JP2009277613A - Evaluation method of fuel cell - Google Patents

Evaluation method of fuel cell Download PDF

Info

Publication number
JP2009277613A
JP2009277613A JP2008130467A JP2008130467A JP2009277613A JP 2009277613 A JP2009277613 A JP 2009277613A JP 2008130467 A JP2008130467 A JP 2008130467A JP 2008130467 A JP2008130467 A JP 2008130467A JP 2009277613 A JP2009277613 A JP 2009277613A
Authority
JP
Japan
Prior art keywords
diffusion layer
electrode assembly
membrane electrode
fuel cell
mea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008130467A
Other languages
Japanese (ja)
Inventor
Akira Morita
亮 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008130467A priority Critical patent/JP2009277613A/en
Publication of JP2009277613A publication Critical patent/JP2009277613A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To properly evaluate the adhesion between a membrane electrode assembly and a diffusion layer. <P>SOLUTION: The evaluation method of a fuel cell comprises a process of preparing a membrane electrode assembly with a diffusion layer arranged at least on its one face; a process of dipping the membrane electrode assembly in solution; a process of measuring a resistance value of the membrane electrode assembly, by changing the moisture content of the membrane electrode assembly dipped in the solution; and a process of evaluating the adhesion quality between the membrane electrode assembly and the diffusion layer, with the use of the resistance value. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃料電池の評価方法に関する。   The present invention relates to a method for evaluating a fuel cell.

従来から、膜電極接合体(MEA:Membrane Electrode Assembly)と、反応ガスを流通させるための拡散層とが積層されてなる燃料電池において、膜電極接合体と拡散層との間の密着性を評価するための種々の技術が知られている。   Conventionally, in a fuel cell in which a membrane electrode assembly (MEA) and a diffusion layer for circulating a reaction gas are laminated, the adhesion between the membrane electrode assembly and the diffusion layer is evaluated. Various techniques for doing this are known.

特開2005−71882号公報JP 2005-71882 A 特開2002−313380号公報JP 2002-313380 A 特開2006−196275号公報JP 2006-196275 A 特開2001−345110号公報JP 2001-345110 A

しかし、発電中の燃料電池における交流インピーダンスにより検査をおこなう方法では、不良がある場合に燃料電池を分解する必要があった。また、交流インピーダンスに基づく検査方法は、膜電極接合体と拡散層との間の密着性による影響の他、種々の要因が影響する虞があり、密着性を良好に評価することは難しかった。   However, in the method in which the inspection is performed based on the AC impedance in the fuel cell during power generation, it is necessary to disassemble the fuel cell when there is a defect. In addition, the inspection method based on the alternating current impedance may be affected by various factors in addition to the influence of the adhesion between the membrane electrode assembly and the diffusion layer, and it is difficult to evaluate the adhesion well.

本発明は、上記した従来の課題の少なくとも一部を解決するためになされた発明であり、膜電極接合体と拡散層との密着性を良好に評価することを目的とする。   The present invention has been made to solve at least a part of the above-described conventional problems, and an object thereof is to satisfactorily evaluate the adhesion between the membrane electrode assembly and the diffusion layer.

上記課題の少なくとも一部を解決するために本願発明は以下の態様を採る。   In order to solve at least a part of the above problems, the present invention employs the following aspects.

本発明の第1の態様は、燃料電池の評価方法を提供する。本発明の第1の態様に係る燃料電池の評価方法は、少なくとも一方の面に拡散層が配置された膜電極接合体を準備する工程と、前記膜電極接合体を液体に浸す工程と、液体に浸した前記膜電極接合体の含水量を変化させて、前記膜電極接合体の抵抗値を測定する工程と、前記抵抗値を用いて膜電極接合体と拡散層との密着の良否を評価する工程と、を備える。   A first aspect of the present invention provides a method for evaluating a fuel cell. The fuel cell evaluation method according to the first aspect of the present invention includes a step of preparing a membrane electrode assembly in which a diffusion layer is disposed on at least one surface, a step of immersing the membrane electrode assembly in a liquid, and a liquid The step of measuring the resistance value of the membrane electrode assembly by changing the water content of the membrane electrode assembly immersed in the film, and evaluating the quality of adhesion between the membrane electrode assembly and the diffusion layer using the resistance value And a step of performing.

本発明の第1の態様に係る燃料電池の評価方法によれば、含水量を変化させて測定された膜電極接合体の抵抗値により、膜電極接合体と拡散層との密着性を良好に評価することができる。   According to the evaluation method of the fuel cell according to the first aspect of the present invention, the adhesion between the membrane electrode assembly and the diffusion layer is improved by the resistance value of the membrane electrode assembly measured by changing the water content. Can be evaluated.

本発明の第1の態様に係る燃料電池の評価方法において、前記膜電極接合体の含水量は、前記拡散層の表面に乾燥ガスを流すことにより変化させてもよい。この場合、拡散層の表面に乾燥ガスを流すことにより膜電極接合体の含水量を良好に変化させることができる。   In the fuel cell evaluation method according to the first aspect of the present invention, the water content of the membrane electrode assembly may be changed by flowing a dry gas over the surface of the diffusion layer. In this case, the water content of the membrane electrode assembly can be favorably changed by flowing a dry gas over the surface of the diffusion layer.

本発明の第1の態様に係る燃料電池の評価方法において、前記密着の良否の評価は、前記乾燥ガスを所定の時間流した後に測定された前記抵抗値を用いておこなってもよい。この場合、乾燥ガスを所定の時間流した後の抵抗値により、膜電極接合体と拡散層との密着性を良好に評価することができる。   In the fuel cell evaluation method according to the first aspect of the present invention, the quality of the adhesion may be evaluated using the resistance value measured after flowing the dry gas for a predetermined time. In this case, the adhesion between the membrane electrode assembly and the diffusion layer can be satisfactorily evaluated by the resistance value after flowing the dry gas for a predetermined time.

本発明の第1の態様に係る燃料電池の評価方法において、前記密着の良否の評価は、前記乾燥ガスを所定の時間流したときの前記抵抗値の変化量を用いておこなってもよい。この場合、抵抗値の変化量により、膜電極接合体と拡散層との密着性を良好に評価することができる。   In the fuel cell evaluation method according to the first aspect of the present invention, the quality of the adhesion may be evaluated using a change amount of the resistance value when the dry gas is allowed to flow for a predetermined time. In this case, the adhesion between the membrane electrode assembly and the diffusion layer can be satisfactorily evaluated by the amount of change in the resistance value.

本発明の第1の態様に係る燃料電池の評価方法において、前記抵抗値は、前記膜電極接合体の積層方向に交流電圧を印加することにより生じる抵抗値であってもよい。この場合、積層方向に交流電圧を印加することにより生じる抵抗値により、膜電極接合体と拡散層との密着性を良好に評価することができる。   In the fuel cell evaluation method according to the first aspect of the present invention, the resistance value may be a resistance value generated by applying an alternating voltage in the stacking direction of the membrane electrode assembly. In this case, the adhesion between the membrane electrode assembly and the diffusion layer can be satisfactorily evaluated based on the resistance value generated by applying an alternating voltage in the stacking direction.

本発明の第1の態様に係る燃料電池の評価方法において、前記密着の良否の評価は、基準とする膜電極接合体の抵抗値との比較によりおこなってもよい。この場合、評価を行う膜電極接合体と基準とする膜電極接合体のそれぞれの抵抗値の比較により、膜電極接合体と拡散層との密着性を良好に評価することができる。   In the fuel cell evaluation method according to the first aspect of the present invention, the quality of the adhesion may be evaluated by comparison with a resistance value of a reference membrane electrode assembly. In this case, the adhesion between the membrane electrode assembly and the diffusion layer can be satisfactorily evaluated by comparing the resistance values of the membrane electrode assembly to be evaluated and the reference membrane electrode assembly.

本発明の第1の態様に係る燃料電池の評価方法はさらに、多孔質導電体とガス流路付導電体を備える評価装置を準備する工程と、前記多孔質導電体上に前記膜電極接合体を配置し、前記拡散層上に前記ガス流路付導電体を配置して前記膜電極接合体を挟持する工程と、を備え、前記多孔質導電体に液体を流入することにより前記膜電極接合体を液体に浸し、前記ガス流路付き導電体の流路を介して前記拡散層の表面に乾燥ガスを流し、前記多孔質導電体と前記ガス流路付導電体の間に交流電圧を印加することにより前記膜電極接合体の抵抗値を測定してもよい。この場合、多孔質導電体とガス流路付導電体を備える評価装置を用いることで膜電極接合体と拡散層との密着性を良好に評価することができる。   The method for evaluating a fuel cell according to the first aspect of the present invention further includes a step of preparing an evaluation apparatus including a porous conductor and a conductor with a gas flow path, and the membrane electrode assembly on the porous conductor. And arranging the gas flow passage-equipped conductor on the diffusion layer to sandwich the membrane electrode assembly, and by flowing a liquid into the porous conductor, the membrane electrode junction A body is immersed in a liquid, a dry gas is allowed to flow on the surface of the diffusion layer through the flow path of the gas flow path conductor, and an AC voltage is applied between the porous conductor and the gas flow path conductor. By doing so, the resistance value of the membrane electrode assembly may be measured. In this case, the adhesion between the membrane / electrode assembly and the diffusion layer can be satisfactorily evaluated by using an evaluation apparatus including a porous conductor and a gas flow path-equipped conductor.

なお、本発明は、種々の形態で実現することが可能であり、例えば、評価方法、評価装置、評価方法と評価装置を組み合わせた形態等、様々な形態で実現することができるほか、適宜、組み合わせたり、一部を省略して適用することができる。   The present invention can be realized in various forms, for example, an evaluation method, an evaluation apparatus, a combination of the evaluation method and the evaluation apparatus, and the like. It can be applied in combination or with some omitted.

以下、本発明に係る燃料電池の評価方法について、図面を参照しつつ、実施例に基づいて説明する。   Hereinafter, a fuel cell evaluation method according to the present invention will be described based on examples with reference to the drawings.

A.第1の実施例
A1.評価装置の構成
図1は、第1の実施例に係る評価装置の概略構成を例示した説明図である。本発明に係る燃料電池の評価方法を実施するための評価装置10は、押圧装置500と、マスフローコントローラ600と、送水ポンプ700と、抵抗測定器800とを備える。押圧装置500は、評価をおこなう拡散層付膜電極接合体(後に例示する。以降、拡散層付MEAと呼ぶ)100を所定の圧力で押圧する装置であり、上側導電体410と、下側導電体420と、しぼり510と、ロードセル520とを備える。
A. First Example A1. Configuration of Evaluation Device FIG. 1 is an explanatory diagram illustrating a schematic configuration of an evaluation device according to a first example. An evaluation apparatus 10 for carrying out a fuel cell evaluation method according to the present invention includes a pressing device 500, a mass flow controller 600, a water pump 700, and a resistance measuring device 800. The pressing device 500 is a device that presses a membrane electrode assembly with a diffusion layer (illustrated later, hereinafter referred to as MEA with a diffusion layer) 100 to be evaluated with a predetermined pressure, and includes an upper conductor 410 and a lower conductor. A body 420, a squeezing 510, and a load cell 520 are provided.

押圧装置500は、下側導電体420上に拡散層付MEA100を配置し、拡散層付MEA100の上側から上側導電体410を接触させて拡散層付MEA100を挟持する。この状態で、しぼり510を操作することにより上側導電体410と下側導電体420とを接近させて拡散層付MEA100に圧力を加える。拡散層付MEA100に加えられる面圧は、下側導電体420の下側に配置されたロードセル520により検出される。   In the pressing device 500, the MEA 100 with a diffusion layer is disposed on the lower conductor 420, and the upper conductor 410 is brought into contact with the MEA 100 with the diffusion layer from above the MEA 100 with the diffusion layer to sandwich the MEA 100 with the diffusion layer. In this state, by operating the squeeze 510, the upper conductor 410 and the lower conductor 420 are brought close to each other to apply pressure to the MEA 100 with the diffusion layer. The surface pressure applied to the MEA 100 with the diffusion layer is detected by the load cell 520 disposed below the lower conductor 420.

上側導電体410は、導電性部材により形成され、拡散層付MEA100と接触する面には、ガス流路付き導電体300が配置されている。ガス流路付き導電体300は、拡散層付MEA100と接触する面側に溝部を備え、溝部と拡散層付MEA100とが接触することによりガス流路310が形成される。なお、上側導電体410およびガス流路付き導電体300は、ステンレス、チタン、アルミニウム等の金属により形成できるほか、金属以外の材料を用いてもよい。また、ガス流路付き導電体300は、エキスパンドメタルを用いてもよい。   The upper conductor 410 is formed of a conductive member, and a conductor 300 with a gas flow path is disposed on a surface that contacts the MEA 100 with a diffusion layer. The conductor 300 with a gas flow path includes a groove on a surface side that contacts the MEA 100 with a diffusion layer, and the gas flow path 310 is formed by the contact between the groove and the MEA 100 with the diffusion layer. Note that the upper conductor 410 and the gas passage-equipped conductor 300 can be formed of a metal such as stainless steel, titanium, or aluminum, or a material other than metal may be used. Moreover, the expanded metal may be used for the conductor 300 with a gas flow path.

