02 The Board Of Trustees Of The Leland Stanford Junior University Photovoltaic converter having apertured reflective enclosure
US5291331A (en) * 1990-07-23 1994-03-01 Miano Juan C Light confining cavity with angular-spatial limitation of the escaping beam
JPH10117007A (en) * 1996-10-11 1998-05-06 Toyota Motor Corp Converging-type solar cell device
JPH1131836A (en) * 1997-07-11 1999-02-02 Hitachi Ltd Condenser type solar power generator and module
JPH11243225A (en) * 1998-02-26 1999-09-07 Hitachi Ltd Solar power-generating device, solar power-generating module, and method for setting solar power-generating system
JP2001210854A (en) * 2000-01-27 2001-08-03 Sanyo Electric Co Ltd Solar cell module
JP2001313410A (en) * 2000-04-27 2001-11-09 Kazuhito Sakaguchi Condensing-type airtight photovoltaic power generation
JP2002198556A (en) * 2000-12-26 2002-07-12 Canon Inc Light condensing solar power generation
JP2002289897A (en) * 2001-03-23 2002-10-04 Canon Inc Concentrating solar cell module and concentrating photovoltaic power generation system
US20030213514A1 (en) * 2002-05-17 2003-11-20 Ugur Ortabasi Concentrating photovoltaic cavity converters for extreme solar-to-electric conversion efficiencies
JP2005019587A (en) * 2003-06-25 2005-01-20 Kuraray Co Ltd Natural lighting equipment and photovoltaic power generator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011080831A1 (en) * 2009-12-28 2011-07-07 Ishibashi Hideaki Light-collection photovoltaic generation system
US11923475B2 (en) 2010-07-13 2024-03-05 S.V.V. Technology Innovations, Inc. Method of making light converting systems using thin light trapping structures and photoabsorptive films
WO2012107608A1 (en) * 2011-02-11 2012-08-16 Caselles Fornes Jaime Device and sheet for using concentrated solar radiation by means of the use of photovoltaic cells
CN102881757A (en) * 2011-07-11 2013-01-16 金英俊 Honeycomb-type solar collector
JP2013149879A (en) * 2012-01-23 2013-08-01 Toyota Body Research & Development Co Ltd Photovoltaic power generation system
KR200471112Y1 (en) 2012-10-29 2014-02-10 이용우 Light Concentrating Member for Solar Cell Module
KR101391616B1 (en) 2012-11-20 2014-05-08 이종은 Sun light for the lens block
WO2021177514A1 (en) * 2020-03-05 2021-09-10 고려대학교 산학협력단 Solar cell module having parallel and series connection structure
US11843065B2 (en) 2020-03-05 2023-12-12 Korea University Research And Business Foundation Solar cell module having parallel and series connection structure
EP4148986A3 (en) * 2021-09-10 2023-05-31 Eagle Sekkei, Co., Ltd. Solar power generation apparatus

Also Published As

Publication number Publication date
JP4878354B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
JP4878354B2 (en) Solar cell device and solar cell system
US8960185B2 (en) Compound collector system for solar energy concentration
JP6319318B2 (en) Concentrating solar power generation unit, concentrating solar power generation module, concentrating solar power generation panel, and concentrating solar power generation device
JP5337961B2 (en) Solar tracking module device
US20100154866A1 (en) Hybrid solar power system
US20090056789A1 (en) Solar concentrator and solar concentrator array
US20100108121A1 (en) Concentrating solar cell module
WO2010144389A2 (en) Reflective free-form kohler concentrator
JP2011155115A (en) Solar power generation device
JP5483391B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell system
WO2015113447A1 (en) Solar tracker and solar energy collection system
US20160301357A1 (en) Solar tracker and solar energy collection system
US20140048117A1 (en) Solar energy systems using external reflectors
KR20200029851A (en) Flat Concentrating Photovoltaic Apparatus for Vehicle
CN102113134A (en) High-concentration photovoltaic system
CN101345496A (en) Spherical mirror combination type concentration power generation apparatus
KR101616757B1 (en) Device for concentrating optical radiation for localized heating by automatic solar tracking
KR101899845B1 (en) A Photovoltaic Generating Module Using Light Concentrating Apparatus
TWI405928B (en) A illumination system guided by a light fiber through solar beams
JPWO2002052204A1 (en) Solar radiation concentrator
JP2004235284A (en) Method of installing solar cell panel for condensating solar power generation device
JP2014103304A (en) Light-condensing device
JP2024027421A (en) Light collecting device
GB2489219A (en) Solar concentrator with orthogonal elements
JP2008185731A (en) Lens filled up with liquid and solar panel light converging system using the lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees