CN103646982B - Light trapping structure for thin-film solar cell and manufacturing method - Google Patents

Light trapping structure for thin-film solar cell and manufacturing method Download PDF

Info

Publication number
CN103646982B
CN103646982B CN201310674487.7A CN201310674487A CN103646982B CN 103646982 B CN103646982 B CN 103646982B CN 201310674487 A CN201310674487 A CN 201310674487A CN 103646982 B CN103646982 B CN 103646982B
Authority
CN
China
Prior art keywords
array
microlens array
light
solar cells
microhole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310674487.7A
Other languages
Chinese (zh)
Other versions
CN103646982A (en
Inventor
方亮
张铁军
杨欢
邱传凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Optics and Electronics of CAS
Original Assignee
Institute of Optics and Electronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Optics and Electronics of CAS filed Critical Institute of Optics and Electronics of CAS
Priority to CN201310674487.7A priority Critical patent/CN103646982B/en
Publication of CN103646982A publication Critical patent/CN103646982A/en
Application granted granted Critical
Publication of CN103646982B publication Critical patent/CN103646982B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

本发明提供一种用于薄膜太阳能电池的陷光结构及制作方法,所述陷光结构由微透镜阵列(1)、微透镜阵列的基底(2)、带微孔阵列的反射膜层(4)以及反射镜(5)组成,反射膜层(4)上微孔阵列的位置与微透镜阵列(1)焦点的位置一一对应且重合,带微孔阵列的反射膜层(4)与反射镜(5)之间形成一个腔体(6)。太阳光经微透镜阵列聚焦后,由微孔阵列注入到腔体中,并在带微孔阵列的反射膜层与反射镜间形成多次反射,从而实现对太阳光的陷光效果,将薄膜太阳能电池置于该腔体中即可实现太阳光吸收增强,提高光电转换效率。该陷光结构具有结构简单、光能利用率高、兼容性好等优点,可广泛应用于各类薄膜太阳能电池,在探索高效率薄膜太阳能电池研究方面具有广阔的应用前景。

The invention provides a light-trapping structure and a manufacturing method for a thin-film solar cell, the light-trapping structure consists of a microlens array (1), a substrate (2) of the microlens array, and a reflective film layer (4) with a microhole array ) and mirrors (5), the position of the microhole array on the reflective film layer (4) corresponds to and coincides with the position of the focal point of the microlens array (1), the reflective film layer (4) with the microhole array and the reflection A cavity (6) is formed between the mirrors (5). After the sunlight is focused by the microlens array, it is injected into the cavity by the microhole array, and multiple reflections are formed between the reflective film layer with the microhole array and the mirror, so as to realize the light trapping effect on the sunlight, and the film The solar cell can be placed in the cavity to achieve enhanced sunlight absorption and improve photoelectric conversion efficiency. The light-trapping structure has the advantages of simple structure, high utilization rate of light energy, good compatibility, etc., can be widely used in various thin-film solar cells, and has broad application prospects in the research of high-efficiency thin-film solar cells.

Description

一种用于薄膜太阳能电池的陷光结构及制作方法A light-trapping structure for thin-film solar cells and its manufacturing method

技术领域technical field

本发明属于太阳能电池技术领域,涉及一种用于薄膜太阳能电池的陷光结构及制作方法。The invention belongs to the technical field of solar cells, and relates to a light-trapping structure for thin-film solar cells and a manufacturing method.

背景技术Background technique

近几十年来,随着科技的进步、经济的发展,各国对能源的需求越来越大,电力、煤炭、石油等不可再生能源频频告急,越来越多的国家开始寻找新的清洁能源和可再生资源,其中包括太阳能、风能、水能、地热能、海洋能等。而太阳能以其储量巨大、安全、清洁等优势必将成为21世纪最有希望大规模应用的清洁能源之一。In recent decades, with the advancement of science and technology and the development of the economy, the demand for energy in various countries is increasing, and non-renewable energy sources such as electricity, coal, and oil are frequently running out. More and more countries are beginning to look for new clean energy and Renewable resources, including solar energy, wind energy, water energy, geothermal energy, ocean energy, etc. Solar energy will become one of the most promising clean energy for large-scale application in the 21st century due to its advantages of huge reserves, safety, and cleanliness.