下側導電体420は、上側導電体410と同様に、導電性部材により形成され、拡散層付MEA100と接触する面には、多孔質導電体200が配置されている。多孔質導電体200は、発泡焼結金属体等の導電性多孔体により構成されている。多孔質導電体200の気孔率や細孔径によって特に限定されることなく用いることができる。なお、発泡焼結金属体は、チタンのほか、ステンレス、ニッケルもしくは銅等により作製してもよい。また、多孔質導電体200は、エキスパンドメタルを用いてもよい。   Similarly to the upper conductor 410, the lower conductor 420 is formed of a conductive member, and the porous conductor 200 is disposed on the surface that contacts the MEA 100 with the diffusion layer. The porous conductor 200 is composed of a conductive porous body such as a foam sintered metal body. It can use without being specifically limited by the porosity and pore diameter of the porous conductor 200. The foamed sintered metal body may be made of stainless steel, nickel, copper, or the like in addition to titanium. The porous conductor 200 may use expanded metal.

マスフローコントローラ600は、ガス流量の制御が可能な送ガスポンプである。マスフローコントローラ自体は公知であり、市販のものを用いることができる。マスフローコントローラ600は、送風管610によりガス流路310と接続され、ガス流路310にガスを流通させる。本実施例では、流通させるガスとして窒素ガスを用いるが、これに限らず、他種のガスであってもよい。   The mass flow controller 600 is a gas feed pump capable of controlling the gas flow rate. The mass flow controller itself is known and a commercially available one can be used. The mass flow controller 600 is connected to the gas flow path 310 by the blower pipe 610 and causes the gas to flow through the gas flow path 310. In the present embodiment, nitrogen gas is used as the gas to be circulated, but the present invention is not limited thereto, and other types of gases may be used.

送水ポンプ700は、液体が収容された容器等の液体供給手段から、液体を圧送するポンプである。送水ポンプ自体は公知であり、市販のものを用いることができる。送水ポンプ700は、送水管710により多孔質導電体200と接続され、多孔質導電体200に液体を送る。本実施例では、液体として純水等の高純度の水を用いているが、少なくとも水を含有する液体であればよい。   The water pump 700 is a pump that pumps liquid from a liquid supply means such as a container in which the liquid is stored. The water pump itself is publicly known, and a commercially available one can be used. The water supply pump 700 is connected to the porous conductor 200 by a water supply pipe 710 and sends a liquid to the porous conductor 200. In this embodiment, high-purity water such as pure water is used as the liquid, but any liquid containing at least water may be used.

抵抗測定器800は、2つの電極を備え、電極間に交流電圧を印加して、電極間の抵抗値を検出する装置である。抵抗測定器自体は公知であり、市販のものを用いることができる。2つの電極はそれぞれ上側導電体410と下側導電体420に接続され、拡散層付MEA100の抵抗値を測定する。   The resistance measuring instrument 800 is a device that includes two electrodes and applies an alternating voltage between the electrodes to detect a resistance value between the electrodes. The resistance measuring device itself is known and a commercially available one can be used. The two electrodes are connected to the upper conductor 410 and the lower conductor 420, respectively, and the resistance value of the MEA 100 with the diffusion layer is measured.

評価対象となる拡散層付MEA100の構成について例示する。拡散層付MEA100は、電解質膜110の両面にアノードとカソードとなる触媒層120がそれぞれ配置されたMEA(Membrane‐Electrode Assembly:膜電極接合体)115の両側にそれぞれ拡散層130を配置した構成を備える。また、拡散層付MEA100の外周には、射出成形により形成されたシリコーンゴムによる枠状のシール部材150が拡散層付MEA100と一体的に形成されている。電解質膜110は、フッ素系樹脂により形成された高分子電解質膜により形成されている。触媒層120は、触媒として白金および白金合金を担持したカーボン担体より形成されている。拡散層130は、撥水処理が施されたカーボンペーパーにより形成されている。この撥水処理が施されたカーボンペーパーは、例えば、カーボンとテフロン(登録商標)を混合させた混合液を、カーボンペーパーに含浸させることにより作製することができる。なお、カーボンペーパーの代わりに、例えば、カーボンフェルト、カーボンクロス等を用いてもよい。   The configuration of the MEA 100 with diffusion layer to be evaluated will be exemplified. MEA 100 with a diffusion layer has a configuration in which diffusion layers 130 are arranged on both sides of MEA (Membrane-Electrode Assembly) 115 in which catalyst layers 120 serving as an anode and a cathode are arranged on both surfaces of electrolyte membrane 110, respectively. Prepare. Further, a frame-like seal member 150 made of silicone rubber formed by injection molding is formed integrally with the MEA 100 with diffusion layer on the outer periphery of the MEA 100 with diffusion layer. The electrolyte membrane 110 is made of a polymer electrolyte membrane made of a fluorine resin. The catalyst layer 120 is formed of a carbon carrier carrying platinum and a platinum alloy as a catalyst. The diffusion layer 130 is formed of carbon paper that has been subjected to water repellent treatment. The carbon paper subjected to this water repellent treatment can be produced, for example, by impregnating carbon paper with a mixed liquid in which carbon and Teflon (registered trademark) are mixed. Instead of carbon paper, for example, carbon felt, carbon cloth, etc. may be used.

評価対象となる拡散層付MEA100の構成についてはこれに限られず、種々の構成を備える拡散層付MEA100について評価を行うことができる。例えば、MEA115の一方にのみに拡散層130が配置されている拡散層付MEA100についても評価を行うことができる。   The configuration of the MEA 100 with diffusion layer to be evaluated is not limited to this, and the MEA 100 with diffusion layer having various configurations can be evaluated. For example, the MEA 100 with a diffusion layer in which the diffusion layer 130 is disposed only on one side of the MEA 115 can also be evaluated.

A2.評価方法
評価装置10を用いた本発明に係る評価方法について説明する。この評価方法により評価されるMEA115と拡散層130との密着の良否とは、触媒層120に拡散層130を積層した際に、例えば、拡散層130が備える撥水性により、触媒層120を構成する触媒インクがはじかれる等を原因として生じる触媒層120と拡散層130との間の細孔(隙間)の有無である。この細孔が存在しない、もしくは、存在しても少ない状態を密着が良いとし、また、細孔が所定以上存在する状態を密着の不良としている。
A2. Evaluation Method An evaluation method according to the present invention using the evaluation device 10 will be described. The adhesion between the MEA 115 and the diffusion layer 130 evaluated by this evaluation method means that, when the diffusion layer 130 is laminated on the catalyst layer 120, for example, the catalyst layer 120 is constituted by the water repellency of the diffusion layer 130. This is the presence or absence of pores (gap) between the catalyst layer 120 and the diffusion layer 130 caused by catalyst ink repelling or the like. The state where the pores do not exist or is small even if they are present is regarded as good adhesion, and the state where the pores are present in a predetermined amount or more is regarded as poor adhesion.

