JP2009277768A - Heat sink, and method of manufacturing the same - Google Patents

Heat sink, and method of manufacturing the same Download PDF

Info

Publication number
JP2009277768A
JP2009277768A JP2008125798A JP2008125798A JP2009277768A JP 2009277768 A JP2009277768 A JP 2009277768A JP 2008125798 A JP2008125798 A JP 2008125798A JP 2008125798 A JP2008125798 A JP 2008125798A JP 2009277768 A JP2009277768 A JP 2009277768A
Authority
JP
Japan
Prior art keywords
heat
radiating
heat dissipation
fin
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008125798A
Other languages
Japanese (ja)
Other versions
JP5213519B2 (en
Inventor
Nobuhiro Wakabayashi
信弘 若林
Takashi Sudo
隆司 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2008125798A priority Critical patent/JP5213519B2/en
Publication of JP2009277768A publication Critical patent/JP2009277768A/en
Application granted granted Critical
Publication of JP5213519B2 publication Critical patent/JP5213519B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat sink which is prevented from corroding with a cooling liquid containing water. <P>SOLUTION: The heat sink 1 composed of a heat dissipation substrate 2 which has a first surface 2a exposed to a cooling liquid passage and a second surface 2b as a heat generating body fitted surface, and a plurality of pin-shaped heat dissipation fins 3 formed by forging on the first surface 2a of the heat dissipation substrate 2 in one body mutually at intervals. The heat dissipation pins 3 are in a conic shape which becomes thinner toward the tip. The first surface 2a of the heat dissipation substrate 2 and surfaces of all the heat dissipation fins 3 are covered with a sacrificial corrosion layer 5. An outer peripheral surface of each of the heat dissipation fins 3 has a gradient of ≥3% and the heat dissipation fin 3 has a height H 2 to 10 times as large as a diameter D of a base end of the heat dissipation fin 3. A connection portion between the first surface 2a of the heat dissipation substrate and an outer peripheral surface of each heat dissipation fin 3 is rounded and the radius R of curvature of the rounding is ≥1/2 times as large as the plate thickness T of the heat dissipation substrate 2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、たとえば半導体素子などの電子部品からなる発熱体を冷却する液冷式冷却装置に用いられるヒートシンクおよびその製造方法に関する。   The present invention relates to a heat sink used in a liquid cooling type cooling device for cooling a heating element made of an electronic component such as a semiconductor element and a method for manufacturing the same.

この明細書において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In this specification, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

従来、発熱量の多い電子部品の冷却装置として、内部が冷却水通路となされたチューブ状のアルミニウム製ケーシングと、ケーシング内に配置されたアルミニウム製オフセットフィンと、ケーシングに接続された冷却水出入り口とを備えたものが知られている(特許文献1参照)。   Conventionally, as a cooling device for an electronic component having a large amount of heat generation, a tubular aluminum casing having a cooling water passage inside, an aluminum offset fin disposed in the casing, and a cooling water inlet / outlet connected to the casing The thing provided with (refer patent document 1) is known.

しかしながら、特許文献1記載の冷却装置においては、ケーシング内に冷却水が流されるので、アルミニウム製オフセットフィンのオフセット部が、端面から腐食するおそれがある。
特開2005−123260号公報
However, in the cooling device described in Patent Document 1, since the cooling water flows in the casing, the offset portion of the aluminum offset fin may corrode from the end surface.
JP-A-2005-123260

この発明の目的は、上記問題を解決し、水を含んだ冷却液による腐食を防止しうるヒートシンクおよびその製造方法を提供することにある。   An object of the present invention is to provide a heat sink capable of solving the above-described problems and preventing corrosion by a coolant containing water, and a method for manufacturing the same.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)水を含む冷却液が流れる冷却液通路に臨むように配置されるヒートシンクであって、
第1面が冷却液通路に臨まされるとともに、第2面が発熱体取付面となされる放熱基板と、放熱基板の第1面に、鍛造により相互に間隔をおくように一体に形成された複数のピン状放熱フィンとよりなり、放熱フィンが先端に向かって細くなった円すい状であり、放熱基板の第1面および全放熱フィンの表面が犠牲腐食層で覆われ、放熱フィンの外周面の勾配が3%以上であり、放熱フィンの高さが放熱フィンの基端部の直径の2〜10倍であり、放熱基板の第1面と各放熱フィンの外周面との連接部に丸みが形成されるとともに、当該丸みの曲率半径が放熱基板の板厚の1/2以上であるヒートシンク。
1) A heat sink arranged so as to face a coolant passage through which a coolant containing water flows,
The first surface is exposed to the coolant passage and the second surface is integrally formed on the first surface of the heat radiating substrate and the heat radiating substrate mounting surface so as to be spaced apart from each other by forging. Consists of a plurality of pin-shaped heat dissipating fins, the heat dissipating fins have a conical shape that narrows toward the tip, the first surface of the heat dissipating substrate and the surface of all heat dissipating fins are covered with a sacrificial corrosion layer, and the outer peripheral surface of the heat dissipating fins The gradient of the heat dissipation fin is 2 to 10 times the diameter of the base end portion of the heat dissipation fin, and the connecting portion between the first surface of the heat dissipation substrate and the outer peripheral surface of each heat dissipation fin is rounded. And a heat sink in which the radius of curvature of the roundness is ½ or more of the thickness of the heat dissipation substrate.

2)放熱基板の板厚と放熱フィンの基端部の直径とが等しくなっている上記1)記載のヒートシンク。   2) The heat sink according to 1) above, wherein the thickness of the heat radiating substrate is equal to the diameter of the base end portion of the heat radiating fin.

3)水を含む冷却液が流れる冷却液通路に臨むように配置されるヒートシンクであって、
第1面が冷却液通路に臨まされるとともに、第2面が発熱体取付面となされる放熱基板と、放熱基板の第1面に、鍛造により相互に間隔をおくように一体に形成され、かつ放熱基板よりも短い複数の板状放熱フィンとよりなり、放熱フィンの横断面形状が先端に向かって細くなったテーパ状であるとともに、放熱フィンの両端面が先端に向かって長さ方向内方に傾斜しており、放熱基板の第1面および全放熱フィンの表面が犠牲腐食層で覆われ、放熱フィンの両側面および両端面の勾配が3%以上であり、放熱フィンの高さが放熱フィンの基端部の厚みの2〜5倍であり、放熱基板の第1面と各放熱フィンの両側面および両端面との連接部に丸みが形成されるとともに、当該丸みの曲率半径が放熱基板の板厚の1/2以上であるヒートシンク。
3) A heat sink arranged so as to face a coolant passage through which a coolant containing water flows,
The first surface is exposed to the coolant passage and the second surface is integrally formed on the first surface of the heat radiating substrate and the heat radiating substrate mounting surface so as to be spaced apart from each other by forging. And a plurality of plate-like radiating fins that are shorter than the radiating substrate, the radiating fin having a taper shape in which the cross-sectional shape of the radiating fin is narrowed toward the tip, and both end faces of the radiating fin are in the longitudinal direction toward the tip. The first surface of the heat radiating board and the surface of all the heat radiating fins are covered with a sacrificial corrosion layer, the gradients of both side surfaces and both end surfaces of the heat radiating fins are 3% or more, and the height of the heat radiating fins is It is 2 to 5 times the thickness of the base end portion of the radiating fin, and a roundness is formed at the connecting portion between the first surface of the radiating board and both side surfaces and both end surfaces of each radiating fin, and the curvature radius of the roundness is Heat sink that is 1/2 or more of the thickness of the heat dissipation board

4)上記1)記載のヒートシンクを製造する方法であって、
芯材の片面が、芯材の厚みの5〜20%の厚みを有する犠牲腐食層で覆われたクラッド材を用意すること、
底部に向かって細くなったテーパ穴状である複数の放熱フィン形成用凹部を有する鍛造用型を用意し、放熱フィン形成用凹部の内周面の勾配を3%以上とするとともに、放熱フィン形成用凹部の深さを放熱フィン形成用凹部の開口端部の内径の2〜10倍とし、鍛造用型の表面と各放熱フィン形成用凹部の内周面との連接部に丸みを形成するとともに、当該丸みの曲率半径を製造すべき放熱基板の板厚の1/2以上とすること、
ならびに前記クラッド材を120〜150℃または350〜400℃に加熱した後、前記鍛造用型を用いて鍛造加工を施すことにより、片面が犠牲腐食層で覆われた放熱基板と、表面が犠牲腐食層で覆われるとともに先端に向かって細くなった円すい状である複数のピン状放熱フィンとを形成することを含むヒートシンクの製造方法。
4) A method for producing the heat sink according to 1) above,
Providing a clad material in which one side of the core material is covered with a sacrificial corrosion layer having a thickness of 5 to 20% of the thickness of the core material;
A forging die having a plurality of recesses for forming radiating fins that are tapered holes that narrow toward the bottom is prepared, and the gradient of the inner peripheral surface of the dents for forming radiating fins is set to 3% or more, and the radiating fins are formed. The depth of the concave portion is 2 to 10 times the inner diameter of the opening end of the radiating fin forming concave portion, and the connecting portion between the forging die surface and the inner peripheral surface of each radiating fin forming concave portion is rounded. , Making the radius of curvature of the round more than half of the thickness of the heat dissipation substrate to be manufactured,
In addition, after the clad material is heated to 120 to 150 ° C. or 350 to 400 ° C., forging is performed using the forging die, and a heat dissipation substrate having one surface covered with a sacrificial corrosion layer, and the surface is sacrificial corrosion. A method of manufacturing a heat sink, comprising: forming a plurality of pin-shaped heat dissipating fins that are covered with a layer and are tapered toward the tip.

5)製造すべき放熱基板の板厚と、放熱フィン形成用凹部の開口端部の内径とを等しくする上記4)記載のヒートシンクの製造方法。   5) The method for producing a heat sink according to 4) above, wherein the thickness of the heat radiation substrate to be produced is equal to the inner diameter of the opening end of the heat radiation fin forming recess.

6)上記3)記載のヒートシンクを製造する方法であって、
芯材の片面が、芯材の厚みの5〜20%の厚みを有する犠牲腐食層で覆われたクラッド材を用意すること、
横断面形状が先端に向かって細くなったテーパ状であるとともに、両端面が底部に向かって長さ方向内方に傾斜した複数の放熱フィン形成用凹溝を有する鍛造用型を用意し、放熱フィン形成用凹溝の両側面および両端面の勾配を3%以上とするとともに、放熱フィン形成用凹溝の深さを放熱フィン形成用凹溝の開口端部の幅の2〜5倍とし、鍛造用型の表面と各放熱フィン形成用凹溝の両側面および両端面との連接部に丸みを形成するとともに、当該丸みの曲率半径を製造すべき放熱基板の板厚の1/2以上とすること、
ならびに前記クラッド材を120〜150℃または350〜400℃に加熱した後、前記鍛造用型を用いて鍛造加工を施すことにより、片面が犠牲腐食層で覆われた放熱基板と、表面が犠牲腐食層で覆われ、かつ横断面形状が先端に向かって細くなったテーパ状であるとともに、両端面が先端に向かって長さ方向内方に傾斜した複数の板状放熱フィンとを形成することを含むヒートシンクの製造方法。
6) A method of manufacturing the heat sink according to 3) above,
Providing a clad material in which one side of the core material is covered with a sacrificial corrosion layer having a thickness of 5 to 20% of the thickness of the core material;
Prepare a forging die that has a plurality of grooves for forming radiating fins that have a taper shape with a cross-sectional shape that becomes narrower toward the tip and that both end faces are inclined inward in the longitudinal direction toward the bottom. The gradient of both side surfaces and both end surfaces of the fin forming groove is 3% or more, and the depth of the radiating fin forming groove is 2 to 5 times the width of the opening end of the radiating fin forming groove, A roundness is formed at the connecting portion between the surface of the forging die and both side faces and both end faces of each radiating fin forming groove, and the radius of curvature of the rounding is ½ or more of the thickness of the radiating board to be manufactured. To do,
In addition, after the clad material is heated to 120 to 150 ° C. or 350 to 400 ° C., forging is performed using the forging die, and a heat dissipation substrate having one surface covered with a sacrificial corrosion layer, and the surface is sacrificial corrosion. Forming a plurality of plate-like radiating fins that are covered with a layer and whose cross-sectional shape is tapered toward the tip and whose both end faces are inclined inward in the longitudinal direction toward the tip. A method for manufacturing a heat sink.

上記1)のヒートシンクを、水を含む冷却液が流れる冷却液通路を有するケーシングに、放熱基板の第1面および放熱フィンが冷却液通路に臨むように配置した場合であっても、放熱基板の第1面および全放熱フィンの表面が犠牲腐食層で覆われているので、冷却液による放熱基板および放熱フィンの腐食を防止することができる。たとえば、放熱基板の第1面および全放熱フィンの表面が犠牲腐食層で覆われていないヒートシンクに比べて、発生する孔食深さは1/5〜1/10程度となる。また、放熱フィンの外周面の勾配が3%以上であり、放熱フィンの高さが放熱フィンの基端部の直径の2〜10倍であり、放熱基板の第1面と各放熱フィンの外周面との連接部に丸みが形成されるとともに、当該丸みの曲率半径が放熱基板の板厚の1/2以上であるから、芯材の片面が、芯材の厚みの5〜20%の厚みを有する犠牲腐食層で覆われたクラッド材を用意し、当該クラッド材を120〜150℃または350〜400℃に加熱した後鍛造加工を施すことによって、放熱基板の第1面および全放熱フィンの表面が確実に犠牲腐食層で覆われたヒートシンクを比較的簡単に製造することができる。   Even when the heat sink of 1) is arranged in a casing having a coolant passage through which water-containing coolant flows, so that the first surface of the heat sink and the heat sink fins face the coolant passage, Since the first surface and the surfaces of all the heat radiating fins are covered with the sacrificial corrosion layer, corrosion of the heat radiating board and the heat radiating fins by the coolant can be prevented. For example, the generated pitting corrosion depth is about 1/5 to 1/10 compared to a heat sink in which the first surface of the heat dissipation board and the surface of all the heat dissipation fins are not covered with the sacrificial corrosion layer. Further, the gradient of the outer peripheral surface of the radiating fin is 3% or more, the height of the radiating fin is 2 to 10 times the diameter of the base end portion of the radiating fin, and the first surface of the radiating substrate and the outer periphery of each radiating fin. Since the rounded portion is formed in the connecting portion with the surface and the radius of curvature of the roundness is 1/2 or more of the thickness of the heat dissipation substrate, one side of the core material is 5 to 20% of the thickness of the core material. A clad material covered with a sacrificial corrosive layer having a thickness of 1 and a forging process after heating the clad material to 120 to 150 ° C. or 350 to 400 ° C. A heat sink whose surface is reliably covered with a sacrificial corrosion layer can be produced relatively easily.