目前,技术最为成熟且应用广泛的仍然是晶硅太阳能电池。然而,为了保证较高的光电转化效率,晶硅太阳能电池对材料的厚度和纯度都提出很高的要求,因而大大增加了其制作成本。在此情形下,人们不得不开发以薄膜太阳能电池为代表的低成本太阳能电池技术。常见的薄膜太阳能电池有非晶硅、多晶硅、铜铟镓硒、碲化镉以及染料敏化太阳能电池等。然而,这些薄膜太阳能电池同传统的晶硅太阳能电池相比,光电转换效率仍然较低,这一定程度上是由于薄膜太阳能电池的厚度较薄,对太阳光的吸收能力较弱所致。因此,增强电池中的光敏层对太阳光的捕获能力被认为是提高薄膜太阳能电池光电转换效率的一种有效手段。为达到这个目的,研究人员采取了多种陷光的方法,如表面织构减反、米散射增加光程、表面等离子体共振增强光吸收等,然而这些方法均涉及到纳米结构的制作,不仅加工难度大,且对光能利用率的提高也十分有限。因此,寻找一种低成本、易加工、陷光效果好的太阳光陷光结构对提高薄膜太阳能电池光电转换效率具有重要的意义。At present, the most mature and widely used technology is still crystalline silicon solar cells. However, in order to ensure high photoelectric conversion efficiency, crystalline silicon solar cells have high requirements on the thickness and purity of materials, thus greatly increasing their production costs. Under such circumstances, people have to develop low-cost solar cell technologies represented by thin-film solar cells. Common thin-film solar cells include amorphous silicon, polycrystalline silicon, copper indium gallium selenide, cadmium telluride, and dye-sensitized solar cells. However, compared with traditional crystalline silicon solar cells, the photoelectric conversion efficiency of these thin-film solar cells is still lower, which is partly due to the thinner thickness of thin-film solar cells and the weaker ability to absorb sunlight. Therefore, enhancing the ability of the photosensitive layer in the cell to capture sunlight is considered to be an effective means to improve the photoelectric conversion efficiency of thin-film solar cells. To achieve this goal, researchers have adopted a variety of light trapping methods, such as surface texture anti-reflection, meter scattering to increase the optical path, surface plasmon resonance to enhance light absorption, etc. However, these methods all involve the fabrication of nanostructures, not only The processing is difficult, and the improvement of the utilization rate of light energy is also very limited. Therefore, finding a solar light-trapping structure with low cost, easy processing, and good light-trapping effect is of great significance for improving the photoelectric conversion efficiency of thin-film solar cells.

发明内容Contents of the invention

本发明要解决的技术问题是:针对现有薄膜太阳能电池陷光结构加工复杂、陷光效果有限等缺点,提出一种基于微透镜阵列的薄膜太阳能电池陷光结构及其制作方法。该陷光结构采用微透镜聚光,将太阳光通过小孔“注入”到两块反射镜之中,使太阳光不断的在两块反射镜之间反射,与太阳光跟踪装置配合使用,可最大程度的实现对太阳光的捕获。该陷光结构具有结构简单、光能利用率高、兼容性好等优点,可广泛应用于各类薄膜太阳能电池,提高光电转化效率。The technical problem to be solved by the present invention is to propose a thin-film solar cell light-trapping structure based on a microlens array and a manufacturing method thereof in view of the shortcomings of existing thin-film solar cell light-trapping structures such as complicated processing and limited light-trapping effect. The light-trapping structure uses microlenses to condense light, and "injects" sunlight into the two reflectors through small holes, so that the sunlight is continuously reflected between the two reflectors. It can be used in conjunction with the sunlight tracking device. Maximize the capture of sunlight. The light-trapping structure has the advantages of simple structure, high utilization rate of light energy, good compatibility, etc., and can be widely used in various thin-film solar cells to improve photoelectric conversion efficiency.

本发明解决其技术问题所采用的技术方案是:一种用于薄膜太阳能电池的陷光结构,其特征在于:包括:微透镜阵列,微透镜阵列的基底,带有微孔阵列的反射膜层以及反射镜,反射膜层上微孔阵列的位置与微透镜阵列焦点的位置一一对应且重合,带微孔阵列的反射膜层与反射镜之间形成一个腔体。The technical solution adopted by the present invention to solve the technical problem is: a light trapping structure for thin-film solar cells, characterized in that it includes: a microlens array, a base of the microlens array, and a reflective film layer with a microhole array As well as the mirror, the position of the microhole array on the reflective film layer corresponds to and coincides with the focal point of the microlens array, and a cavity is formed between the reflective film layer with the microhole array and the reflective mirror.