図2は、第1の実施例に係る評価方法を説明するためのフローチャートである。図3は、第1の実施例に係る評価方法を説明するための模式図である。はじめに、評価をおこなう拡散層付MEA100を準備する(ステップS100)。そして、準備した拡散層付MEA100を押圧装置500に組み付ける(ステップS110)。具体的には、拡散層付MEA100を多孔質導電体200の上に配置する。この際、評価を行う拡散層付MEA100が、触媒層120/拡散層130の接合面(界面)を複数備える場合には、密着の良否を評価する接合面を構成する拡散層130が拡散層付MEA100の上面となるように配置する。MEA115の一方にのみに拡散層130を備える拡散層付MEA100についても、拡散層130が上側となるように配置する。その後、拡散層付MEA100の上面となる拡散層130の上にガス流路付き導電体300を配置して拡散層付MEA100を挟持し、しぼり510を用いて拡散層付MEA100の面圧がスタック状態時の締結圧力と同じ程度となるように加圧する。拡散層付MEA100の面圧は、スタック状態時の締結圧力と同じ程度とすることが好ましいが、これ以外の圧力であってもよい。   FIG. 2 is a flowchart for explaining the evaluation method according to the first embodiment. FIG. 3 is a schematic diagram for explaining an evaluation method according to the first embodiment. First, the MEA 100 with a diffusion layer to be evaluated is prepared (step S100). Then, the prepared MEA 100 with a diffusion layer is assembled to the pressing device 500 (step S110). Specifically, the MEA 100 with a diffusion layer is disposed on the porous conductor 200. At this time, when the MEA 100 with diffusion layer to be evaluated includes a plurality of bonding surfaces (interfaces) of the catalyst layer 120 / diffusion layer 130, the diffusion layer 130 constituting the bonding surface for evaluating the adhesion is attached with the diffusion layer. It arrange | positions so that it may become the upper surface of MEA100. The MEA with diffusion layer 130 having the diffusion layer 130 on only one of the MEAs 115 is also arranged so that the diffusion layer 130 is on the upper side. Thereafter, the conductor 300 with the gas flow path is disposed on the diffusion layer 130 which is the upper surface of the MEA 100 with diffusion layer to sandwich the MEA 100 with diffusion layer, and the surface pressure of the MEA 100 with diffusion layer is stacked using the squeezing 510. Pressurize so that it is the same as the fastening pressure at the time. The surface pressure of MEA 100 with a diffusion layer is preferably set to the same level as the fastening pressure in the stacked state, but may be a pressure other than this.

拡散層付MEA100に水を含浸させる(ステップS120)。具体的には、図3(a)に示すように、送水ポンプ700から多孔質導電体200に水を圧送することにより、多孔質導電体200との接触面を介して、送水ポンプ700の圧力もしくは毛細現象により拡散層付MEA100の全体に水を含浸させる。MEA115、触媒層120/拡散層130の間に形成された細孔V、および、上面の拡散層130まで水が含浸した状態で以降のステップを実施するため、10分程度この状態を維持する。   MEA 100 with a diffusion layer is impregnated with water (step S120). Specifically, as shown in FIG. 3A, the pressure of the water pump 700 through the contact surface with the porous conductor 200 by pumping water from the water pump 700 to the porous conductor 200. Alternatively, the entire MEA 100 with a diffusion layer is impregnated with water by a capillary phenomenon. This state is maintained for about 10 minutes in order to carry out the subsequent steps in a state in which the MEA 115, the pores V formed between the catalyst layer 120 / diffusion layer 130, and the diffusion layer 130 on the upper surface are impregnated with water.

その後、拡散層付MEA100に乾燥ガスを流す(ステップS140)。具体的には、図3(b)に示すように、マスフローコントローラ600により、乾燥した窒素ガス(以降単に「乾燥ガス」と呼ぶ)をガス流路310に流通させる。乾燥ガスの流量は1NL/min程度となるように調整する。乾燥ガスの流量はこれと異なる流量であってもよい。ガス流路310を流通する乾燥ガスは、拡散層130の表面と接触することにより拡散層130から水を吸収する。拡散層130は、上面側が乾燥することで、図3(c)のX部拡大図に示すように、下面側において、細孔Vの内部に存在する水分を吸収する。細孔Vの内部から水分が減少すると、細孔Vと面する触媒層120の表面fからMEA115が含んでいる水が吸収され、MEA115の含水量が減少する。乾燥ガスを流す間、送水ポンプ700による多孔質導電体200への水の供給は継続していてもよいし、停止していてもよい。   Thereafter, a dry gas is passed through MEA 100 with a diffusion layer (step S140). Specifically, as shown in FIG. 3B, a dry nitrogen gas (hereinafter simply referred to as “dry gas”) is circulated through the gas flow path 310 by the mass flow controller 600. The flow rate of the drying gas is adjusted to be about 1 NL / min. The flow rate of the drying gas may be different from this. The dry gas flowing through the gas flow path 310 absorbs water from the diffusion layer 130 by contacting the surface of the diffusion layer 130. The diffusion layer 130 absorbs moisture present in the pores V on the lower surface side, as shown in the enlarged view of the X part in FIG. When moisture is reduced from the inside of the pore V, the water contained in the MEA 115 is absorbed from the surface f of the catalyst layer 120 facing the pore V, and the water content of the MEA 115 is reduced. While flowing the dry gas, the supply of water to the porous conductor 200 by the water pump 700 may be continued or stopped.

拡散層付MEA100に乾燥ガスを流した状態で抵抗測定器により測定を行う(ステップS160)。具体的には、ガス流路310に乾燥ガスを流通させて拡散層付MEA100の含水量を変化させながら、上側導電体410と下側導電体420との間に1kHz、±200mVの交流電圧を印加して抵抗値を測定する。本実施例では、拡散層付MEA100のMEA115と拡散層130との密着の度合を示す評価対象値Eとして、乾燥ガスを流通させる直前の抵抗値Rsと、乾燥ガスを10秒間流通させた後の抵抗値Rbとの差ΔRを用いた。本実施例では、抵抗値Rbは、乾燥ガスを10秒間流通させた後の抵抗値としたが、これに限定されず、例えば、乾燥ガスを5秒間流通させた後の抵抗値であってもよいし、15秒間流通させた後の抵抗値であってもよい。   Measurement is performed by a resistance measuring instrument in a state where a dry gas is passed through the MEA 100 with a diffusion layer (step S160). Specifically, an alternating voltage of 1 kHz and ± 200 mV is applied between the upper conductor 410 and the lower conductor 420 while a dry gas is circulated through the gas flow path 310 to change the moisture content of the MEA 100 with diffusion layer. Apply and measure resistance. In this example, as the evaluation target value E indicating the degree of adhesion between the MEA 115 and the diffusion layer 130 of the MEA 100 with diffusion layer, the resistance value Rs immediately before the drying gas is circulated, and after the drying gas is circulated for 10 seconds. The difference ΔR from the resistance value Rb was used. In this embodiment, the resistance value Rb is the resistance value after the drying gas is circulated for 10 seconds, but is not limited to this. For example, the resistance value Rb may be the resistance value after the drying gas is circulated for 5 seconds. It may be a resistance value after flowing for 15 seconds.