上記3)のヒートシンクを、水を含む冷却液が流れる冷却液通路を有するケーシングに、放熱基板の第1面および放熱フィンが冷却液通路に臨むように配置した場合であっても、放熱基板の第1面および全放熱フィンの表面が犠牲腐食層で覆われているので、冷却液による放熱基板および放熱フィンの腐食を防止することができる。また、放熱フィンの両側面および両端面の勾配が3%以上であり、放熱フィンの高さが放熱フィンの基端部の厚みの2〜5倍であり、放熱基板の第1面と各放熱フィンの両側面および両端面との連接部に丸みが形成されるとともに、当該丸みの曲率半径が放熱基板の板厚の1/2以上であるから、芯材の片面が、芯材の厚みの5〜20%の厚みを有する犠牲腐食層で覆われたクラッド材を用意し、当該クラッド材を120〜150℃または350〜400℃に加熱した後鍛造加工を施すことによって、放熱基板の第1面および全放熱フィンの表面が確実に犠牲腐食層で覆われたヒートシンクを比較的簡単に製造することができる。   Even if the heat sink of the above 3) is arranged in a casing having a coolant passage through which a coolant containing water flows so that the first surface of the heat sink and the heat sink fins face the coolant passage, Since the first surface and the surfaces of all the heat radiating fins are covered with the sacrificial corrosion layer, corrosion of the heat radiating board and the heat radiating fins by the coolant can be prevented. Moreover, the gradient of the both side surfaces and both end surfaces of the heat radiation fin is 3% or more, the height of the heat radiation fin is 2 to 5 times the thickness of the base end portion of the heat radiation fin, and the first surface of the heat radiation board and each heat radiation Since rounds are formed at both sides of the fins and the joints between both sides, and the radius of curvature of the rounds is ½ or more of the thickness of the heat dissipation board, one side of the core is less than the thickness of the core. First, a clad material covered with a sacrificial corrosion layer having a thickness of 5 to 20% is prepared, and the clad material is heated to 120 to 150 ° C. or 350 to 400 ° C., and then subjected to forging, whereby the first heat dissipation substrate is formed. A heat sink in which the surface and the surface of all the radiation fins are reliably covered with the sacrificial corrosion layer can be manufactured relatively easily.

上記4)の製造方法によれば、放熱基板の第1面および全ピン状放熱フィンの表面が確実に犠牲腐食層で覆われたヒートシンクを比較的簡単に製造することができる。   According to the manufacturing method of 4), it is possible to relatively easily manufacture a heat sink in which the first surface of the heat dissipation board and the surface of all the pin-shaped heat dissipation fins are reliably covered with the sacrificial corrosion layer.

上記6)の製造方法によれば、放熱基板の第1面および全板状放熱フィンの表面が確実に犠牲腐食層で覆われたヒートシンクを比較的簡単に製造することができる。   According to the manufacturing method of 6), it is possible to relatively easily manufacture a heat sink in which the first surface of the heat radiating substrate and the surface of all the plate-shaped heat radiating fins are reliably covered with the sacrificial corrosion layer.

以下、この発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

なお、以下の説明において、各図面の上下を上下というものとする。   In the following description, the top and bottom of each drawing is referred to as the top and bottom.

実施形態1
この実施形態は図1〜図4に示すものである。
Embodiment 1
This embodiment is shown in FIGS.

図1はこの発明によるヒートシンクの全体構成を示し、図2はその要部を示す。また、図3はヒートシンクの製造方法を示し、図4はヒートシンクの使用方法を示す。   FIG. 1 shows the overall structure of a heat sink according to the present invention, and FIG. FIG. 3 shows a method for manufacturing the heat sink, and FIG. 4 shows a method for using the heat sink.

図1および図2において、ヒートシンク(1)は、第1面(2a)が冷却液通路に臨まされるとともに、第2面(2b)が発熱体取付面となされる放熱基板(2)と、放熱基板(2)の第1面(2a)に、鍛造により相互に間隔をおくように千鳥配置状に一体に形成された複数のピン状放熱フィン(3)とよりなる。放熱基板(2)の第1面(2a)および全放熱フィン(3)の表面は、連続した犠牲腐食層(4)で覆われている。放熱基板(2)および放熱フィン(3)の犠牲腐食層(4)を除いた芯材(5)の部分は、たとえばJIS A1100などのJIS A1000系アルミニウムからなり、犠牲腐食層(4)はたとえばJIS A7072などのAl−Zn系合金からなる。   1 and 2, the heat sink (1) includes a heat radiating board (2) having a first surface (2a) facing the coolant passage and a second surface (2b) serving as a heating element mounting surface. The first surface (2a) of the heat radiating substrate (2) includes a plurality of pin-shaped heat radiating fins (3) integrally formed in a staggered manner so as to be spaced from each other by forging. The first surface (2a) of the heat dissipation substrate (2) and the surface of all the heat dissipation fins (3) are covered with a continuous sacrificial corrosion layer (4). The core material (5) portion excluding the sacrificial corrosion layer (4) of the heat dissipating substrate (2) and the heat dissipating fin (3) is made of, for example, JIS A1000 series aluminum such as JIS A1100, and the sacrificial corrosion layer (4) is, for example, It is made of an Al-Zn alloy such as JIS A7072.

放熱フィン(3)は先端(上端)に向かって細くなった円すい状であり、放熱フィン(3)の外周面の勾配(S)は3%以上である。放熱フィン(3)の勾配(S)の上限は、5%程度であることがよい。なお、放熱フィン(3)の先端は丸みを帯びて部分球面状となっている。また、放熱フィン(3)の高さ(H)は放熱フィン(3)の基端部(下端部)の直径(D)の2〜10倍である。放熱基板(2)の第1面(2a)と各放熱フィン(3)の外周面との連接部には丸み(6)が形成されており、丸み(6)の曲率半径(R)は放熱基板(2)の板厚(T)の1/2以上となっている。丸み(6)の曲率半径(R)の上限は、放熱基板(2)の板厚(T)と同程度であることがよい。また、丸み(6)の曲率半径(R)は放熱フィン(3)の基端部の直径(D)の1/2以上となっていてもよい。すなわち、放熱基板(2)の板厚(T)と放熱フィン(3)の基端部の直径(D)とが等しくてもよい。   The radiating fin (3) has a conical shape that narrows toward the tip (upper end), and the gradient (S) of the outer peripheral surface of the radiating fin (3) is 3% or more. The upper limit of the gradient (S) of the radiating fin (3) is preferably about 5%. Note that the tips of the radiating fins (3) are rounded and partially spherical. The height (H) of the radiating fin (3) is 2 to 10 times the diameter (D) of the base end (lower end) of the radiating fin (3). A roundness (6) is formed at the connection between the first surface (2a) of the heat dissipation board (2) and the outer peripheral surface of each heat dissipation fin (3), and the radius of curvature (R) of the roundness (6) is the heat dissipation. It is 1/2 or more of the plate thickness (T) of the substrate (2). The upper limit of the radius of curvature (R) of the roundness (6) is preferably about the same as the thickness (T) of the heat dissipation substrate (2). Further, the radius of curvature (R) of the roundness (6) may be ½ or more of the diameter (D) of the base end portion of the radiating fin (3). That is, the plate thickness (T) of the heat dissipation substrate (2) and the diameter (D) of the base end portion of the heat dissipation fin (3) may be equal.

放熱フィン(3)の勾配(S)、放熱フィン(3)の高さ(H)、放熱基板(2)の第1面(2a)と各放熱フィン(3)の外周面との連接部の丸み(6)の曲率半径(R)が上述した範囲内である場合、芯材(5)の片面が、芯材(5)の厚みの5〜20%の厚みを有する犠牲腐食層(4)で覆われたクラッド材を用意し、当該クラッド材を120〜150℃または350〜400℃に加熱した後鍛造加工を施すことによって、放熱基板(2)の第1面(2a)および全放熱フィン(3)の表面が確実に犠牲腐食層(4)で覆われたヒートシンク(1)を比較的簡単に製造することができる。   The slope (S) of the radiating fin (3), the height (H) of the radiating fin (3), and the connection between the first surface (2a) of the radiating substrate (2) and the outer peripheral surface of each radiating fin (3) When the radius of curvature (R) of the roundness (6) is within the above-mentioned range, the sacrificial corrosion layer (4) in which one side of the core material (5) has a thickness of 5 to 20% of the thickness of the core material (5). The clad material covered with the first surface (2a) of the heat radiating substrate (2) and all the heat radiating fins are prepared by heating the clad material to 120 to 150 ° C or 350 to 400 ° C and then forging. The heat sink (1) in which the surface of (3) is reliably covered with the sacrificial corrosion layer (4) can be manufactured relatively easily.