所述微孔阵列的开孔大小应当等于微透镜阵列的焦斑大小,其误差不得大于10%。The aperture size of the microhole array should be equal to the focal spot size of the microlens array, and the error should not be greater than 10%.

所述带有微孔阵列的反射膜层厚度不大于微透镜阵列的焦深。The thickness of the reflective film layer with the microhole array is not greater than the focal depth of the microlens array.

所述带有微孔阵列的反射膜层和反射镜在太阳光谱范围内具有≧80%的反射率。The reflective film layer with the microhole array and the reflective mirror have a reflectivity of ≧80% in the solar spectrum range.

所述腔体内可按现有技术制作各类薄膜太阳能电池,包括薄膜硅太阳能电池、化合物薄膜太阳能电池、染料敏化太阳能电池以及有机聚合物太阳能电池。Various thin-film solar cells can be fabricated in the cavity according to the prior art, including thin-film silicon solar cells, compound thin-film solar cells, dye-sensitized solar cells and organic polymer solar cells.

制作上述陷光结构的方法,其特征在于:包括以下步骤:The method for making the above-mentioned light-trapping structure is characterized in that: comprising the following steps:

步骤(1)、在透明基底上制作微透镜阵列,使微透镜阵列的焦平面位于透明基底的下表面,此后加工有微透镜阵列的透明基底即为微透镜阵列的基底(2);Step (1), making a microlens array on the transparent substrate, so that the focal plane of the microlens array is located on the lower surface of the transparent substrate, after which the transparent substrate processed with the microlens array is the substrate (2) of the microlens array;

步骤(2)、在微透镜阵列的基底(2)下表面涂敷一层负性光刻胶;Step (2), coating a layer of negative photoresist on the lower surface of the substrate (2) of the microlens array;

步骤(3)、利用紫外曝光机照射微透镜阵列上表面,由于微透镜的聚焦作用,处于微透镜焦点处的负性光刻胶被曝光;Step (3), utilizing the ultraviolet exposure machine to irradiate the upper surface of the microlens array, due to the focusing effect of the microlens, the negative photoresist at the focal point of the microlens is exposed;

步骤(4)、被曝光后的负性光刻胶经显影后,可在微透镜阵列的基底(2)下表面获得与微透镜阵列焦点一一对应的光刻胶阵列;Step (4), after the exposed negative photoresist is developed, a photoresist array corresponding to the focal point of the microlens array can be obtained on the lower surface of the substrate (2) of the microlens array;

步骤(5)、在加工有光刻胶阵列的微透镜阵列的基底(2)下表面沉积一层反射膜;Step (5), depositing a layer of reflective film on the lower surface of the substrate (2) of the microlens array processed with the photoresist array;

步骤(6)、利用剥离工艺将微透镜阵列的基底(2)下表面的光刻胶阵列清除,从而获得带有微孔阵列的反射膜层;Step (6), using a stripping process to remove the photoresist array on the lower surface of the substrate (2) of the microlens array, thereby obtaining a reflective film layer with a microhole array;

步骤(7)、加工一块反射镜,置于带有微孔阵列的反射膜层的下方,使两反射面之间形成一个腔体,即可完成陷光结构的制作;Step (7), processing a reflecting mirror, placing it under the reflective film layer with the microhole array, so that a cavity is formed between the two reflecting surfaces, and the light trapping structure can be completed;

所述步骤(1)中透明基底的厚度应当等于微透镜阵列的焦距,其误差不得大于10%;The thickness of the transparent substrate in the step (1) should be equal to the focal length of the microlens array, and its error must not be greater than 10%;

所述步骤(2)中负性光刻胶的厚度不得大于微透镜阵列的焦深;The thickness of the negative photoresist in the step (2) must not be greater than the depth of focus of the microlens array;

所述步骤(5)中反射膜的厚度不得大于微透镜阵列的焦深。The thickness of the reflective film in the step (5) must not be greater than the focal depth of the microlens array.