MEA115と拡散層130との密着が良好な場合、細孔Vが存在しないか、存在しても少ないため、乾燥ガスを流通させても触媒層120の表面fから水が蒸発しにくく、MEA115からの水の蒸発速度が遅い。よって、MEA115は湿潤状態を維持することで拡散層付MEA100の抵抗値の増加が抑制され、評価対象値Eは小さくなる。しかし、MEA115と拡散層130との密着が悪く、細孔Vが多く存在していると、細孔Vと面する表面fの面積が大きくなり、MEA115からの水の蒸発速度が速くなる。そのため、MEA115の乾燥に伴う拡散層付MEA100の抵抗値の増加が速く、評価対象値Eが大きくなる。   When the adhesion between the MEA 115 and the diffusion layer 130 is good, the pores V do not exist or exist little, so even if a dry gas is circulated, water hardly evaporates from the surface f of the catalyst layer 120, The water evaporation rate is slow. Therefore, the MEA 115 is kept in a wet state, whereby an increase in the resistance value of the MEA 100 with diffusion layer is suppressed, and the evaluation target value E becomes small. However, when the adhesion between the MEA 115 and the diffusion layer 130 is poor and there are many pores V, the area of the surface f facing the pores V increases, and the evaporation rate of water from the MEA 115 increases. Therefore, the increase in the resistance value of the MEA 100 with a diffusion layer accompanying the drying of the MEA 115 is fast, and the evaluation target value E increases.

拡散層付MEA100の評価対象値Eと閾値E0との比較をおこなう(ステップS180)。評価対象値Eが閾値E0より小さい場合は、拡散層付MEA100においてMEA115と拡散層130との密着は良好と評価される。評価対象値Eが閾値E0より大きい場合は、MEA115と拡散層130との密着は不良と評価される。閾値E0は、予め、MEA115と拡散層130との密着が良好な拡散層付MEA100について、ステップS100〜S160をおこない、求めた評価対象値Eである。比較に用いる評価対象値Eを求める際には、拡散層付MEA100に水を含浸させる時間、乾燥ガスの流量、送水ポンプ700による多孔質導電体200への水の供給時間、抵抗値Rbを測定するまでの乾燥ガスの流通時間等、種々の条件を揃える必要がある。   The evaluation target value E of the MEA 100 with diffusion layer is compared with the threshold value E0 (step S180). When the evaluation target value E is smaller than the threshold value E0, the adhesion between the MEA 115 and the diffusion layer 130 in the MEA 100 with diffusion layer is evaluated as good. When the evaluation target value E is larger than the threshold value E0, the adhesion between the MEA 115 and the diffusion layer 130 is evaluated as poor. The threshold value E0 is the evaluation target value E obtained in advance by performing steps S100 to S160 for the MEA 100 with a diffusion layer in which the adhesion between the MEA 115 and the diffusion layer 130 is good. When obtaining the evaluation target value E used for comparison, the time for impregnating the MEA 100 with diffusion layer with water, the flow rate of the dry gas, the time for supplying water to the porous conductor 200 by the water pump 700, and the resistance value Rb are measured. It is necessary to prepare various conditions such as the circulation time of the drying gas until it is done.

A3.評価例
上述の評価方法により、作製方法の異なる2つの拡散層付MEAの評価をおこなった。以下、2つの拡散層付MEAをそれぞれ評価対象1、評価対象2と呼ぶ。図4は、評価対象1および評価対象2の作製方法を説明する説明図である。
A3. Evaluation Example Two MEAs with diffusion layers having different production methods were evaluated by the above-described evaluation method. Hereinafter, the two MEAs with diffusion layers are referred to as an evaluation object 1 and an evaluation object 2, respectively. FIG. 4 is an explanatory diagram for explaining a method for producing the evaluation object 1 and the evaluation object 2.

評価対象1は、はじめに、白金担持カーボンと、電解質溶液と、水と、エタノールとを混合し、ホモジナイザで分散させて触媒インクを作製し、電解質膜110および撥水処理が施されたカーボンペーパーである拡散層130上にそれぞれスプレー塗工してMEA115および触媒層付き拡散層135を作製した。その後、MEA115と触媒層付き拡散層135とを140℃、3MPaで4分間熱圧着して拡散層付MEA100とした。   Evaluation object 1 is a carbon paper in which platinum-supported carbon, an electrolyte solution, water, and ethanol are mixed and dispersed with a homogenizer to produce a catalyst ink, and the electrolyte membrane 110 and water-repellent treatment are performed. The MEA 115 and the diffusion layer 135 with the catalyst layer were produced by spray coating on each diffusion layer 130, respectively. Thereafter, the MEA 115 and the diffusion layer 135 with a catalyst layer were thermocompression bonded at 140 ° C. and 3 MPa for 4 minutes to obtain an MEA 100 with a diffusion layer.

評価対象2は、評価対象1と同様の触媒インクを作製し、電解質膜110にのみスプレー塗工してMEA115を作製した。その後、MEA115と撥水処理が施されたカーボンペーパーである拡散層130とを140℃、3MPaで4分間熱圧着して拡散層付MEA100とした。   The evaluation object 2 produced the catalyst ink similar to the evaluation object 1, and spray-coated only on the electrolyte membrane 110, and produced MEA115. Thereafter, MEA 115 and diffusion layer 130, which is a carbon paper subjected to water repellent treatment, were thermocompression bonded at 140 ° C. and 3 MPa for 4 minutes to obtain MEA 100 with diffusion layer.

図5は、評価対象1および評価対象2の抵抗値を示した説明図である。評価対象1および評価対象2に本発明に係る評価方法を実施した。閾値をE0=400mohmとして、評価対象1の評価対象値E1は、E1=380mohmとなった。また、評価対象2の評価対象値E2は、E2=500mohmとなった。   FIG. 5 is an explanatory diagram showing resistance values of the evaluation object 1 and the evaluation object 2. The evaluation method according to the present invention was applied to the evaluation object 1 and the evaluation object 2. Assuming that the threshold value is E0 = 400 mohm, the evaluation target value E1 of the evaluation target 1 is E1 = 380 mohm. Moreover, the evaluation target value E2 of the evaluation target 2 was E2 = 500 mohm.