次に、ヒートシンク(1)の製造方法について、図3を参照して説明する。   Next, a method for manufacturing the heat sink (1) will be described with reference to FIG.

まず、芯材(5)の片面が、芯材(5)の厚み(t1)の5〜20%の厚み(t2)を有する犠牲腐食層(4)で覆われた平板状のクラッド材(7)を用意する。また、放熱基板(2)と同一の大きさの1つの凹所(11)と、凹所(11)の底面に形成された複数の放熱フィン形成用凹部(12)とを有する鍛造用下型(10)と、下型(10)の凹所(11)内に嵌め入れられる鍛造用上型(13)とを用意する。   First, a flat clad material (7) in which one side of the core material (5) is covered with a sacrificial corrosion layer (4) having a thickness (t2) of 5 to 20% of the thickness (t1) of the core material (5). ) Is prepared. The lower die for forging having one recess (11) having the same size as the heat dissipation substrate (2) and a plurality of heat dissipation fin forming recesses (12) formed on the bottom surface of the recess (11). (10) and an upper die (13) for forging to be fitted in the recess (11) of the lower die (10) are prepared.

下型(10)の放熱フィン形成用凹部(12)は、底部に向かって細くなったテーパ穴状であり、放熱フィン形成用凹部(12)の内周面の勾配(S1)は3%以上となっている。また、放熱フィン形成用凹部(12)の深さ(F)は、放熱フィン形成用凹部(12)の開口端部の内径(D1)の2〜10倍となっている。さらに、下型(10)の凹所(11)の底面と各放熱フィン形成用凹部(12)の内周面との連接部には丸み(14)が形成されており、丸み(14)の曲率半径(R1)は、製造すべき放熱基板(2)の板厚(T)の1/2以上となっている。   The lower mold (10) radiating fin forming recess (12) has a tapered hole shape that narrows toward the bottom, and the slope (S1) of the inner peripheral surface of the radiating fin forming recess (12) is 3% or more. It has become. The depth (F) of the radiating fin forming recess (12) is 2 to 10 times the inner diameter (D1) of the opening end of the radiating fin forming recess (12). Further, a rounded portion (14) is formed at the connecting portion between the bottom surface of the recess (11) of the lower mold (10) and the inner peripheral surface of each radiating fin forming concave portion (12). The radius of curvature (R1) is ½ or more of the plate thickness (T) of the heat dissipation substrate (2) to be manufactured.

ついで、クラッド材(7)を、120〜150℃の温間または350〜400℃の熱間に加熱した後下型(10)の凹所(11)の底面上に、犠牲腐食層(4)が下方(放熱フィン形成用凹部(12)側)を向くように配置する(図3(a)参照)。その後、上下両型(13)(10)を相互に接近させることにより上型(13)を下型(10)の凹所(11)内に嵌め入れてクラッド材(7)を上下から押圧し、クラッド材(7)を形成する材料の一部を放熱フィン形成用凹部(12)内に流入させる。こうして、放熱基板(2)とピン状放熱フィン(3)とからなり、放熱基板(2)の芯材(5)の第1面(2a)および全放熱フィン(3)の表面が犠牲腐食層(4)で覆われているヒートシンク(1)が製造される(図3(b)参照)。   Next, the clad material (7) is heated to a temperature of 120 to 150 ° C. or heated to 350 to 400 ° C., and then a sacrificial corrosion layer (4) is formed on the bottom surface of the recess (11) of the lower mold (10). Is arranged so as to face downward (radiation fin forming recess (12) side) (see FIG. 3 (a)). After that, the upper and lower molds (13) and (10) are brought close to each other to fit the upper mold (13) into the recess (11) of the lower mold (10) and press the clad material (7) from above and below. Then, a part of the material forming the clad material (7) is caused to flow into the radiating fin forming recess (12). Thus, the heat radiation substrate (2) and the pin-shaped heat radiation fin (3) are composed, and the first surface (2a) of the core material (5) of the heat radiation substrate (2) and the surface of all the heat radiation fins (3) are sacrificial corrosion layers. The heat sink (1) covered with (4) is manufactured (see FIG. 3 (b)).

図4はヒートシンク(1)の使用方法を示す。   FIG. 4 shows how to use the heat sink (1).

ヒートシンク(1)は、水を含む冷却液、たとえばロングライフクーラントなどが図4の紙面表裏方向に流れる冷却液通路(16)を形成するケーシング(15)の上壁に形成された開口(17)内に、放熱基板(2)の第1面(2a)および放熱フィン(3)が冷却液通路(16)内に臨むように配置される。発熱体である半導体素子(P)は、板状絶縁部材(I)を介してヒートシンク(2)の第2面(2b)に接合される。   The heat sink (1) has an opening (17) formed in the upper wall of a casing (15) that forms a coolant passage (16) in which a coolant containing water, for example, a long life coolant flows in the front and back direction of the paper surface of FIG. Inside, the first surface (2a) of the heat radiating substrate (2) and the heat radiating fins (3) are arranged so as to face the coolant passage (16). The semiconductor element (P), which is a heating element, is joined to the second surface (2b) of the heat sink (2) via the plate-like insulating member (I).

半導体素子(P)から発せられる熱は、絶縁部材(I)、ヒートシンク(1)の放熱基板(2)および放熱フィン(3)を経て冷却液通路(16)内を流れる冷却液に伝わり、半導体素子(P)が冷却される。   The heat generated from the semiconductor element (P) is transferred to the coolant flowing in the coolant passage (16) through the insulating member (I), the heat sink (2) of the heat sink (1), and the heat sink fin (3). The element (P) is cooled.

実施形態2
この実施形態は図5〜図8に示すものである。
Embodiment 2
This embodiment is shown in FIGS.

図5はこの発明によるヒートシンクの全体構成を示し、図6および図7はその要部を示す。また、図8はヒートシンクの製造方法を示す。   FIG. 5 shows the overall structure of the heat sink according to the present invention, and FIGS. 6 and 7 show the main part thereof. FIG. 8 shows a method for manufacturing a heat sink.

図5〜図7において、ヒートシンク(20)は、第1面(21a)が冷却液通路に臨まされるとともに、第2面(21b)が発熱体取付面となされる放熱基板(21)と、放熱基板(21)の第1面(21a)に、鍛造により相互に間隔をおくとともに並列状となるように一体に形成され、かつ放熱基板(21)よりも短い複数の板状放熱フィン(22)とよりなる。放熱基板(21)の第1面(21a)および全放熱フィン(22)の表面は、連続した犠牲腐食層(4)で覆われている。放熱基板(21)および放熱フィン(22)の犠牲腐食層(4)を除いた芯材(5)の部分は、たとえばJIS A1100などのJIS A1000系アルミニウムからなり、犠牲腐食層(4)はたとえばJIS A7072などのAl−Zn系合金からなる。   5 to 7, the heat sink (20) includes a heat dissipation substrate (21) having a first surface (21a) facing the coolant passage and a second surface (21b) serving as a heating element mounting surface. On the first surface (21a) of the heat dissipation substrate (21), a plurality of plate-shaped heat radiation fins (22) are formed integrally with the first surface (21a) so as to be spaced apart from each other and arranged in parallel. ). The first surface (21a) of the heat dissipation substrate (21) and the surface of all the heat dissipation fins (22) are covered with a continuous sacrificial corrosion layer (4). The portion of the core material (5) excluding the sacrificial corrosion layer (4) of the heat dissipating substrate (21) and the heat dissipating fin (22) is made of, for example, JIS A1000 series aluminum such as JIS A1100. It is made of an Al-Zn alloy such as JIS A7072.