本发明与现有技术相比具有以下优点:Compared with the prior art, the present invention has the following advantages:

1、相对于亚波长抗反射结构、散射增强结构以及表面等离子体局域增强结构而言,本发明具有更好的陷光效果,且无需加工纳米结构,更无需使用金、银等贵金属材料,仅采用技术相对成熟的微光刻技术即可完成陷光结构的制作,具有结构简单、陷光能力更强等优点;1. Compared with the sub-wavelength anti-reflection structure, scattering enhancement structure and surface plasmon localization enhancement structure, the present invention has a better light trapping effect, and does not need to process nanostructures, and does not need to use gold, silver and other precious metal materials, The fabrication of the light-trapping structure can be completed only by relatively mature microlithography technology, which has the advantages of simple structure and stronger light-trapping ability;

2、由于本发明是通过外部结构实现陷光功能的,对薄膜太阳能电池的内部结构没有破坏作用,不会影响太阳能电池的电学性能,因此兼容性更强,适用范围更广。2. Since the present invention realizes the light trapping function through the external structure, it has no damage to the internal structure of the thin-film solar cell and does not affect the electrical performance of the solar cell, so the compatibility is stronger and the scope of application is wider.

附图说明Description of drawings

图1是本发明实施例1中陷光结构的示意图;FIG. 1 is a schematic diagram of a light trapping structure in Embodiment 1 of the present invention;

图2是本发明的步骤1在透明基底上表面加工微透镜阵列的示意图;Fig. 2 is the schematic diagram of surface processing microlens array on transparent substrate in step 1 of the present invention;

图3是本发明的步骤2在微透镜阵列的基底下表面涂敷负性光刻胶的示意图;Fig. 3 is the schematic diagram that step 2 of the present invention is coated with negative photoresist on the substrate lower surface of microlens array;

图4是本发明的步骤3利用微透镜阵列聚焦对负性光刻胶进行紫外曝光的示意图;Fig. 4 is the schematic diagram that step 3 of the present invention utilizes microlens array focusing to carry out ultraviolet exposure to negative photoresist;

图5是本发明的步骤4对微透镜阵列的基底下表面负性光刻胶显影后的示意图;Fig. 5 is the schematic diagram after developing the negative photoresist on the lower surface of the substrate of the microlens array in step 4 of the present invention;

图6是本发明的步骤5在微透镜阵列的基底下表面光刻胶图形表面沉积反射膜的示意图;6 is a schematic diagram of depositing a reflective film on the surface of the photoresist pattern on the lower surface of the substrate of the microlens array in step 5 of the present invention;

图7是本发明的步骤6在微透镜阵列的基底下表面利用剥离工艺得到带有微孔阵列的反射膜层的示意图;7 is a schematic diagram of step 6 of the present invention using a stripping process to obtain a reflective film layer with a microhole array on the lower surface of the substrate of the microlens array;

图8是本发明的步骤7在微透镜阵列的基底下表面带有微孔阵列的反射膜层与反射镜之间形成腔体的示意图;Fig. 8 is step 7 of the present invention forms the schematic diagram of cavity between the reflective film layer with microhole array and reflector on the substrate lower surface of microlens array;

图中:1为微透镜阵列;2为微透镜阵列的基底;3为负性光刻胶;4为带有微孔阵列的反射膜层;5为反射镜;6为带有微孔阵列的反射膜层与反射镜之间形成的腔体。In the figure: 1 is a microlens array; 2 is the substrate of the microlens array; 3 is a negative photoresist; 4 is a reflective film layer with a microhole array; 5 is a mirror; The cavity formed between the reflective film layer and the mirror.

具体实施方式detailed description

下面结合附图及具体实施方式详细介绍本发明。但以下的实施例仅限于解释本发明,本发明的保护范围应包括权利要求的全部内容,而且通过以下实施例对领域的技术人员即可以实现本发明权利要求的全部内容。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments. But the following examples are only limited to explain the present invention, and the protection scope of the present invention should include the whole content of claim, and promptly can realize the whole content of claim of the present invention to those skilled in the art through following embodiment.

本发明的实施例1,是一种微透镜口径为500μm,在基底材料中焦距为1mm,透镜中心间隔为800μm的陷光结构,微透镜的材质为熔石英,基底厚度为1mm。Embodiment 1 of the present invention is a light-trapping structure with a microlens diameter of 500 μm, a focal length of 1 mm in the substrate material, and a lens center spacing of 800 μm. The material of the microlens is fused silica, and the thickness of the substrate is 1 mm.