評価対象1については、撥水処理が施された拡散層130上に触媒インクをスプレー塗工したため、触媒層120と拡散層130との密着が良好となり、接合面に細孔Vの発生が抑制されている。そのため、評価対象値E1は閾値E0より小さくなり、密着は良好と判定された。反対に、評価対象2については、MEA115と拡散層130とを熱圧着のみにより接合しているため、接合面に細孔Vが存在することから、評価対象値E2は閾値E0より大きくなり、密着は不良と判定された。評価対象1および評価対象2による評価結果から、本発明に係る評価方法によりMEA115と拡散層130との密着の良否が良好に評価できることが確認された。   For the evaluation target 1, since the catalyst ink was spray-coated on the diffusion layer 130 subjected to the water repellent treatment, the adhesion between the catalyst layer 120 and the diffusion layer 130 was improved, and the generation of pores V on the joint surface was suppressed. Has been. Therefore, the evaluation target value E1 is smaller than the threshold value E0, and the adhesion is determined to be good. On the other hand, for the evaluation object 2, since the MEA 115 and the diffusion layer 130 are bonded only by thermocompression bonding, the evaluation object value E2 becomes larger than the threshold value E0 because the pores V exist on the bonding surface, and the adhesion Was determined to be bad. From the evaluation results of the evaluation object 1 and the evaluation object 2, it was confirmed that the quality of the adhesion between the MEA 115 and the diffusion layer 130 can be evaluated satisfactorily by the evaluation method according to the present invention.

以上説明した第1の実施例に係る燃料電池の評価方法によれば、含水量を変化させて測定された拡散層付MEA100の抵抗値により、MEA115と拡散層130との密着性を良好に評価することができる。具体的には、触媒層120と拡散層130との接合面に存在する細孔Vによって、MEA115からの水の蒸発速度が変化する。この蒸発速度の変化が、拡散層付MEA100の評価対象値Eに反映されるため、MEA115と拡散層130との密着性を良好に評価することができる。   According to the fuel cell evaluation method according to the first embodiment described above, the adhesion between the MEA 115 and the diffusion layer 130 is satisfactorily evaluated by the resistance value of the MEA 100 with diffusion layer measured by changing the water content. can do. Specifically, the evaporation rate of water from the MEA 115 changes due to the pores V present on the joint surface between the catalyst layer 120 and the diffusion layer 130. Since the change in the evaporation rate is reflected in the evaluation target value E of the MEA 100 with diffusion layer, the adhesion between the MEA 115 and the diffusion layer 130 can be evaluated well.

第1の実施例に係る燃料電池の評価方法によれば、拡散層130の表面に乾燥ガスを流すことにより、MEA115と拡散層130との密着性を良好に評価することができる。具体的には、乾燥ガスにより拡散層130の表面から水を吸収することで、細孔Vを介して触媒層120の表面fからMEA115の水を蒸発させることができる。これにより、細孔Vの存在によるMEA115からの水の蒸発速度の変化を顕著にすることができる。   According to the evaluation method of the fuel cell according to the first example, the adhesion between the MEA 115 and the diffusion layer 130 can be satisfactorily evaluated by flowing a dry gas over the surface of the diffusion layer 130. Specifically, the water in the MEA 115 can be evaporated from the surface f of the catalyst layer 120 through the pores V by absorbing water from the surface of the diffusion layer 130 with the dry gas. Thereby, the change of the evaporation rate of the water from MEA115 by presence of the pore V can be made remarkable.

第1の実施例に係る燃料電池の評価方法によれば、乾燥ガスを所定時間(本実施例では10秒間)流通させた後の抵抗値を評価対象値としているため、評価対象値は、MEA115からの水の蒸発速度を反映した値とすることができ、MEA115と拡散層130との密着性を良好に評価することができる。   According to the fuel cell evaluation method of the first example, the resistance value after the dry gas is circulated for a predetermined time (in this example, 10 seconds) is set as the evaluation target value. Therefore, the adhesion between the MEA 115 and the diffusion layer 130 can be evaluated well.

第1の実施例に係る燃料電池の評価方法によれば、MEA115と拡散層130との密着の良否の評価は、基準とする膜電極接合体の評価対象値を閾値とし、この閾値との比較によりおこなうため、MEA115と拡散層130との密着の良否以外を要因とする抵抗値変化の影響を抑制でき、MEA115と拡散層130との密着性を良好に評価することができる。   According to the evaluation method of the fuel cell according to the first example, the evaluation of the adhesion between the MEA 115 and the diffusion layer 130 is performed using the evaluation target value of the reference membrane electrode assembly as a threshold value and comparing with this threshold value. Therefore, the influence of a change in resistance value caused by factors other than the quality of adhesion between the MEA 115 and the diffusion layer 130 can be suppressed, and the adhesion between the MEA 115 and the diffusion layer 130 can be evaluated well.

第1の実施例に係る燃料電池の評価方法によれば、拡散層付MEA100を多孔質導電体200およびガス流路付き導電体300により挟持して評価を行うため、MEA115と拡散層との密着性を良好に評価することができる。具体的には、拡散層付MEA100を挟持することにより、拡散層付MEA100の面圧をスタック状態時と同じ状況下での密着性を評価できる。また、多孔質導電体200上に拡散層付MEA100を配置することにより、拡散層付MEA100の全体に短い時間で均一に水を含浸させることができる。また、ガス流路付き導電体300を拡散層130上に配置することにより、触媒層120の表面fから均一に水を蒸発させることができ、細孔Vの存在により良好にMEA115を乾燥させることができる。   According to the evaluation method of the fuel cell according to the first embodiment, the MEA 100 with the diffusion layer is sandwiched between the porous conductor 200 and the conductor 300 with the gas flow path so that the evaluation is performed. The property can be evaluated well. Specifically, by sandwiching MEA 100 with a diffusion layer, the adhesion of MEA 100 with diffusion layer under the same condition as that in a stacked state can be evaluated. Moreover, by disposing the MEA 100 with a diffusion layer on the porous conductor 200, the entire MEA 100 with a diffusion layer can be uniformly impregnated with water in a short time. Further, by disposing the conductor 300 with the gas flow path on the diffusion layer 130, water can be uniformly evaporated from the surface f of the catalyst layer 120, and the MEA 115 can be dried well due to the presence of the pores V. Can do.