放熱フィン(22)の横断面形状は先端(上端)に向かって細くなったテーパ状であり、その両側面は先端に向かって厚み方向の内方に傾斜している。また、放熱フィン(22)の長さ方向の両端面は先端に向かって長さ方向内方に傾斜している。そして、放熱フィン(22)の両側面および両端面の勾配(S2)は3%以上である。放熱フィン(22)の両側面は放熱フィン(22)の勾配(S2)の上限は、5%程度であることがよい。なお、放熱フィン(22)の先端は丸みを帯びている。また、放熱フィン(22)の高さ(H1)は放熱フィン(22)の基端部(下端部)の厚み(W)の2〜5倍である。放熱基板(21)の第1面(21a)と各放熱フィン(22)の両側面および両端面との連接部には丸み(23)が形成されており、丸み(23)の曲率半径(R2)は放熱基板(21)の板厚(T1)の1/2以上となっている。丸み(23)の曲率半径(R)の上限は、放熱基板(21)の板厚(T1)と同程度であることがよい。また、丸み(23)の曲率半径(R)は放熱フィン(22)の基端部の厚み(W)の1/2以上となっていてもよい。すなわち、放熱基板(21)の板厚(T1)と放熱フィン(22)の基端部の厚み(W)とが等しくてもよい。   The cross-sectional shape of the heat dissipating fin (22) is a taper shape that narrows toward the tip (upper end), and both side surfaces thereof are inclined inward in the thickness direction toward the tip. Further, both end surfaces of the heat radiating fin (22) in the length direction are inclined inward in the length direction toward the tip. And the gradient (S2) of both side surfaces and both end surfaces of the radiation fin (22) is 3% or more. The upper limit of the gradient (S2) of the radiating fin (22) on both side surfaces of the radiating fin (22) is preferably about 5%. The tip of the heat radiating fin (22) is rounded. Moreover, the height (H1) of the radiation fin (22) is 2 to 5 times the thickness (W) of the base end (lower end) of the radiation fin (22). A roundness (23) is formed at the connecting portion between the first surface (21a) of the heat dissipation substrate (21) and both side surfaces and both end surfaces of each radiation fin (22), and the radius of curvature (R2) of the roundness (23) is formed. ) Is 1/2 or more of the thickness (T1) of the heat dissipation substrate (21). The upper limit of the radius of curvature (R) of the roundness (23) is preferably about the same as the thickness (T1) of the heat dissipation substrate (21). Further, the radius of curvature (R) of the roundness (23) may be 1/2 or more of the thickness (W) of the base end portion of the radiating fin (22). That is, the plate thickness (T1) of the heat dissipation substrate (21) and the thickness (W) of the base end portion of the heat dissipation fin (22) may be equal.

放熱フィン(22)の勾配(S2)、放熱フィン(22)の高さ(H1)、放熱基板(21)の第1面(21a)と各放熱フィン(22)の両側面および両端面との連接部の丸み(23)の曲率半径(R2)が上述した範囲内である場合、芯材(5)の片面が、芯材(5)の厚みの5〜20%の厚みを有する犠牲腐食層(4)で覆われたクラッド材を用意し、当該クラッド材を120〜150℃または350〜400℃に加熱した後鍛造加工を施すことによって、放熱基板(21)の第1面(21a)および全放熱フィン(22)の表面が確実に犠牲腐食層(4)で覆われたヒートシンク(20)を比較的簡単に製造することができる。   The slope (S2) of the radiating fin (22), the height (H1) of the radiating fin (22), the first surface (21a) of the radiating substrate (21) and both side surfaces and both end surfaces of each radiating fin (22) When the curvature radius (R2) of the roundness (23) of the connecting portion is within the above-described range, the sacrificial corrosion layer in which one side of the core material (5) has a thickness of 5 to 20% of the thickness of the core material (5). The clad material covered with (4) is prepared, and the clad material is heated to 120 to 150 ° C. or 350 to 400 ° C. and then subjected to forging, whereby the first surface (21a) of the heat dissipation substrate (21) and The heat sink (20) in which the surface of all the heat radiating fins (22) is surely covered with the sacrificial corrosion layer (4) can be manufactured relatively easily.

次に、ヒートシンク(20)の製造方法について、図8を参照して説明する。   Next, a manufacturing method of the heat sink (20) will be described with reference to FIG.

まず、芯材(5)の片面が、芯材(5)の厚み(t1)の5〜20%の厚み(t2)を有する犠牲腐食層(4)で覆われた平板状のクラッド材(7)を用意する。また、放熱基板(21)と同一の大きさの1つの凹所(26)と、凹所(26)の底面に並列状に形成された複数の放熱フィン形成用凹溝(27)とを有する鍛造用下型(25)と、下型(25)の凹所(26)内に嵌め入れられる鍛造用上型(28)とを用意する。   First, a flat clad material (7) in which one side of the core material (5) is covered with a sacrificial corrosion layer (4) having a thickness (t2) of 5 to 20% of the thickness (t1) of the core material (5). ) Is prepared. Moreover, it has one recess (26) of the same size as the heat dissipation substrate (21) and a plurality of heat sink fin forming grooves (27) formed in parallel on the bottom surface of the recess (26). A lower forging die (25) and an upper forging die (28) to be fitted in the recess (26) of the lower die (25) are prepared.

下型(25)の放熱フィン形成用凹溝(27)の横断面形状は先端に向かって細くなったテーパ状であり、その両側面は底部に向かって幅方向内方に傾斜している。また、放熱フィン形成用凹溝(27)の両端面は底部に向かって長さ方向内方に傾斜している。そして、放熱フィン形成用凹溝(27)の両側面および両端面の勾配(S3)は3%以上となっている。また、放熱フィン形成用凹溝(27)の深さ(F1)は、放熱フィン形成用凹溝(27)の開口端部の幅の2〜5倍となっている。さらに、下型(25)の凹所(26)の底面と各放熱フィン形成用凹溝(27)の両側面および両端面との連接部には丸み(29)が形成されており、丸み(29)の曲率半径(R3)は、製造すべき放熱基板(21)の板厚(T1)の1/2以上となっている。   The cross-sectional shape of the radiating fin forming groove (27) of the lower mold (25) is a taper shape that is narrowed toward the tip, and both side surfaces thereof are inclined inward in the width direction toward the bottom. Further, both end surfaces of the radiating fin forming groove (27) are inclined inward in the length direction toward the bottom. And the gradient (S3) of the both side surfaces and both end surfaces of the recessed groove (27) for radiating fin formation is 3% or more. The depth (F1) of the radiating fin forming groove (27) is 2 to 5 times the width of the opening end of the radiating fin forming groove (27). Furthermore, roundness (29) is formed at the connecting portion between the bottom surface of the recess (26) of the lower mold (25) and both side surfaces and both end surfaces of each radiating fin forming groove (27). The radius of curvature (R3) of 29) is greater than or equal to ½ of the plate thickness (T1) of the heat dissipation substrate (21) to be manufactured.

ついで、クラッド材(7)を、120〜150℃の温間または350〜400℃の熱間に加熱した後下型(25)の凹所(26)の底面上に、犠牲腐食層(4)が下方(放熱フィン形成用凹溝(27)側)を向くように配置する(図8参照)。その後、上下両型(28)(25)を相互に接近させることにより上型(28)を下型(25)の凹所(26)内に嵌め入れてクラッド材(7)を上下から押圧し、クラッド材(7)を形成する材料の一部を放熱フィン形成用凹溝(27)内に流入させる。こうして、放熱基板(21)と板状放熱フィン(22)とからなり、放熱基板(21)の芯材(5)の第1面(21a)および全放熱フィン(22)の表面が犠牲腐食層(4)で覆われているヒートシンク(20)が製造される。   Then, the clad material (7) is heated to 120 to 150 ° C. or 350 to 400 ° C. and then the sacrificial corrosion layer (4) is formed on the bottom surface of the recess (26) of the lower mold (25). Is arranged so as to face downward (the side of the radiating fin forming groove (27)) (see FIG. 8). After that, the upper and lower molds (28) and (25) are brought close to each other to fit the upper mold (28) into the recess (26) of the lower mold (25) and press the clad material (7) from above and below. Then, a part of the material forming the clad material (7) is caused to flow into the radiating fin forming concave groove (27). Thus, the heat radiating board (21) and the plate-like heat radiating fins (22) are formed, and the first surface (21a) of the core material (5) of the heat radiating board (21) and the surface of all the heat radiating fins (22) are sacrificial corrosion layers. The heat sink (20) covered with (4) is manufactured.