该陷光结构的加工步骤为:The processing steps of the light trapping structure are:

(1)在1mm厚度的石英基底上利用热熔法制作微透镜阵列,微透镜阵列的口径为500μm,在石英材料中的焦距为1mm,透镜中心间隔为800μm;(1) On a quartz substrate with a thickness of 1 mm, a microlens array is produced by thermal fusion. The aperture of the microlens array is 500 μm, the focal length in the quartz material is 1 mm, and the lens center spacing is 800 μm;

(2)在微透镜阵列的基底下表面涂敷一层厚度为0.5um的负性光刻胶并进行前烘;(2) coating a negative photoresist with a thickness of 0.5um on the lower surface of the substrate of the microlens array and pre-baking;

(3)利用436nm紫外曝光机照射微透镜阵列上表面,对处于微透镜焦点处的负性光刻胶进行曝光;(3) Utilize a 436nm ultraviolet exposure machine to irradiate the upper surface of the microlens array, and expose the negative photoresist at the focal point of the microlens;

(4)被曝光后的负性光刻胶经显影后,可在微透镜阵列的基底下表面获得与微透镜阵列焦点一一对应的点阵光刻胶图形;(4) After the exposed negative photoresist is developed, a dot matrix photoresist pattern corresponding to the focal point of the microlens array can be obtained on the lower surface of the substrate of the microlens array;

(5)在加工有点阵光刻胶图形的微透镜阵列的基底下表面沉积一层厚度为100nm的铝膜;(5) Depositing a layer of aluminum film with a thickness of 100nm on the lower surface of the substrate of the microlens array for processing dot matrix photoresist patterns;

(6)利用剥离工艺清除微透镜阵列的基底下表面的点阵光刻胶图形,获得带有微孔阵列的金属铝反射层;(6) Utilize the lift-off process to remove the dot matrix photoresist pattern on the lower surface of the substrate of the microlens array to obtain a metal aluminum reflective layer with a microhole array;

(7)加工一块铝反射镜,使其与带有微孔阵列的金属铝反射层形成一个腔体,即可完成陷光结构的制作。(7) Process an aluminum reflector so that it forms a cavity with the metal aluminum reflective layer with a microhole array, and the fabrication of the light trapping structure can be completed.

本发明的实施例2,是一种微透镜口径为400μm,在基底材料中焦距为2mm,透镜中心间隔为600μm的陷光结构,微透镜的材质为塑料,基底厚度为2mm。Embodiment 2 of the present invention is a light-trapping structure with a micro-lens diameter of 400 μm, a focal length of 2 mm in the base material, and a lens center spacing of 600 μm. The material of the micro-lens is plastic, and the base thickness is 2 mm.

该陷光结构的加工步骤为:The processing steps of the light trapping structure are:

(1)在2mm厚度的塑料基底上利用热压的方法制作微透镜阵列,微透镜阵列的口径为400μm,在塑料基底中的焦距为2mm,透镜中心间隔为600μm;(1) Utilize hot pressing method to make microlens array on the plastic base of 2mm thickness, the caliber of microlens array is 400 μ m, the focal length in plastic base is 2 mm, and lens center interval is 600 μ m;

(2)在微透镜阵列的基底下表面涂敷一层厚度为1um的负性光刻胶并进行前烘;(2) coating a layer of negative photoresist with a thickness of 1um on the lower surface of the substrate of the microlens array and pre-baking;

(3)利用365nm紫外曝光机照射微透镜阵列上表面,对处于微透镜焦点处的负性光刻胶进行曝光;(3) Utilize a 365nm ultraviolet exposure machine to irradiate the upper surface of the microlens array, and expose the negative photoresist at the focal point of the microlens;

(4)被曝光后的负性光刻胶经显影后,可在微透镜阵列的基底下表面获得与微透镜阵列焦点一一对应的点阵光刻胶图形;(4) After the exposed negative photoresist is developed, a dot matrix photoresist pattern corresponding to the focal point of the microlens array can be obtained on the lower surface of the substrate of the microlens array;

(5)在加工有点阵光刻胶图形的微透镜阵列的基底下表面沉积一层厚度为200nm的铝膜;(5) Depositing a layer of aluminum film with a thickness of 200nm on the lower surface of the substrate of the microlens array for processing dot matrix photoresist patterns;

(6)利用剥离工艺清除微透镜阵列的基底下表面的点阵光刻胶图形,获得带有微孔阵列的金属铝反射层;(6) Utilize the lift-off process to remove the dot matrix photoresist pattern on the lower surface of the substrate of the microlens array to obtain a metal aluminum reflective layer with a microhole array;

(7)加工一块铝反射镜,使其与带有微孔阵列的金属铝反射层形成一个腔体,即可完成陷光结构的制作。(7) Process an aluminum reflector so that it forms a cavity with the metal aluminum reflective layer with a microhole array, and the fabrication of the light trapping structure can be completed.

本发明未详细公开的部分属于本领域的公知技术。The parts not disclosed in detail in the present invention belong to the known technology in the art.

尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。Although the illustrative specific embodiments of the present invention have been described above, so that those skilled in the art can understand the present invention, it should be clear that the present invention is not limited to the scope of the specific embodiments. For those of ordinary skill in the art, As long as various changes are within the spirit and scope of the present invention defined and determined by the appended claims, these changes are obvious, and all inventions and creations using the concept of the present invention are included in the protection list.

Claims (2)