B.変形例
なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば以下のような実施も可能である。
B. Modifications Note that the present invention is not limited to the above-described examples and embodiments, and can be implemented in various modes without departing from the gist thereof. For example, the following implementations are also possible. .

B1.変形例1:
本実施例では、評価対象値Eは、乾燥ガスを流通させる直前の抵抗値Rsと、乾燥ガスを10秒間流通させた後の抵抗値Rbとの差ΔRを用いているが、評価対象値Eは、任意の単位期間(例えば1秒間)における抵抗の変化量(変化率)であってもMEA115と拡散層130との密着性を良好に評価することができる。また、評価対象値Eは、抵抗値Rsと抵抗値Rbとの差ΔRではなく、抵抗値自体(例えば抵抗値Rb)を評価対象値Eとしてもよい。
B1. Modification 1:
In this example, the evaluation target value E uses the difference ΔR between the resistance value Rs immediately before the drying gas is circulated and the resistance value Rb after the drying gas is circulated for 10 seconds. Can satisfactorily evaluate the adhesion between the MEA 115 and the diffusion layer 130 even if the resistance change amount (change rate) in an arbitrary unit period (for example, 1 second). Further, the evaluation target value E may be the evaluation target value E, not the difference ΔR between the resistance value Rs and the resistance value Rb, but the resistance value itself (for example, the resistance value Rb).

B2.変形例2:
本実施例では、含水量を変化させるため、乾燥ガスを流通させているが、例えば、細孔V内の空気を加熱することによりMEA115を乾燥させる等、乾燥ガスを流通させない方法によっても、MEA115と拡散層130との密着性を評価することができる。
B2. Modification 2:
In this embodiment, the dry gas is circulated in order to change the water content. However, the MEA 115 is also used by a method in which the dry gas is not circulated, for example, the MEA 115 is dried by heating the air in the pores V. And the adhesion between the diffusion layer 130 and the diffusion layer 130 can be evaluated.

B3.変形例3
本実施例では、多孔質導電体200を介して拡散層付MEA100に水を含浸させているが、例えば、拡散層付MEA100を水に漬けた後、評価装置10にセットする、もしくは、液体ではなく水蒸気を含んだガスを流入する等、他の方法により拡散層付MEA100に水を含浸させてもよい。
B3. Modification 3
In this embodiment, the MEA 100 with a diffusion layer is impregnated with water via the porous conductor 200. For example, after the MEA 100 with a diffusion layer is immersed in water, the MEA 100 with the diffusion layer is set in the evaluation device 10, or Alternatively, the MEA 100 with a diffusion layer may be impregnated with water by another method such as flowing in a gas containing water vapor.

B4.変形例4
本実施例では、閾値E0として、MEA115と拡散層130との密着が良好な拡散層付MEA100の評価対象値Eを用いているが、例えば、各構成部材の抵抗値等から算出された算出値等これ以外の値を閾値として用いてもよい。
B4. Modification 4
In this embodiment, the evaluation target value E of the MEA 100 with the diffusion layer in which the adhesion between the MEA 115 and the diffusion layer 130 is good is used as the threshold value E0. For example, the calculated value calculated from the resistance value of each component member A value other than this may be used as the threshold value.

B5.変形例5
本実施例では、触媒層120/拡散層130の接合面を複数備える拡散層付MEA100について、一方の接合面についての評価方法を説明しているが、当然、一方の評価後に、反転させて、同様の評価を行ってもよい。これにより拡散層付MEA100の全体についてMEA115と拡散層130との密着性を良好に評価することができる。
B5. Modification 5
In this example, for the MEA 100 with a diffusion layer having a plurality of bonding surfaces of the catalyst layer 120 / diffusion layer 130, an evaluation method for one bonding surface has been described. A similar evaluation may be performed. Thereby, the adhesiveness of MEA115 and the diffused layer 130 can be evaluated favorably about the whole MEA100 with a diffused layer.

以上本発明の種々の実施例について説明したが、本発明はこれらの実施例に限定されず、その趣旨を逸脱しない範囲で種々の構成をとることができることは言うまでもない。   Although various embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and it goes without saying that various configurations can be adopted without departing from the spirit of the present invention.

第1の実施例に係る評価装置の概略構成を例示した説明図である。It is explanatory drawing which illustrated schematic structure of the evaluation apparatus which concerns on a 1st Example. 第1の実施例に係る評価方法を説明するためのフローチャートである。It is a flowchart for demonstrating the evaluation method which concerns on a 1st Example. 第1の実施例に係る評価方法を説明するための模式図である。It is a schematic diagram for demonstrating the evaluation method which concerns on a 1st Example. 評価対象1および評価対象2の作製方法を説明する説明図である。It is explanatory drawing explaining the preparation methods of the evaluation object 1 and the evaluation object 2. FIG. 評価対象1および評価対象2の抵抗値を示した説明図である。It is explanatory drawing which showed the resistance value of the evaluation object 1 and the evaluation object 2. FIG.

符号の説明Explanation of symbols

10…評価装置
100…拡散層付MEA
110…電解質膜
120…触媒層
130…拡散層
135…触媒層付き拡散層
150…シール部材
200…多孔質導電体
300…ガス流路付き導電体
310…ガス流路
410…上側導電体
420…下側導電体
500…押圧装置
520…ロードセル
600…マスフローコントローラ
610…送風管
700…送水ポンプ
710…送水管
800…抵抗測定器
10 ... Evaluation device 100 ... MEA with diffusion layer
DESCRIPTION OF SYMBOLS 110 ... Electrolyte membrane 120 ... Catalyst layer 130 ... Diffusion layer 135 ... Diffusion layer with catalyst layer 150 ... Sealing member 200 ... Porous conductor 300 ... Conductor with gas flow path 310 ... Gas flow path 410 ... Upper conductor 420 ... Bottom Side conductor 500 ... Pressing device 520 ... Load cell 600 ... Mass flow controller 610 ... Blower pipe 700 ... Water pump 710 ... Water pipe 800 ... Resistance measuring instrument

Claims (7)

燃料電池の評価方法であって、
少なくとも一方の面に拡散層が配置された膜電極接合体を準備する工程と、
前記膜電極接合体を液体に浸す工程と、
液体に浸した前記膜電極接合体の含水量を変化させて、前記膜電極接合体の抵抗値を測定する工程と、
前記抵抗値を用いて膜電極接合体と拡散層との密着の良否を評価する工程と、を備える燃料電池の評価方法。
A fuel cell evaluation method comprising:
Preparing a membrane electrode assembly in which a diffusion layer is disposed on at least one surface;
Immersing the membrane electrode assembly in a liquid;
Changing the water content of the membrane electrode assembly immersed in a liquid, and measuring the resistance value of the membrane electrode assembly;
And a step of evaluating the adhesion between the membrane electrode assembly and the diffusion layer using the resistance value.
請求項1に記載の燃料電池の評価方法において、
前記膜電極接合体の含水量は、前記拡散層の表面に乾燥ガスを流すことにより変化させる燃料電池の評価方法。
The fuel cell evaluation method according to claim 1,
The method for evaluating a fuel cell, wherein the water content of the membrane electrode assembly is changed by flowing a dry gas over the surface of the diffusion layer.
請求項2に記載の燃料電池の評価方法において、
前記密着の良否の評価は、前記乾燥ガスを所定の時間流した後に測定された前記抵抗値を用いておこなう燃料電池の評価方法。
The fuel cell evaluation method according to claim 2,
The evaluation of the quality of the adhesion is a fuel cell evaluation method in which the resistance value measured after flowing the dry gas for a predetermined time is used.
請求項2に記載の燃料電池の評価方法において、
前記密着の良否の評価は、前記乾燥ガスを所定の時間流したときの前記抵抗値の変化量を用いておこなう燃料電池の評価方法。
The fuel cell evaluation method according to claim 2,
The evaluation of the quality of the adhesion is a fuel cell evaluation method in which the amount of change in the resistance value when the dry gas is allowed to flow for a predetermined time is used.
請求項3または請求項4に記載の燃料電池の評価方法において、
前記抵抗値は、前記膜電極接合体の積層方向に交流電圧を印加することにより生じる抵抗値である燃料電池の評価方法。
In the fuel cell evaluation method according to claim 3 or 4,
The method for evaluating a fuel cell, wherein the resistance value is a resistance value generated by applying an alternating voltage in a stacking direction of the membrane electrode assembly.
請求項2ないし請求項5に記載の燃料電池の評価方法において、
前記密着の良否の評価は、基準とする膜電極接合体の抵抗値との比較によりおこなう燃料電池の評価方法。
6. The fuel cell evaluation method according to claim 2, wherein:
The evaluation of the quality of the adhesion is a method for evaluating a fuel cell, which is performed by comparison with a resistance value of a membrane electrode assembly as a reference.
請求項1ないし請求項6に記載の燃料電池の評価方法はさらに、
多孔質導電体とガス流路付導電体を備える評価装置を準備する工程と、
前記多孔質導電体上に前記膜電極接合体を配置し、前記拡散層上に前記ガス流路付導電体を配置して前記膜電極接合体を挟持する工程と、を備え、
前記多孔質導電体に液体を流入することにより前記膜電極接合体を液体に浸し、
前記ガス流路付き導電体の流路を介して前記拡散層の表面に乾燥ガスを流し、
前記多孔質導電体と前記ガス流路付導電体の間に交流電圧を印加することにより前記膜電極接合体の抵抗値を測定する燃料電池の評価方法。
The fuel cell evaluation method according to any one of claims 1 to 6 further includes:
A step of preparing an evaluation apparatus including a porous conductor and a conductor with a gas flow path;
Arranging the membrane electrode assembly on the porous conductor, arranging the gas channel-attached conductor on the diffusion layer, and sandwiching the membrane electrode assembly,
Immersing the membrane electrode assembly in the liquid by flowing the liquid into the porous conductor,
A dry gas is flowed to the surface of the diffusion layer through the flow path of the conductor with the gas flow path,
A method for evaluating a fuel cell, wherein a resistance value of the membrane electrode assembly is measured by applying an AC voltage between the porous conductor and the conductor with a gas flow path.
JP2008130467A 2008-05-19 2008-05-19 Evaluation method of fuel cell Pending JP2009277613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008130467A JP2009277613A (en) 2008-05-19 2008-05-19 Evaluation method of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008130467A JP2009277613A (en) 2008-05-19 2008-05-19 Evaluation method of fuel cell

Publications (1)

Publication Number Publication Date
JP2009277613A true JP2009277613A (en) 2009-11-26

Family

ID=41442836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008130467A Pending JP2009277613A (en) 2008-05-19 2008-05-19 Evaluation method of fuel cell

Country Status (1)

Country Link
JP (1) JP2009277613A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080435A (en) * 2014-10-14 2016-05-16 トヨタ自動車株式会社 Inspection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080435A (en) * 2014-10-14 2016-05-16 トヨタ自動車株式会社 Inspection device

Similar Documents

Publication Publication Date Title
EP0718903B1 (en) An ion exchange membrane and electrode assembly for an electrochemical cell
Kitahara et al. Gas diffusion layers coated with a microporous layer containing hydrophilic carbon nanotubes for performance enhancement of polymer electrolyte fuel cells under both low and high humidity conditions
Kitahara et al. Microporous layer coated gas diffusion layers for enhanced performance of polymer electrolyte fuel cells
WO2008133255A1 (en) Process for producing membrane electrode assembly, membrane electrode assembly, apparatus for producing membrane electrode assembly, and fuel cell
CN106104877A (en) Gas-diffusion electrode and manufacture method thereof
Tang et al. Fabrication and characterization of PFSI/ePTFE composite proton exchange membranes of polymer electrolyte fuel cells
Ito et al. Effect of through-plane polytetrafluoroethylene distribution in a gas diffusion layer on a polymer electrolyte unitized reversible fuel cell
JP2007214019A5 (en)
JP2007214019A (en) Membrane electrode assembly for fuel cell and gas diffusion layer for fuel cell
JP5742457B2 (en) Manufacturing method of electrolyte membrane for fuel cell
CN102077400A (en) Activation method for membrane electrode assembly, membrane electrode assembly, and solid polymer-type fuel cell using same
JP2017091739A (en) Method for measurement of coverage of catalyst
JP2009277613A (en) Evaluation method of fuel cell
Mariani et al. Evaluation of graphene nanoplatelets as a microporous layer material for PEMFC: Performance and durability analysis
JP2016181488A (en) Electrode for fuel cell, membrane-electrode composite for fuel cell, and fuel cell
US20080102341A1 (en) High intensity complex membrane and membrane-electrode assembly including the same
JP2010251185A (en) Method of testing membrane electrode assembly
JP2008300133A (en) Method for manufacturing fuel cell
JP2015146287A (en) Method for inspecting fuel battery
JP2011023170A (en) Method for manufacturing electrode of fuel cell
JP2008305636A (en) Drainage performance evaluation method for catalytic electrode
JP2009205988A (en) Evaluation method of product water absorption performance of electrolyte film in fuel cell
JP2007220443A (en) Manufacturing method of cation exchange membrane/catalyst layer jointed body for solid polymer type fuel cell
Wang et al. Hydrophilic and hydrophobic microporous layer coated gas diffusion layer for enhancing PEFC performance
Park et al. Characterization studies of a new MEA structure for polymer electrolyte fuel cells