実施形態2のヒートシンク(20)は、実施形態1のヒートシンク(1)と同様にして使用される。   The heat sink (20) of the second embodiment is used in the same manner as the heat sink (1) of the first embodiment.

すなわち、水を含む冷却液、たとえばロングライフクーラントなどが流れる冷却液通路を形成するケーシングの上壁に形成された開口内に、放熱基板(21)の第1面(21a)および放熱フィン(22)が冷却液通路内に臨むように配置される。このとき、放熱フィン(22)の長さ方向は、冷却液の流れ方向に向けられる。発熱体である半導体素子は、板状絶縁部材を介してヒートシンク(20)の放熱基板(21)の第2面(21b)に接合される。半導体素子から発せられる熱は、絶縁部材、ヒートシンク(20)の放熱基板(21)および放熱フィン(22)を経て冷却液通路内を流れる冷却液に伝わり、半導体素子が冷却される。   That is, the first surface (21a) of the heat radiating substrate (21) and the heat radiating fins (22) are formed in an opening formed in the upper wall of the casing that forms a coolant passage through which a coolant containing water, for example, a long life coolant flows. ) Is arranged so as to face the coolant passage. At this time, the length direction of the radiation fin (22) is directed to the flow direction of the coolant. The semiconductor element, which is a heating element, is bonded to the second surface (21b) of the heat dissipation substrate (21) of the heat sink (20) via a plate-like insulating member. Heat generated from the semiconductor element is transferred to the coolant flowing in the coolant passage through the insulating member, the heat dissipation substrate (21) of the heat sink (20), and the heat dissipation fin (22), thereby cooling the semiconductor element.

この発明の実施形態1のヒートシンクの全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the heat sink of Embodiment 1 of this invention. 図1のヒートシンクの要部を示す部分拡大垂直断面図である。FIG. 2 is a partially enlarged vertical sectional view showing a main part of the heat sink of FIG. 1. 図1のヒートシンクの製造方法を示す一部を省略した垂直断面図である。It is the vertical sectional view which abbreviate | omitted one part which shows the manufacturing method of the heat sink of FIG. 図1のヒートシンクの使用方法を示す垂直断面図である。It is a vertical sectional view which shows the usage method of the heat sink of FIG. この発明の実施形態2のヒートシンクの全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the heat sink of Embodiment 2 of this invention. 図5のヒートシンクの要部を示す放熱フィンの長さ方向と直交する方向で切断した部分拡大垂直断面図である。FIG. 6 is a partially enlarged vertical sectional view taken along a direction orthogonal to the length direction of the heat dissipating fins showing the main part of the heat sink of FIG. 5. 図5のヒートシンクの要部を示す放熱フィンの長さ方向に沿う方向で切断した部分拡大垂直断面図である。FIG. 6 is a partially enlarged vertical sectional view taken along a length direction of a heat dissipating fin showing a main part of the heat sink of FIG. 5. 図5のヒートシンクの製造方法を示す放熱フィン形成用凹部の長さ方向に沿う方向で切断した一部省略垂直断面図である。FIG. 6 is a partially omitted vertical sectional view cut in a direction along the length direction of the heat sink fin forming recess showing the method of manufacturing the heat sink of FIG. 5.

符号の説明Explanation of symbols

(1):ヒートシンク
(2):放熱基板
(2a):第1面
(2b):第2面
(3):ピン状放熱フィン
(4):犠牲腐食層
(5):芯材
(6):丸み
(7):クラッド材
(10):鍛造用下型(鍛造用型)
(12):放熱フィン形成用凹部
(14):丸み
(20):ヒートシンク
(21):放熱基板
(21a):第1面
(21b):第2面
(22):板状放熱フィン
(23):丸み
(25):鍛造用下型(鍛造用型)
(27):放熱フィン形成用凹部
(29):丸み
(1): Heat sink
(2): Heat dissipation board
(2a): First side
(2b): Second side
(3): Pin-shaped heat radiation fin
(4): Sacrificial corrosion layer
(5): Core material
(6): Roundness
(7): Clad material
(10): Lower die for forging (forging die)
(12): Recessed fin forming recess
(14): Roundness
(20): Heat sink
(21): Heat dissipation board
(21a): First side
(21b): Second side
(22): Plate-shaped radiation fin
(23): Roundness
(25): Lower die for forging (forging die)
(27): Recessed fin forming recess
(29): Roundness

Claims (6)