1.一种用于薄膜太阳能电池的陷光结构,其特征在于,包括:微透镜阵列(1),微透镜阵列的基底(2),带有微孔阵列的反射膜层(4)以及反射镜(5),带有微孔阵列的反射膜层(4)位于微透镜阵列的基底(2)的下表面,且微孔阵列的位置与微透镜阵列(1)焦点的位置一一对应且重合,带微孔阵列的反射膜层(4)与反射镜(5)之间形成一个腔体(6);1. A light-trapping structure for thin-film solar cells, characterized in that it comprises: a microlens array (1), a substrate (2) of the microlens array, a reflection film layer (4) with a microhole array and reflection mirror (5), the reflective film layer (4) with the microhole array is located on the lower surface of the substrate (2) of the microlens array, and the position of the microhole array corresponds to the position of the focal point of the microlens array (1) and overlap, a cavity (6) is formed between the reflection film layer (4) with the microhole array and the reflection mirror (5); 所述微孔阵列的开孔大小应当等于微透镜阵列的焦斑大小,其误差不得大于10%;The aperture size of the microhole array should be equal to the focal spot size of the microlens array, and its error should not be greater than 10%; 所述带有微孔阵列的反射膜层厚度不大于微透镜阵列的焦深;The thickness of the reflective film layer with the microhole array is not greater than the focal depth of the microlens array; 所述带有微孔阵列的反射膜层和反射镜在太阳光谱范围内具有≧80%的反射率;The reflective film layer and the reflector with the microhole array have a reflectivity of ≧80% in the solar spectrum range; 所述腔体内可按现有技术制作各类薄膜太阳能电池,包括薄膜硅太阳能电池、化合物薄膜太阳能电池、染料敏化太阳能电池以及有机聚合物太阳能电池;Various types of thin-film solar cells can be fabricated in the cavity according to the prior art, including thin-film silicon solar cells, compound thin-film solar cells, dye-sensitized solar cells and organic polymer solar cells; 该用于薄膜太阳能电池的陷光结构相对于亚波长抗反射结构、散射增强结构以及表面等离子体局域增强结构而言,该用于薄膜太阳能电池的陷光结构具有更好的陷光效果,且无需加工纳米结构,更无需使用金、银贵金属材料,仅采用技术相对成熟的微光刻技术即可完成陷光结构的制作,具有结构简单、陷光能力更强的优点;Compared with the sub-wavelength anti-reflection structure, scattering enhancement structure and surface plasmon localization enhancement structure, the light trapping structure for thin film solar cells has a better light trapping effect, And there is no need to process nanostructures, let alone use gold and silver precious metal materials, and only use relatively mature microlithography technology to complete the fabrication of light-trapping structures, which has the advantages of simple structure and stronger light-trapping ability; 该用于薄膜太阳能电池的陷光结构是通过外部结构实现陷光功能的,对薄膜太阳能电池的内部结构没有破坏作用,不会影响太阳能电池的电学性能,因此兼容性更强,适用范围更广。The light-trapping structure used for thin-film solar cells realizes the light-trapping function through the external structure, has no damage to the internal structure of thin-film solar cells, and does not affect the electrical properties of solar cells, so the compatibility is stronger and the scope of application is wider. . 2.制作上述权利要求1所述的陷光结构的方法,其特征在于:包括以下步骤:2. the method for making the light-trapping structure described in claim 1, is characterized in that: comprise the following steps: 步骤(1)、在透明基底上制作微透镜阵列,使微透镜阵列的焦平面位于透明基底的下表面,此后加工有微透镜阵列的透明基底即为微透镜阵列的基底(2);Step (1), making a microlens array on the transparent substrate, so that the focal plane of the microlens array is located on the lower surface of the transparent substrate, after which the transparent substrate processed with the microlens array is the substrate (2) of the microlens array; 步骤(2)、在微透镜阵列的基底(2)下表面涂敷一层负性光刻胶;Step (2), coating a layer of negative photoresist on the lower surface of the substrate (2) of the microlens array; 步骤(3)、利用紫外曝光机照射微透镜阵列上表面,由于微透镜的聚焦作用,处于微透镜焦点处的负性光刻胶被曝光;Step (3), utilizing the ultraviolet exposure machine to irradiate the upper surface of the microlens array, due to the focusing effect of the microlens, the negative photoresist at the focal point of the microlens is exposed; 步骤(4)、被曝光后的负性光刻胶经显影后,可在微透镜阵列的基底(2)下表面获得与微透镜阵列焦点一一对应的光刻胶阵列;Step (4), after the exposed negative photoresist is developed, a photoresist array corresponding to the focal point of the microlens array can be obtained on the lower surface of the substrate (2) of the microlens array; 步骤(5)、在加工有光刻胶阵列的微透镜阵列的基底(2)下表面沉积一层反射膜;Step (5), depositing a layer of reflective film on the lower surface of the substrate (2) of the microlens array processed with the photoresist array; 步骤(6)、利用剥离工艺将微透镜阵列的基底(2)下表面的光刻胶阵列清除,从而获得带有微孔阵列的反射膜层;Step (6), using a stripping process to remove the photoresist array on the lower surface of the substrate (2) of the microlens array, thereby obtaining a reflective film layer with a microhole array; 步骤(7)、加工一块反射镜,置于带有微孔阵列的反射膜层的下方,使两反射面之间形成一个腔体,即可完成陷光结构的制作;Step (7), processing a reflecting mirror, placing it under the reflective film layer with the microhole array, so that a cavity is formed between the two reflecting surfaces, and the light trapping structure can be completed; 所述步骤(1)中透明基底的厚度应当等于微透镜阵列的焦距,其误差不得大于10%;The thickness of the transparent substrate in the step (1) should be equal to the focal length of the microlens array, and its error must not be greater than 10%; 所述步骤(2)中负性光刻胶的厚度不得大于微透镜阵列的焦深;The thickness of the negative photoresist in the step (2) must not be greater than the depth of focus of the microlens array; 所述步骤(5)中反射膜的厚度不得大于微透镜阵列的焦深。The thickness of the reflective film in the step (5) must not be greater than the focal depth of the microlens array.
CN201310674487.7A 2013-12-11 2013-12-11 Light trapping structure for thin-film solar cell and manufacturing method Expired - Fee Related CN103646982B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310674487.7A CN103646982B (en) 2013-12-11 2013-12-11 Light trapping structure for thin-film solar cell and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310674487.7A CN103646982B (en) 2013-12-11 2013-12-11 Light trapping structure for thin-film solar cell and manufacturing method

Publications (2)

Publication Number Publication Date
CN103646982A CN103646982A (en) 2014-03-19
CN103646982B true CN103646982B (en) 2016-07-06

Family

ID=50252174

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310674487.7A Expired - Fee Related CN103646982B (en) 2013-12-11 2013-12-11 Light trapping structure for thin-film solar cell and manufacturing method

Country Status (1)

Country Link
CN (1) CN103646982B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106952977B (en) * 2017-04-02 2019-05-10 扬州诺尔照明集团有限公司 A solar cell packaging structure
CN107863406A (en) * 2017-12-11 2018-03-30 浙江宝利特新能源股份有限公司 A kind of reflectance coating and photovoltaic module and preparation method for photovoltaic module
CN109192807A (en) * 2018-08-31 2019-01-11 中国电子科技集团公司第四十四研究所 Near-infrared response photodetector of lenticule light trapping structure and preparation method thereof
CN110111683B (en) * 2019-04-24 2021-02-23 浙江大学 An ultra-thin one-way light-transmitting screen and design method thereof
CN110795826B (en) * 2019-10-08 2023-09-01 天津大学 Optimization method applied to micro-lens structure of photovoltaic building integrated thin-film solar cell
CN111781678A (en) * 2020-06-28 2020-10-16 深圳市中兴新地技术股份有限公司 A single-sided array WDM structure based on microlens
CN113419300A (en) * 2021-07-21 2021-09-21 上海芯物科技有限公司 Micro-lens array
CN115542435A (en) * 2022-10-08 2022-12-30 珠海迈时光电科技有限公司 A kind of microlens array with back aperture and its preparation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102216695A (en) * 2008-09-19 2011-10-12 加利福尼亚大学董事会 System and method for solar energy capture and related method of manufacturing
JP4878354B2 (en) * 2008-05-14 2012-02-15 株式会社ユニバーサルエンターテインメント Solar cell device and solar cell system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100981685B1 (en) * 2007-10-19 2010-09-10 재단법인서울대학교산학협력재단 Solar cell device using microlens and manufacturing method thereof
JP5483391B2 (en) * 2008-05-14 2014-05-07 株式会社ユニバーサルエンターテインメント Dye-sensitized solar cell and dye-sensitized solar cell system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4878354B2 (en) * 2008-05-14 2012-02-15 株式会社ユニバーサルエンターテインメント Solar cell device and solar cell system
CN102216695A (en) * 2008-09-19 2011-10-12 加利福尼亚大学董事会 System and method for solar energy capture and related method of manufacturing

Also Published As

Publication number Publication date
CN103646982A (en) 2014-03-19

Similar Documents

Publication Publication Date Title
CN103646982B (en) Light trapping structure for thin-film solar cell and manufacturing method
CN105514188B (en) A kind of antireflective self-cleaning film and preparation method thereof
Kim et al. Boosting light harvesting in perovskite solar cells by biomimetic inverted hemispherical architectured polymer layer with high haze factor as an antireflective layer
CN102184995B (en) Long-range plasmon waveguide array synergy unit for solar cell
CN107068865A (en) Perovskite solar cell and preparation method thereof
CN102428570B (en) Enhanced efficiency solar cells and method of manufacture
CN102184975A (en) Thin film solar cell with improved photoelectric conversion efficiency and manufacturing method thereof
Tatsi et al. Polymeric materials for photon management in photovoltaics
CN103178156A (en) Preparation method and application of thin-film solar cell light trapping structured glass
CN103972324B (en) Silicon-film solar-cell surface based on nano impression light trapping structure preparation method
CN209104182U (en) Amorphous Silicon/Crystalline Silicon Heterojunction Solar Cells
CN103811589A (en) Manufacturing method of light trapping structures on front and back faces of semiconductor film solar cell
CN103633193B (en) A kind of micro structure for silicon-based thin film solar cell falls into light method
CN101989629B (en) A kind of solar cell module and its manufacturing method
CN104241408A (en) Solar cell and manufacturing method thereof
CN202094161U (en) Long-range plasma excimer waveguide array synergy unit for solar cell
CN107171633A (en) A kind of solar energy divides combined generating device
CN103219411A (en) Solar battery with composite light-trapping structure of nanopores and metal particles and preparation method
CN107171632A (en) Device of solar generating based on translucent perovskite battery, thermo-electric device
CN213401220U (en) Solar cell module with high photoelectric conversion efficiency
CN102148278B (en) Light trapping structure of high-efficiency solar battery and manufacturing method thereof
CN206894581U (en) A solar frequency division composite power generation device
CN104752557A (en) Preparation method of light trapping structure type copper indium gallium diselenide thin film solar cell
CN204315594U (en) Based on the solar cell of silicon nanowire array
CN107546284A (en) A kind of reverse wedge body light trapping structure and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160706

Termination date: 20211211

CF01 Termination of patent right due to non-payment of annual fee