水を含む冷却液が流れる冷却液通路に臨むように配置されるヒートシンクであって、
第1面が冷却液通路に臨まされるとともに、第2面が発熱体取付面となされる放熱基板と、放熱基板の第1面に、鍛造により相互に間隔をおくように一体に形成された複数のピン状放熱フィンとよりなり、放熱フィンが先端に向かって細くなった円すい状であり、放熱基板の第1面および全放熱フィンの表面が犠牲腐食層で覆われ、放熱フィンの外周面の勾配が3%以上であり、放熱フィンの高さが放熱フィンの基端部の直径の2〜10倍であり、放熱基板の第1面と各放熱フィンの外周面との連接部に丸みが形成されるとともに、当該丸みの曲率半径が放熱基板の板厚の1/2以上であるヒートシンク。
A heat sink arranged to face a coolant passage through which a coolant containing water flows,
The first surface is exposed to the coolant passage and the second surface is integrally formed on the first surface of the heat radiating substrate and the heat radiating substrate mounting surface so as to be spaced apart from each other by forging. Consists of a plurality of pin-shaped heat dissipating fins, the heat dissipating fins have a conical shape that narrows toward the tip, the first surface of the heat dissipating substrate and the surface of all heat dissipating fins are covered with a sacrificial corrosion layer, and the outer peripheral surface of the heat dissipating fins The gradient of the heat dissipation fin is 2 to 10 times the diameter of the base end portion of the heat dissipation fin, and the connecting portion between the first surface of the heat dissipation substrate and the outer peripheral surface of each heat dissipation fin is rounded. And a heat sink in which the radius of curvature of the roundness is ½ or more of the thickness of the heat dissipation substrate.
放熱基板の板厚と放熱フィンの基端部の直径とが等しくなっている請求項1記載のヒートシンク。 The heat sink according to claim 1, wherein the thickness of the heat radiating substrate is equal to the diameter of the base end portion of the heat radiating fin. 水を含む冷却液が流れる冷却液通路に臨むように配置されるヒートシンクであって、
第1面が冷却液通路に臨まされるとともに、第2面が発熱体取付面となされる放熱基板と、放熱基板の第1面に、鍛造により相互に間隔をおくように一体に形成され、かつ放熱基板よりも短い複数の板状放熱フィンとよりなり、放熱フィンの横断面形状が先端に向かって細くなったテーパ状であるとともに、放熱フィンの両端面が先端に向かって長さ方向内方に傾斜しており、放熱基板の第1面および全放熱フィンの表面が犠牲腐食層で覆われ、放熱フィンの両側面および両端面の勾配が3%以上であり、放熱フィンの高さが放熱フィンの基端部の厚みの2〜5倍であり、放熱基板の第1面と各放熱フィンの両側面および両端面との連接部に丸みが形成されるとともに、当該丸みの曲率半径が放熱基板の板厚の1/2以上であるヒートシンク。
A heat sink arranged to face a coolant passage through which a coolant containing water flows,
The first surface is exposed to the coolant passage and the second surface is integrally formed on the first surface of the heat radiating substrate and the heat radiating substrate mounting surface so as to be spaced apart from each other by forging. And a plurality of plate-like radiating fins that are shorter than the radiating substrate, the radiating fin having a taper shape in which the cross-sectional shape of the radiating fin is narrowed toward the tip, and both end faces of the radiating fin are in the longitudinal direction toward the tip. The first surface of the heat radiating board and the surface of all the heat radiating fins are covered with a sacrificial corrosion layer, the gradients of both side surfaces and both end surfaces of the heat radiating fins are 3% or more, and the height of the heat radiating fins is It is 2 to 5 times the thickness of the base end portion of the radiating fin, and a roundness is formed at the connecting portion between the first surface of the radiating board and both side surfaces and both end surfaces of each radiating fin, and the curvature radius of the roundness is Heat sink that is 1/2 or more of the thickness of the heat dissipation board
請求項1記載のヒートシンクを製造する方法であって、
芯材の片面が、芯材の厚みの5〜20%の厚みを有する犠牲腐食層で覆われたクラッド材を用意すること、
底部に向かって細くなったテーパ穴状である複数の放熱フィン形成用凹部を有する鍛造用型を用意し、放熱フィン形成用凹部の内周面の勾配を3%以上とするとともに、放熱フィン形成用凹部の深さを放熱フィン形成用凹部の開口端部の内径の2〜10倍とし、鍛造用型の表面と各放熱フィン形成用凹部の内周面との連接部に丸みを形成するとともに、当該丸みの曲率半径を製造すべき放熱基板の板厚の1/2以上とすること、
ならびに前記クラッド材を120〜150℃または350〜400℃に加熱した後、前記鍛造用型を用いて鍛造加工を施すことにより、片面が犠牲腐食層で覆われた放熱基板と、表面が犠牲腐食層で覆われるとともに先端に向かって細くなった円すい状である複数のピン状放熱フィンとを形成することを含むヒートシンクの製造方法。
A method of manufacturing a heat sink according to claim 1, comprising:
Providing a clad material in which one side of the core material is covered with a sacrificial corrosion layer having a thickness of 5 to 20% of the thickness of the core material;
A forging die having a plurality of recesses for forming radiating fins that are tapered holes that narrow toward the bottom is prepared, and the gradient of the inner peripheral surface of the dents for forming radiating fins is set to 3% or more, and the radiating fins are formed. The depth of the concave portion is 2 to 10 times the inner diameter of the opening end of the radiating fin forming concave portion, and the connecting portion between the forging die surface and the inner peripheral surface of each radiating fin forming concave portion is rounded. , Making the radius of curvature of the round more than half of the thickness of the heat dissipation substrate to be manufactured,
In addition, after the clad material is heated to 120 to 150 ° C. or 350 to 400 ° C., forging is performed using the forging die, and a heat dissipation substrate having one surface covered with a sacrificial corrosion layer, and the surface is sacrificial corrosion. A method of manufacturing a heat sink, comprising: forming a plurality of pin-shaped heat dissipating fins that are covered with a layer and are tapered toward the tip.
製造すべき放熱基板の板厚と、放熱フィン形成用凹部の開口端部の内径とを等しくする請求項4記載のヒートシンクの製造方法。 5. The method of manufacturing a heat sink according to claim 4, wherein the thickness of the heat dissipation substrate to be manufactured is made equal to the inner diameter of the opening end of the recess for forming the heat dissipation fin. 請求項3記載のヒートシンクを製造する方法であって、
芯材の片面が、芯材の厚みの5〜20%の厚みを有する犠牲腐食層で覆われたクラッド材を用意すること、
横断面形状が先端に向かって細くなったテーパ状であるとともに、両端面が底部に向かって長さ方向内方に傾斜した複数の放熱フィン形成用凹溝を有する鍛造用型を用意し、放熱フィン形成用凹溝の両側面および両端面の勾配を3%以上とするとともに、放熱フィン形成用凹溝の深さを放熱フィン形成用凹溝の開口端部の幅の2〜5倍とし、鍛造用型の表面と各放熱フィン形成用凹溝の両側面および両端面との連接部に丸みを形成するとともに、当該丸みの曲率半径を製造すべき放熱基板の板厚の1/2以上とすること、
ならびに前記クラッド材を120〜150℃または350〜400℃に加熱した後、前記鍛造用型を用いて鍛造加工を施すことにより、片面が犠牲腐食層で覆われた放熱基板と、表面が犠牲腐食層で覆われ、かつ横断面形状が先端に向かって細くなったテーパ状であるとともに、両端面が先端に向かって長さ方向内方に傾斜した複数の板状放熱フィンとを形成することを含むヒートシンクの製造方法。
A method of manufacturing a heat sink according to claim 3,
Providing a clad material in which one side of the core material is covered with a sacrificial corrosion layer having a thickness of 5 to 20% of the thickness of the core material;
Prepare a forging die that has a plurality of grooves for forming radiating fins that have a taper shape with a cross-sectional shape that becomes narrower toward the tip and that both end faces are inclined inward in the longitudinal direction toward the bottom. The gradient of both side surfaces and both end surfaces of the fin forming groove is 3% or more, and the depth of the radiating fin forming groove is 2 to 5 times the width of the opening end of the radiating fin forming groove, A roundness is formed at the connecting portion between the surface of the forging die and both side faces and both end faces of each radiating fin forming groove, and the radius of curvature of the rounding is ½ or more of the thickness of the radiating board to be manufactured. To do,
In addition, after the clad material is heated to 120 to 150 ° C. or 350 to 400 ° C., forging is performed using the forging die, and a heat dissipation substrate having one surface covered with a sacrificial corrosion layer, and the surface is sacrificial corrosion. Forming a plurality of plate-like radiating fins that are covered with a layer and whose cross-sectional shape is tapered toward the tip and whose both end faces are inclined inward in the longitudinal direction toward the tip. A method for manufacturing a heat sink.
JP2008125798A 2008-05-13 2008-05-13 Liquid cooling system Expired - Fee Related JP5213519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008125798A JP5213519B2 (en) 2008-05-13 2008-05-13 Liquid cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008125798A JP5213519B2 (en) 2008-05-13 2008-05-13 Liquid cooling system

Publications (2)

Publication Number Publication Date
JP2009277768A true JP2009277768A (en) 2009-11-26
JP5213519B2 JP5213519B2 (en) 2013-06-19

Family

ID=41442949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008125798A Expired - Fee Related JP5213519B2 (en) 2008-05-13 2008-05-13 Liquid cooling system

Country Status (1)

Country Link
JP (1) JP5213519B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012016095A (en) * 2010-06-29 2012-01-19 Denso Corp Electric power conversion device
WO2012157247A1 (en) * 2011-05-16 2012-11-22 富士電機株式会社 Cooler for use in semiconductor module
DE102012220453A1 (en) 2011-11-11 2013-05-16 Showa Denko K.K. Liquid cooling device for power device e.g. insulated-gate bipolar transistor(IGBT) used in electric vehicle, has upper and lower end sections of tap-shaped ribs that are soldered to upper wall and bottom wall of housing
KR101329225B1 (en) 2013-03-08 2013-11-13 주식회사 주원기업 A pressing out aluminum radiators
CN103781335A (en) * 2013-12-31 2014-05-07 江苏嘉钰新能源技术有限公司 Natural cooling heat radiator
JP2014181682A (en) * 2013-03-21 2014-09-29 Mitsubishi Heavy Industries Automotive Thermal Systems Co Ltd Motor fan
JP2015050318A (en) * 2013-09-02 2015-03-16 日立オートモティブシステムズ株式会社 Heat sink and manufacturing method of heat sink
WO2015129418A1 (en) * 2014-02-25 2015-09-03 日立オートモティブシステムズ株式会社 Waterproof electronic device and manufacturing method therefor
JP2016051649A (en) * 2014-09-01 2016-04-11 パナソニックIpマネジメント株式会社 Lighting apparatus
DE102016110043A1 (en) 2015-06-02 2016-12-08 Showa Denko K.K. Liquid cooled cooling means for cooling a heat generating body, e.g. electronic components such as semiconductor devices
JP2017092468A (en) * 2015-11-10 2017-05-25 昭和電工株式会社 Power module basis
CN107946254A (en) * 2017-12-18 2018-04-20 华天科技(昆山)电子有限公司 The silicon substrate fan-out package and wafer-level packaging method of integrated heat dissipation structure
JP2019160852A (en) * 2018-03-08 2019-09-19 昭和電工株式会社 Manufacturing method of heat sink
JP2019176091A (en) * 2018-03-29 2019-10-10 昭和電工株式会社 Radiator fin, radiator, and method of manufacturing the same
WO2021256248A1 (en) * 2020-06-17 2021-12-23 株式会社デンソー Heat exchanger
US11456233B2 (en) 2019-02-15 2022-09-27 Fuji Electric Co., Ltd. Semiconductor module, vehicle and manufacturing method
CN115768040A (en) * 2022-10-29 2023-03-07 深圳市瀚强科技股份有限公司 Heat dissipation device, electronic equipment and electric equipment
WO2023190141A1 (en) * 2022-03-31 2023-10-05 Agc株式会社 Heat dissipation member and semiconductor unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115332346A (en) 2018-01-05 2022-11-11 联华电子股份有限公司 Semiconductor element and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236664A (en) * 1995-02-23 1996-09-13 Toshiba Corp Cooler for semiconductor
JP2004063898A (en) * 2002-07-30 2004-02-26 Hitachi Cable Ltd Heat radiating material and its manufacturing method
JP2004282001A (en) * 2003-02-28 2004-10-07 Denso Corp Boiling cooler
JP2005254329A (en) * 2004-02-12 2005-09-22 Showa Denko Kk Clad material, manufacturing method thereof and equipment for manufacturing clad material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236664A (en) * 1995-02-23 1996-09-13 Toshiba Corp Cooler for semiconductor
JP2004063898A (en) * 2002-07-30 2004-02-26 Hitachi Cable Ltd Heat radiating material and its manufacturing method
JP2004282001A (en) * 2003-02-28 2004-10-07 Denso Corp Boiling cooler
JP2005254329A (en) * 2004-02-12 2005-09-22 Showa Denko Kk Clad material, manufacturing method thereof and equipment for manufacturing clad material

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012016095A (en) * 2010-06-29 2012-01-19 Denso Corp Electric power conversion device
US9502329B2 (en) 2011-05-16 2016-11-22 Fuji Electric Co., Ltd. Semiconductor module cooler
WO2012157247A1 (en) * 2011-05-16 2012-11-22 富士電機株式会社 Cooler for use in semiconductor module
CN103477432A (en) * 2011-05-16 2013-12-25 富士电机株式会社 Cooler for use in semiconductor module
JPWO2012157247A1 (en) * 2011-05-16 2014-07-31 富士電機株式会社 Semiconductor module cooler
DE102012220453A1 (en) 2011-11-11 2013-05-16 Showa Denko K.K. Liquid cooling device for power device e.g. insulated-gate bipolar transistor(IGBT) used in electric vehicle, has upper and lower end sections of tap-shaped ribs that are soldered to upper wall and bottom wall of housing
US9845999B2 (en) 2011-11-11 2017-12-19 Showa Denko K.K. Liquid-cooled-type cooling device and manufacturing method for same
DE102012220453B4 (en) 2011-11-11 2022-11-10 Showa Denko K.K. Liquid-cooled cooling device and manufacturing method thereof
KR101329225B1 (en) 2013-03-08 2013-11-13 주식회사 주원기업 A pressing out aluminum radiators
JP2014181682A (en) * 2013-03-21 2014-09-29 Mitsubishi Heavy Industries Automotive Thermal Systems Co Ltd Motor fan
JP2015050318A (en) * 2013-09-02 2015-03-16 日立オートモティブシステムズ株式会社 Heat sink and manufacturing method of heat sink
CN103781335A (en) * 2013-12-31 2014-05-07 江苏嘉钰新能源技术有限公司 Natural cooling heat radiator
JPWO2015129418A1 (en) * 2014-02-25 2017-03-30 日立オートモティブシステムズ株式会社 Waterproof electronic device and manufacturing method thereof
WO2015129418A1 (en) * 2014-02-25 2015-09-03 日立オートモティブシステムズ株式会社 Waterproof electronic device and manufacturing method therefor
US9852962B2 (en) 2014-02-25 2017-12-26 Hitachi Automotive Systems, Ltd. Waterproof electronic device and manufacturing method thereof
JP2016051649A (en) * 2014-09-01 2016-04-11 パナソニックIpマネジメント株式会社 Lighting apparatus
DE102016110043A1 (en) 2015-06-02 2016-12-08 Showa Denko K.K. Liquid cooled cooling means for cooling a heat generating body, e.g. electronic components such as semiconductor devices
JP2017092468A (en) * 2015-11-10 2017-05-25 昭和電工株式会社 Power module basis
CN107946254A (en) * 2017-12-18 2018-04-20 华天科技(昆山)电子有限公司 The silicon substrate fan-out package and wafer-level packaging method of integrated heat dissipation structure
JP2019160852A (en) * 2018-03-08 2019-09-19 昭和電工株式会社 Manufacturing method of heat sink
JP7033470B2 (en) 2018-03-08 2022-03-10 昭和電工株式会社 How to make a heat sink
JP2019176091A (en) * 2018-03-29 2019-10-10 昭和電工株式会社 Radiator fin, radiator, and method of manufacturing the same
JP7007972B2 (en) 2018-03-29 2022-01-25 昭和電工株式会社 Manufacturing method of heat sink, heat sink and heat sink
US11456233B2 (en) 2019-02-15 2022-09-27 Fuji Electric Co., Ltd. Semiconductor module, vehicle and manufacturing method
WO2021256248A1 (en) * 2020-06-17 2021-12-23 株式会社デンソー Heat exchanger
JP7424251B2 (en) 2020-06-17 2024-01-30 株式会社デンソー Heat exchanger
WO2023190141A1 (en) * 2022-03-31 2023-10-05 Agc株式会社 Heat dissipation member and semiconductor unit
CN115768040A (en) * 2022-10-29 2023-03-07 深圳市瀚强科技股份有限公司 Heat dissipation device, electronic equipment and electric equipment
CN115768040B (en) * 2022-10-29 2023-12-26 深圳市瀚强科技股份有限公司 Heat abstractor, electronic equipment and consumer

Also Published As

Publication number Publication date
JP5213519B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP5213519B2 (en) Liquid cooling system
JP5953206B2 (en) Liquid cooling type cooling device and manufacturing method thereof
US20070227697A1 (en) Heat radiator
JP5740036B1 (en) Flat type heat pipe
JPH0799274A (en) Electronic circuit cooling module and heat transfer piston member
JP6462737B2 (en) heatsink
TW201623899A (en) Heat pipe
US20190053403A1 (en) Liquid cooling heat sink device
JP2008187116A (en) Cooling device
US20170280588A1 (en) Heat dissipating device
JP6547641B2 (en) heatsink
JP2008218938A (en) Metal-ceramics bonded substrate
JPWO2008090726A1 (en) Heat exchanger
JP6526500B2 (en) Boiling heat transfer member and boil cooling apparatus using the same
US10465895B2 (en) Light source device
JP5631446B2 (en) Method for producing metal / ceramic bonding substrate
WO2020235217A1 (en) Heat exchange structure extracting heat of coolant in cooling device, and cooling device provided with said heat exchange structure
JP2014045134A (en) Flow passage member, heat exchanger using the same, and semiconductor device
JP6360722B2 (en) Power semiconductor water-cooling pin heat sink using comb-shaped heat radiation pin member
JP6312314B2 (en) Heat transfer element tube and method of manufacturing heat transfer element tube
JPWO2020138223A1 (en) How to Make Heat Sinks, Heat Sink Assembly, Electronics, and Heat Sinks
JP6376967B2 (en) Boiling heat transfer member and boiling cooling device using the same
JP5081757B2 (en) Heat transfer surface structure having flat coiled fin member and manufacturing method thereof
TWI482002B (en) Heat sink and manufacturing method thereof
JP7031523B2 (en) Heat transfer sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees